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Abstract

Steiner triple systems form one of the most studied

classes of combinatorial designs. Configurations, includ-

ing subsystems, play a central role in the investigation

of Steiner triple systems. With sporadic instances of

small systems, ad hoc algorithms for counting or listing

configurations are typically fast enough for practical

needs, but with many systems or large systems, the

relevance of computational complexity and algorithms

of low complexity is highlighted. General theoretical

results as well as specific practical algorithms for

important configurations are presented.
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1 | INTRODUCTION

A Steiner triple system (STS) is an ordered pair V( , ) , whereV is a set of points and  is a set of
3‐subsets of points, called blocks or lines, such that every 2‐subset of points occurs in exactly one
block. The size of the point set is the order of the Steiner triple system, and a Steiner triple
system of order v is denoted by STS v( ) . It is well known that an STS v( ) exists iff

v 1 or 3 (mod 6).≡ (1)
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An STS v( ) has v v( − 1) 6∕ blocks and each point is in v( − 1) 2∕ blocks. For more information
about Steiner triple systems, see [5,9].

A configuration in a V( , ) STS v( ) is a set system V( ′, ′) , where ′ ⊆ and V B′ = B ′∪ ∈ .
For configurations, we adopt the convention of calling the elements of ′ lines. If each point in
V ′ occurs in at least two lines, then the configuration is said to be full. A configuration that is an
STS w( ) is called an STS w( ) subsystem, or a sub‐STS w( ) , and is said to be proper if w v< and
nontrivial if w > 3. A configuration with w lines such that each point is in three of the lines is a
w3 configuration [16]. Double counting shows that the size of the point set of a w3

configuration is w.
The computational problem of finding configurations in designs is recurrent in design

theory. For example, the problem of finding maximal arcs in projective planes of order 16,
studied in [13], is about finding 2‐(52, 4, 1) subdesigns in 2‐(273, 17, 1) designs. Similar
computational problems also occur in discrete geometry [3]. We shall here focus explicitly on
configurations in Steiner triple systems. This work is motivated by a need in various studies for
algorithms to count configurations in many Steiner triple systems with orders that are large.
Earlier studies in this area have mainly concerned subsystems of Steiner triple systems [7].

An STS v( ) is said to be isomorphic to another STS v( ) if there exists a bijection between the point
sets that maps blocks onto blocks; such a bijection is called an isomorphism. An isomorphism of a
Steiner triple system onto itself is an automorphism of the Steiner triple system. The automorphisms
of a Steiner triple system form a group under composition, the automorphism group of the Steiner
triple system. These concepts are defined analogously for configurations.

The paper is organized as follows. In Section 2, the time complexity of counting and listing
configurations in Steiner triple systems is considered. With fixed (sets of) configurations, these
problems are in P. Polynomial upper bounds on the time complexity are obtained by
developing algorithms. The number of occurrences of an n‐line configuration can be obtained
as a function of the number of occurrences of the full m‐line configurations with m n≤ . The
conjecture that a subset of the full m‐line configurations does not suffice has earlier been
verified for n 7≤ , which is here extended to n 8≤ . Practical aspects are not addressed in the
theoretical proofs, so Section 3 is devoted to practical counting algorithms for several specific
small configurations. In particular, an approach is developed for constructing an exhaustive set
of algorithms of a certain type. The algorithms are compared experimentally, and the winning
algorithms are displayed for nine important configurations.

2 | COUNTING CONFIGURATIONS

2.1 | Problem and algorithms

The computational problem studied here is as follows, where  is a set of configurations.
Throughout the paper we consider  and any related parameters to be fixed and finite. (The
problem could also have been defined with = 1  , but it is more natural to consider a larger set
as one often asks questions regarding classes of configurations.)

