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Abstract

Gaussian processes (GPs) provide a principled
and direct approach for inference and learn-
ing on graphs. However, the lack of justified
graph kernels for spatio-temporal modelling
has held back their use in graph problems.
We leverage an explicit link between stochas-
tic partial differential equations (SPDEs) and
GPs on graphs, introduce a framework for
deriving graph kernels via SPDEs, and de-
rive non-separable spatio-temporal graph ker-
nels that capture interaction across space and
time. We formulate the graph kernels for the
stochastic heat equation and wave equation.
We show that by providing novel tools for
spatio-temporal GP modelling on graphs, we
outperform pre-existing graph kernels in real-
world applications that feature diffusion, os-
cillation, and other complicated interactions.

1 INTRODUCTION

Contemporary machine learning typically leverages
structure within the modelling task or application.
Often, the structure can be represented as a graph,
where the objects and relations are represented as
nodes and edges. Such tasks can be found, for ex-
ample, within chemoinformatics (Tsuda, 2011), social
network analysis (Campbell et al., 2013), and anomaly
detection (Akoglu et al., 2015). The abundance of
graph-structured problems has led to the invention
of new methods for graph-structured data, including
graph neural networks (GNNs, Scarselli et al., 2008)
and spectral methods (Chung and Graham, 1997) for
capturing structure across space and time.
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Working with the graph allows
for direct modelling of spatio-
temporal diffusion over the
graph nodes as described by the
SPDE.

Figure 1: We start with an unknown process on a
particular domain with an SPDE model, discretize
it, and derive the GP covariance function from this
SPDE. Finally, we use GP inference in the spatial or
spatio-temporal model from discrete graph-structured
observations.

In this work, we focus on graph-based prediction of
temporal signals on graphs. In other words, the goal
is to approximate spatio-temporal processes on graphs.
Many real-life problems belong to this class of tasks,
including traffic prediction (Jiang and Luo, 2021), epi-
demiological modelling (Keeling and Eames, 2005), and
analysis of dynamics in social networks (Carrington
et al., 2005). Recently, a number of approaches have
been developed for temporal machine learning prob-
lems on graphs, including the works by Li et al. (2017),
Yu et al. (2018), and Zhao et al. (2019).

We approach these graph-based learning problems us-
ing Gaussian processes (GPs, Rasmussen and Williams,
2006). GPs are widely used tools in statistical machine
learning, where including prior knowledge is desired.
Their probabilistic treatment allows for convenient in-
ference machinery and enables capturing the uncer-
tainties associated with predictions. However, it is not
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always apparent how to encode relevant prior knowl-
edge into the GP prior on graphs. In the continuous
domain, bringing in prior knowledge from stochastic
partial differential equations (SPDEs) has enabled con-
structing useful kernels, including the Matérn family
of kernels (Whittle, 1963; Lindgren et al., 2011), re-
sulting in improvements in quality and performance in
many tasks. In this work, we ask whether analogous
constructs can be made for graphs and whether they
improve the performance of GPs on spatio-temporal
graph problems. We hypothesize that because many
physical processes follow differential equations, deriving
kernels from their stochastic counterparts will allow
incorporating physical priors in GP models.

Apart from challenges in the model specification for
graph-based GPs, the usual drawbacks also apply:
closed-form inference is only possible for conjugate
observation models, and a naive treatment results in a
cubic computational scaling with respect to the number
of observations (Rasmussen and Williams, 2006). This
means that vanilla GPs are not particularly suitable
for large-scale problems. However, a number of mod-
ern methods exist to overcome this issue, including
sparse Gaussian processes using inducing points (see
Liu et al., 2020, for a recent review). The development
of SPDE-based approaches to Gaussian processes has
led to several practical solutions. One of those is a
popular R package for approximate Bayesian inference:
R-INLA (Lindgren et al., 2015) that uses SPDEs to
sample from spatial models. The approach we propose
in this paper allows extending this framework to graph
problems, and it is illustrated in Fig. 1.

The contributions of this paper: (i) We extend
methods from spatial statistics and, hence, link GPs
to SPDEs for temporal signals on graphs. (i) We
apply this approach to spatio-temporal modelling on
graphs and consider the analogs of well-known SPDEs
from spatial statistics, which allows us to derive non-
separable spatio-temporal kernels on graphs. (i) We
empirically evaluate these kernels and show their ef-
fectiveness on both synthetic data sets and applied
machine learning problems: prediction of the distribu-
tion of chickenpox and COVID-19 epidemic.

2 RELATED WORK

The connection between Gaussian processes and
stochastic (partial) differential equations was estab-
lished by Whittle (1963). It resulted in a number of
works in spatial statistics, most notably the work by
Lindgren et al. (2011), the library R-INLA (Lindgren
et al., 2015), and by Solin (2016) in the spatio-temporal
context. These methods have been applied in many
domains, for example, animal movement prediction

(Hooten et al., 2017), geographical information system
modelling (Burrough et al., 2015), and geostatistical
analysis (Moraga et al., 2017).

To apply SPDE approaches to graphs, we need to in-
troduce spectral graph theory, which has a long history
of research and applications (e.g., Chung and Graham,
1997; Von Luxburg, 2007). These works typically con-
sider the spectrum of the graph Laplacian and derive
properties that can be helpful for different tasks on
graphs. Belkin and Niyogi (2003) used spectral graph
theory to develop invariant embedding maps. These
embedding maps then showed good results in dimen-
sionality reduction (Yan et al., 2007). Spectral graph
theory is linked to GPs on graphs by considering suit-
able spatial (pseudo-)differential operators and their
associated kernels (covariance functions).

A number of graph kernels were developed using the
methods from spectral graph theory. Smola and Kon-
dor (2003) proposed the construction of kernels on
graphs by introducing random walk and heat kernels
on graphs, evaluated their performance, and derived
necessary properties of the kernels. Recent work on
graph approaches to Matérn fields considers graph dis-
cretization and theoretically compares the covariances
produced by discrete approximation and Matérn ker-
nels (Sanz-Alonso and Yang, 2020). Graph representa-
tion learning has gained popularity because of its large
number of applications (Chami et al., 2020). Kernel
methods, such as kernel ridge regression, for prediction
on graphs were proposed by Romero et al. (2016). This
approach was extended to spatio-temporal signals on
dynamic graphs (Romero et al., 2017). Matérn graph
kernels were presented by recent works: Matérn kernels
on manifolds (Borovitskiy et al., 2020), and, then, on
graphs (Borovitskiy et al., 2021).

