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Abstract— Osteoarthritis (OA) and autoimmune-driven rheumatoid arthritis (RA) are 
inflammatory joint diseases with complex and insufficiently understood pathogeneses. 
Our objective was to characterize the metabolic fingerprints of synovial fluid (SF) and its 
adjacent infrapatellar fat pad (IFP) obtained during the same surgical operation from OA 
and RA knees. Non-targeted metabolite profiling was performed for 5 non-inflammatory 
trauma controls, 10 primary OA (pOA) patients, and 10 seropositive RA patients with 
high-resolution mass spectrometry-based techniques, and metabolites were matched with 
known metabolite identities. Groupwise differences in metabolic features were analyzed 
with the univariate Welch’s t-test and the multivariate linear discriminant analysis (LDA) 
and principal component analysis (PCA). Significant discrimination of metabolite profiles 
was discovered by LDA for both SF and IFP and by PCA for SF based on diagnosis. In 
addition to a few drug-derived substances, there were 16 and 13 identified metabolites with 
significant differences between the diagnoses in SF and IFP, respectively. The pathways 
downregulated in RA included androgen, bile acid, amino acid, and histamine metabolism, 
and those upregulated included biotin metabolism in pOA and purine metabolism in RA and 
pOA. The RA-induced downregulation of androgen and bile acid metabolism was observed 
for both SF and IFP. The levels of 11 lipid metabolites, mostly glycerophospholipids and 
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fatty acid amides, were also altered by these inflammatory conditions. The identified meta-
bolic pathways could be utilized in the future to deepen our understanding of the pathogen-
eses of OA and RA and to develop not only biomarkers for their early diagnosis but also 
therapeutic targets.

KEY WORDS:  high-resolution mass spectrometry; joint disease; metabolomics; osteoarthritis; rheumatoid 
arthritis; synovial fluid.

INTRODUCTION

Osteoarthritis (OA) and autoimmune-driven rheu-
matoid arthritis (RA) are degenerative joint diseases 
that cause significant morbidity and a high demand for 
health services, including pain medication, rehabilita-
tion, and surgery [1, 2]. While both OA and RA are 
considered inflammatory diseases, RA synovial tis-
sue is characterized by higher immune cell infiltration 
and cytokine expression [3]. In addition to damage to 
cartilage and subchondral bone [4, 5], both conditions 
induce alterations in the composition of synovial fluid 
(SF) [6, 7]. The histological and biochemical profiles 
and secretory activity of the infrapatellar fat pad (IFP) 
of the knee can also be susceptible to joint diseases 
[7–9]. Pain and joint dysfunction are the principal 
symptoms of OA and RA. In order to discover new tar-
gets for disease prevention, early diagnosis, and pain 
management, it is crucial to assess the biochemical 
correlates and metabolic pathways related to subjec-
tive pain and disease prognosis. Here, the chemical 
milieu of SF would be an attractive target for research, 
as radiology has proven to be an imprecise predictor for 
pain symptoms [10], and it cannot readily discern the 
earliest stages of OA. Early diagnosis of joint diseases 
would be of pivotal importance, as substantial and irre-
versible joint pathology is usually present by the time 
of diagnosis.

Previous literature on the metabolomic manifesta-
tions of OA and RA indicates that they can be associ-
ated with dysregulation of several metabolic pathways. 
For instance, amino acid (AA) metabolism, fatty acid 
(FA) biosynthesis, glycero-PL (phospholipid) metabo-
lism, oxylipin pathways, tricarboxylic acid cycle, and 
steroid hormone biosynthesis can be affected by joint 
diseases [11–14]. Regarding lipidology, the composi-
tions of SF and IFP show complex effects of OA and 
RA [7, 15]. RA was manifested as increased concen-
trations of cholesterol, lipoproteins, and apolipopro-
teins in SF [16], and both OA and RA displayed higher 
levels of glycero-PLs and sphingolipids [17, 18]. In 

addition, the proportions of pro-inflammatory n-6 
polyunsaturated FAs (PUFAs) decreased and the per-
centage of total monounsaturated FAs increased in both 
knee OA and RA SFs and, in knee OA, there was also 
a reduction in the proportions of 22:6n-3, a long-chain 
anti-inflammatory n-3 PUFA [7]. RA in the shoulder 
joint was characterized with elevated percentages of 
20:4n-6 and 22:6n-3, and with reduced proportions of 
18:1n-9 [15]. In IFP, RA patients showed decreased 
proportions of 20:4n-6, 22:6n-3, and total n-6 PUFAs 
compared to those with OA [7]. These findings indicate 
inflammatory phenomena but, at the same time, there 
are counteracting and resolving processes that could 
limit inflammation and eventually reduce both pain and 
cartilage degeneration.

Existing studies on OA and RA metabolomics 
mostly focus on SF, serum, and urine but, to the best 
of our knowledge, there are no simultaneous analy-
ses of SF and IFP metabolites in these diseases. As 
it has been previously suggested that IFP could be a 
potential source of inflammatory or protective agents 
[11, 19], parallel analyses of SF and IFP can offer new 
ways to understand the sources of inflammatory mol-
ecules and metabolic pathways leading to the OA and 
RA metabolomic fingerprints in SF. Our aim was to 
conduct a metabolomic study including two diagnoses 
(primary OA [pOA] and RA) and two tissues (SF and, 
for the first time, also the adjacent IFP). This would 
be the starting point to translational studies to exam-
ine the influence of the fat pad on joint diseases, to 
assess potential biomarkers for early-stage OA and RA, 
and to screen for targets for therapeutic intervention. 
It was hypothesized that we would (i) detect signifi-
cant differences between the SF metabolomes of the 
non-inflammatory control (C) patients and the inflam-
matory pOA and RA patients, (ii) observe similari-
ties in the metabolomic signatures of arthritic SF and 
IFP, and (iii) detect tissue- or diagnosis-related dif-
ferences between SF and IFP, all of which would be 
adding to our understanding of the characteristics of 
these diseases.
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MATERIALS AND METHODS