Problem: P ( ) .
Input: A Steiner triple system  of order v.
Output: The number of occurrences of the configurations in  that are isomorphic to a

configuration in  .
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The motivation for the work is that of counting configurations, but we will also address the
problem of listing configurations in Steiner triple systems. The listed configurations can
obviously simultaneously be counted, but the fastest (known) counting algorithm has in many
cases smaller time complexity than the fastest (known) listing algorithm. For example,
considering a configuration with just one line, an optimal algorithm simply lists all lines of the
STS v( ) , which takes vΘ( )2 time, whereas counting is simply a matter of evaluating v v( − 1) 6∕ .

Indeed, for certain configurations the number of occurrences in an STS v( ) only depends on
v. Such configurations are called constant. A configuration that is not constant is said to be
variable. Small configurations in STS v( ) s are surveyed in [9, Chap. 13]. All configurations with
three or fewer lines are constant and so are the members of five infinite families presented in
[19]. A complete characterization of constant configurations is still missing.

The fact that the set of configurations  is fixed and finite gives possibilities of simplifying
proofs. For example, determining whether two configurations are isomorphic can then be done in
O (1) time, that is, constant time. As the goal is to establish theoretical bounds, we do not make
any attempts to develop practical algorithms in this section but defer such issues to Section 3.

It is straightforward to see that Problem P ( ) is in P. Namely, if there are at mostm lines in
the configurations in  , then we can explore all subsets of at most m lines of  and there are
vΘ( )m2 such subsets. However, it turns out that the upper bound thereby obtained is weak, and

better upper bounds—also in the context of listing—can be obtained. As P PSPACE⊆ , the
space complexity will also be polynomial in all cases and will not be considered here.

The concept of configurations generated by sets of points is central to the study of specific
algorithms. We here use a framework considered for Steiner triple systems in [9, p. 99] and its
references. Given a configuration with point set V and line set , fix V V0 ⊆ and let

V V z x y z x y V= { : { , , } , , }.i i i+1 ∪ ∈ ∈

We further denote

V x y z x y z V( ) {{ , , } : { , , } }.i i ≔ ∈ ⊆

For some finite j, V V=j j+1 and then V V=i j for all i j> . The subconfiguration V V( , ( ))j j
is called the closure of V0 and is said to be generated by V0 .

If V = 20  , thenV0 generates a subconfiguration that contains at most one line of , a line in
which the pair of points occurs. Similarly, if V = 30  and V0 is a line of , then the
subconfiguration generated by V0 consists of just the line V0 . But larger subconfigurations can
be generated by V0 when V = 30  and V0 is not a line of  and when V > 30  . Cases where V0
generates the entire configuration V( , ) are of particular interest.

Theorem 1. Let  be a set of configurations that can be generated bym points. Then the
time complexity of listing the configurations in an STS v( ) isomorphic to a configuration in 
is O v( )m .

Proof. Consider a V( , ) STS v( ) . For each possible m‐subset V V′0 ⊆ and with ′ =0 ∅,
the following iterative extension procedure is carried out in all possible ways: given
a point set V ′i and a line set ′i , let V V B′ = ′i i+1 ∪ and B′ = ′ { }i i+1  ∪ , where B ′i ∈ ⧹

and B V ′ 2i∩ ≥  . Whenever i equals the number of lines of a configuration in  , an
isomorphism test is carried out. If the outcome of that test is positive, then the
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configuration is listed if two additional tests are passed: (i) the m‐subset V ′0 is the
lexicographically smallest one amongst them‐subsets from which the configuration can be
generated, and (ii) the configuration has not already been listed in the branch of the search
tree starting from V ′0 . This makes sure that each configuration is listed exactly once. The
number of lines in the configurations in  sets a bound on the largest value of i to consider.