We extend and generalize this approach with the SPDE
framework for graph kernels and then go beyond spatial
graph kernels to the spatio-temporal domain.

3 BACKGROUND

Gaussian processes are a non-parametric machine learn-
ing paradigm, in which we model the target function
as a stochastic process, whose evaluation at any fi-
nite set of points has a joint Gaussian distribution
(Rasmussen and Williams, 2006). A Gaussian process
f(x) ~ GP(m(x), k(z, ') is defined by its mean func-
tion m(x) and covariance function k(zx,z’) (Bishop,
2006). The covariance function is often called a ‘kernel’.
The kernel encapsulates prior knowledge, and defining
a good kernel is one of the key ingredients and chal-
lenges of setting up the GP model (Duvenaud, 2014).
GPs can be extended to vector-valued functions using
multioutput GPs (Alvarez et al., 2012). Kernels then
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become matrix-valued: K (z,z’) : R" x R" — R™*™
for n-dimensional inputs and m-dimensional outputs.
Standard GP toolchains include various kernels on
continuous domains (e.g., periodic, polynomial, and
Matérn family). However, application of GPs to other
domains is often restricted by the lack of principled
kernels.

3.1 Stochastic Partial Differential Equations

In spatial statistics, Gaussian random fields can be
represented as solutions to an SPDE. The physical sense
of an underlying process can be included in GPs in a
natural way by forming the prior covariance function
as a solution to an SPDE (Séarkké, 2011). Many widely
used GP kernels can be derived from the corresponding
SPDEs. For example, the Matérn kernel family for
multidimensional GPs can be derived from underlying
SPDEs (Whittle, 1963).

Stochastic partial differential equations (SPDEs) gen-
eralize partial differential equations via introducing
random forces (noise) to some terms and coefficients,
similarly to how stochastic differential equations gener-
alize ordinary differential equations (Oksendal, 2013;
Gardiner, 2004; Sarkka and Solin, 2019). SPDEs are
applied in various fields, including physics, signal pro-
cessing, and machine learning (Schottl, 1997).

3.2 Spectral Graph Theory

Spectral graph theory allows us to derive graph prop-
erties by operating with the spectrum of its Laplacian
matrix (a.k.a. graph Laplacian), which will allow us to
define partial differential equations (PDEs) on graphs.

Definition 3.1. The graph Laplacian L of a graph
G = (V, E) is the matriz

L=Dy - W, (1)

where W is the matriz of the edge weights and Dy =

diag(w;) is the diagonal matriz of the accumulated

weights w; = Y. w;j. In the unweighted case, Dy,
j:(i,5)EE

s the degree matriz and W is the adjacency matriz.

The graph Laplacian can be normalized to have unit
diagonal entries. All derivations in this article apply
to both normalized and non-normalized Laplacians
in weighted and unweighted graphs. In practice, the
choice between normalized and unnormalized Lapla-
cians depends on the graph structure and should be
based on the particular modeling task.

4 SPATIO-TEMPORAL KERNELS
ON GRAPHS VIA SPDEs

We consider a spatio-temporal prediction problem on a
graph G = (V, E) given a data set {(;, yi)}N with

features x; € D, where the domain D = V xR zdielscribes
graph vertex and time. We focus on the regression task,
where y; are the targets from the real numbers R. We
aim to approximate a function f such that f: D — R.
The methods we propose are applicable for classification

problems f : D — C for a finite set of labels C as well.

Notation. If not stated otherwise, we denote f(x) :
R" — R a continuous spatial function, v € RIVI a
spatial function on a graph (i.e., a vector whose com-
ponents are the function values at the vertices), and
u(t) : R — RVl a spatio-temporal function on a graph.
We will denote w(x) spatial white noise!, w a |V|-
dimensional white noise?, and dW, the differential of
|V |-dimensional Brownian motion. W; = dWe is the
formal temporal derivative of Brownian motion®, and
W, is Brownian motion.

4.1 SPDE Framework for Graph Kernels

Our framework for deriving graph kernels via SPDEs
consists of the following high-level steps: (i) define
an SPDE using prior knowledge about the underlying
process, (i) convert it to a graph counterpart, (%ii)
solve graph counterpart, and (iv) derive corresponding
mean and covariance function of GP on graph. Next, we
will provide specific examples and use this framework
to derive novel kernels.

Many PDEs are defined using the Laplace operator
A. In Euclidean space, it is defined as A =37, 00722
On graphs, we define as the corresponding operatc;r
the negative graph Laplacian — L. This is justified by
considering a lattice approximation of the real plane
and ensuring that this operator represents exactly the

discretization of A (Wardetzky, 2020).

We illustrate the approach by considering the ana-
logue of Laplace’s equation on graphs. Laplace’s equa-
tion, Af(x) = 0, is a second-order partial differential
equation relevant across physics, for example, in fluid
dynamics and electromagnetism. Its stochastic coun-
terpart, known as Laplace’s stochastic partial differen-
tial equation, is Af(x) = w(x). For the analogue of
Laplace’s SPDE on a graph, we replace A with —L

e., Elw(z)] = 0, Cov[w(zx), w(x')] = §(x — =').

’Le., Efw] = 0 and E[ww™] = I.

3Even though Brownian motion is nowhere differentiable,
assuming its derivative to be temporal white noise is the
standard way of treating it in SDE literature as discussed
by Sérkka and Solin (2019).
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and arrive at
— Lv =w. (2)

Because the space we are considering is discrete
and the graph Laplacian replaces the Laplace oper-
ator, the graph counterparts of SPDEs become multi-
dimensional SDEs.

For a formal derivation using discrete calculus, one can
consider v as a 0-cochain, as in Grady and Polimeni
(2010). Within our work, it is enough to operate with
v as a vector. Eq. (2) defines the notion of harmonic
functions on graphs: in functions that are solutions to
Eq. (2), the value at each node is given by the mean of
adjacent nodes.

The solution v of Eq. (2) can be described as a Gaussian
process (which in the discrete case, by definition, is a
multivariate normal distribution):

v~N(,(L"L)"), (3)

where A' denotes the Moore-Penrose pseudoinverse
of matrix A (Moore, 1920). This defines the Laplacian
kernel on graphs, K = (LTL)".