Patients, Sampling, and Sample Preparation
The SF samples were obtained from the knee joints 

of patients undergoing arthroscopy for non-inflammatory 
conditions or trauma with no evidence of OA/RA (n = 2 
men, 3 women), or during total joint replacement surgery 
for end-stage pOA (n = 2 men, 8 women) or end-stage 
seropositive RA (n = 3 men, 7 women) at the Oulu and 
Kuopio University Hospitals (Table 1). The IFP samples 
were collected from the same pOA and RA patients dur-
ing the removal of periarticular tissues. All samples were 
stored at −70 °C until analyzed. The study was approved 
by the Ethical Committees of the respective hospitals 
(Oulu: decision #29/2011, amendment 2/24/2014; Kuo-
pio: decision #79//2013, #73/2016) in accordance with 
the Helsinki Declaration. All patients had reached the age 
of majority (18 years) and were treated for pre-existing 
indications (Additional file 1), and they had signed con-
sent forms to donate their SF and/or IFP samples. Gen-
eral demographic data collected were as follows: gender, 
age, body mass, height, body mass index (BMI), type of 
invasive procedure, operative diagnosis, and medication. 
Groupwise differences in age, body mass, and BMI were 
analyzed with the Kruskal–Wallis one-way analysis of 
variance (ANOVA), and sex ratios were compared with 
the Fisher’s exact test (IBM SPSS v25 software, IBM, 
Armonk, NY, USA).

The SF samples consisted of 5 C, 10 pOA, and 9 
RA patients and the IFP samples included 10 pOA and 
10 RA patients. The samples were blinded, randomized, 
and thawed on ice. SF (25 μl) was mixed with 100 μl of 
ice-cold MeOH, shaken for 5 min (Multi Reax, Heidolph 
Instruments, Schwabach, Germany), and centrifuged 
at 2300 × g for 10 min at + 4 °C. The supernatant was 

transferred to test tubes and evaporated to dryness under 
nitrogen atmosphere, and the residue was reconstituted 
in 100 µl of 1:1 solution of ACN and H2O (v/v). The 
sample was allowed to dissolve for 10 min. The IFP sam-
ples were weighed (19–49 mg wet wt), placed in 100% 
MeOH at 10 mg/100 µl, and homogenized in a microtube 
(2 ml, reinforced with 1.4 mm ceramic beads) with the 
Bead Ruptor 24 Elite (Omni International, Kennesaw, 
GA, USA) at + 2 °C with a 30-s cycle. The samples were 
subsequently centrifuged at 1900 × g for 5 min at + 4 °C, 
and the clear supernatant was used for analysis. A small 
portion, approximately 10 µl of fat tissue and SF, was 
pooled and used as quality controls injected at the begin-
ning and end of the worklist to equilibrate the analytical 
platform and to produce ion scanning.

Instrumentation

The samples were transferred to the non-targeted 
metabolite profiling analysis carried out at the LC–MS 
metabolomics center (Biocenter Kuopio, University of 
Eastern Finland). The analysis was performed using 
the ultra-high-performance liquid chromatography 
quadrupole-time-of-flight mass spectrometry (UHPLC-
qTOF-MS) system (Agilent Technologies, Waldbronn, 
Karlsruhe, Germany), which consisted of a 1290 LC sys-
tem, a Jetstream electrospray ionization (ESI) source, and 
a 6540 ultra-high-definition accurate-mass qTOF-MS. 
To meet the wide diversity of molecular components, 
all samples were analyzed with 2 different chromato-
graphic techniques: reversed phase (RP) and hydrophilic 
interaction chromatography (HILIC). In addition, data 
were acquired in both ionization polarities: ESI positive 
(ESI +) and ESI negative (ESI −). The temperature of the 
sample tray was maintained at + 10 °C. The data acquisi-
tion software was the MassHunter Acquisition B.04.00 
(Agilent Technologies).

In the RP method, 2  μl of the sample solution 
was injected onto a column (Zorbax Eclipse XDB-C8, 
2.1 × 100 mm, 1.8 µm, Agilent Technologies, Palo Alto, 
CA, USA) kept at + 50 °C. Mobile phases, delivered at 
400 µl/min, consisted of H2O (eluent A) and MeOH (elu-
ent B), both containing 0.1% (v/v) of HCOOH. The fol-
lowing gradient profile was used: 0–10 min: 2 → 100% 
eluent B, 10–14.5 min: 100% eluent B, 14.5–14.51 min: 
100 → 2% eluent B, and 14.51–16.5 min: 2% eluent B. 
In the HILIC method, 2 μl of the sample solution was 
injected onto a column (Acquity UPLC BEH Amide 
column, 2.1 × 100 mm, 1.7 μm, Waters Corporation, 

Table 1   General Characteristics of the Sampled Knee Surgery 
Patients (Mean ± SE)

pOA primary osteoarthritis, RA rheumatoid arthritis, M male, F 
female, BMI body mass index; sex ratios were tested with the Fisher’s 
exact test; means with dissimilar superscript letters indicate significant 
differences between diagnoses within a row (Kruskal–Wallis ANOVA)

Group Control pOA RA p

Gender 2M, 3F 2M, 8F 3M, 7F 0.850
Age 34.4 ± 4.25A 66.7 ± 2.72B 71.9 ± 2.66B 0.002
Body weight 77.9 ± 7.07 85.4 ± 5.17 67.2 ± 5.97 0.103
BMI 27.0 ± 2.35AB 31.8 ± 1.98B 24.9 ± 1.50A 0.030
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Milford, MA, USA) kept at + 45  °C. Mobile phases, 
delivered at 600  µl/min, consisted of 50% (v/v, elu-
ent A) and 90% (v/v, eluent B) ACN, both containing 
20 mM NH4HCO2 (pH 3). The following gradient pro-
file was used: 0–2.5 min: 100% eluent B, 2.5–10 min: 
100 → 0% eluent B, 10–10.01 min: 0 → 100% eluent B, 
and 10.01–12.5 min: 100% eluent B.