Using a precomputed data structure, which can be created in O v( )2 time (cf.
Section 3), the extension can be carried out in constant time. As the isomorphism test can
also be carried out in constant time, the time complexity of the problem is bounded from
above by the number of m‐subsets of a v‐set and is therefore O v( )m . □

Note that the core of the algorithm in the proof is essentially about canonical augmentation
[22]—see also [20, Sect. 4.2.3]—which consists of (i) a parent test and (ii) an isomorphism test.
The extension procedures in and before the proof of Theorem 1 are closely connected to the
core of Miller's algorithm [23] for computing a canonical form of an STS v( ) in O v( )v Olog + (1)

time. Further related studies include [7,25]. Also note the similarity between the extension
procedure and the algorithm in [3].

For listing algorithms, it is now a matter of determining the size of point sets needed to
generate configurations.

2.2 | Small configurations

An algorithm that solves Problem P ( ) gives an upper bound on the time complexity. For some
configurations, including the smallest nontrivial case of Pasch configurations, it is possible to
prove that the upper bound given by Theorem 1 is actually exact. The Pasch configuration is
depicted in Figure 1A; one possible set of generating points is here and in later pictures shown
with bold circles. The labels in all pictures refer to the naming of variables in Section 3.

Theorem 2. The time complexity of listing the Pasch configurations in an STS v( ) is vΘ( )3 .

Proof. The Pasch configuration can be generated by the three points indicated in
Figure 1A. Then combine the upper bound given by Theorem 1 and the fact that there are
STS v( ) s with v v v( − 1)( − 3) 24∕ Pasch configurations [26]. □

(A) (B)Pasch Mitre

FIGURE 1 The Pasch and mitre configurations
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Theorem 3. The time complexity of counting the number of occurrences of a given 4‐line
variable configuration in an STS v( ) is O v( )3 .

Proof. For any of the 11 variable 4‐line configurations, the number of occurrences can
be derived from the number of occurrences of any single one of them [15]. In particular,
using the number of Pasch configurations, the result follows from Theorem 2. □

The case of 4‐line configurations provides further examples with different time complexities
for counting and listing. Namely, for all but the Pasch configuration, 4 to 8 points are needed
for generation, which gives listing algorithms with time complexity O v( )4 to O v( )8 . In fact,
the maximum number of occurrences of configurations [15] shows that the time complexity
of listing is vΘ( )4 to vΘ( )8 . For example, the configuration that requires eight points for
generation consists of four disjoint lines.

The result in Theorem 3 may be extended by considering n‐line configurations for any
fixed n > 4 in an analogous way. Formulas for the relationship between the numbers of
occurrences of variable 5‐line and 6‐line configurations can be found in [10] and [11],
respectively. Actually, since we do not need exact formulas in our study of complexity, the
following general result will suffice.

Theorem 4 (Horak et al. [19]). The number of occurrences of any variable n‐line
configuration in an STS v( ) is a polynomial in v plus a linear combination (with coefficients
that are polynomials in v) of the numbers of occurrences of the fullm‐line configurations with
m n≤ .

The only full 5‐line configuration is the mitre configuration (Figure 1B).

Theorem 5. The time complexity of counting the number of occurrences of a given 5‐line
variable configuration in an STS v( ) is O v( )3 .

Proof. The full m‐line configurations with m 5≤ are the Pasch and the mitre
configuration. The mitre configuration can be generated by three points—as indicated
in Figure 1B—and therefore the number of occurrences can be obtained inO v( )3 time by
Theorem 1. As also the Pasch configurations can be counted inO v( )3 time by Theorem 3,
the result now follows from Theorem 4. □

With an increasing number of lines, extending the results in Theorems 3 and 5 is rather
straightforward but becomes more and more laborious. Moreover, for different configurations we
will get different upper bounds on the time complexity, so the results cannot be stated in compact
form. For example, for 6‐line and 7‐line configurations we get the following general result.

Theorem 6. The time complexity of counting the number of occurrences of a given 6‐line
or 7‐line variable configuration in an STS v( ) is O v( )4 .

