
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Dufva, Tomi; Dufva, Mikko
Metaphors of code

Published in:
THINKING SKILLS AND CREATIVITY

DOI:
10.1016/j.tsc.2016.09.004

Published: 19/09/2016

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY-NC-ND

Please cite the original version:
Dufva, T., & Dufva, M. (2016). Metaphors of code: structuring and broadening the discussion on teaching kids to
code . THINKING SKILLS AND CREATIVITY, 22, 97–110. https://doi.org/10.1016/j.tsc.2016.09.004

https://doi.org/10.1016/j.tsc.2016.09.004
https://doi.org/10.1016/j.tsc.2016.09.004

M
d

T
a

b

a

A
R
R
A
A

K
C
C
M
E
P
T
P
M

1

a
o
p
h
“

1
l

Thinking Skills and Creativity 22 (2016) 97–110

Contents lists available at ScienceDirect

Thinking Skills and Creativity

journa l homepage: ht tp : / /www.e lsev ier .com/ locate / tsc

etaphors of code—Structuring and broadening the
iscussion on teaching children to code

omi Dufva a,∗, Mikko Dufva b

Aalto-University, School of Arts, Design and Architecture, Finland
VTT Technical Research Centre of Finland Ltd, Tekniikankatu 1, Tampere, P.O. Box 1300, 33101 Tampere, Finland

 r t i c l e i n f o

rticle history:
eceived 29 December 2015
eceived in revised form 22 August 2016
ccepted 7 September 2016
vailable online 15 September 2016

eywords:
ode
ode literacy
etaphors

ducation
rogramming
eaching programming
edagogy
edia literacy

a b s t r a c t

Digital technology has become embedded into our daily lives. Code is at the heart of this
technology. The way code is perceived influences the way our everyday interaction with
digital technologies is perceived: is it an objective exchange of ones and zeros, or a value-
laden power struggle between white male programmers and those who think they are
users, when they are, in fact, the product being sold. Understanding the nature of code thus
enables the imagination and exploration of the present state and alternative future devel-
opments of digital technologies. A wider imagination is especially important for developing
basic education so that it provides the capabilities for coping with these developments. Cur-
rently, the discussion has been mainly on the technical details of code. We study how to
broaden this narrow view in order to support the design of more comprehensive and future-
proof education around code and coding. We approach the concept of code through nine
different metaphors from the existing literature on systems thinking and organisational
studies. The metaphors we use are machine, organism, brain, flux and transformation, cul-
ture, political system, psychic prison, instrument of domination and carnival. We describe
their epistemological backgrounds and give examples of how code is perceived through
each of them. We then use the metaphors in order to suggest different complementary
ways that ICT could be taught in schools. The metaphors illustrate different contexts and
help to interpret the discussions related to developments in digital technologies such as free
software movement, democratization of information and internet of things. They also help
to identify the dominant views and the tensions between the views. We propose that the
systematic use of metaphors described in this paper would be a useful tool for broadening
and structuring the dialogue about teaching children to code.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

. Introduction

Digitality as a phenomenon defines our era. Digital technologies have secured their place in business and in social relations
s well as in culture. Digital technologies affect society, but often these changes are taken as given, without broader discussion

n the impacts and consequences (König et al., 1985). This is troubling, because digital technology functions in various
ositions in our society. For example, a high percentage of stock trading is done through trading algorithms with little
uman involvement. (Washington, 2015; Steiner, 2013). Modern cars carry so much digital technology they have been called
computers on wheels” (Foley Lardner LLP, 2014; Hirsch, 2015). Social media, essentially a digital phenomenon, has defined

∗ Corresponding author.
E-mail addresses: tomi.dufva@aalto.fi (T. Dufva), mikko.dufva@vtt.fi (M. Dufva).

http://dx.doi.org/10.1016/j.tsc.2016.09.004
871-1871/© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

icenses/by-nc-nd/4.0/).

dx.doi.org/10.1016/j.tsc.2016.09.004
http://www.sciencedirect.com/science/journal/18711871
http://www.elsevier.com/locate/tsc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tsc.2016.09.004&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:tomi.dufva@aalto.fi
mailto:mikko.dufva@vtt.fi
dx.doi.org/10.1016/j.tsc.2016.09.004
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

98 T. Dufva, M. Dufva / Thinking Skills and Creativity 22 (2016) 97–110

new ways of interaction and has influenced culture. There is also evidence that digital technologies shape the way people
think, by supporting, sharing and expanding people’s cognitive processes(Barzilai and Zohar, 2006). By digital technologies,
we mean technologies that are based on digital signal processing, which can be reduced to a flow of ones and zeroes,
and which usually utilize information networks to function.Digital technologies allowed for the rampant innovation and
growth that started around the 1940s and are defined as the digital age (Ceruzzi, 2012). Digital technologies include all the
technologies from smartphones and computers to automated manufacturing and decentralized communication protocols.
Digitalization presents new challenges, that, in essence, call for an understanding of digital technologies. The so-called digital
divide, that formerly implied the distinction between those who have access to the internet and to those who do not (Mehra,
Merkel, & Bishop, 2004) can now be seen as the divide between those who understand digital technologies and those who
do not. (For a historical view on ICT in education, see Wilson, Scalise, & Gochyyev, 2015). Mark Warschauer points out that,
in today’s society, the ability to access, adapt and create knowledge using information and communication technologies is
critical to social inclusion (Warschauer, 2004).

The access to digital resources, as well as the ease of use of those resources, has increased, but the understanding of the
code has not kept the same pace. This can be seen, for example, within the digital natives discussion. Knowing how to use a
tablet computer at the age of two does not mean that one understands the way the machine works or the code behind it. It
does not even imply that one could learn to cope with the technology (Kupiainen, 2013). This can also be seen from Carita
Kiili’s dissertation (Kiili, 2012) where she states that many young adults have problems assessing and evaluating search
results in the net. In essence, digital technologies are a source of inequality, which is problematic given their ubiquity in
modern society.

Code is the heart of every digital technology and substantially shapes its behaviour. In this paper, we define code as a
digital language with a set of assumptions about the users and the world. Code is used to create programs that control digital
technologies, from automated factories to personal computers, and from connected home appliances to services providing
social networking. Thus, code, in our working definition, refers to the principles and choices made, and is not restricted to
any specific programming language. Coding is the act of writing code and building programs, which includes making implicit
and explicit choices about the purpose, framing and scope of the program.

The key motivation for this paper is that, because digital technologies are always programmed and are thus based on
code, understanding code and the assumptions inherent in it is necessary for full participation in modern society. The code
in digital technologies is not value-free, rather it widely reflects both conscious and subliminal values of the programmer, a
software company or society’s understanding of good code. Digital technology’s operating models are not immutable laws
of nature, but rather flexible models that are designed and controlled by humans (Lessig, 1999, 2009). Code does not reflect
objective truth about the world. Instead, it constructs laws in the digital realm. Without understanding how these laws are
formed, we are not able to fully participate in the discourse of our digital life (Giroux, 2011; Lessig, 2009, Rushkoff, 2010).
Technology does not impinge upon us from the outside of society, but interweaves into our society in the same way as
the political or economic system does, and is also dependent on these other systems, which can alter the way, or speed,
of technological progress (König et al., 1985). Without including technology as a coherent part of societal discussion the
effects of technology and its relations to other systems stay ambiguous. Furthermore discussion around the ramifications
of technologies are crucial as technology has the tendency to convert social, scientific, governmental and human problems
into technical problems (Williamson, 2015).

We propose code literacy as a way to participate to the discussion around the effects of digital technologies on society.
Code literacy does not directly allude to learning to program in the traditional sense, rather it implies the understanding
of the code and its intentions and context. The notion of literacy illustrates the case: In the same way that not all literate
individuals become authors, not all code-literate individuals become developers. Still, literate people have the necessary
skills and the apprehension of reading and writing.

Understanding code does not emerge naturally from lived experience, but has to be taught. The code used to form the
present digital world, be it an operating system, software or stock- trading algorithm, is distinctly different from the everyday
analogue tools, such as hammer, pen or paintbrush, used to form the material world. One example of this is the binary system
of two alternate states, often represented as 1 and 0. Code is binary and, therefore, can be reduced to “yes or no” decisions.
However, as Rushkoff argues, human lives are not binary and thus trying to represent them using these binary systems is
problematic (Rushkoff, 2010).

Learning to code and digital learning systems are deeply intertwined in political, societal and commercial structures
(Williamson, 2015, 2016). We argue that current teaching about digital technologies, programming and code and the dis-
cussion around it does not take fully into account the societal and ethical dimensions of code. Thus, our goal in this paper is
to broaden the discussion and propose a structure for understanding different views on code. To facilitate this, we describe
nine metaphors of code based on four paradigms. Through the use of metaphors and their associated paradigms we wish to
support a larger and more holistic view on code and digital technologies.

This paper is structured as follows. After this introduction, in Section 2 we describe nine general metaphors that cover
four common paradigms of social theory as well as different assumptions about the complexity of the world and the relations

between stakeholders. In Section 3, we apply these metaphors to structuring the discussion around code and illustrating
various viewpoints expressed about what code is and how it influences society. In Section 4, we focus specifically on education
around code and coding, and suggest different views on teaching code. Section 5 concludes the paper.