Another example of the SPDE framework applied to
graph kernels is the Matérn family of kernels. The
Matérn kernel family is an essential kernel family for
many applications of GPs. The isotropic (rotation and
translation invariant) Matérn kernels are defined as
(Rasmussen and Williams, 2006)

kMatérn(T) = 21_V’YVKV(7)/F(V)7 7= \/ﬁr/’i7 (4)
where r = || — @’|| is the Euclidean distance, & is the
lengthscale, and v controls smoothness (samples from a
GP with this kernel are ([v] — 1)-times differentiable).
The Matérn kernel in R? can be derived from this
SPDE with the fractional Laplace operator (Lindgren
et al., 2011):

(21 _ A) %+%f(a:) = w(). (5)

This motivates us to use the fractional graph Laplacian:

Definition 4.1. Fractional graph Laplacian L:

L= (2”I+L>;, (6)

2
where v and k are positive scalar parameters.

The fractional graph Laplacian is more flexible than L
(for v = 2 and Kk — oo, it coincides with L). Addition-
ally, for some combinations of hyperparameters, the
fractional graph Laplacian possesses non-local proper-
ties (see Benzi et al. (2020)).

We can formulate Eq. (5) on graphs as
Lv=w. (7

For a self-adjoint Laplacian L the covariance matrix is

K- <i—ZI+L) - (8)

and the solution of Eq. (7) is v ~ A (0, K). These
results were recently considered by Borovitskiy et al.
(2021), and here we showed how they fit into a broader
SPDE framework.

4.2 Separable Spatio-Temporal Kernels on
Graphs

To obtain a kernel on the combination of two domains
(here, graph and time), one can take kernels for each
domain and combine them, commonly as a product:
k(z,t; 2’ t') = kg(x,x') ki (t,t'), where & and a’ be-
long to the spatial domain and ¢ and ' to the temporal
domain. The separability of a kernel is a choice made
for convenience. An underlying process is not nec-
essarily separable; an example of spatial covariance
structure changing over time can be easily constructed:
for instance, in spatio-temporal epidemiological mod-
elling, the structure of the spatial covariance changes
over time (e.g., travel restriction or development of a
vaccine), thus it is not enough to separate spatial and
temporal structure, and they have to be considered
jointly.

4.3 Non-Separable Kernels

We describe non-separable spatio-temporal graph ker-
nels using the SPDE framework. Let us consider two
widely used parabolic and hyperbolic equations:

e Heat equation: % = cAf,

e Wave equation: ?fT{ = 2Af.
We will define the stochastic counterparts of these equa-
tions on graphs, derive the corresponding covariance
functions, and study them. The kernel derivations from
these two SPDEs are formulated as propositions. The
full derivations are in Appendices B and C.

4.4 Stochastic Heat Equation

The heat equation is written as % = cAf. This PDE is
called the heat equation because it is used in physics for
modeling heat transfer on surfaces. If f is temperature,
the Laplace operator on the equation’s right-hand side
determines the difference between the temperature at
a certain point and its neighboring points on a surface.
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We consider the discretization of this equation using
the graph Laplacian. Let u(t) be a temporal signal on
a graph which obeys the heat equation
du
dt

which is now an ODE with the solution

= —cLu, (9)

u(t) = e~ Flu(0). (10)

This solution is known as the heat kernel. This result
plays an important role in graph theory. The positive
semi-definite matrix e~ °L* in this equation can be used
as a kernel on the graph. This kernel is related to
graph random walks, which are used widely in graph
algorithms (Lovész, 1993). To see this, consider a
Taylor expansion of this kernel (assume ¢ = 1 for
simplicity): e Lt = ::5 tk,‘j;th, where P=D"1A
is the random walk matrix of the graph. In fact, this
kernel defines continuous-time random walks, where
each jump occurs in Poisson(1) time, similarly to the
continuous case.

By adding temporal white noise, we can construct a
heat SPDE on graphs:
du

pri —cLu +oW,. (11)

Proposition 1. The stochastic heat equation
kernel (SHEK) on graphs can be defined by adding
spatio-temporal white noise, or for convenient inte-
gration, as a formal derivative of the Wiener process

Wt-‘
((11—1: = —cLu+ ocW,. (12)

The solution is given by a Gaussian process:

u(t) ~ 97’(~u(t), Covlu(s), u(t)]),
u(t) = e~ Fru(0),

with
0'2 i iT
Cov[u(t), u(s)] = —e ckt—cL s
c

(ec(i+ZT) min(t,s) _ I) (i + iT)fl' (13)

Or, when the matriz L is self-adjoint (the graph is
undirected), as

ult) = e~ u(0), (14)
2 ~ ~ =
Coviu(t),u(s)] = ;— (eiCLV*S‘ — e’CL(Hs)) L.
@
The kernel is parameterized by diffusivity ¢, variance
o, and parameters of the fractional Laplacian v and

k. We extend this result to the case of matrix-scaled
white noise:

Proposition 2. SHEK with matriz-scaled
noise. A scaled extension of SHEK can be derived
from a stochastic heat equation on graphs with a
matriz-scaled white noise:

du ~ .
— = —cLu + XW,. (15)
dt
The solution for undirected graphs is defined by a
Gaussian process with covariance matrix in the fol-
lowing form:

Cov [u(t),u(s)] = P*C(t,s)P, (16)
where P is a unitary matriz:

PLP* = diag(\1, ..., \v)- (17)

The matriz P exists because L is normal and positive
definite. C(t,s) is defined for t > s as:

1 (PEXTP*);
C(tws)l,]:E( )\+>\)J
7 J

x (exp(—cAilt — s|) — exp(—c(Ait + A;s))).  (18)

For a directed graph, the stationary covariance matrix
C.. can be found from the Lyapunov equation

LC,+C. LT =xx". (19)

4.5 Wave Equation

Spreading waveforms in physics, such as mechanical
waves (e.g., sound waves or seismic waves) as well
as light waves, are commonly described by the wave
equation:

2
% =c*Af. (20)

This PDE can be considered on graphs as follows:

d%u

@ = —chu. (21)

The solution of this equation for undirected graphs has
the form

u(t) = % L+ sin(evV/Lt) Pit(0) + cos(cvV/Lt) Pu(0),
(22)

where P is defined by diagonalization of the Laplacian
matrix: L = P~ !diag(\q, ..., Ajv|)P. The solution of
the stochastic wave equation cannot be used directly
as a GP kernel (as it was with the heat equation), but
this result is necessary for the derivation of a GP kernel
from stochastic wave equations on graphs.
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4.6 Stochastic Wave Equation

In this section, we consider a stochastic extension of the
wave equation on graphs. Adding stochasticity allows
us to derive a GP kernel that will include prior infor-
mation about wave nature of the underlying process.