Proof. There are five full 6‐line configurations, which are depicted in Figure 2 with
generating sets indicated. Consequently, by Theorem 4, the time complexity for counting
the number of occurrences of a variable 6‐line configuration is O v( )4 . For variable 7‐line
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configurations, a similar argument applies as all full 7‐line configurations have
generating sets of size at most 4 (by Table 1, to be discussed later). □

Clearly Theorem 6 is not tight in the sense that for some of the variable 6‐line and 7‐line
configurations, the time complexity of counting is O v( )3 .

For a fixed n 7≥ , there are too many full n‐line configurations to depict all of them here.
However, computationally one can easily get rather extensive results. The number N of isomorphism
classes of full n‐line configurations for n 12≤ have been obtained earlier in [12]. We extend that
work ton 13≤ in Table 1 and, for all those parameters, tabulate the distribution Ni based on the size
i of the smallest generating set. Also, the distribution of automorphism group sizes, Aut , is shown
such that the bases and exponents give the group sizes and counts, respectively.

It is an interesting open question whether all full configurations are really required in
Theorem 4 or whether a subset of them would suffice. It is conjectured in [19] that Theorem 4
is indeed strict. For n = 4, 5, and 6, this follows from the formulas of [15], [10], and [11],
respectively, and the case of n = 6 is handled explicitly in [19]. The conjecture has also been
verified for n = 7 in an unpublished study [27].

An established approach [14] to study the aforementioned conjecture for small values of n is
to investigate the number of occurrences of full m‐line configurations for m n≤ in a set of
STS v( ) s for some fixed v. If there are r configurations to consider, we get for each STS v( ) a
vector of length r + 1 with nonnegative integers (r counts and a constant, say 1). Forming a
matrix with rows consisting of those vectors, we check whether the rank is r + 1 (for which we
obviously need at least r + 1 vectors).

(A) (B) (C)

(D) (E)

Fano–line Grid Prism

Hexagon Crown

FIGURE 2 The full 6‐line configurations
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In the current study, this approach is used to extend the earlier results to n = 8. Notice that
the following theorem actually confirms the old results for n 7≤ , including the unpublished
result [27] for n = 7.

Theorem 7. For n 8≤ , there is no full n‐line configuration C whose number of
occurrences in an STS v( ) is a polynomial in v plus a linear combination (with coefficients
that are polynomials in v) of the numbers of occurrences of the full m‐line configurations
with m n≤ excluding C.