A Jetstream ESI source, operated in both positive 
and negative ionization modes, was used under the fol-
lowing conditions: drying gas temperature + 325 °C and 
a flow of 10 l/min, sheath gas temperature + 350 °C and a 
flow of 11 l/min, nebulizer pressure 45 psi, capillary volt-
age 3500 V, nozzle voltage 1000 V, fragmentor voltage 
100 V, and skimmer 45 V. N2 was used as the instrument 
gas. For data acquisition, a 2 GHz extended dynamic 
range mode was utilized in both positive and negative 
ion modes from m/z 50 to 1600. The data were collected 
in the centroid mode at an acquisition rate of 1.7 spectra/s 
(599 ms/spectrum) with an abundance threshold of 150. 
For the automatic data-dependent MS/MS analyses, the 
precursor isolation width was 1.3 Da, and from every pre-
cursor a scan cycle of 4 most abundant ions was selected 
for fragmentation. These ions were excluded after 2 
product ion spectra and released again for fragmentation 
after a 0.25 min hold. Precursor scan time was based on 
ion intensity, ending at 25,000 counts or after 300 ms. 
The product ion scan time was 300 ms, and the collision 
energies were 10, 20, and 40 V in subsequent runs. The 
TOF was calibrated on a daily basis and operated at high 
accuracy (< 2 ppm). Continuous mass axis calibration 
was performed by monitoring 2 reference ions from an 
infusion solution throughout the runs. The reference ions 
were m/z 121.050873 and m/z 922.009798 in the positive 
mode and m/z 112.985587 and m/z 966.000725 in the 
negative mode, respectively.

Data Acquisition and Feature Finding 
in Non‑targeted Metabolite Profiling

The 2-pass feature extraction process was used to 
find molecular features from the data. Initially, the data 
were deconvoluted into individual peaks with the Agi-
lent MassHunter Profinder B.08.00 software, using the 
Batch Molecular Feature Extraction algorithm. It took 
into account all ions exceeding 3000 and 2000 counts 
with the RP and HILIC methodologies, respectively. Iso-
tope grouping was based on the common organic mol-
ecules model. Adduct deconvolution was not utilized. The 
resulting feature files were subsequently imported into 

the Mass Profiler Professional 12.6.1 software (Agilent 
Technologies), which aligned, normalized, visualized, 
and filtered the features further. During this process, the 
data were filtered to create a consensus feature list based 
on a relative frequency threshold, which corresponds to 
the number of features found in a defined percentage of 
at least one or more conditions, i.e., C, RA, and pOA, for 
the various sample replicates. Relative frequency thresh-
old values of 25% in all methodologies and both sample 
types were used for the first pass data filtering with RP 
ESI + , RP ESI − , HILIC ESI + , and HILIC ESI − modes. 
The second pass employed the consensus feature list pre-
viously constructed with the Mass Profiler Professional 
and Profinder’s Batch Targeted Molecular Feature Extrac-
tion workflow. The consistency of peak integration was 
inspected, and a missing feature recovery was performed 
across all samples during the second pass. The data were 
then imported for further statistical analyses.

The original data consisted of 21,277 molecular 
features in 4 separate analytical methodologies (SF: 
2546 in HILIC ESI + , 561 in HILIC ESI − , 3926 in RP 
ESI + , and 1746 in RP ESI − ; IFP: 3228 in HILIC ESI + , 
1402 in HILIC ESI − , 4179 in RP ESI + , and 3689 in 
RP ESI −). After frequency-based filtering, 8125 SF fea-
tures (2376 HILIC ESI + , 501 HILIC ESI − , 3638 RP 
ESI + , and 1610 RP ESI − features) and 11,527 IFP fea-
tures (3005 HILIC ESI + , 1261 HILIC ESI − , 3946 RP 
ESI + , and 3315 RP ESI − features) remained.

Data Preprocessing

Data preprocessing consisted of (base-2) logarith-
mic transformation of signal area values, filtering and 
imputing missing values, and variance filtering. All pre-
processing scripts were implemented with the AWK pro-
gramming language (GNU Awk v4.1.4). In the SF data, 
41.0% of 8125 features contained missing values (11.9% 
of all area values), while in the IFP data, 46.4% of 11,527 
features had missing values (13.6% of all area values). 
Missing values were handled in a 2-phase manner. First, 
the features with an excessive number of missing val-
ues were filtered with the modified 80% rule [20], which 
saves a feature if any biological group contains at least 
80% of non-missing values. The underlying motivation of 
the modified 80% rule is to be able to detect associations 
where a molecular feature is present in one group, even 
if it is absent (presumably below the detection limit) in 
others. However, if only one group contains a sufficient 
number of non-missing values, any subsequent testing 
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can only be performed against this group (i.e., one can-
not compare distributions in two groups that both contain 
over 20% missing values).