Proposition 3. The stochastic wave equation
kernel (SWEK) on undirected graphs is defined by
the second-order matriz differential equation

2 - ,
Fg = —cLu+ oW, (23)

and a solution to this equation for undirected graphs
can be expressed by the Gaussian process:

w(t) ~ GP(u, Covlu(s), u(t)],
w(t) = %i*% sin(cV/Tt) Pi(0)+ cos(cV It) Pu(0),

with (24)

Cov[u(s),u(t)] = c*0@ 2 (cos(@(t — 5)) min(t, s)—

1 . ] —1
3 cos(® max(t, s)) sin(© min(t, s))© ) ,

where © = C\/f and P is defined by the diagonal-
ization of the fractional Laplacian matrix:

L=P'L,P. (25)

We can observe that eigenvalues of the kernel oscil-
late with different frequencies. It makes this kernel
potentially useful for periodic processes on graphs or
discretizations of continuous periodic processes with a
graph lattice.

The stochastic wave equation kernel can be extended
to directed graphs similarly by solving the graph wave
equation through the eigenvectors of L.

In a single-vertex graph, this kernel coincides with the
product of Brownian motion kernel and cosine kernel.

4.7 Sampling in Graph GP Models

Many methods for sampling from GPs are available. A
common method involves a Cholesky decomposition of
the covariance matrix. The computational cost of sam-
pling is a sum of O(n?) on Cholesky factorization and
O(n?) (matrix-vector multiplication) for each sample,
where n is the number of points.

Many other sampling approaches are based on the ex-
pansion of the random field (process) as a series of ba-
sis functions. Those methods include Karhunen-Loeve
expansion using the eigenfunctions of a covariance func-
tion, circulant embedding methods based on Fourier

basis (Graham et al., 2018), and a hierarchical ma-
trix approximation of the covariance matrix (Feischl
et al., 2018). The SPDE based approach (Lindgren
et al., 2011) requires solving an SPDE using the finite
element method, which approximates the GP with a
Gaussian Markov random field (GMRF).

The SPDE framework allows for using the numeri-
cal solvers of SPDEs, for example, the Ruge—Stiiben
solver (Ruge and Stiiben, 1987) for the spatial case or
Euler-Maruyama (Higham et al., 2002) for the spatio-
temporal case. This idea especially shines in the graph
domain because the Laplacian matrix allows consider-
ing these equations as matrix equations; thus, it allows
using all of the existing tools for numerical solutions of
matrix equations. Moreover, in principle, continuous
domains can be discretized via graph representations,
and then numerical solvers can be used for sampling
from GPs over continuous domains. We consider this
opportunity as one more justification for the SPDE
framework and leave its development for future works.

4.8 Visualizations of the Kernels

For a deeper understanding of the properties of the
kernels and a more pictorial tour of their properties, we
study visualizations of the kernels on a simple graph
with different values for the kernel hyperparameters.

In Fig. 2, we show the visualizations of the proposed
kernels on a toy model: a line graph of three vertices.
The first row shows the temporal part of the covariance
matrix (summed over the graph vertices at each time-
point). The following three rows show mean (black)
and samples (colored lines) as a function of time at
each of the nodes, conditioned on y(t = 0) = (0,0, 10),
for different values of the hyperparameter ¢ (v = 3/2,
x = 1). For the temporal component, SHEK shows
the expected behavior for a diffusion process: covari-
ance is high between nearby time points and decreases
with the temporal gap, whereas SWEK shows periodic
dependence between temporal components (periods of
high covariance are alternating with periods of low co-
variance). Additionally, stochasticity accumulates with
time resulting in higher covariance for later timestamps
(analogously to Brownian motion).

5 EXPERIMENTS

To highlight practical applicability of the proposed
methodology and benchmark against alternative ap-
proaches, we evaluate the described kernels on graph
spatio-temporal applications: heat distribution over a
one-dimensional line (Sec. 5.1), spreading of COVID-19
across the United States (Sec. 5.2), and spreading of
chickenpox over Hungarian counties (Sec. 5.3).
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Figure 2: Temporal visualizations of SHEK (heat, left) and SWEK (wave, right) on a linear three-node graph. The
first row shows the temporal part of the covariance matrix (summed over the graph vertices at each timepoint).
The following three rows show mean (black) and samples (colored lines) as a function of time at each of the nodes,

conditioned on y(t =0) =

We used Gaussian process regression with Gaussian
likelihood as a method for fitting the models. We
maximized the log marginal likelihood with respect
to kernel hyperparameters (¢ and ¢ for SWEK and
SHEK) with the L-BFGS optimizer (Liu and Nocedal,
1989). All the experiments were implemented using
the GPflow (Matthews et al., 2017) library in Python.

Extrapolation. Our experiments were repeated for
different training and testing intervals (we call them
validation rounds) for a given data set using sliding
window backtesting. If we denote number of training
timepoints as Nipain, number of testing timepoints as
Niest, and by t" the starting time for the r-th vali-
dation round, then sliding backtesting uses time in-
terval [t",...,t" 4+ Niain] as the training data, and
[t" 4+ Nirain + 1, ., t" 4 Nirain + Niest] as test data.

Interpolation. To evaluate interpolation properties
of the methods, we randomly selected ten percent of
the time interval [t",...,t" + Nirain + Niest] as testing
data set and used the rest for training.

Evaluation. In forecasting problems, modelling may
result in a high variance of the generalization error
across the validation rounds. Thus, the comparison
of generalization error over the rounds by confidence
intervals can be inaccurate. The generalization errors
should be evaluated with a thorough point-wise com-
parison over each evaluation. To make statistically

(0,0,10), for different values of the hyperparameter c.

significant conclusions, we used the Diebold—Mariano
test (Diebold and Mariano, 2002). The variance of the
generalization error is also an important model prop-
erty that shows the method’s robustness over different
validation rounds. We tested both interpolation and
extrapolation performance and report mean absolute
error (MAE;,; and MAE) or mean absolute percent-
age error (MAPE;,; and MAPE). We also report
95% confidence intervals over validation rounds.

5.1 Heat Transfer Data Set

As a simple spatio-temporal process, we considered
heat transfer in 1D on a line. We parameterized the
process with conductivity k, and considered a fun-
damental solution of the heat distribution process:
®(z,t) = 5/(4rkt) exp(—x?/4kt). We modelled the
heat transfer distribution for a one-dimensional segment
and discretized it as a linear graph with 21 vertices.