TABLE 1 Sizes of generating sets of full n‐line configurations

n N Aut  N3 N4 N5 N6 N7 N8 N9

4 1 241 1 0 0 0 0 0 0

5 1 121 1 0 0 0 0 0 0

6 5 2 12 24 721 2 1 1 3 2 0 0 0 0 0

7 19 1 2 4 6 12 1683 5 3 5 2 1 13 6 0 0 0 0 0

8 153 1 2 3 4 6 8 12 16 2458 50 1 22 2 6 3 5 1

32 48 64 11521 2 1 1
98 48 6 1 0 0 0

9 1615 1 2 3 4 6 8 9 121156 341 5 55 15 19 1 10

16 18 24 32 36 484 1 2 2 1 1

108 2881 1

1081 492 41 1 0 0 0

10 25,180 1 2 3 4 5 6 821970 2533 24 421 1 44 102

10 12 16 18 20 242 16 25 1 4 11

32 36 48 64 96 1209 2 4 1 1 2

128 288 576 17281 4 1 1

17,038 7426 688 26 2 0 0

11 479,238 1 2 3 4 6 8454542 21449 41 2494 67 456

11 12 16 24 321 40 72 27 14

36 48 64 72 961 12 2 2 6

144 288 864 40327 3 1 1

323,591 142,075 13,193 371 8 0 0

12 10,695,820 1 2 3 410431210 236254 229 23407

6 8 12 16 18267 3234 224 510 3

24 32 36 48 64164 100 7 97 20

72 96 128 14411 30 7 9

192 288 384 4328 8 7 1

576 768 864 11521 2 2 3

1536 1728 20161 1 1

10368 829441 1

7,087,335 3,289,199 308,659 10,447 170 9 1

13 270,939,475 1 2 3 4267284483 3338204 1034 285033

6 8 12 131388 22125 1748 1

16 18 24 32 362502 9 1713 403 15

39 48 64 721 501 68 28

96 128 144 19290 10 35 30

216 256 288 3361 3 16 1

384 432 576 76810 6 4 3

864 1152 2016 25923 1 2 1

4032 12096 138241 1 1

175,420,488 87,098,667 810,0133 315,860 4266 60 1
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Proof. For n = 8, the 623 distinct STS(25)s listed in [17] were considered. As there are
179 full m‐line configurations with m 8≤ , vectors of length 180 were determined as
described earlier; these vectors are also listed in [17]. Calculations using gap now show
that the 623 × 180 matrix formed by these vectors has rank 180. □

See [1,6,14] for further results on configurations in designs in general and in Steiner triple
systems in particular.

2.3 | w3 Configurations

For configurations with a large number of lines, a more general study is feasible only for
specific types of configurations. We here consider w3 configurations. The number N of
isomorphism classes of w3 configurations with small w can be found in [2,16]. In Table 2
we list those values for n7 16≤ ≤ , and for each entry we give the same information as in
Table 1.

The unique 73 and 83 configurations are the Fano plane and the Möbius–Kantor
configuration, respectively, and are depicted in Figure 3, again with generating sets indicated.

We call an n3 configuration in a v3 configuration a subconfiguration and say that such a
subconfiguration is proper if n v< .

Theorem 8. If a v3 configuration has a proper n3 subconfiguration, then it has a proper
n v( − )3 subconfiguration.

Proof. Consider the configuration obtained by removing the points and lines of a proper
n3 subconfiguration from the v3 configuration. □

TABLE 2 Sizes of generating sets of w3 configurations

w N Aut  N3 N4 N5 N6

7 1 1681 1 0 0 0

8 1 481 1 0 0 0

9 3 9 12 1081 1 1 3 0 0 0

10 10 2 3 4 6 10 12 24 1201 2 2 1 1 1 1 1 9 1 0 0

11 31 1 2 3 4 6 8 1110 13 1 2 3 1 1 31 0 0 0

12 229 1 2 3 4 6 8 12 18 24 32 36 72146 60 3 3 8 1 3 1 1 1 1 1 224 5 0 0

13 2036 1 2 3 4 6 8 12 13 39 961770 190 20 30 16 3 4 1 1 1 2010 26 0 0

14 21,399 1 2 3 4 6 7 8 12 14 16 2420328 916 19 91 12 1 15 7 3 3 2

128 564481 1
20,798 599 1 1

15 245,342 1 2 3 4 5 6 8 10 12 15 16241240 3709 69 180 5 59 34 3 11 2 10

18 20 24 30 32 48 72 128 1921 2 2 2 1 6 1 1 2

720 80641 1

222,524 22,809 8 1

16 3,004,881 1 2 3 4 6 8 12 162986560 17119 320 635 88 93 19 24

24 32 48 96 1512 2016 4608 181447 5 5 2 1 1 1 1

2,260,797 744,045 35 4
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Corollary 1. If a v3 configuration has a proper n3 subconfiguration, then v 14≥ .

The smallest example of a v3 configuration with proper n3 subconfigurations is of type 143
and is unique as the 73 configuration is unique. This particular configuration occurs in the
STS(21)s of Wilson type, as discussed in [18].

The size of the generating set of a v3 configuration with proper n3 and v n( − )3
subconfigurations equals the sum of the sizes of the generating sets of those subconfigurations.
All configurations corresponding to the entries in column N6 of Table 2 can be explained in this
way. This argument can be applied recursively.