T. Dufva, M. Dufva / Thinking Skills and Creativity 22 (2016) 97–110 99

Assumptions about the values and interests of
stakeholders

Unitary Pluralist Coercive

Ass umption s
about the na ture
of the world

Simple Machine
Organism

Culture
Poli tical sys tem

Psyc hic prison
Instrument of
domination

Complex
Brain
Flux and
transformation

Carnival

F
2

2

a
a
a
a
a
t
m

2
1
i
n
t
(

o
o
s
i
p
h
c
p
f

t
i
c
c

a
a
m
s
a

o
t
S

p
m

ig. 1. Nine metaphors categorised by their assumption of the complexity of the context or “system”, and the values and interests of stakeholders (Jackson,
003).

. Metaphors for structuring the discussion around code

The language around concepts such as technology has been analysed before through methods such as discourse analysis
nd critical discourse analysis (Fairclough, 1995; Weiss and Wodak, 2006). Our analysis is based on this stream of qualitative
nalysis of the concepts used to describe a phenomenon. However, in this paper we use metaphors as the tool for analysing
nd structuring the discussion. Metaphors are a mechanism for describing, understanding and comparing abstract concepts,
nd can be defined as mappings across conceptual domains (Lakoff, 2009). Through a metaphor, the entities in one domain
re mapped onto entities in another domain. For example, a segment of code could be mapped to represent an organ in
he human body. Metaphors can be powerful in influencing how an issue is approached or a problem is framed, but we are

ostly unaware of their effect (Thibodeau and Boroditsky, 2011).
Metaphors have been used in a systematic fashion in management and organisational studies (Jackson, 2007; Morgan,

006). We use the metaphors introduced by Morgan (Morgan, 2006) and developed further by Jackson (Jackson and Keys,
984). These nine metaphors describe different views on the concept of code and include the metaphors of machine, organ-

sm, brain, flux and transformation, culture, political system, psychic prison, instrument of domination and carnival. The
ine metaphors are based on four common research approaches or paradigms in social theory: the functionalist, interpre-
ive, emancipatory and postmodern (Jackson and Keys, 1984; Jackson, 2007) based on (Louis, Burrell, & Morgan, 1983) and
Alvesson and Deetz, 1996).

Paradigm, in its original sense, means the set of ideas, assumptions and beliefs that shape and guide the scientific activity
f a research community (Kuhn, 1970). The aim in the functionalist paradigm is to demonstrate law-like relations between
bjects. The emphasis is on function and efficiency. The functionalist paradigm is based on the assumption that an under-
tanding can be gained through scientific method and empirical research. The interpretive paradigm, as the name suggests,
s more interested in the interpretations people make of different issues and situations. These interpretations guide peo-
le’s behaviour. Thus, the aim is to understand these interpretations and the underlying culture through methods such as
ermeneutics and ethnography. The emancipatory paradigm focuses on the power relations in society. It is aimed at “eman-
ipating”, i.e. liberating and empowering people and unmasking domination through ideological and cultural critique. The
ostmodern paradigm is opposed to all three former paradigms, which it views as modernist. It critiques the attempt to

orm grand narratives and assuming rationality and direction. Its methods include deconstruction and genealogy.
The metaphors can be structured along two dimensions (Jackson, 2003). The first considers the assumptions made about

he world. The world can be seen as relative simple, meaning that the key issues are knowable, causal relations between the
ssues are straightforward and known, and goals are achievable by following a detailed plan. On the other hand, the world
an be seen to be a complex, interconnected “mess”, where there are many surprises, unintended consequences, non-linear
ausal relations and, thus, the focus is more on adapting and “muddling through” than following a plan.

The second dimension covers three different perceptions of the values and interests of the stakeholders: unitary, pluralist
nd coercive. Stakeholder values and opinions can be assumed to be unitary, meaning that the stakeholders tend to agree on

 common goal and share a similar worldview. A pluralist view criticises this as too simplistic, and assumes that there are
ultiple, competing goals and worldviews. A coercive view goes further and frames the stakeholder relations as a power

truggle between those in power and those who are oppressed. Thus, there are multiple goals and worldviews, but not all
re given voice.

The metaphors can be positioned to a matrix using these two dimensions. (Fig. 1, see also the system of system method-
logies by Jackson & Keys (1984) (Jackson, 2003). While Jackson (2003) uses metaphors to describe organisations, we argue
hat they can be used also to shed light on more general issues. We will next briefly describe the metaphors and then, in
ection 3, use them to illustrate various views of code.
The first four metaphors are based on the functionalist paradigm and view the values and interests of stakeholders, i.e.
eople who are influenced by code, as unitary and thus not problematic. The machine metaphor depicts issues as linear,
echanistic sequences from inputs to outputs and emphasises efficiency above all. The organism metaphor describes a

100 T. Dufva, M. Dufva / Thinking Skills and Creativity 22 (2016) 97–110

Table 1
Nine metaphors for understanding the nature and purpose of code.

Metaphor Description of code Purpose of code Example

Machine Code is a linear sequence of
commands that is input to a
machine

To control a machine Algorithms, code listings

Organism Code is a set of objects that
represent different parts of a
program

To create functionality, to
interact

Object-oriented programming

Brain Code is the intelligence of
man-made systems

To create new information, to
learn

Cloud computing, artificial
intelligence

Flux and transformation Code is the process that creates
changes in man-made systems

To create change, to create
structure

Software as life changer

Culture Code is a way of thinking and
understanding the world

To connect and create a
community

Free software foundation,
Hacker ethcis, Hacker Culture

Political system Code is a statement and a tool
to shape the world

To establish a new form of
society

Code as political construct.
Internet

Psychic prison Code is a system which
requires people to adapt to it

To shape people Filter bubble

Instrument of domination Code is a tool for domination To control people Data as a source of power
Carnival Code is a tool for art and To challenge existing mindsets, Creative coding.
creativity to open up discussion

non-linear interaction between different parts and highlights the functional differences and roles of the parts. The brain
metaphor, stemming from cybernetics, puts emphasis on learning and adaptation in a hierarchical system, while the flux
and transformation focuses on the processes and logics of change.

The culture and political system metaphors are based on the interpretive paradigm, which puts emphasis on the different
interpretations that exist of an issue. The culture metaphor focuses on values, beliefs and worldviews, and thus highlights the
community or communities around the issue. The political system metaphor also emphasises values and worldviews, but
focuses more on the governance and decision-making around the issue. It thus highlights relevant institutions and political
structures.

The psychic prison and instrument of domination metaphors are based on the emancipatory paradigm. Similar to the
interpretive paradigm, the assumption is that there are multiple differing worldviews, beliefs and values. However, now
the focus is on the power relations between the worldviews and on bringing ignored or suppressed aspects and questions
to the surface. The psychic prison metaphor focuses on the structures, both intentional and unintentional, that suppress
individual freedom and learning. The instrument of domination metaphor focuses more on the group level and highlights
how the issue is used as a way to control others.

The final metaphor, carnival, is based on the postmodern paradigm, which seeks to question the way the issues are
discussed and framed in general by deconstructing the main concepts. The carnival metaphor thus highlights the creative
and chaotic side of an issue, in order to use the issue itself to question the way it is discussed. This may often result in a
multi-faceted picture of the issue, which is not as coherent as in the other metaphors.

Our purpose in describing and applying these metaphors is not to argue that one is better than the other, or that a
certain view to an issue should be followed. Rather, our purpose is to use the metaphors to structure the discussion around
code. The nine different views help to understand the discussions and decisions around code. In addition to giving a more
comprehensive view of what code is, the different metaphors also highlight what is missing from the discussions and which
views conflict with each other. We will return to these questions in the discussion section, after we have applied the nine
metaphors in the next section.

3. Understanding code through metaphors

In this chapter, we propose ways to define code through the different metaphors. We illustrate how code is defined and
how it appears in the different metaphors. In Table 1, we provide a summary of these descriptions of code, views of the
purpose of code as well as some examples. These results are elaborated below.

3.1. Functionalist paradigm

The functionalist paradigm introduces a mechanical and unitary view of code. It focuses on the straightforward advance-

ment of code as a technical invention. Inside the paradigm, four different metaphors present different nuances. As a whole,
the functionalist paradigm can be marked as a dominant view: It predominantly acts as a common and shared understanding
of the meaning of code.

3

o
o
–

t
r
t
t

o
r
l
i
l

i
c
f
h
t

i
s
r
s

q
a
e

3

c
i
m
a
o

p
p
p

t
t
a
t
t

3

i
t

t
i
M
m
b
c

T. Dufva, M. Dufva / Thinking Skills and Creativity 22 (2016) 97–110 101

.1.1. Machine: code as a mechanistic, linear sequence of commands
The machine metaphor represents the fundamental mechanical comprehension of code. Code is seen as a sequential set

f instructions that are input into and processed by a machine: the computer. The results are then displayed to the user. In
ther words, the user expects that the computer as a machine will deliver her or him results based on a set of instructions

 the code.
From a technical perspective, the machine metaphor demonstrates the fundamental physics of code. Paul E. Ceruzzi calls

his the digital paradigm – that all code, computation and control are done in binary form. With binary form, he not only
efers to a binary arithmetic – the number system that uses just two symbols, 1 and 0–but also to the use of binary logic
hat is used to control, encode and transmit the information (Ceruzzi, 2012). In essence, all digital information is based on
he binary code.

In the machine metaphor, computers, the machines that are able to process digital information, are basically input and
utput machines. They take instructions, process those instructions and output information based on the instructions. Code
epresents the set of instructions in the languages that the computers can understand. Computer languages vary from lower
evel languages to higher level languages. Lower level languages are closer to the binary logic that computers use on the
mplementation level, while more complex, higher level languages are easier for humans to write and read. Whatever the
anguage is, in the end all of these languages are compiled back to a binary form.