We compared separable and non-separable graph ker-
nels for temporal signals. We used a continuous time-
separable kernel as a reference model. We used 50
timestamps for training data and 10 timestamps as
test data; we performed ten iterations of backtesting
validation with different random seeds and different
starting time points. The results are presented in Ta-
ble 1; we report extrapolation and interpolation MAE
with 95% confidence intervals, marking the top re-
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Table 1: Interpolation/extrapolation performance for
the heat distribution problem over a line (MAE x 100).

Kernel MAEint MAEext

Laplacian(G) x RBF(T) 0.42 + 3.21  4.75 + 0.36
Matérn-1/2(G) x RBF(T) 0.05 + 0.05 2.81 + 4.12
SHEK(G, T) 0.13 +£ 0.11 1.29 4+ 0.06
Exp(R) x Exp(T) 0.12 + 0.12 1.02 £+ 0.05

sults of the graph kernels in bold. We observed that
the non-separable stochastic heat kernel outperformed
separable kernels on the extrapolation task, but the
product graph Matérn kernel and RBF outperformed
it on the interpolation task. As expected, exponential
kernel over continuous space outperformed graph dis-
cretization for extrapolation but did not outperform
the product of graph Matérn kernel and RBF over time.

5.2 COVID-19 Distribution Across the US

As a real-world use-case of the proposed method, we
considered the prediction of COVID-19 distribution and
spread across the USA. We used data about COVID-19
cases and deaths published by The New York Times
(2020). We aggregated the number of cases by week
for each state. Moreover, we handcrafted a graph that
represents the geographical neighbors of the states in
the US. Each node of the graph represents a state, and
two nodes are connected with an undirected edge if
the corresponding states share a common border. The
approach can be extended to other graphs that arise
from, for example, traffic links or information about
the flights. As a modelling target for the extrapolation
task, we aimed to predict how many cases there will be
in each state during the next two weeks. For numerical
stability, we predicted the natural logarithm of this
value. We used 33 weeks as training data and estimated
the number of cases for the subsequent two weeks. We
ran all experiments ten times with a sliding starting
point and different random seeds. The goal of the
experiment was to show that the proposed kernels can
achieve good results within the GP framework. We
argue that GPs are particularly useful in this case
because of their excellent interpolation properties and
the possibility to assess the uncertainties, which is
crucial for decision-making. We compared the results
with a graph neural network (GNN), for which we
used a diffusion convolutional recurrent neural network
(DCRNN) layer (Li et al., 2017) followed by a fully
connected layer. We used the implementation from the
library ‘PyTorch Geometric Temporal’ (Rozemberczki
et al., 2021a). We also deepened the architecture but
the results remained largely unaffected. For this reason,
we report the results for the simplest architecture.

The results are shown in Table 2. We can see that the
models converged to a relatively low MAPE, and SHEK
showed the best performance. This shows that the
proposed methods are useful for the task we consider.
The results on the interpolation task showed better
performance for SHEK (DM-test, p = 0.1). The results
on extrapolation performance are equal for considered
separable and non-separable cases. However, SHEK’s
performance was more stable across validation rounds
on the extrapolation task, resulting in two times smaller
95% confidence intervals of generalization error. When
the extrapolation period was increased to four and six
weeks, SHEK performed consistently better than other
kernels: four weeks period MAE of SHEK(v = 1/2)
was less than MAE of the product of Matérn(1/2) and
RBF (DM-test, p < 0.01), as well as on six week period
(DM-test, p < 0.05).
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Figure 3: Visualization of extrapolation evaluation with
extended extrapolation periods of four and six weeks
on COVID-19 dataset.

Experiment with a flight graph. Additionally, We
conducted an experiment to check whether non-spatial
graph information can be included in the Covid-19
modeling task. We collected information about flights
between the states and used this graph instead of ge-
ographical adjacencies. Results showed MAE statis-
tically better for non-separable (p = 0.05, DM-test);
MAPE showed no statistically significant difference
between separable and non-separable kernels in this
case.
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Table 2: Summary of the interpolation (int) and k-weeks extrapolation (ext-k) results in terms of mean absolute
error (MAE) and mean absolute percentage error (MAPE) on COVID-19 and Hungarian chickenpox data sets.
Note that the DCRNN model does not support interpolation.

CHICKENPOX IN HUNGARY COVID-19 N THE US

Model MAE; MAEcy_4 MAEcy. MAPE;;  MAPEy.o
Laplacian(G) x RBF(T) 3395+ 1.64 3425+ 1.68 4645+ 493 158 +0.53  0.76 = 0.03
Matérn-3/2(G) x RBF(T)  13.82 £ 0.72 26.45 & 4.05 3234 +£3.07  0.17 +0.02 0.27 & 0.08
DCRNN(G,T) — 27.96 + 3.65  30.45 + 2.19 — 0.56 =+ 0.07
SHEK(G, T) (v=1,k=1) 1481 £0.91 26.46 + 3.73 30.65 + 2.51 0.16 + 0.03 0.25 + 0.04

5.3 Hungary Chickenpox Data Set

We evaluated our methods on a data set of chicken-
pox cases in Hungary (Rozemberczki et al., 2021b).
The data set contains the weekly aggregated numbers
of cases of chickenpox in Hungarian counties and Bu-
dapest from 2005 until 2015. The spatial relation of
counties is represented as a graph with each county
as a node (in total 20 nodes) and unweighted edges
that indicate adjacency of the counties (in total 61
edges). This data set has a different structure than the
COVID-19: the epidemic has strong seasonality and
does not have periods of fast exponential growth.

We observed similar results to the COVID-19 case: GP
approaches outperformed the GNN approach, SHEK
has shown comparable performance with separable ker-
nel on the extrapolation task with more stable perfor-
mance across the validation rounds. On the long-term
(six weeks) extrapolation task, DCRNN and SHEK
outperformed other approaches. The separable kernel
has shown better performance on the interpolation task
than SHEK (DM-test, p = 0.05). We repeated the ex-
periment for the longer extrapolation periods: four and
six weeks and observed that SHEK performed more
stable and consistently better than separable kernels
(DM-test, p = 0.1 for four weeks and p = 0.05 for
six weeks). We also experimented with other types of
separable kernels and selected Matérn-3/2 plus RBF as
a consistently accurate combination on interpolation
and extrapolation tasks. We provide full results of the
evaluation and point-wise comparison in Appendix E.2.