Next, missing values were imputed with a 3-phase 
approach that first evaluated the type of missingness, 
either missing at random/completely at random or miss-
ing not at random (MNAR, presumably left-censored 
measurements), and then imputed both types of missing 
values separately. For the MNAR imputation, we used a 
new efficient random tail imputation method, the details 
of which are described in Additional file 2. Data preproc-
essing was completed with variance filtering that removed 
the features, whose variance was at most 1.0. The moti-
vation of variance filtering is to reduce the number of 
hypotheses by pruning features that are unlikely to dif-
ferentiate the groups, without risking the control of type 
I error rate in subsequent t-tests [21]. After variance fil-
tering, 2188 SF features and 3576 IFP features remained.

Univariate Analysis

In the univariate analysis, remaining molecular 
features were evaluated individually for their ability to 
separate two groups, i.e., RA vs. C, pOA vs. C, and pOA 
vs. RA in the SF data and pOA vs. RA in the IFP data. 
The tests were only performed for those pairs where both 
groups contained less than 20% imputed values (modified 
80% rule), which left 6183 tests in the SF data. In the IFP 
data, there were only two groups, and no further filtering 
was needed for the 3576 tests.

For each feature and pair of groups, we performed 
Welch’s t-test (unequal variances t-test) to obtain raw p val-
ues (p_orig) and used the Benjamini–Hochberg–Yekutieli 
method [22] to control the false discovery rate (FDR), 
yielding FDR-corrected p values (p_FDR). The more power-
ful Benjamini–Hochberg method [23] could not be utilized 
since there were also negative correlations between fea-
tures. In addition, the effect size was evaluated with log-FC 
(fold change) [24]:

where xi and yi are signal area measurements in two 
groups. Since log-area reflects the concentration of a 
compound fragment, p values and log-FC can be used 
to detect interesting compounds (possible metabolites) 
that have significantly higher abundance in one group 
than in another. Summaries of log-FC and t-test analysis 
were presented visually as volcano plots. Since log-FC 
and t-statistics are sensitive to outliers and the accuracy 

log-FC = avg(log(xi)) − avg(log(yi)),

of imputed values, we also determined minimum margin 
size between distributions for detecting well separating 
features (Additional file 2).

After univariate analysis, the most significant fea-
tures having p_orig ≤ 0.01 and |log-FC|≥ 1 were selected 
for identification. During identification, further filter-
ing was performed by pruning features with low qual-
ity, missing MS/MS data, or duplicate information (i.e., 
adducts, fragments, or dimers).

Univariate analysis was performed with the MAT-
LAB v9.6 R2019a using the Statistics and Machine 
Learning Toolbox (MathWorks, Natick, MA, USA), and 
volcano plots were produced with Python using the Mat-
plotlib library [25].

Multivariate Analyses

The multivariate analyses consisted of principal 
component analysis (PCA) and linear discriminant analy-
sis (LDA). They were first performed with all features and 
again after identified drugs had been removed from the 
filtered data sets. In PCA, we calculated principal compo-
nents and plotted the data along the first 3 principal com-
ponents to detect if linear combinations of features could 
separate groups. In LDA, the goal was to test how well 
the groups could be separated by linear discriminant func-
tions of selected features. LDA is a simple classifier that 
often performs better than more complex models when 
the number of samples is small, but the model (its large 
covariance matrix) cannot be estimated reliably, when the 
number of features is excessive.

Two solutions to improve the model stability and 
performance are feature selection and the use of regulari-
zation. Extensive feature selection was already performed 
during filtering, but the numbers of features were still 
much larger than sample sizes (185 features in the SF data 
and 75 features in the IFP data after removing drugs). 
Therefore, we tested 2 additional feature selection strate-
gies: (1) features having p_FDR ≤ 0.05 and |log-FC|≥ 2 
and (2) features having p_FDR ≤ 0.5 and |log-FC|≥ 1. 
For regularization, we used the shrinkage regularization 
method by Ledoit and Wolf [26], where the idea is to 
shrink individual covariance estimates towards average 
covariance.

The classification performance was evaluated 
with leave-one-out cross-validation by calculating 
overall accuracy (proportion of correct classifica-
tions), precision, and sensitivity for each class. The 
cross-validation results of the best feature selection 

1105



strategy 2 (p_FDR ≤ 0.5 and |log-FC|≥ 1) as well as 
the corresponding scatter-plots along discriminants (2 
discriminants for the SF and 1 for the IFP data) are 
presented in the “RESULTS” section. PCA and LDA 
were implemented with Python using the scikit-learn 
library [27], and the visualizations were produced with 
Python using the Matplotlib library [25].

Identification of Metabolites

Molecular features with significant differences 
between study groups were subjected to identifica-
tion of metabolites based on accurate mass and iso-
tope information, i.e., ratios, abundances, spacing, and 
product ion spectra (MS/MS) by spectral matching to 
published databases as follows: Human Metabolome 
Database (https://​hmdb.​ca/), ChemSpider (https://​
chems​pider.​com), mzCloud (https://​mzclo​ud.​org), 
LIPID MAPS (https://​lipid​maps.​org), MS-DIAL 
(http://​prime.​psc.​riken.​jp/​compms/​msdial/​main.​html), 
and MassBank (https://​massb​ank.​eu/​MassB​ank/). 
When available, the fragmentation was verified with a 
commercial standard. During the first step, molecular 
features were identified by accurate mass and isotopic 
pattern matching with the METLIN database (https://​
metlin.​scrip​ps.​edu) by using Agilent’s Identifica-
tion Browser software. The results were sorted and 
an assessment of retention time and a single putative 
annotation with a matching elemental formula was 
selected. This annotated molecular feature was further 
compared to other databases. Data-dependent product 
ion spectra were acquired at 3 collision energies (10, 
20, and 40 eV), and the MS/MS spectra of statisti-
cally significant molecular features were compared and 
matched to a library of standard spectra in Agilent’s 
MassHunter METLIN and in the above-mentioned 
databases. The confidence level of metabolite iden-
tification was established according to the Metabo-
lomics Standards Initiative reporting standard [28]. 
Only the metabolites that were identified at levels 1–2 
are discussed below, but all metabolites of levels 1–4 
are reported in Additional files 3–4.