From the machine-metaphor view, the higher level languages can be seen as rational progression towards getting the
ntended process completed faster and easier. Even though the code in higher level languages is farther from the binary
ode, being closer to the language humans use increases efficiency through a manageable working environment and less
riction in the process. Many modern compilers are generally more efficient in compacting the code to binary than are
umans, resulting in a more robust code (Ceruzzi, 2012). Machine metaphor illustrates the straightforward process of digital
echnology – progress means creating ever more efficient machines to interpret increasingly complex code.

The machine metaphor represents a reductionist viewpoint and a hierarchical way of processing data. Tasks are broken
nto parts and processed in a strict order governed by the rules of the program – the code. This assumes that the context is
imple and can be reduced to separate parts, and that a single common goal exists. Seeing code only through this metaphor
esults in an emphasis on the process without questioning the direction, which, furthermore, often results in advocacy of a
ingle way of coding without embracing possible diversity of goals and processes.

In the context of planning education, this could mean a debate on which coding language should be taught, but not
uestioning what the purpose of teaching the coding language is in the first place. The underlying rationale behind such

 debate is that coding is a skill for the job market and teaching coding – the right language and style – is thus good for
nsuring the employability of future workforce.

.1.2. Organism: code as a combination of objects
The organism metaphor sees the code as a construct of many individual parts that work together. This can be seen as a

ontinuation of the machine metaphor, as it focuses further on increasing the efficiency of code by further breaking the code
nto more manageable parts, thus allowing programmers easier ways to reaching their goals (Petzold, 1999). The organism

etaphor represents another common mechanical view of the code. It can also give us an idea of how modern code is created
nd how software problems are addressed – code is not seen as a simple set of instructions but as a structured sets of code,
rgans, that together create a working program, or a body.

On a technical level, the organism metaphor corresponds to object-oriented programming (Cox, 1985). Object oriented
rogramming breaks the linear set of instructions to different objects that can be addressed when necessary. Most modern
rogramming languages favour this approach as it allows for a more structured management of complex code that makes
roblem solving easier, thus increasing efficiency (Petzold, 1999).

Furthermore, the organism metaphor represents a structural approach, which allows the creation of more flexible code
hat can interact simultaneously to multiple inputs and outputs. Coding is still seen as a mechanic practice of giving instruc-
ions, but the linearity of the instructions is broken into interconnected parts. Object-oriented thinking and problem solving
re at the heart of modern coding. Many commonly used higher level programming languages incorporate object-oriented
hinking. As such, object-oriented thinking and problem solving break the traditional narrative and sequential ways of
hinking and understanding (Manovich, 1999).

.1.3. Brain: code is intelligence
In the brain, metaphor code is not only sets of organized instructions, but represents the intelligence of computers. Code

s seen as the man-made brain: intelligence that not only structures information, but also creates and modifies it. Code is
he central unit that processes and develops information in the system, be it software, computer or any other machine.

One example of seeing code through the brain metaphor is the notion of artificial intelligence. Artificial Intelligence (AI) is
he study of how to build or program computers to enable them to do what minds can do (Boden, 1996). The idea of artificial
ntelligence has captivated many past and present thinkers long before digital technologies existed (McCorduck, 2004).
odern programmable computers can be seen as the manifestation of the idea of artificial intelligence – before computers,
achines were built for a specific task and purpose (Ceruzzi, 2012). The idea of a general device, the purpose of which could

e changed indefinitely by programming, was revolutionary. A similar idea of programming and reprogramming fuels the
urrent developments in artificial intelligence – pattern recognition, computational learning theory and machine learning

102 T. Dufva, M. Dufva / Thinking Skills and Creativity 22 (2016) 97–110

stem from the idea that the code inside the computer can change, or, loaning a biological term, it can evolve (Chrisley and
Begeer, 2000). The ultimate extreme in artificial intelligence is technological singularity in which artificial intelligence has
progressed beyond human intelligence and becomes sentient through code (Kurzweil, 2005; Lanier, 2010). Through the
brain metaphor, this development is seen as natural and desirable; the metaphor contains no problematization or critique.
Code only actualizes the potential and predetermined ultimate goal of digitality. In technological singularity, code truly
becomes the brains of the computer.

The brain metaphor is naturally not limited to the discussion of artificial intelligence. We can also look at other systems
of code through the brain metaphor. It extends the functionalist paradigm further, from lists and objects to a system with
a central controller who has the authority to control and modify the code. A good example is cloud computing, where the
machines running the code become secondary. Even though the code is running on physical computers, the physical location
is irrelevant. Code is seen to escape the hardware and have a life of its own in the cloud of digital computing power. In a
similar way, modern digital voice-controlled assistants aim to create the illusion of an omniscient virtual entity and can thus
be seen to represent code in its abstract form. They seem to exist beyond the machinery running them.

3.1.4. Flux and transformation: code will save the world
The Flux & Transformation metaphor is similar to the brain metaphor, as it also concentrates on the development of

the code, but, rather than framing code as the intelligence of machines, it sees code as a transformative tool to continually
change the world. It therefore broadens the focus from computers and code to their environment. It can bring into focus the
aspiration many software companies share, at least in their public declarations, which is not just to create better products, but
to make the world a better place. From Google’s “Do no evil”-slogan to Facebook’s CEO Mark Zuckerberg, who argues that his
company’s mission is to “make the world more open and connected” (Mark Zuckerberg, Sarah Lacy Interview Video, 2008),
software companies are focusing on solving problems rather than creating products. As Jeff Jarvis has said, “Complexity is a
solvable problem in the right hands” (Jarvis, 2012).

Code is seen as a medium that is both flexible and can be deployed rapidly and widely. It only takes one person and
a few nights to come up with a solution that has the possibility to change or disrupt the way we see the world. The Flux
and Transformation metaphor thus moves the focus from the advancement of efficient code to code’s ability to advance our
lives. The metaphor is firmly grounded in the functionalist paradigm, and focuses on how to create a change rather than on
the question of why change is needed, what the direction should be and who gets to decide the direction. Thus, it does not
problematize the act of making the world a better place. The problems are seen as simple, straightforward tasks that can be
solved with code.

3.2. Interpretive paradigm

Whereas the functional paradigm and the last four metaphors saw the code as a fairly straightforward issue that mainly
concerns technical aspects and implementations, the interpretive paradigm has greater interest in the different ways of
seeing and understanding code. In contrast to the unitary perspective of functionalism, the interpretive paradigm takes into
account the plurality of stakeholder values and opinions in the context in which the code is created and deployed.

3.2.1. Culture: code creating communities
The Culture metaphor focuses on the communal aspects of code, for example on what kind of communities and subcultures

are formed around code and coding, and what kinds of values are projected to code. The popularisation of digital technology
has led to a whole industry that has created its ways of working and communicating as well as its ethical rules, which are
reflected in the way code is perceived and treated. The culture is not unambiguous; rather it consists of many sub-cultures
and ideologies.

The Culture metaphor brings into focus the ways code affects how the surrounding environment – the world – is inter-
preted. One example of this is the free software movement. The movement has a long creation history dating back to the early
phases of computers. Before personal computers, computers were mainly used in corporations, universities and research
laboratories. Most of the operating systems were open. Anyone could read and modify the way operating systems worked.
When the industry began to grow, especially into businesses and households, and the operating systems evolved, many
manufacturers started closing their code, thus preventing collaboration and modification. For some, this development went
against their basic rights and values as programmers. On this basis, Richard Stallman, then working for the Artificial Intel-
ligence Lab at MIT (Stallman, Gay, & Lessig, 2009), created the GNU project (Fsf, 2015a), on which Linus Torvalds later built
his free operating system, Linux. A few years after starting the GNU project, Stallman founded the Free Software Foundation
(FSF) (Fsf, 2015b).

These projects can be seen as a wish to maintain the academic ethos and collaboration as well as the hacker culture alive

in the developer culture (Stallman et al., 2009). The stated goal for these projects is societal change. FSF wants to change the
way we use, distribute and think about code. At the core of FSF are four rights that, according to FSF, are essential in keeping
the development and use of code democratic:

The freedom to run the program as you wish, for any purpose (freedom 0).

t
c
(
w
h
i

m
(
i

3

m
m
c
i
c
l
m
d
i
t
w
2
e
E
c
d

s
d
s
t
i
i
b
t
s
(

l
r
c
o

T. Dufva, M. Dufva / Thinking Skills and Creativity 22 (2016) 97–110 103

The freedom to study how the program works, and change it, so it does your computing as you wish (freedom 1).
Access to the source code is a precondition for this.

The freedom to redistribute copies so you can help your neighbor (freedom 2).

The freedom to distribute copies of your modified versions to others (freedom 3). By doing this, you can give the whole
community a chance to benefit from your changes. Access to the source code is a precondition for this (Fsf, 2015a).

These rights align with hacker culture, which, at the time Stallman founded the foundation had different connotations
han the word “hacker” has now. Hacker was a positive concept rather than depicting a coder with a criminal aptitude. Hacker
ulture believes in free access, freedom of information, and improvement to the quality of life (by using digital technologies)
Levy, 2010). Even though the aims of FSF are political and ideological, it also reveals the richness in the developer culture,
ith its core beliefs, tradition and ethics. As Coleman (2012) says in her book Coding Freedom, The ethics and aesthetics of

acking (Gillen, 2013), there is a common pride and joy in offering your “handmade” code to others, as well as the genuine
nterest in learning from other developers’ code.