6 DISCUSSION & CONCLUSION

We considered spatio-temporal problems on graphs.
We showed how these can be addressed by product-
separable kernels and, then, introduced a framework
to derive spatial and spatio-temporal graph kernels
based on SPDEs. As concrete instances, we considered
the stochastic heat and wave equations on graphs, and
solved them to arrive at novel types of graph kernels:
the stochastic heat equation kernel (SHEK) and the

stochastic wave equation kernel (SWEK). We compared
GPs with the proposed kernels against DCRNNs, and
demonstrated that our approach outperforms graph
neural networks on some machine learning tasks.

Following our method for deriving kernels from SPDEs,
this work creates a possibility for direct use of addi-
tional prior information in graph problems by creating
new flexible kernels on graphs. These methods can be
applied to other types of equations resulting in either
an analytical solution or an SPDE that can be numeri-
cally solved. It may lead to the more frequent use of
probabilistic methods on graphs overcoming predictive
power issues with the pre-existing kernels.

Our work opens up new avenues of research, such as
the solution of other types of equations on graphs or
discretization of continuous kernels using graph approx-
imation. Moreover, it gives machine learning tools that
can be used for essential problems on graphs, such as
epidemic modelling. As a side contribution of our work,
we constructed a timely data set of COVID-19 cases
over a graph that can be used to evaluate temporal
machine learning problems on graphs.

In future work, the scalability of the methods to larger
graphs has to be explored. Possible approaches include
state space models, numerical solvers for SPDEs, and
sparse methods.

Source code and data for the experiments are available
at: https://github.com/AaltoPML/
spatiotemporal-graph-kernels
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Supplementary Material for
Non-separable Spatio-temporal Graph Kernels via SPDEs

A Preliminaries

In our proofs, we rely on the following theorem.
Theorem A.1 (It6 isometry, Oksendal (2013)).

T 2 B T ) y
E (/S f(t,w)th> _E[/S 72(t, )dt], (A1)

forall f €V (S,T).
Corollary A.1.1.

: (A.2)

t t t
E (/ X th> </ Ytth> =E / XY, dt
0 0 0

where X; and Yy are stochastic processes adapted to natural filtration. This property will be used actively in
derivations of covariances from SDEs.

Lemma A.2 (Integration of the matrix exponential).

/OT eAtdt = (eAT - I) AT (A.3)

where A is a nonsingular matriz.

B Graph Kernels

In this section, we introduce spatial kernels on graphs derived by the SPDE framework.

Proposition B.1 (Laplace’s equation in kernel form). Consider a signal (process) v € RVl on a graph G, where
L is the Laplacian of G and the signal is described with the Laplace SPDE on the graph: —Lv = w. Then the
solution v can be described as a Gaussian process:

v N (0, (L*L)+) . (B.1)

Proof. By writing out
v=—Ltw, (B.2)

and noting that the covariance matrix of white noise w is I, the covariance of the random variable u is
+ + +T T\
Cov [~L*w] = L*Cov [w] Lt = (L L) . (B.3)
O

Proposition B.2 (Matérn kernels on graphs). Matérn kernels on graphs are described with the equation

5 %
(K—ZI n L) v =w, (B.4)



Alexander Nikitin, ST John, Arno Solin, Samuel Kaski

and have the form
2v -z o A
For the self-adjoint Laplacian L:
2v v
Thus, the solution of Eq. (B.4) is

v~ /\/(0, KXX). (B.7)

v

5
Proof. Let A = (%I + L) , then v = A~ 'w. Now, we can derive a covariance matrix, analogously as in

Proposition B.1. O

C Stochastic Heat and Wave Equations on Graphs

C.1 Heat Equation

Proposition C.1 (Heat equation). The heat equation on graphs is defined by the second order matriz differential
equation

d
di: = —cLu, (C.1)
and the solution of this equation is:
Ky = e “Lu(0). (C.2)

Proof. The solution of the differential equation is similar to the homogeneous initial value problem in the
continuous case and can be written in terms of a matrix exponential:

u(t) = e~ “Ltu(0). (C.3)
O
For stochastic heat and wave equations, we will be using the pseudo-differential operator L instead of the graph

Laplacian because this operator is more flexible than L (for v = 1 and k — oo, it coincides with L), and because
it possesses non-local properties as was shown by Benzi et al. (2020).

Proposition C.2 (Stochastic heat equation on graphs). The stochastic heat equation can be defined on a graph
by adding spatio-temporal white noise, or for convenient integration, as the formal derivative of Wiener process

Wt J
du

E = 7CEU+O'W15. (04)

The solution can be defined as a Gaussian process:
u(t) ~ GP(u(t), Covlu(s),u(t)]), with
ult) = e=Fu(0),

2 o IO
Cov[u(t),u(s)] _ %efuLtchTs (ec(LJrLT)mm(t,s) _ I) (L+ LT)fl. (05)

Or, when the matrizc L is self-adjoint (the graph is undirected), as
p(t) = e Lt 0), (C.6)

2 = = ~
Covu(t), u(s)] = % (e—cL\f—s\ - e—cL<t+S>) L
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Proof. Let T’ = cL. Equation (C.4) is a matrix differential equation and a solution can be written in the form:

t
w(t) = e Tlu(0) + 067“/0 el dw,. (C.7)

The solution in Eq. (C.7) can be expressed as a GP. We give the corresponding mean and covariance as follows.