Theorem 9. For any integer d, there is a w3 configuration whose smallest generating set
has size greater than d.

Proof. Consider the m(7 )3 configuration consisting of m 73 subconfigurations. Each of
the 73 subconfigurations requires three points for generation, so the minimum number of
points in a generating set is m3 . □

3 | PRACTICAL ALGORITHMS

There are two situations when fast practical algorithms for counting configurations in Steiner
triple systems are needed: if there are many Steiner triple systems to consider, as in [8], or if the
order of the Steiner triple systems is large.

The main challenge in this study is that—as we are interested on average‐case
performance—in a formal analysis one should know the distribution of all possible inputs.
An experimental approach was taken here, and algorithms were evaluated using random
Steiner triple systems. The algorithms were produced in an exhaustive manner that will be
described later in this section. This falls within the paradigm of using algorithms to design
algorithms [4]. Hopefully, the computational results will also inspire analytical studies of
these algorithms.

(A) (B)Fano Möbius–Kantor

FIGURE 3 The 73 and 83 configurations
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In this section, we apply the following conventions. For a Steiner triple system V( , ) , we let
V v= {0, 1, …, − 1} . In V( , ) , we want to count the number of occurrences of a configuration
V( ′, ′) with V w′ =  points, b′ =  lines, and a minimum generating set of size m.

We use two auxiliary functions B x y V x y V: {( , ) : }2
2∈ ≠ → and B V: {0, 1}3

3 → so that
B x y z( , ) =2 iff x y z{ , , } ∈ and

B x y z
x y z

x y z
( , , ) =

0, if { , , } ,

1, if { , , } .
3





∉

∈




A precomputed array of size v2 can be used to evaluate both of these functions in constant time.
The configurations V( ′, ′) we focus on are the w3 configurations with w 8≤ and the full

n‐line configurations with n 6≤ , that is, the nine configurations depicted in this paper.

3.1 | Generating sets, up to symmetry

The main idea in the algorithms to be considered is that they loop over values for elements in a
generating set of sizem. A configuration may have many such generating sets, but the number of
generating sets to consider can be reduced by utilizing symmetries of the configuration, that is, its
automorphism group Γ. Since the nesting of the loops in the algorithms implies an order on the
elements of a generating set, we consider precisely the nestings given by representatives from the
set of transversals of the action of Γ on the ordered generating sets.

The automorphism group of a configuration can also be utilized to derive conditions on its
points, so that occurrences will not be counted multiple times. We denote the orbit of an
element x under the action of G by G x⋅ and the stabilizer by xStab ( )G . Let Z z z z= ( , , …, )m1 2

be a permutation of an element M ∈ . For i m{1, 2, …, }∈ , we now compute O z= Γi i i−1 ⋅

and zΓ = Stab ( )i iΓi−1 , using Γ = Γ0 . WhereasM gives the nesting of the for loops, zi andOi show
where the conditions given by the symmetries will be taken into account. Indeed, we require zi
to be the smallest or largest element in the orbit Oi . The value Q Γm≔   gives the number of
times each configuration will be encountered.

To get an exhaustive set of algorithms, for eachM ∈ , we consider each of them! possible
choices of Z as permutations of M and each of the 2m possible choices of E e e e= ( , , …, )m1 2 ,
e {min, max}i ∈ , where ei tells whether the corresponding zi should be minimum or maximum
in the orbit Oi . As the isomorphism i v i− 1 −↦ does not change the average‐case behavior,
e1 can be fixed to min, which leaves 2m−1 possible choices.

The following concrete example, which is split into two parts, demonstrates how one
algorithm for the Fano plane is obtained.

Example (Fano plane, Figure 3A). The lines ′ of the Fano plane in Figure 3A are
a b e a c g a d f b c f b d g c d e e f g{{ , , }, { , , }, { , , }, { , , }, { , , }, { , , }, { , , }} . Given a Steiner

triple system, the goal is now to set the seven points a b c d e f g, , , , , , , which we
regard as variables, such that a b c d e f g({ , , , , , , }, ′) is a configuration of the system.