RESULTS

Demographic Characteristics
The baseline characteristics of the patients are sum-

marized in Table 1. There were no significant differences 

in the sex ratios or average body masses between diag-
noses. The pOA and RA patients were significantly older 
than the C group, and the pOA patients had higher aver-
age BMIs compared to the RA group.

Univariate Analyses of Metabolites

Volcano plots show that multiple molecular features 
could clearly separate both RA and pOA SFs from C SF 
(Fig. 1A–B, D–E), but differences between RA and pOA 
were more modest in both SF and IFP (Fig. 1C, F and 2). 
The fact that the volcano plots for pOA vs. C and RA vs. 
C were asymmetrical (skewed to right) means that many 
features occurred at higher abundances in the pOA and 
RA groups, even after removal of identified drugs. After 
all filtering (p_orig ≤ 0.01, |log-FC|≥ 1, and further prun-
ing during identification), 170 SF features and 73 IFP 
features expressed significant differences between study 
groups. Among these, 19 SF features could separate pOA, 
RA, or both from C with p_FDR ≤ 0.05.

In SF, both pOA and RA groups showed higher lev-
els of particular therapeutic agents (omeprazole, gabap-
entin, and tranexamic acid) than the C patients, and the 
RA patients had higher presence of sulfasalazine. In IFP, 
no drug-derived substances could be identified among 
features that showed statistical differences. In addition, 16 
and 13 metabolites with significant differences between 
diagnoses were identified in SF and IFP, respectively. 
These mostly belonged to the pathways of androgen, 
bile acid, glycero-PL, AA, histamine, biotin, and purine 
metabolism (Table 2; Additional files 3–4).

Multivariate Analyses (LDA, PCA) 
of Metabolites

In the SF data, the most accurate LDA mod-
els were obtained with filtering |log-FC|≥ 1.0 and 
either p_FDR ≤ 0.5 or p_orig ≤ 0.01. There were no misclas-
sifications in the cross-validation and, thus, the overall 
accuracy as well as precision and sensitivity in all three 
classes were 100%. Deoxyguanosine, lysophosphati-
dylcholine LPC(16:0), 3-carboxy-4-methyl-5-propyl-
2-furanpropanoic acid (CMPF), LPC(18:3), testosterone 
sulfate, cholic acid, and gluconic acid were among the 
most important identified molecules that discriminated 
the diagnoses. Figure 3A presents a scatter-plot of the 
entire data along the 2 discriminants using the stricter 
filtering (p_FDR ≤ 0.5), where the model was constructed 
from 69 features.

Nieminen et al.1106

https://hmdb.ca/
https://chemspider.com
https://chemspider.com
https://mzcloud.org
https://lipidmaps.org
http://prime.psc.riken.jp/compms/msdial/main.html
https://massbank.eu/MassBank/
https://metlin.scripps.edu
https://metlin.scripps.edu


Metabolomics of Synovial Fluid and Infrapatellar Fat Pad in Patients with Osteoarthritis or…

In the IFP data, filtering with |log-FC|≥ 1.0 and 
p_FDR ≤ 0.5 (4 features) yielded the best compromise 
in terms of cross-validation and class separation in 
the entire data. In cross-validation, the overall accu-
racy was 90%, precision 100% (in RA) or 83% (pOA), 
and sensitivity 100% (RA) or 80% (pOA), respectively. 
4-Imidazoleacetic acid was among the most significant 
contributors to the model. In the entire data, the only 
discriminant separated the classes perfectly (Fig. 3B). 
With stricter filtering |log-FC|≥ 2 and p_FDR ≤ 0.05 
(only 1 feature), the cross-validation accuracy was bet-
ter (95%), but the class separation in the entire data 
was worse. The loosest filtering with p_orig ≤ 0.01 (75 
features) produced the worst accuracy (85%), which 
suggests that the model suffered from overfitting.

Results of the PCA are shown in Figs. 4 and 5. 
In the SF data, the first 2 principal components could 

clearly separate C from pOA and RA already before 
filtering (Fig. 4A), and all 3 classes were well sepa-
rated after filtering (Fig. 4D). In the IFP data, the class 
separation was less clear but, after filtering, the first 2 
principal components could almost separate RA and 
pOA (Fig. 5D).

DISCUSSION

General Comments and Drug‑Derived 
Molecules

Based on previous literature, it is known that the 
SF metabolome can be affected by degenerative joint 
diseases. However, while circulation, synovial mem-
brane, and immune cells are recognized sources of SF 

Fig. 1   Volcano plots from the synovial fluid (SF) data. Volcano plots summarize results of univariate testing (RA vs. C, pOA vs. C, and pOA vs. 
RA) along log-FC (x-axis) and −log(p) (y-axis) from the Welch’s t-test using all features (A–C) and features without identified drugs (D–F). Nega-
tive logarithm of the nominal level p = 0.05 is marked with a dash line. C, control; RA, rheumatoid arthritis; pOA, primary osteoarthritis.
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molecules, the potential role of IFP as an effector of knee 
SF composition remains significantly less investigated. 
Here, we conducted a pilot study about the effects of pOA 
and RA on not only the SF metabolomics but also on the 
adjacent fat pad to examine, if there would be parallel 
changes in these tissues that would be relevant to joint 
diseases, to search for promising biomarkers that could be 
applied to studying early-stage OA and RA, and to assess 
potential metabolites that would offer useful targets for 
therapeutic manipulation. Below, we concentrate on the 
statistically and biologically most significant differences 
between the diagnoses regarding the identified molecules 
among filtered features (p_orig ≤ 0.01 and |log-FC|≥ 1).