E[u(t)] = e Tu(0). (C.8)
Using It6 isometry, we can derive the covariance:

Cov [u(s), u(t)] = E [ (u(s) ~ Elu(s))) (u(t) - Elu(b)]) ]

s t
=E (aefrs/ ergdW5> Uefth/ eFdeWg
0 0
T s t T
=02 TSR </ eFdeE) /eF SAW;
0 0

— g2c-Tt-T7s (e(l"+1"T)min(t,S) _ I) (I‘ +1-\T)71. (C.9)

Or, in the case of self-adjoint L the expression can be simplified:

2
% (6_1"|t—s| _ e—l"(t+s)) 1‘\—1. (CIO)

O

Proposition C.3 (Stochastic heat equation on undirected graphs with matrix-scaled white noise). Let us consider
the same equation as in the previous theorem but with X-scaled white noise on undirected connected graphs:

du = —cLudt + X dW;. (C.11)

The covariance can be derived as follows. Consider T' = cL and a diagonalization of T':
PLP* = PL"P* = diag(\1, Mg, ..., An). (C.12)
Then, fort > s:
Cov [u(t), u(s)] = P*C(t,s)P, (C.13)
where C(t, s) is defined as:

C(t, S)i,j =

%w(exp(—&dt — s]) — exp(—c(Ast + A;5))). (C.19)

Nt
Proof. Let us write covariance between w(t) and u(s) and apply It6 isometry

Covlu(t), u” (s)] = E [ (u(t) - E[u(t)]) (u(s) - Elu(s)) |

min(t,s) _ _
= / exp(—cL(t — )X exp(—cL(s — €))d&. (C.15)
0
Consider a diagonalization PLP*=L,= diag(A1, ..., A,). Then the covariance can be re-written as
min(¢,s)
Covlu(t),u’(s)] = P* (/ exp(—cLy(t — €))PEXT P* exp(—cLa(s — g))dg) p. (C.16)
0

C(t,s)
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Because the matrix L, is diagonal, we can write the C(t, s);; (for ¢ > s):

C(t,s);; = (PEXTP*);; / exp(—chit — eAjs + c€(N; + Aj)) d¢€
0

1 PEXT P*
= EW (exp(eAilt — s|) — exp(—cAit — cA;js)) . (C.17)

C.2 Wave Equation

Proposition C.4 (Wave equation on an undirected graph). The wave kernel on undirected graphs is defined by
the second order matriz differential equation

du 9
= L 1
e ¢“Lu, (C.18)
and the solution of this equation has a form:
1 . .
u(t) = —v L+tsin (cv Lt) Pu(0) + cos (cv Lt) Pu(0). (C.19)
c

Proof. L is a symmetric matrix and, consequently, diagonalizable:
L=P'L,P, (C.20)
Then the equation will take a form:
i+ P 'LyPu =0 < Pii+ *LyPu = 0. (C.21)
Replacing the variable y := Pu, we will got the following equation:
§+cLay = 0. (C.22)
This is equivalent to n independent scalar ODEs:

ik + ey = 0. (C.23)

The solution of each of these equation is:
Yr = c18in (cx/)\kt> + ¢ cos (cx//\kt) . (C.24)
Let the initial conditions of the system be given as y(0),¢(0). Then, for Ay # 0 ¢; and ¢y can be expressed by

= ﬁyk(o)
2= yk(0)

and ¢y = ¢ =0 for \p = 0.

By doing the reverse substitution, we get the result for u:

u(t) = % L+sin (cﬁt) Pu(0) + cos (C\/ft) Pu(0). (C.25)
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Proposition C.5. The Stochastic wave equation kernel (SWEK) on undirected graphs is defined by second
order matriz differential equation

d2u _ Q_E .

qz = ¢ Lu + oW, (C.26)

and the solution to this equation can be expressed as a Gaussian process:

u(t) ~ gP(MCOV[ (s), u(t)] (C.27)

p= EL % sin ( \Ft) Pu(0) + cos <c\/ft> Pu(0) (C.28)

Covlu(s),u(t)] = *0©~? (cos(@(t — 5)) min(t, s) — %cos(@ max(t, s)) sin(® min(¢, s))@’l) . (C.29)
Here, © = c\/f.

Proof. The homogeneous solution for wave equation is given in Theorem C.4:

u(t) = L} sin ( VL t) ¢1 + cos (mﬁ t) ea.

Let us define ® = c\/f for convenience. In order to solve the given SPDE we need to find the inhomogeneous
part. It can be found by variation of the parameters. The Wronskian of the basis functions (here denoted as Wr
to distinguish it from the Wiener process) is:

cos (Ot) sin (©t)

Wr(vi,v9)(t) = % cos (Ot) élt sin (©t)

=0, (C.30)

for v1 = cos(Ot) and vy = sin(Ot). The particular solution will have the form:
w(t) = Wr(vy, vp)~! (—vl(t) / s (£) AW, + s (1) / o (1) th) (C.31)

—o! <_ cos(©1) / Sin(©6) AW + sin(e1) / cos(@2) dWs) (C.32)
0 0

Then the solutions for the stochastic wave equation on graphs are
u(t) = v1(t) + va(t) + uo(t) (C.33)

= cos(@t)c; + sin(Ot)cy + O~ 1 (— cos(Ot) /t sin(@¢) AW + sin(©t) /t cos(©¢) de) . (C.34)
0 0

Assuming that u(t) ~ N (u, Cov[u(s), u(t)], let us calculate mean and covariance from Equation (C.31):
Eu(t)] = ¢1 cos(Ot) + c5 sin(O1), (C.35)
Cov[u(s),u(t)] = E | (u(s) — E[u(s)]) (u(t) — E[u(t)])T]

t t
2@ 2( — cos(O1) / sin(©¢) AW + sin(©t) / cos(©¢) dW§>
0 0

(-
y ( -~ cox(@3) [ sin(©) dW + sin(@s) [ cos(06) de) '
Cls.t), (C.36)
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where C(s,t) is defined as
t t
C(s,t) = <f cos(@)t)/ sin(@¢) dWe +sin(®t)/ cos(©¢) de)
0 0

X < — cos(©s) /OS sin(@®¢) AW + sin(®s) /Os cos(©¢) dW5>T. (C.37)

Opening the brackets in C(s,t) and using It6 isometry, we will get a sum of the four following expressions:

1.

min(t,s) . min(t,s)
cos(Ot) cos(@s)/ t sin?(©¢) d¢ = cos(Ot) cos(Os) <§I — %@71) , (C.38)
0 0
2. n(tes)
min(t,s) . min(t,s
sin(©t) sin(@s)/ t cos? (O€)d¢ = sin(Ot) sin(Os) <§I + %@71) , (C.39)
0 0
3.
min(t,s) cos2(@€) min(t,s)
— cos(Ot) sin(@s)/ cos(O¢) sin(O)d¢ = — cos(Ot) sin(Os) < — T(B*l) , (C.40)
0 0
4.
min(t,s) B 0052(95) min(t,s)
— sin(Ot) COS(@S)/ cos(O¢) sin(OE)dE = — sin(Ot) cos(Os) <f®71> . (CA41)
0 0
Then, the covariance is
C(s,t) = w (cos(Ot) cos(Os) + sin(O1) sin(Os))
+ ( — cos(Ot) cos(@s)—sm@e rzin(t, 5)) + sin(Ot) sin(@s)—sjn@(9 rzin(t’ 5))
T cos(©1) sin(®@s) (COSQ(@ minlt o)) %) + sin(©1) cos(s) (6082(8 mint, ) _ ;))@—1
= cos(O(t — s)) min(t, s) — %cos(@ max(t, s)) sin(© min(t, s))@ . (C42)
O

D Kernel Visualizations

In Figure S1, we can observe behavior expected for heat and wave processes that start from the third node on a
line graph. We observed similar visualizations for other types of graphs.
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Figure S1: Temporal visualizations of SHEK (heat, left) and SWEK (wave, right) on a linear three-node graph.
The first row shows the temporal part of the covariance matrix (summed over the graph vertices at each timepoint).
The following three rows show mean (black) and samples (colored lines) as a function of time at each of the nodes,
conditioned on y(t = 0) = (0,0, 10), for different values of the hyperparameter c.
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Figure S2: As in Fig. S1, here we illustrate mean and marginal variance.