As the examples above illustrate, inspecting coding from the perspective of the cultural metaphor reveals the rich and
any-sided culture of code and reveals that coders sit simultaneously at the centre and at the margins of the liberal tradition

Gillen, 2013). Code both creates many sub-cultures and at the same time affects the general culture. Thus, code and coding
s not only about giving instructions to a machine or solving problems, but also about influencing the culture.

.2.2. Political system: code structuring the society
The other metaphor in the interpretive paradigm, political system, offers a somewhat different view from the culture

etaphor. Whereas the culture metaphor sees the world from the individual and grassroots perspective, the political system
etaphor takes a look at how code creates hierarchical systems that affect our everyday lives. Besides influencing its culture,

ode also affects society in a more systematic manner. The way our coded environments are built, as well as the way code
tself is built, constructs the ways we act in the world. From operating systems and programs to protocols that hold the
onstructions together, the many ways we interact in the world are channelled through the code. “Code is law”, as Harvard
awyer and author of Code and other laws of cyberspace (Lessig, 1999, 2009) Lawrence Lessig puts it. In the political system,

etaphor code is seen as not mere mechanical technology, but a malleable force that can be changed by the culture that
evelopers live in, as well through governmental or any other institutional control. One example of this is the internet, as

t offers us a multi-faceted view of how political systems affect the way code is structured. Born out of research projects in
he US defence department, the internet spread to universities and from there to the public. In the beginning, the internet
as seen as a revolutionary medium that allowed every participant to not only receive, but to send information (Lessig,

009), thus enabling a ‘real’ democratic process. The internet was seen as free by its nature, offering equal opportunities to
veryone (Fleischer et al., 2014, Lessig, 2009). A quote from MIT professor Dave Clark’s 1992 speech at the IETF (Internet
ngineering Task Force) conference depicts the ethos well: “We reject: kings, presidents, and voting. We e believe in: rough
onsensus and running code." (Borsook, 1995) But as Lessig wrote already in 1999, The internet has no nature per se, but is
ependent on our choices:

‘We can build, or architect, or code cyberspace to protect values that we believe are fundamental, or we can build, or
architect or code cyberspace to allow those to disappear. There is no choice that does not include some kind of
building. Code is never found; it is only ever made, and only ever made by us’ (Lessig, 1999).

Sixteen years later, the structure of the internet has been changed considerably through the actions of several different
ources. When Lessig was writing the first revision of the Code and other laws of cyberspace, the current topic was free mp3-
ownloads and the music industry’s reaction to it, leading to digital rights management (DRM) and legislation. At about the
ame time, China was waking up to the threats that the internet, as a source of non- controlled information might impose
o its governance, causing it to erect the “Great Firewall of China”, a project that aims to manage all the net communication
n and out of China (University of California-Davis, 2007). And a few years ago Edward Snowden revealed the widespread
nternet surveillance that governments were engaged in, thus displaying yet another layer of the internet and what has
een made possible through code. As Mikael Brunila proposes, the internet has enabled panspectric control, which alludes
o the way information can be gathered from the internet. In traditional panoptic control, information is gathered from the
uspects after they actually become suspects; in panspectric control, everything is collected, all the time, and from everyone
Fleischer et al., 2014).

These kind of structural changes in societal architecture give us a glimpse of the reach code has. The internet is a multi-

ayered construction of code, which is inherently intertwined with political systems. Code is not free from these ties, but
ather has a decisive role in creating the architectures we use every day. The questions of how to control code, who can
ontrol code and why would we control it are increasingly more relevant in our lives, as code permeates more and more of
ur everyday activities via the internet-based services, but also through increasingly “smart” gadgets.

104 T. Dufva, M. Dufva / Thinking Skills and Creativity 22 (2016) 97–110

3.3. Emancipatory paradigm

Many of the issues that arise in the interpretive paradigm can also be seen as issues in the emancipatory paradigm, and
vice versa. The difference comes from the focus on power relations. In the interpretive paradigm, there are differing views on
the purpose and goals related to code, but the differences between these views are assumed to be somewhat unproblematic.
We can examine the different views that code offers to culture and politics. In contrast, the metaphors in the emancipatory
paradigm focus more on what the power relationship is between these various views, and how these power relations are
reflected or enacted through code. For example, does code enable or restrict emancipation both at the individual and societal
level?

3.3.1. Psychic prison: code restricting human behaviour
The psychic prison metaphor takes a look at the power relations from the individual perspective. It brings into focus

the code that underlies technological inventions from the emancipatory perspective. Is a code good for an individual? Does
this code help an individual accomplish the things she wants to do? How does the architecture of code influence the life of
an individual? One example of this is what Eli Pariser calls the filter bubble (Pariser, 2012), meaning the possible outcome
that may result from using invisible automatic personalisation algorithms. The algorithms are invisible in the sense that an
individual does not choose to use them, nor sees them. Rather, she has opted into them automatically when using certain
services. One example Pariser gives is the difference in results people get by doing the same Google search. Using the same
search words yields different results, based on dozens of different signals Google collects from the user. (Pariser, 2012) A
quote from Mark Zuckerberg, CEO of Facebook illustrates the idea further:

“A squirrel dying in your front yard may be more relevant to your interests right now than people dying in Africa.”

As Parisier says

“Your filter bubble is your own personal, unique universe of information that you live in online. And what’s in your
filter bubble depends on who you are, and it depends on what you do. But the thing is that you don’t decide what gets
in. And more importantly, you don’t actually see what gets edited out. “

The idea of the filter bubble shows the possible problems caused by code that is selecting content from the internet
unbeknown to the user. Having no control over this code creates an unequal situation between the user and the code. On
what basis does the code select what content is shown and what is hidden? What are the bases of the code selecting the
showable content? And what are the motivations of the developer who decided these rules embedded in the code? Are the
rules decided with the user’s assumed benefit in mind, or are they defined to benefit the business that the developer is in?

On a more abstract level, the psychic prison metaphor also focuses on the issue of how we might knowingly or uncon-
sciously change ourselves because of code. For example, MIT professor Sherry Turkle talks about the ways we require digital
devices to actualize our feelings. She gives an example of her study where she concluded that some teenagers require the
passing of text messages to truly justify and experience their feelings, like falling in love or being scared (Turkle, 2011).
Another point Turkle, along with many others such as Jaron Lanier (Lanier, 2010) and Douglas Rushkoff (Rushkoff, 2010,
2013) bring up, is the alienation that code allows us to feel. Turkle speaks about the feeling of “alone together” where we
are physically in one place with other people, but mentally somewhere else (Turkle, 2011). Another example of this abstract
level is obsessive gaming. How does the code in the games take into account the player and their needs? Is the code made
in a responsible way or does it use tricks to hook the player into spending more time or money on the game?

The psychic prison metaphor highlights how the power relationship between individual and code is problematic. The
ways code changes us may not always be for the good. As Jaron Lanier asks, do coded environments change people, or do
people change themselves because of them? Lanier’s point is that, in order to use, enjoy or respect code, humans can adjust to
many levels of intelligence. Sometimes, code requires us to be less intelligent than we really are (Lanier, 2010). Self-control is
required in order to break free from the psychic prison. Both Lanier and Turkle use the term dieting. In a similar vein, Parisier
is concerned that the filter bubble might feed us too much of the information we enjoy and too little of the information we
need, and uses the term “information junk food” (Pariser, 2012). Turkle asks for a digital diet: a reflective and introspective
review of what and how we want to use our devices (Turkle, 2011). The psychic prison metaphor enables the exploration of
the ways code might limit or shape the current and future potential of humans.

3.3.2. Instrument of domination: knowledge and control of code is power
The instrument of domination metaphor focuses on the power relations between societal and communal constructs and

code. Code is seen as a force that is used intentionally in order to shape and control others. The metaphor concentrates on
those aspects of code that may enable some group to dominate another group in ways that might not have been possible or
feasible before. In other words, does the architecture of code have an aptitude to cause inequality? If that is the case, then

those who understand and have access to code have more power than those that do not. Because of the widespread nature
of code, these issues are not just marginal questions. Code is not just at the heart of computer screens or smart phones, but
affects a wide variety of things from pacemakers to cars and manufacturing units, offering unforeseen access to the everyday
lives of humans.

s
w
i
o
I
c
t
t

s
o
a
d
f
c

g
w
d
d
e
a
(
V

a
t
s
g
m

3

p
i
e

3

c
m
c
t
e
a
(
o
o
t
t

s
i
A
c

T. Dufva, M. Dufva / Thinking Skills and Creativity 22 (2016) 97–110 105

For example, if computer browsers can transfer so much information to Google that it can confidently personalise our
earch results, how much more does the mobile phone with its sensors and location data add to this information? Or,
hat about our payment data collected from credit card purchases and ewallets and the increasing popularisation of the

nternet of things? If all the data from house temperature and the efficiency of a person’ habits of recycling to their history
f payments are funnelled to one or a few institutions or corporations, does it not create the possibilities for domination?

n a similar way, the invisibility of code in the filter bubble creates problematic situations, as does the invisible and closed
ollection of data to both individuals and to society as a whole (Morozov, 2013). Collection of data is problematic because of
he lack of democratic availability of the data. Most of the information collection is done by large tech companies that keep
he information to themselves or only sell it to other businesses (Fleischer et al., 2014).