In SF, a few clearly drug-derived molecules– 
omeprazole, gabapentin, and tranexamic acid–were 
present in excess in pOA and RA samples, as expected. 
Omeprazole is a proton-pump inhibitor that is widely 
utilized to counteract the gastrointestinal side-effects of 
non-steroidal anti-inflammatory drugs [29]. Gabapentin 
alleviates (neuralgic) pain, and it is not necessarily pre-
scribed for knee pOA or RA. As degenerative diseases 
also affect other skeletal structures, the use of this medi-
cation would be understandable considering the often-
concomitant spondyloarthritis with nerve root symptoms. 
Tranexamic acid is commonly used in orthopedic surgery 
to control excessive bleeding [29] and, not surprisingly, 

Fig. 2   Volcano plot from the infrapatellar fat pad (IFP) data. Volcano plot summarizes results of univariate testing (pOA vs. RA) along log-FC 
(x-axis) and − log(p) (y-axis) from the Welch’s t-test. All features are presented since no drugs were identified among the significant features in the 
IFP data. Negative logarithm of the nominal level p = 0.05 is marked with a dash line. RA, rheumatoid arthritis; pOA, primary osteoarthritis.
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was present in large-scale arthroplasty in significantly 
higher levels than in controls that had undergone smaller 
procedures. Finally, sulfasalazine as an anti-rheumatic 

medical agent [29] was present at higher levels in RA 
but not in pOA SF when compared to C SF. While the 
appearance of these therapeutic agents was expected, 

Table 2   Identified Metabolites Significantly Associated with Primary Osteoarthritis (pOA) or Rheumatoid Arthritis (RA) Synovial Fluid (SF) or 
Infrapatellar Fat Pad (IFP)

CMPF 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid, ↑ significant elevation in levels, ↓ significant decrease in levels (Welch’s t-test, p < 0.05)

pOA SF vs. control SF RA SF vs. control SF RA SF vs. pOA SF RA IFP vs. pOA IFP

Phosphatidylethanolamine (22:6, 
16:0) ↑

Testosterone sulfate ↓ Testosterone sulfate ↓ Testosterone sulfate ↓

Lysophosphatidylcholine (16:0) ↑ Androsterone sulfate ↓ Cholic acid ↓ Androsterone sulfate ↓
Palmitoleamide ↓ Lysophosphatidylcholine (16:0) ↑ Chenodeoxycholic acid ↓ Cholest-4-en-26-oic acid, 7α-hydroxy-

3-oxo ↓
Oleamide ↓ Deoxyguanosine ↑ Lysophosphatidylcholine (16:0) ↓ Phosphatidylcholine (16:0, 16:0) ↑
Oleoyl ethylamide ↓ Gluconic acid ↑ Lysophosphatidylcholine (18:2) ↓ Lysophosphatidylcholine (18:0) ↓
Linoleamide ↓ Lysophosphatidylcholine (18:3) ↓ L-Arginine ↓
CMPF ↑ Proline ↓
Deoxyguanosine ↑ Glutamic acid ↓
7-Keto-8-aminopelargonic acid ↑ Aspartic acid ↓
Gluconic acid ↑ L-Pipecolic acid ↓

Histamine ↓
4-Imidazoleacetic acid ↓
Guanidineacetic acid ↓

Fig. 3   Linear discriminant analysis (LDA) scatter-plots of the synovial fluid (SF) and infrapatellar fat pad (IFP) data. LDA scatter-plots of the fil-
tered SF data (A) and IFP data (B) along the linear discriminants (LDs). In the SF data, there were three classes and, thus, two LDs (x- and y-axes) 
while in the IFP data, there were only two classes and, thus, one LD (x-axis). C, control; RA, rheumatoid arthritis; pOA, primary osteoarthritis.

1109



their presence increased the overall validity of the metab-
olomic analysis, and we suggest that reporting common 
medical substances when present would provide a good 
standard for the reliability of the other results, too. In 
this study, the multivariate statistical analyses were first 
performed with these identified therapeutic agents but 
also after their removal from the features.

Androgen and Bile Acid Pathways

RA was associated with altered androgen and bile 
acid metabolic pathways in both SF and IFP. It was also 
previously established that androgen metabolism would 
be affected by RA, observed as decreased levels of andro-
gens and dehydroepiandrosterone sulfate in both genders 
[30]. In concert with this, the testosterone sulfate and 
androsterone sulfate levels were lower in RA IFP com-
pared to pOA IFP, and in RA SF in relation to C SF. In 

addition, testosterone sulfate was reduced in RA SF vs. 
pOA SF. As a metabolite of testosterone, its sulfate is 
a weak androgen, while androsterone sulfate is a major 
androgen metabolite in urine [31, 32]. In the body, the 
steroid sulfatase enzyme catalyzes the hydrolysis of sul-
fate ester bonds from a wide array of substrates [33]. In 
steroid-dependent cancers, steroid sulfatase inhibitors 
have been proposed as potentially useful therapeutic 
agents, while in inflammatory diseases their signifi-
cance is less well established. However, Mueller et al. 
[33] implied that steroid sulfatase dysregulation could 
also play a role in inflammatory phenomena. Together 
with previous data [30], our results suggest that further 
research into androgen metabolism and, specifically, into 
modifying steroid sulfatase activity could provide a prom-
ising target for therapeutic intervention in joint diseases.