Alexander Nikitin, ST John, Arno Solin, Samuel Kaski

E Experiment Details

We ran the experiments on a NVIDIA Tesla P100-PCIE-16GB GPU. We repeated the evaluations for several
validation rounds (from eight to 12 depending on the experiment) using sliding window backtesting. Sliding
window backtesting is schematically visualized in Figure S3a and explained in the caption. For all measurements,
we report 95% confidence intervals.

shift

—> Dataset 1,
4 ~
I\ { -
X
t /
; Iy,
train_1 itest_1: i S
\e ‘1\ (
i \ \ ek
train_2 itest 2 L@ \\ IR~
[ ] > e
[ ] .
° train_k test_k

(a) Sliding window backtesting visualization. At each step,
we select a training time interval (=) followed by a testing

time interval (o) and evaluate the performance. During
the next iteration, we select time intervals that are shifted
by a particular value.

(b) Visualization of the graph of adjacent states. Each
node is a state in the US, and each edge indicates the
adjacency between two states.

Figure S3

E.1 Synthetic Wave Experiments

We generated a wave distribution process over a one-dimensional
line and discretized it with a graph with 11 vertices. We performed
12 iterations of sliding window backtesting on interpolation and
extrapolation tasks. For the interpolation task, we used ten percent

Table S1: Interpolation/extrapolation per-
formance for the wave distribution data
over a line (MAE x 100).

of randomly selected measurements over 52 timepoints. For the Keornel MAE, . MAE, .

extrapolation task, we used 50 timepoints for training followed

by two timepoints where we measured generalization error. We SHEK (1=5/2) 047 +0.14 = 2.74 + 0.67

SWEK(v=5/2) 0.28 + 0.06 1.89 + 0.28

compared SHEK (v=5/2) and SWEK (v=5/2). We make conclusion
that MAE is better for SWEK in interpolation (DM-test, p < 0.01) and extrapolation (DM-test, p < 0.01) tasks.
The results are presented in Table S1.

The difference between SHEK and SWEK can be seen visually in Figure S4. SWEK allows extrapolating wave
behavior beyond training data, and SHEK, in contrast, generalizes badly on the synthetic wave dataset.

E.2 Chickenpox Experiments

We performed sliding window backtesting for 12 iterations.

We report point-wise graphs that illustrate the comparison of generalization error on the extrapolation tasks
with extended extrapolation periods in Figure S5. The statistical significance can be measured with the Diebold-
Mariano test. For example, on four weeks extrapolation period, MAE of SHEK (v = 1/2) is less than MAE of
the product of Matérn(3/2) and RBF (DM-test, p < 0.1), as well as on six week extrapolation period (DM-test,
p < 0.01).

We also experimented with a larger number of separable kernels and compared them with each other and SHEK.
For example, we provide results of four-weeks extrapolation in Figure S6.
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Fit of GP (SHEK) model to synthetic wave dataset (node: 1)

(a) SHEK on wave dataset (node #1).

Fit of GP (SHEK) model to synthetic wave dataset (node: 2)

(c) SHEK on wave dataset (node #2).
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(a) Four weeks extrapolation.
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(b) SWEK on wave dataset (node #1).

Fit of GP (SWEK) model to synthetic wave dataset (node: 2)
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(d) SWEK on wave dataset (node #2).

Figure S4

MAE on Hungary Chickenpox dataset (6 weeks)
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Figure S5: Visualization of evaluation with extended extrapolation periods of four and six weeks on the Hungarian

chickenpox dataset.
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(a) Four weeks extrapolation (more separable kernels). (b) Six weeks extrapolation (more separable kernels).

Figure S6: Visualization of evaluation with extended extrapolation periods of four and six weeks on the Hungarian
chickenpox dataset (more separable kernels).
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E.3 COVID-19 Experiments

The dataset for this use-case consisted of two parts: information about COVID-19 cases and deaths published
by The New York Times The New York Times (2020), and a graph that was generated as follows. Each vertex
represents a state, and two nodes v; and vy are connected if two states share a common border. The visualization
of the graph is presented in Figure S3b.

MAE on COVID-19 dataset (4 weeks) MAE on COVID-19 dataset (6 weeks)
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(a) Four weeks extrapolation. (b) Six weeks extrapolation.

Figure S7: Visualization of extrapolation evaluation with extended extrapolation periods of four and six weeks on
COVID-19 dataset.

We evaluated the performance of the model using ten runs with a sliding window backtesting. We used 33 weeks

as training data and estimated the number of cases for the following two weeks. As a metric, we used mean
absolute error (MAE).

We additionally report the results of extrapolation over four and six weeks periods of time in Figure S7. We can
observe that the MAE of SHEK modifications is lower than separable Matérn kernels. It can be quantitatively
measured using the Diebold-Mariano test. For example, four weeks period MAE of SHEK (v = 1/2) is less than
MAE of the product of Matérn(1/2) and RBF (DM-test, p < 0.01), as well as on six week period (DM-test,
p < 0.05). Next, we provide the visualizations of fitted GP using the proposed graph kernel for the three states
with the largest population in the USA. In Figure S8, we showed 97.5% confidence intervals provided by the GP
that was trained on COVID-19 dataset.

Weekly COVID-19 ing in California Weekly COVID-19 modeling in Texas
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Figure S8: The visualizations of the GP posterior on the COVID-19 dataset for the most populated states. We
indicate 97.5% confidence intervals with blue color; we also show samples from the posterior, and training and
test data points (marked with black and red crosses, respectively).