The problematics of domination are not just limited between tech companies and users, but the relationship can be
een in several different scenarios. When more devices get both transformed into code and connected to networks, new
pportunities arise for misuse. For example, modern cars can be thought to be computer servers on wheels (Vallance, 2015),
nd when they get connected to outside networks they can also be hacked and remotely controlled, as two new studies
emonstrate (Checkoway et al., 2015; Vallance, 2015). Being able to take almost full control of any network-connected car

rom the comfort of your sofa, using just your computer and mobile phone exemplifies the significance of domination by
ode very well.

Other more well-known examples are the privacy breaches that Edward Snowden revealed. The widespread nature of how
overnments spy on citizens illustrates the reach that digital devices and code have in our lives. Without acknowledgment,
e are giving up information about our lives that we did not even know about before. One important angle on the massive

ata collection is that it is impossible to collect or manage that amount of information without code, thus increasing the
ependency we have on code. The increase is not just in the pure processing power, but even more in the capabilities of
valuation of the information. Also, this processing power is more reachable by those that have more assets and time, creating
n imbalance that is further increased by the lock-in effects, common in digital technologies (Lanier, 2010) (Morozov, 2013)
Rushkoff, 2010). The imbalance is further increased by the prevalent proprietary nature of the code (Stallman et al., 2009;
aden, 2005).

Yet, even if code allows for new kinds of domination, and may be biased towards those who have more assets, it does
lso enable rebelling against those currently in power. The construction of code allows for clever individuals to use it for
heir own purposes. For example, hackers in China or in the Arab world during the Arab spring or in other countries that
uppress freedom of speech can benefit from code architecture by tunnelling messages securely to the outside world, passing
overnmental restriction and walls. In the instrument of domination metaphor, code can be seen as architecture that allows
ore multi-layered ways of domination, and is both the instrument and the product of power relations.

.4. Postmodern paradigm

Functionalist, interpretive and emancipatory paradigms provide different views of what code is. The postmodern
aradigm provides a “meta-view” and focuses on the mechanisms through which we create these views. Essential questions

n this paradigm are how do we see code, what influences our perception of code and what other ways could there be? The
mphasis is thus on deconstructing the process of giving meaning to what code is.

.4.1. Carnival: understanding of code can be created through creative use of code
To illustrate how the concept of code can be approached in the postmodern paradigm, we employ the metaphor of a

arnival. In the carnival metaphor, many perceptions can exist at the same time and playfulness, suspension of disbelief and
ulti-facetedness is embraced. The carnival metaphor focuses on the creative and artistic sides of code. It illustrates how

ode can inspire people and evoke various emotions. It also helps to explore the different reactions people have expressed
owards code. However, the carnival metaphor does not fully reflect all the aspects of the postmodern paradigm and the
ndeavour to deconstruct the meaning and sense of code. Art and creativity can be seen as ways of deconstruction but they
re not the only ways to do this, nor can we say that they are only views into the multiple nature of postmodern. Jackson
2007) uses also the metaphor of broken mirror to reflect the change from one solid picture into various differenting pictures
f the whole. A good example of the understanding of code in the carnival metaphor is creative coding, which concentrates
n the expressive rather than functional sides of code. Creative coding has its origins in the 1960s, when artists first began
o experiment with computers. In recent decades, creative coding has seen an upheaval along with several tools aimed at
he creative professionals.

“Creative code may sound like an oxymoron, but as in many technical processes in the art studio, creativity may
emerge once rules are learned and then broken (Knochel & Patton, 2015).”

Creative coding allows artists to question and critique code and, at the same time, express themselves through code. In a

imilar way that a brush or a pen is a tool for visual artist, code can be seen and used as an artistic instrument. Code, like any
nstrument has its own biases and ways of working, creating a medium that allows things to be expressed in unique ways.
s Cox says in his book Speaking Code: “Code, like language in general, evokes complex processes by which multiple voices
an be expressed, modified, and further developed” (Cox, 2013, p.6)

106 T. Dufva, M. Dufva / Thinking Skills and Creativity 22 (2016) 97–110

One example of creative coding is “Smile TV”, a project by David Hedberg. “Smile TV” is a simple TV-set, but it only
works when the viewer is smiling, thus creating a real working product using modern technologies and at the same time
critiquing digital culture (Scholz, 2014). The works in creative code are diverse, where some focus on the visual effects or
on visualisation of data, such as Jer Thorp’s works (Thorp, 2009). And some use digital technologies to reveal hidden layers
in these techniques, such as the Immaterials project that materialises the existence of GPS-signals (Arnall, 2014) and Wifi
signals (Arnall, 2011).

As the examples indicate, creative coding comments on the views of code expressed within multiple paradigms and
metaphors. Whereas some works can take a functionalist angle and use code in an almost similar way when developing
“working” software, some may misuse and break the workings of code altogether. And still others may use code as a way to
critique the power issues arising from the code. As such, the world around creative code is ambiguous and multi-faceted.

Creative coding illustrates how the carnival metaphor incorporates various views captured in other metaphors, joins
them together and deconstructs them. Like many art works, the carnival metaphor focuses more on the experience than the
theory. The art created does not justify its presence, but rather waits to be experienced. As such, it can show us those sides
of code that may not be otherwise understood, or seen.

In this section, we have described different perceptions of code through the use of nine metaphors. In order to illustrate
how these metaphors can be used to structure and inform a topical issue, we apply them to the ongoing discussion about
teaching programming in schools.

4. Applying the metaphors of code to developing education around code and coding

Teaching programming has lately been a much discussed subject in education. Finland along with many countries, such
as Estonia, the UK and the US have started or are starting to incorporate programming in the basic curriculum in schools
(Halinen, 2014; Sterling, 2015). Our research is mainly focused on the discussion, decisions and development of teaching
programming in Finland, although it can be seen to echo similar tendencies in other countries such as UK (For example
see Williamson, 2015). When the teaching of programming moves from the level of higher education to the level of basic
education, the understanding of programming becomes increasingly important: does the basic curriculum just prepare
younger students for the digital industry as a possible workforce, or does it offer educational views on the complex issues
around widespread digital technology? This problematic is cumulative, as teachers are often unclear of the intended aims
and goals of teaching programming (Pollari, 2014). The discussion around code is often limited to methods of teaching
programming, such as different platforms etc., and to which programming language would be best in programming. In some
cases, code is also seen as part of art and craft, such as in Finland, where teaching programming is going to be divided
between maths and craft lessons (Opetushallitus, 2014).

In general, the views around teaching code are fairly limited and mechanical. Even though critique towards technological
determinism has been expressed, the idea that technology acts as independent and often objective force is still often taken as
granted. (König et al., 1985). Understanding the way code structures our daily interaction with machines and how it mediates
our interaction with fellow humans (through digital services) is rarely seen as an essential societal skill. Rather, the code
underlying the interfaces and services we use is taken as given. This limits students’ capability to identify and question the
implicit assumptions about this code. From the stance of critical pedagogy, Paulo Freire asked even in the 1990s to find a
policy on teaching technology (Freire, Freire, & De Oliveira, 2014). He acknowledged the increasing speed that technologies
advance and how this creates life changes, and asks for “the quality of getting or creating ability to answer to different challenges
with the same speed that things change. This is one of the demands of contemporary education. We need to form and not to train.”
(Freire et al., 2014).

In the previous section we applied nine metaphors to illustrate different perceptions of code and highlight various issues
related to these perceptions. We now apply these metaphors to structure and broaden the discussion around teaching
programming at the level of basic education. The most prevalent question that arises from applying the metaphors is about
the objectivity of code and programming. Is code seen as an objective exchange of ones and zeroes, or is it a value-laden
power struggle between white male programmers and those who think they are users when they are, in fact, the product
being sold?

The current dominant discussion emphasises more the objective, logical and mathematical sides of code as described by
the functionalist paradigm and especially by machine and organism metaphors. Code is seen as an unproblematic language
to be taught in order for the students to have a more secure employment. In the context of planning education, this could
mean a debate on which coding language should be taught, but not questioning what the purpose of teaching the coding
language is in the first place. The underlying rationale behind such a debate is that coding is a skill for the job market

and teaching coding – the right language and style – is thus good for ensuring the employability of future workforce. The
endeavour to improve education on learning to code can be seen as a large campaign where both political and economical
actors lobby their interest through boundary organisations (Williamson, 2015).1

1 Williamson’s research is focused on the “learning to code” endeavour in the UK, but there are similarities with the developments taken towards
including coding to the basic curriculum in Finland (Saariketo, 2015).

&
C
t
A
C
b

T
a
f
m
f
(

f
a
T
a
T
w
o
w
t
L
s

s
s
i
i
h
o
m
t
2
o

e
t
o
i
t

o
a
t
t
f

r
b
t
m
t
d
a
W
h

t

T. Dufva, M. Dufva / Thinking Skills and Creativity 22 (2016) 97–110 107

But if we assume that the world around us is more complex, this perception of code does not hold. The brain and the flux
 transformation metaphors move the focus from the mechanical viewpoint and put emphasis on the intelligence of code.
ode is not a simple language to be learned in order to ensure employment, but rather a complex man-made tool for shaping
he world. In other words, code is seen as an instrument that creates and changes our everyday behaviour and practices.
rtificial intelligence, as well as the solutionist attitude of many software firms, show the possibilities and reach code has.
ode is everywhere in our lives. From this standpoint, merely choosing a programming language to be taught or creating
asic logical understanding might not be enough.