Regarding bile acids and their biosynthesis, 
the RA patients showed lower levels of particular 

Fig. 4   Principal component analysis (PCA) scatter-plots of the synovial fluid (SF) data. PCA scatter-plots of the SF data along the first three princi-
pal components (PCs): all features (A–C) and filtered features (D–F). C, control; RA, rheumatoid arthritis; pOA, primary osteoarthritis.
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compounds compared to the pOA patients. In SF, 
there were decreases in cholic acid and chenodeoxy-
cholic acid, while in IFP the levels of cholest-4-en-
26-oic acid, 7α-hydroxy-3-oxo were lower in RA than 
in pOA. These metabolites belong to the pathways of 
bile acid biosynthesis [34]. Abnormalities of bile acid 
metabolism have not been intensively studied in RA 
patients but, in a previous report, their cholic acid, 
deoxycholic acid, and total bile acid pools, as well as 
the synthesis rate of cholic acid were suggested to be 
reduced [35]. In gout, another type of inflammatory 
arthritis characterized by uric acid crystals, serum 
markers of primary bile acid biosynthesis can also be 
decreased [36]. Bile acid metabolites could offer an 
additional tool to either monitoring of disease activity 
(decreased levels) or interventions (enhancing bile acid 
biosynthesis) in RA. In fact, it was previously observed 
that one of the conjugated bile acids, taurochenodeoxy-
cholic acid, induced anti-arthritis activity in rats [37]. 

In humans, peroral therapy with chenodeoxycholic acid 
was investigated as early as in the 1970s with an initial 
worsening of symptoms followed by remission after 
approximately 6 weeks [38], both studies yielding fur-
ther support to the possibility of bile acids becoming 
useful tools in translational studies on RA.

Lipid Metabolites

Several RA- and/or pOA-related alterations 
were observed in the levels of particular glycero-PLs, 
mostly LPCs, in SF and IFP. The unsaturation and 
chain length of PL fatty acyl chains can hypotheti-
cally affect the lubricating properties of SF and con-
sequently the friction between the surfaces of articular 
cartilage [17]. The levels of LPC(18:0), LPC(18:2), 
and LPC(18:3) showed lower values in RA vs. pOA in 
SF or IFP, and there was an increase in the levels of 

Fig. 5   Principal component analysis (PCA) scatter-plots of the infrapatellar fat pad (IFP) data. PCA scatter-plots of the IFP data along the first three 
principal components (PCs): all features (A–C) and filtered features (D–F). RA, rheumatoid arthritis; pOA, primary osteoarthritis.
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LPC(16:0) in both arthropathies compared to C SF. 
These results displayed some resemblance to a previ-
ous study by Kosinska et al. [17]. In general, LPCs 
are major components of oxidized low-density lipo-
proteins, they can have pro-inflammatory properties 
in vitro, and may play a role in the pathogenesis of, 
for instance, atherosclerosis [39]. Accordingly, an 
increased plasma ratio of LPC to phosphatidylcholine 
(PC) was associated with advanced knee OA [40], and 
the plasma PC/LPC ratio increased in RA patients 
receiving anti-inflammatory therapy [41].

Regarding the other findings of lipidology, the 
increase in CMPF levels in pOA SF when compared 
to C SF could be a sign of self-medication with fish-
based oils rich in long-chain n-3 PUFAs [42]. Further-
more, the pOA patients exhibited decreased levels of 
palmitoleamide, linoleamide, oleamide, and oleoyl 
ethylamide vs. C SF. Little is known about the signifi-
cance of FA amides in joint diseases, but oleamide has 
been shown to be anti-inflammatory in vitro and in an 
in vivo rodent model [43]. Its decrease could, thus, 
be associated with inflammation, but it remains to be 
determined, why this effect did not reach significance 
in RA SF. Oleamide is also known to accumulate in 
cerebrospinal fluid of sleep-deprived animals and is 
able to induce sleep [44]. It can also derive from plastic 
products, but this does not readily explain the observed 
differences in its levels between study groups. Among 
the lipid manifestations of joint disease metabolomics, 
LPC(16:0) and oleamide could offer potential targets 
for biomonitoring disease activity. Oleamide could also 
offer a therapeutic tool to reduce inflammation as well 
as to provide possible amelioration to joint pain-related 
sleep disorders.

Amino Acids and Their Derivatives

We observed significant changes in some metab-
olites only in IFP but not in SF. In these, alterations 
were documented in the levels of several AAs, as the 
L-arginine, proline, aspartic acid, glutamic acid, and 
L-pipecolic acid levels of the pOA patients were higher 
than those of the RA group. In addition, guanidineacetic 
acid increased in pOA IFPs compared to RA IFPs. Once 
again, previous literature about this subject is somewhat 
controversial, and some studies show similarity to ours 
with reduced AA values in RA SF or serum [14, 45–47]. 
Proline, glutamic acid, aspartic acid, and arginine are 

known to be important constituents of collagen [48], and 
their higher levels in pOA IFPs could hypothetically be 
related to OA-induced fibrosis [8].