The Fano plane has w = 7 points, b = 7 lines, an automorphism group Γ of order
Γ = 168  , and a minimum generating set of sizem = 3. It has 28 minimum generating
sets, which are precisely the sets of three noncollinear points, so there are
28 3! = 168⋅ sets of ordered minimum generating sets. Those 168 sets form one
orbit under the action of Γ, and we can let a b c= {( , , )} . Hence, exactly one way of
nesting the for loops is considered: a – b – c.
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One possible choice for Z and E is c b aZ = ( , , ) and E = (min, min, min) . We then
get a b c d e f gO = { , , , , , , }1 (the automorphism group of the Fano plane is point‐
transitive), Γ = 241  , a b d e f gO = { , , , , , }2 , Γ = 42  , a d e gO = { , , , }3 , and QΓ = = 13  .
The constraints are c a b c d e f g= min{ , , , , , , } , b a b d e f g= min{ , , , , , } , and
a a d e g= min{ , , , } , which can be simplified to c b a d e g< < < , , and b f< .

Note that if Γ = 1i  for some i m< , then Γ = 1j  and O = 1j  for j i> . The minimum and
maximum of a 1‐element set coincide, and we then get identical algorithms regardless of the
values of ej and zj for j i> . Obviously, there are then no additional constraints on some for
loop variables. This situation occurs especially for configurations with very small automorph-
ism groups, such as the crown configuration (which has automorphism group order 2). For
comparison, we actually also included in our experiments all variants of algorithms where, for
i m{1, 2, …, }∈ , Γj and Oj are not determined for j i≥ . Then Q Γi−1≔   and some for loop
variables do not have constraints. These variants are included later in the last column of Table 3
but are not further discussed here as they were not successful in the experimental evaluation.

3.2 | Algorithm for constructing counting algorithms

We are now ready to discuss our approach for exhaustively constructing algorithms for counting
V( ′, ′) configurations in V( , ) . For clarity, we only consider the case of generating sets of size 3,
but the approach can be extended to arbitrary sizes of generating sets with further nesting of for loops
(continue forces the next iteration of the for loop to take place). The missing part, Ω, is explained
later.

The comments in the right margin of the algorithm describe the type of action taken in the
respective place.

Ai Actions on the accumulator r for counting configurations (i = 1: initializing; i = 2:
increasing; i = 3: final division as each configuration is seen Q times)

Ci Checks after setting variable xi
DB Checks regarding existence of line B

(Continues)
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Fi for loop for variable Fx i

Si Fixing variable Sx i

The variables xi contain the points of the configurations; these are either inside ( Fx i
,m variables)

or outside ( Sx i
, w m− variables) a generating set. Let us next elaborate on the main details.

1. In the for loops, the values of Fy i
and Fz i

are set based on constraints on elements being
minimum or maximum in orbits, as discussed in Section 3.1. With no restrictions, we would
have Fy = 0

i
and Fz v= − 1

i
; these can be somewhat increased and decreased, respectively,

when we have a lower bound on the number of elements that are smaller or larger, respectively.
2. In the test Check(X), we incorporate further tests of elements being minimum or maximum

in orbits. Some of the tests are included in the for loops, as discussed in Item 1; any other
inequalities that can be tested are included here. Whenever a point outside the generating
set is fixed, all such tests are carried out here. Moreover, we need to make sure that a point
that is fixed differs from the points that have been fixed earlier. The situation that a point is
not new may occur both in a for loop and when fixing a point in Si .

3. Whenever a variable is fixed, we check the existence of the lines B of the configuration that
have not been involved so far in determining new points or lines DB but whose points are
fixed. An early test makes sense since the probability of existence of a particular line in a
random STS is v1 ( − 2)∕ .