When learning and teaching code is understood more broadly, code can be more easily connected to real life situations.
hus students can have a more direct experience of the implications of the code. This can enable discussion in the classroom
bout the role of code in our society – a crucial discussion but one where there are no right answers. Here Freire’s idea of
orming rather than training students becomes more clear. Freire sees that education has the responsibility to create digital

inds. Training students to learn a programming language is not enough, as it does not form the students to understand the
ull reach of digital technologies, thus preventing them from creating knowledge themselves, i.e. possessing a critical mind
Freire et al., 2014).

The ubiquitous nature of code leads to the question of whether we agree on how good or beneficial code is today? And
urthermore, what do we mean by good or beneficial? These questions are essentially intertwined with public education’s
ims to help students not only to live in society but to understand societal structures and ethics, and also to question them.
he interpretive paradigm focuses on these questions and the way code influences society and culture. The culture metaphor
ffixes code to its cultural context, offering views on the different mindsets, ideologies and trends that influence the code.
he culture metaphor explains the societal, cultural and subcultural contexts that affect the ways code is written, offering us
ays to better experience the reasons why code exists the way it does. For example, understanding the ways free software,

pen source software and proprietary software differ from each other can offer ways to impact software development as
ell as to offer an understanding of the design choices in the software. Furthermore, the cultural metaphor can offer views of

he historical context of code and digital technologies. Understanding the beginning of digitality, such as Babbage’s machine,
eibniz’s binary logic, or Ada Lovelace, the first computer programmer, might offer valuable connections that increase the
tudent’s personal understanding of code.

The metaphor of political system approaches much of the same area as the culture metaphor, but more from the societal
tandpoint. It addresses critical questions of the purposes and morals of code: What part does code play in the democratic
ystem? The political system metaphor offers ways to approach subjects such as privacy, whistle-blowers, free software
deology or the structure and politics of the internet. It can also be expanded to the philosophies and history of technological
nvention, and to a discussion about technological determinism.Possible questions to be raised in this metaphor include
ow technology changes society, what are the relations between technology and society and does society or other aspects
f society, such as political decisions or economical forces shape the way the code we use today is made? Ars Industrialis
anifestos by French philosopher Bernard Stiegler might offer interesting starting points for classroom discussions about

he role of code in society as they contrast technology’s role starkly as pharmacon: both the drug and remedy (Stiegler, 2005,
010). The metaphor of code as a political system also offers more reflective viewpoints on the future of code, which might
ffer interesting talking points when contrasted with brain or flux and transformation metaphors.

The interpretive paradigm emphasises the various perceptions about the background and the context for the code we use
very day. This information can be beneficial for teachers as well as students to increase their understanding of the reach
hat code has. It can offer practical discussions on the reasons and implications of the software we use every day. It also
ffers the idea that code is not a fixed thing, but a malleable invention, which is affected by the coders, the culture around

t as well as societal decisions and politics. This kind of critical understanding might be what Freire calls forming instead of
raining.

The emancipatory paradigm further increases the humanistic viewpoints on the code. Code is seen not only as mechanical
r societal, but as a force that has the power to affect and influence our lives. It questions the intentions of the code as well
s our position in the coded world: Do people have the power to decide, or are they being manipulated? Is code made to be
ruly helpful for users, or is it created for the benefit of the coder or the company? The psychic prison metaphor considers
hese questions from the individual standpoint and the instrument of domination metaphor deals with the power struggle
rom a broader context.

The psychic prison metaphor asks how people (students, teachers, parents) are influenced by the code and what are its
amifications. Do the coded environments change people, and if so, how? Or, as Jaron Lanier asks, Do we change ourselves
ecause of them? (Lanier, 2010). How does the filter bubble affect learning or searching for information? How different can
he coded environments be, for example, between teacher and students? How do we deal with the loss of common “neutral”

edia such as newspapers? Themes like obsessive gaming, social media usage, and critical, self-aware ways of using digital
echnologies are at the heart of this metaphor. These questions can also lead to self-discovery in the digital age through
ifferent challenges students can face, for example being without a smartphone for a day or projects such as the Bored
nd Brilliant project organised by the WNYC radio show Note to self (http://www.wnyc.org/series/bored-and-brilliant/).
ajcman has written about the paradox of loss of time when using digital technologies that save us time in more detail in
er latest book (Wajcman, 2014).

While the culture and political system metaphors dealt with many cultural and societal issues from a general standpoint,
he instrument of domination metaphor emphasises the power issues of the code. Code is a tool for building structures

http://www.wnyc.org/series/bored-and-brilliant/

108 T. Dufva, M. Dufva / Thinking Skills and Creativity 22 (2016) 97–110

Table 2
Different views to teaching code.

Metaphor Meaning for education on code and programming.

Mechanic Learning a programming language, or logic.
Organism Understanding the structure of complex code.
Brain Understanding the “intelligence” of code.
Flux & Transformation How code can solve problems.
Culture Placing coding in its cultural context.
Political System Understanding the ways code affect society.
Psychic Prison Understanding how code influences individual.

Instrument of domination Seeing the power issues involved in code.
Carnival Learning to use code as a way of self-expression and as a tool of understanding code.

and obtaining knowledge, and whoever has control over these structures and information has power over the users of the
software or service. As Rushkoff points out, some of the issues created by code are inherent in the code itself, and some are
created by the people developing code. An example of the former is the binary nature of the code that leads to a different
mode of thinking that humans do. An example of the latter is the hijacking of the social connections that people form over the
internet, meaning that the platforms that offer connections use those connections for their own purposes, such as harvesting
data for market purposes, etc. (Rushkoff, 2010). Being aware of the power issues inherent in the code is crucial in forming
a critical understanding of the code. Increased awareness of these issues and their origins on the level of code may help
students to become more critical consumers, and it may also trigger changes in these platforms. When the students are able
to detect controlling structures inherent in code, they are also empowered to challenge these structures, which may create
a new power dynamic in the digital world.

The former examples have been mostly about gaining skills (learning a programming language), learning how the world
works (the ubiquity and influence of code) and debating what is preferable. The postmodern paradigm and the carnival
metaphor highlight the creativity, emotions and experience in education about code. The postmodern paradigm emphasises
the deconstruction and reconstruction of the concept of code. The carnival metaphor uses the code itself to challenge the
idea of the code. It can encompass all the other metaphors or views of code to create a statement of itself. The tool it uses
for this is the code itself. It shows how important arts and craft is in the understanding of the code. Not only can creativity
be used to invent something, but it can also be used as a tool to understand code, or to critique code and its usage. Creating
something by hand is an important tool in knowledge acquirement (Kojonkoski-Rännäli, 1998), and creative use of the code
could be argued to be part of the craft skills of 21st century.

The different viewpoints and suggestions for education around code and programming are summarised in Table 2. Our
point is not to recommend that a particular metaphor should be followed and others ignored, or to suggest a ranking of the
usefulness of the metaphors. Instead, we argue that all of the areas metaphors brings out should be included in the teaching
of code and programming. As we proposed in the beginning it might be more fruitful to think about teaching programming
in the basic curriculum to be more about improving code literacy, than about teaching coding as merely a mechanical skill.
Code literacy includes both understanding the more ambiguous and multiplexed issues that exist around code, and the
basic principles and logic of coding. The machine and organism metaphors in the functionalist paradigm set the basis for
understanding code from the technical perspective. This helps to understand how code is used in more complex real world
situations, as the brain and flux & transformation metaphors illustrated. The culture and political system metaphors help to
broaden the scope towards societal issues, while the instrument of domination and psychic prison metaphors illustrate the
coercive characteristics code can have. Finally, the postmodern paradigm and the carnival metaphor broaden the method
of learning about code from thinking and discussing to experience and creativity.

These metaphors may be implemented in several ways as a part of ICT education. The metaphors and the issues may
be divided between different disciplines and may thus be more evenly distributed in existing school subjects. Or they can
be studied as a whole in a phenomenon-based learning project, which can combine different school subjects together to
form a larger picture of the subject. Or programming could be its own subject, where it would not only include mechanical
knowledge of programming, but it would incorporate all

the different issues we have brought forth in this article. Code could also be seen as a new subject: as a “digital survival
skills for digital natives.” In Finland, recent plans to focus more on phenomenon-based learning discloses many interesting
opportunities in teaching code and creating a broader understanding around it – improving code literacy. (Halinen, 2014).

5. Discussion & conclusion

As coding and code literacy are gaining more popularity, what is meant by code becomes more important. However, the
societal discussion around code is still fragmented and partly superficial, focusing only on a few points of view and more

often on a mechanical understanding of the code. There is also traction between these different views. Our article illustrates
ways of embracing the tensions, and also of raising the neglected aspects to the educational agenda. We propose that the
aim should not be just on code and programming as a skill (coding), but also as a capability of better understanding the
world and its structures. This understanding can be seen to become even more important in the future.

c
s
e
m
t
e
f
a
o
a
W

u
a
c
c
m
b
s

A

u

R

A

A
A
B

B
B
C
C

C
C
C
C
F
F
F

F
F
F
G
H
H

J

J
J
J
K

K
K
K
K
K

K
L

L

T. Dufva, M. Dufva / Thinking Skills and Creativity 22 (2016) 97–110 109

We propose the metaphors as a useful heuristic for illustrating different viewpoints on code. However, some limitations
an also be identified. From the theoretical side, the key question is do the metaphors adapted from the organisation and
ystems science cover every important aspects of the code? This relates to another limitation, that of the lack of empirical
vidence. While we do illustrate the metaphors with examples, we have not presented an empirical case study where all the
etaphors would be used. We believe that such a case study would be a fruitful direction for further research and would help

o refine the metaphors Furthermore an empirical case study would enable analyzing how different metaphors interact with
ach other, where are the main tensions, which metaphors are closely linked to each other etc. Further research could also
ocus on the social practices and historical backgrounds of these metaphors. These points are out of the scope of this article,
s we have focused on describing the metaphors and using them as a lens to focus on various effects code has. Another strand
f possible future research might be the focus on emancipatory paradigm and for example dissecting platform monopolies
nd the ways they govern the code. Related to this, interesting work regarding educational platforms has been done by

illiamson. (For example see: https://codeactsineducation.wordpress.com).
Our approach illustrates that there are multiple views of what code is and how it influences our everyday lives. This

nderstanding may help to better reflect the needs of future education. The metaphors we have described can be used
s one way to support the planning of education around coding as well as to structure the discussion around code and
oding. From a societal standpoint, the metaphors help to identify the dominant metaphor and thus to understand the
urrent direction of code-based issues. Contrasting the dominant metaphor with the alternative views proposed by the
etaphors presents us with alternative future directions. However, we do not propose that any singular view is sufficient

y itself. Rather, the focus should be on opening the discussion, allowing plural views and helping to take different views
ystematically into account.

cknowledgements

The research leading to these results has received funding from the Strategic Research Council at the Academy of Finland
nder grant agreement no 293446 – Platform Value Now: Value capturing in the fast emerging platform ecosystems.

eferences

lvesson, M., & Deetz, S. A. (1996). Critical theory and postmodernism approaches to organizational studies. In The SAGE handbook of organization studies.
pp. 255–283. SAGE Publications Ltd. http://dx.doi.org/10.4135/9781848608030.n8

rnall, T. (2011). Immaterials,. Retrieved August 1, 2015, from. http://www.nearfield.org/2011/02/wifi-light-painting
rnall, T. (2014). Immaterials,. Retrieved August 1, 2015, from. http://www.nearfield.org/2014/08/satellite-lamps
arzilai, S., & Zohar, A. (2006). How does information technology shape thinking? Thinking Skills and Creativity, 1(November (2)), 130–145.

http://dx.doi.org/10.1016/j.tsc.2006.08.001
oden, M. A. (1996). Artificial intelligence. Academic Press.
orsook, P. (1995). How anarchy works. Wired,. Retrieved 1.8.2015 from:. http://www.wired.com/1995/10/ietf/
eruzzi, P. E. (2012). Computing. MIT Press.
heckoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S., et al. (2015). Comprehensive experimental analyses of automotive attack surfaces.

Center for Automotive Embedded Systems Security. http://www.autosec.org/pubs/cars-usenixsec2011.pdf
hrisley, R., & Begeer, S. (2000). Artificial intelligence. Taylor & Francis.
oleman, E. G. (2012). Coding freedom – The ethics and aesthetics of hacking. USA: Princeton University Press.
ox, B. J. (1985). Object oriented programming. Addison-Wesley.
ox, G. (2013). Speaking code. MIT Press.
airclough, N. (1995). Critical discourse analysis. Longman Group Limited.
leischer, R., Kullenberg, C., Brunila, M., Nikkanen, H., Purokuru, P., Wåg, M., et al. (2014). Verkko suljettu. In M. Brunila, & K. Kallio (Eds.),. Into Kustannus.
oley Lardner LLP. (2014). Is it a car or a computer on wheels? Dashboard Insights,. Retrieved: 1.8.2015. From.

http://www.autoindustrylawblog.com/2014/06/09/is-it-a-car-or-a-computer-on-wheels/
reire, P., Freire, A., & De Oliveira, W. F. (2014). Pedagogy of solidarity. Left Coast Press Inc.
sf. http://www.fsf.org/about/
sf. https://www.gnu.org/philosophy/free-sw.html
iroux, H. A. (2011). On critical pedagogy. USA: Bloomsbury Publishing.
alinen, I. (2014). Presentation: Ops2016-koulu katsoo tulevaisuuteen. ITK-conference, 10.4.2014.
irsch, J. (2015). Elon Musk: Model S not a car but a sophisticated computer on wheels. (March 19 Retrieved September 20, 2015, from].

http://www.latimes.com/business/autos/la- fi-hy-musk-computer-on-wheels-20150319-story.html
ackson, M. C., & Keys, P. (1984). Towards a system of systems methodologies. Journal of the Operational Research Society, 35(6), 473–486.

http://dx.doi.org/10.1057/jors.1984.101
ackson, M. C. (2003). Systems thinking. SAGE Publications Ltd. http://dx.doi.org/10.4135/9781446263556
ackson, M. (2007). Systems approaches to management. Springer Science & Business Media.
arvis, J. (2012). Rewired youth?, BuzzMachine. Retrieved July 1, 2015. from:. buzzmachine.com/2012/02/29/rewired-youth/
önig, W., Winner, L., Hughes, T. P., Schwartz, R. C., Cockburn, C., Bloch, M., et al. (1985). The social shaping of technology. In D. MacKenzie, & J. Wajcman

(Eds.),. Open Univeristy Press. http://dx.doi.org/10.5771/9783845269238-268
iili, C. (2012). Online reading as an individual and social practice. Jyväskylä Studies in Education.
nochel, A. D., & Patton, R. M. (2015). If art education then critical digital making: Computational thinking and creative code. Studies in Art Education.
ojonkoski-Rännäli, S. (1998). Ajatus Käsissämme. University of Turku, Rauman opettajankoulutuslaito.
uhn, T. S. (1970). The structure of scientific revolutions. Chicago: University of Chicago Press.
upiainen, R. (2013). Diginatiivit Ja Käyttäjälähtöinen Kulttuuri. Widescreen.fi. Retrieved April 16 2015 From:.
http://widerscreen.fi/numerot/2013-1/diginatiivit/
urzweil, R. (2005). The singularity is near. Penguin.
akoff, G. (2009). The contemporary theory of metaphor. In A. Ortony (Ed.), Metaphor and thought (2nd ed., pp. 202–251). Cambridge: Cambridge

University Press. http://dx.doi.org/10.1017/CBO9781139173865.013
anier, J. (2010). You are not a Gadget. Vintage.

http://https://codeactsineducation.wordpress.com
dx.doi.org/10.4135/9781848608030.n8
http://www.nearfield.org/2011/02/wifi-light-painting
http://www.nearfield.org/2014/08/satellite-lamps
dx.doi.org/10.1016/j.tsc.2006.08.001
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0025
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0025
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0025
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0025
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0025
http://www.wired.com/1995/10/ietf/
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0035
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0035
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0035
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0035
http://www.autosec.org/pubs/cars-usenixsec2011.pdf
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0045
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0045
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0045
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0045
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0045
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0045
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0050
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0050
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0050
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0050
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0050
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0050
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0050
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0050
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0050
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0050
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0050
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0050
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0050
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0050
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0055
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0055
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0055
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0055
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0055
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0060
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0060
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0060
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0060
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0060
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0065
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0065
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0065
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0065
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0065
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0065
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0065
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0070
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0070
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0070
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0070
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0070
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0070
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0070
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0070
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0070
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0070
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0070
http://www.autoindustrylawblog.com/2014/06/09/is-it-a-car-or-a-computer-on-wheels/
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0080
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0080
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0080
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0080
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0080
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0080
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0080
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0080
http://www.fsf.org/about/
https://www.gnu.org/philosophy/free-sw.html
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0095
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0095
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0095
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0095
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0095
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0095
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0095
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0100
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0100
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0100
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0100
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0100
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0100
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0100
http://www.latimes.com/business/autos/la- fi-hy-musk-computer-on-wheels-20150319-story.html
dx.doi.org/10.1057/jors.1984.101
dx.doi.org/10.4135/9781446263556
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0120
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0120
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0120
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0120
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0120
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0120
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0120
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0120
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0120
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0120
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0125
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0125
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0125
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0125
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0125
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0125
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0125
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0125
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0125
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0125
dx.doi.org/10.5771/9783845269238-268
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0135
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0135
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0135
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0135
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0135
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0135
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0135
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0135
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0135
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0135
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0135
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0135
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0135
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0140
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0140
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0140
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0140
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0140
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0140
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0140
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0140
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0140
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0140
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0140
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0140
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0140
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0140
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0140
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0140
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0140
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0145
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0145
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0145
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0145
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0145
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0145
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0145
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0145
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0150
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0150
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0150
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0150
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0150
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0150
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0150
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0150
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0150
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0150
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0150
http://widerscreen.fi/numerot/2013-1/diginatiivit/
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0160
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0160
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0160
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0160
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0160
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0160
dx.doi.org/10.1017/CBO9781139173865.013
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0170
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0170
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0170
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0170
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0170
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0170
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0170

110 T. Dufva, M. Dufva / Thinking Skills and Creativity 22 (2016) 97–110

Lessig, L. (1999). Code and other laws of cyberspace. Basic Books (AZ).
Lessig, L. (2009). Code 2.0. CreateSpace.
Levy, S. (2010). Hackers. O’Reilly Media, Inc.
Louis, M. R., Burrell, G., & Morgan, G. (1983). Sociological paradigms and organizational analysis. Administrative Science Quarterly, 28(1), 153.

http://dx.doi.org/10.2307/2392394
Manovich, L. (1999). Database as symbolic form. Convergence: The International Journal of Research Into New Media Technologies, 5(2), 80–99.