The missing part in the algorithm, Ω, is now as follows. For each variable Sx i
that has not

yet been set, we have a code line of typeSi to assign a value to Sx i
. Then we have a code line of

type CSi to test whether all constraints are fulfilled and whether Sx i
differs from all points that

have been fixed earlier. Finally, we have one code line of type DB for each line in the
configuration that consists of fixed points but did not occur in a code line of typeSi orDB so far.

Note that there may be several ways of building up a configuration from a generating set,
and we consider all possible such ways in the construction of algorithms.

We can now finish the example for Fano planes that we started in Section 3.1.

Example (cont.). On the basis of the calculations earlier in the example, in particular the
constraints c b a d e g< < < , , and b f< , we get the following overall structure of the
algorithm, where the parts Ω1 and Ω2 are yet to be determined:

Next, we will discuss the remaining w m− = 4 variables d e f g, , , . The sets of new
points in Ω1 and Ω2 are eG = { }1 and d f gG = { , , }2 , respectively. We here consider one
feasible ordering of the elements of G1 and G2 : e( ) and g d f( , , ) , respectively.
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In Ω1 , there is only one way of setting e, namely, a b e{ , , } , and the only constraint is
a e< . This also ensures distinctness of all points so far, so for Ω1 we get

In Ω2 , one choice for setting g, d, and f is a c g{ , , } , c d e{ , , } , and e f g{ , , } ,
respectively. This choice implies that the remaining lines to check are a d f{ , , } ,
b c f{ , , } , and b d g{ , , } .

For the loop variable c we need to ensure that c b< . The tests related to g, d, and f
are a g< , a d< , and b f< , respectively. These are also sufficient, as it can be verified that
all points obtained in this way are necessarily distinct (e.g., g e≠ as a c g{ , , } and a b e{ , , }

are distinct lines through a and d e≠ as c d e{ , , } is a line). Altogether, for Ω2 we have

We then get the following complete algorithm.

A
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3.3 | Experimental evaluation

We constructed all possible algorithms with the approach discussed earlier and
carried out an experimental evaluation. The authors are well aware of the challenges
involved in such work. Above all, the performance of the algorithms depends on issues
that are difficult or impossible to control, related to compilers and microprocessors.
In particular, the programs contain many if statements and can be demanding for
the technique of speculative execution used commonly by modern central processing
units [21].

Table 3 summarizes the main details for the generation process of algorithms for all
configurations in consideration here. The column “Name” is the name of the
configuration, and b, w, m, Γ ,  , and Γ∕  are the number of lines, points, elements
in a generating set of minimum size, automorphisms, minimum ordered generating
sets, and orbits of minimum ordered generating sets under the action of the
automorphism group Γ, respectively. The last column A gives the number of distinct
algorithms generated.

For each configuration, each of the A algorithms was evaluated on random Steiner
triple systems of orders 93, 121, and 151 constructed by Stinson's hill‐climbing algorithm
[24]. Due to the large number of algorithms to be considered, the evaluation took place in
several phases, gradually decreasing the number of algorithms and increasing the amount
of time used for each algorithm.

We conclude the paper by listing the nine algorithms obtained in the aforementioned
manner as Algorithms 1 to 9; Algorithm 1 is given in the example in Section 3.2. Any
scholar needing such algorithms should be able to implement them easily in any
programming language.

TABLE 3 Details for the generated algorithms

Name b w m Γ    Γ⁄  A

Pasch 4 6 3 24 96 4 296

Mitre 5 7 3 12 180 15 1272

Fano‐line 6 7 3 24 168 7 2020

Crown 6 8 3 2 276 138 7348

Hexagon 6 8 3 12 288 24 2912

Prism 6 9 4 12 1800 150 60,872

Grid 6 9 4 72 1944 27 34,752

Fano 7 7 3 168 168 1 828

Möbius–Kantor 8 8 3 48 288 6 9216
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