http://dx.doi.org/10.1177/135485659900500206
McCorduck, P. (2004). Machines who think: A personal inquiry into the history and prospects of artificial intelligence. Natick, Mass: AK Peters.
Mehra, B., Merkel, C., & Bishop, A. P. (2004). The internet for empowerment of minority and marginalized users. New Media & Society.
Morgan, G. (2006). Images of organization. SAGE Publications.
Morozov, E., 2013. To Save Everything. Click Here: The Folly of Technological Solutionism. PublicAffairs.
O’Neill, N. (2008). Mark Zuckerberg, Sarah Lacy interview video. Retrieved August 8, 2015. From:.

adweek.com/socialtimes/mark-zuckerberg-sarah-lacy-interview- video/304287
Opetushallitus. (2014). Perusopetuksen opetussuunnitelman perusteet.. Retrieved July 21, 2015 From:.

http://www.opinsys.fi/ohjelmointi-ja-perusopetuksen-opetussuunnitelman-perusteet
Pariser, E. (2012). The filter bubble (ibooks ed.). UK: Penguin.
Petzold, C. (1999). Code: The hidden language of computer hardware and software (1st ed.). Redmond: Microsoft Press.
Pollari, M. (2014). Ohjelmointi Osaksi Opetusta, Mistä Ensiapua? Luma.fi Retrieved September 9, 2014. From:.

http://www.luma.fi/artikkelit/3183/ohjelmointi-osaksi-opetusta-mista-ensiapua
Rushkoff, D. (2010). Program or Be programmed. OR Books.
Rushkoff, D. (2013). Present shock: When everything happens now. Penguin.
Saariketo, M., 2015. Presentation: Koodauksesta kansalaistaito? Koodaustaidon julkinen määrittely yhteiskunnallisena kamppailuna at Toimijaksi

kasva(tta)minen ohjelmoidussa yhteiskunnassa in Univeristy of Tampere 9.10.2015.
Scholz, A. (2014). Smile TV. Retrieved September 1, 2015, from:. http://www.creativeapplications.net/maxmsp/smile-tv-works-only-when-you-smile/
Stallman, R. M., Gay, J., & Lessig, L. (2009). Free software, free society. Hodder Christian Books.
Steiner, C. (2013). Automate this: How algorithms took over our markets, our jobs, and the world. Portfolio Trade.
Sterling, L. (2015). An education for the 21st century means teaching coding in schools.. Retrieved July 1, 2015, from:.

http://theconversation.com/an-education-for-the- 21st-century-means-teaching-coding-in-schools-42046
Stiegler, B. (2005). Manifesto. Arsindustrialis.org. Retrieved April 1, 2015, from:. arsindustrialis.org/node/1472
Stiegler, B. (2010). Manifesto. Arsindustrialis.org. Retrieved April 1, 2015, from:. arsindustrialis.org/manifesto-2010
Thibodeau, P. H., & Boroditsky, L. (2011). Metaphors we think with: The role of metaphor in reasoning. PLoS ONE, 6(2), 16782.

http://dx.doi.org/10.1371/journal.pone.0016782
Thorp, J. (2009). Just landed. Retrieved August 1, 2015, from:. http://blog.blprnt.com/blog/blprnt/just-landed-processing-twitter-metacarta-hidden-data
Turkle, S. (2011). Alone together: Why we expect more from technology and less from each other. In Basic books.
University of California-Davis. (2007). China’s eye on the internet. ScienceDaily,. Retrieved 21 july 2015, from:.

www.sciencedaily.com/releases/2007/09/070911202441.htm
Vaden, T. (2005). Digital nominalism. Notes on the ethics of information society in view of the ontology of the digital. Ethics and Information Technology,

6(4), 223–231. http://dx.doi.org/10.1007/s10676-005-0350-7
Vallance, C. (2015). Car hack uses digital-radio broadcasts to seize control.. Retrieved September 10, 2015, from.

http://www.bbc.co.uk/news/technology-33622298
Wajcman, J. (2014). Pressed for Time: The Acceleration of Life in Digital Capitalism. University of Chicago Press.
Warschauer, M. (2004). Technology and social inclusion. MIT Press.
Washington, G. (2015). 84% of all stock trades are by high-frequency computers . . . only 16% are done by human traders. Zero Hedge. Retrieved September 23,

2015, from. zerohedge.com/contributed/2012-17-26/84-all-stock-trades-are-high-frequency- computers-%E2%80%A6-only-16-are-done-human-tra
Weiss, G., & Wodak, R. (2006). Introduction. In G. Weiss, & R. Wodak (Eds.), Critical discourse analysis: Theory and interdisciplinarity. Palgrave Macmillan.
Williamson, B. (2015). Political computational thinking: Policy networks, digital governance and ‘learning to code’. Critical Policy Studies,
http://dx.doi.org/10.1080/19460171.2015.1052003
Williamson, B. (2016). Digital education governance: Data visualization, predictive analytics, and ‘real-time’ policy instruments. Journal of Education

Policy, 31(2), 123–141. http://dx.doi.org/10.1080/02680939.2015.1035758
Wilson, M., Scalise, K., & Gochyyev, P. (2015). Rethinking ICT literacy: From computer skills to social network settings. Thinking Skills and Creativity,

http://dx.doi.org/10.1016/j.tsc.2015.05.001

http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0175
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0175
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0175
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0175
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0175
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0175
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0175
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0175
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0175
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0175
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0180
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0180
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0180
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0180
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0185
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0185
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0185
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0185
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0185
dx.doi.org/10.2307/2392394
dx.doi.org/10.1177/135485659900500206
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0200
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0200
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0200
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0200
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0200
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0200
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0200
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0200
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0200
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0200
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0200
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0200
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0200
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0200
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0200
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0200
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0200
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0200
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0200
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0205
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0205
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0205
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0205
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0205
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0205
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0205
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0205
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0205
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0205
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0205
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0205
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0205
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0205
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0210
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0210
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0210
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0210
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0210
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0210
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0220
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0220
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0220
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0220
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0220
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0220
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0220
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0220
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0220
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0220
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0220
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0220
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0220
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0220
http://www.opinsys.fi/ohjelmointi-ja-perusopetuksen-opetussuunnitelman-perusteet
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0230
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0230
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0230
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0230
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0230
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0230
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0230
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0235
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0235
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0235
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0235
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0235
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0235
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0235
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0235
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0235
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0235
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0235
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0235
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0235
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0235
http://www.luma.fi/artikkelit/3183/ohjelmointi-osaksi-opetusta-mista-ensiapua
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0245
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0245
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0245
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0245
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0245
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0245
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0245
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0250
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0250
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0250
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0250
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0250
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0250
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0250
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0250
http://www.creativeapplications.net/maxmsp/smile-tv-works-only-when-you-smile/
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0265
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0265
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0265
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0265
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0265
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0265
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0265
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0265
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0270
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0270
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0270
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0270
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0270
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0270
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0270
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0270
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0270
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0270
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0270
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0270
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0270
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0270
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0270
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0270
http://theconversation.com/an-education-for-the- 21st-century-means-teaching-coding-in-schools-42046
http://Arsindustrialis.org
http://Arsindustrialis.org
dx.doi.org/10.1371/journal.pone.0016782
http://blog.blprnt.com/blog/blprnt/just-landed-processing-twitter-metacarta-hidden-data
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0300
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0300
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0300
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0300
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0300
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0300
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0300
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0300
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0300
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0300
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0300
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0300
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0300
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0300
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0300
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0300
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0300
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0305
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0305
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0305
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0305
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0305
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0305
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0305
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0305
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0305
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0305
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0305
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0305
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0305
dx.doi.org/10.1007/s10676-005-0350-7
http://www.bbc.co.uk/news/technology-33622298
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0320
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0320
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0320
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0320
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0320
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0320
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0320
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0320
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0320
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0320
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0320
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0320
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0320
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0320
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0320
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0325
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0325
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0325
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0325
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0325
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0325
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0325
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0330
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0330
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0330
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0330
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0330
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0330
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0330
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0330
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0330
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0330
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0330
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0330
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0330
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0330
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0330
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0330
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0330
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0330
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0330
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0330
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0330
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0330
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0330
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0330
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0330
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0330
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0330
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0330
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0330
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0335
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0335
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0335
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0335
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0335
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0335
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0335
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0335
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0335
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0335
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0335
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0335
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0335
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0335
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0335
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0335
http://refhub.elsevier.com/S1871-1871(16)30105-5/sbref0335
dx.doi.org/10.1080/19460171.2015.1052003
dx.doi.org/10.1080/02680939.2015.1035758
dx.doi.org/10.1016/j.tsc.2015.05.001

	Metaphors of code—Structuring and broadening the discussion on teaching children to code
	1 Introduction
	2 Metaphors for structuring the discussion around code
	3 Understanding code through metaphors
	3.1 Functionalist paradigm
	3.1.1 Machine: code as a mechanistic, linear sequence of commands
	3.1.2 Organism: code as a combination of objects
	3.1.3 Brain: code is intelligence
	3.1.4 Flux and transformation: code will save the world

	3.2 Interpretive paradigm
	3.2.1 Culture: code creating communities
	3.2.2 Political system: code structuring the society

	3.3 Emancipatory paradigm
	3.3.1 Psychic prison: code restricting human behaviour
	3.3.2 Instrument of domination: knowledge and control of code is power

	3.4 Postmodern paradigm
	3.4.1 Carnival: understanding of code can be created through creative use of code

	4 Applying the metaphors of code to developing education around code and coding
	5 Discussion & conclusion
	Acknowledgements

	References