L-Pipecolic acid is an interesting metabolite of 
lysine catabolism that offers enhanced systemic resistance 
to bacterial infections in experimental organisms [49]. 
This can be associated with its propensity to increase the 
levels of free radicals, nitric oxide, and reactive oxygen 
species [50] but, hitherto, these effects have mostly been 
demonstrated in plant eukaryotes. In vitro, L-pipecolic 
acid may cause oxidative stress in cerebral cortex and 
could, thus, be regarded deleterious [51]. On the other 
hand, it can increase the rate of protein synthesis [52] 
and, for this reason, its reduction could be theoretically 
useful considering the overgrowth of RA synovium as 
pannus formation. According to Teitsma et  al. [46], 
L-pipecolic acid levels were higher in RA patients who 
were in drug-free remission after tocilizumab treatment 
than in patients who never achieved a drug-free status. 
This fits our results with higher L-pipecolic acid levels 
in the pOA than in the RA group, both including symp-
tomatic patients only. Similar to the situation of higher 
L-pipecolic acid levels in RA patients in less inflam-
matory remission, our pOA patients probably had less 
systemic inflammation than the RA patients [9]. Thus, 
L-pipecolic acid has some potential to become a measure 
of disease remission and resolution of inflammation, at 
least regarding RA.

A clear difference was also observed for IFP his-
tamine and its metabolite 4-imidazoleacetic acid with 
higher levels in the pOA than RA patients. This may be 
related to, for instance, drug interactions, as sulfasalazine 
is known to inhibit histamine release [53]. Low histamine 
levels were also previously observed in the circulation 
and SF of RA patients [54]. However, while Adlesic et al. 
[54] noted that histamine would have no effects on inflam-
mation in vitro or in an in vivo rodent model, the present 
observation of higher histamine levels in pOA merits 
further investigation, as it is a well-known inflammatory 
agent that can be easily manipulated with existing rem-
edies. In fact, Shirinsky and Shirinsky [55] suggested that 
the use of H1-antihistamines would be associated with a 
reduced prevalence of knee OA. It was also observed by 
Tetlow and Woolley [56, 57] that histamine may induce 
the production of cartilage-degrading proteinases and the 
formation of chondrocyte clusters associated with OA, 
which yields more support from our results. While the 
issue remains somewhat controversial, our data join the 
increasing amount of literature suggesting that a closer 
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and novel look into histamine-targeted therapies, espe-
cially regarding OA, is warranted.

Other Significant Molecules in SF

In SF only, there was a marked increase in the deoxy-
guanosine levels by both pOA and RA compared to C. 
Despite different etiologies, both arthritic diseases could 
share a common pathological pathway in this respect. This 
finding fits well with the inflammatory nature of OA and 
RA, as it has been established that increases in 8-hydroxy-
2’-deoxyguanosine indicate oxidative DNA damage and 
inflammation [58]. Thus, while there exist different deoxy-
guanosines and the precise molecular formula of the one 
measured in this study could unfortunately not be deter-
mined, we can conclude that oxidatively damaged DNA 
adducts could be provisionally good candidates for SF 
biomarkers of inflammatory joint diseases, while they 
do not seem to be as promising as agents for therapeutic 
interventions.

Of the other SF molecules with significant differ-
ences between diagnoses, 7-keto-8-aminopelargonic 
acid (KAPA) is an intermediate in biotin (vitamin B7) 
biosynthesis by intestinal bacteria [59, 60], and it was 
higher in the pOA than in the C knees. Recently, biotin 
has been implicated in various inflammatory phenomena 
[61, 62], and this makes the KAPA results intriguing. 
At this stage, however, the inflammatory effects of this 
biotin metabolite remain elusive and further studies are 
required, especially regarding joint diseases. Yet another 
interesting molecule with elevated levels in both pOA 
and RA SFs is gluconic acid, which is most probably 
derived from the patients’ diet, as it occurs naturally in, 
for instance, fruits and honey [63]. Its salt, gluconate, is 
being investigated for its potential use in cancer therapies. 
At the moment, the practical applications of gluconic acid 
for joint diseases remain to be determined, but still both 
gluconic acid and the biotin biosynthesis pathway can 
provide starting points to gather more knowledge on the 
metabolic alterations that participate in the pathogeneses 
of OA and RA.

Potential Clinical Implications

The main debilitating symptom of OA and RA is 
pain. To offer effective treatment options to patients, it 
would be useful to assess, which metabolites and meta-
bolic pathways would either be the most responsible for 

the perceived pain or could offer potential remedies. 
How the metabolites listed above correlate to pain in 
joint diseases has not been intensely researched, but 
for other conditions there are available data. Regard-
ing pain in general, epiandrosterone sulfate correlated 
inversely with the risk of chronic widespread muscu-
loskeletal pain [64]. This suggests that the observed 
higher levels of androgen sulfates in the present study 
would probably not be contributing factors to the 
pathogenesis of pOA but might become a useful tool 
in the study and treatment of symptomatic pain. Lev-
els of individual AAs in cerebrospinal fluid have also 
been noted to associate with the intensity of pain [65]. 
Arginine and glutamine are examples of AAs that can 
become deficient in diverse medical conditions, such 
as trauma, infection, and intestinal diseases [66] and 
may, thus, be related to inflammatory responses. The 
observed lower L-arginine values in the more inflam-
matory RA compared to pOA could fit this pattern and 
offer a promising therapeutic target. AAs could prove 
to be metabolites of several beneficial interventions, as 
they can modulate immune responses and, for instance, 
arginine is required for normal proliferation and matu-
ration of T-cells, and it is involved in the macrophage 
class transition from M1 to M2, driving inflammation 
and resolution [66]. Bile acids [67] and pro-inflamma-
tory LPCs [68] represent other metabolites that can be 
related to chronic pain and should be studied in more 
detail regarding joint diseases.

Study Limitations

The present study had some limitations to be 
acknowledged. Several statistically significant features 
could not be identified with reliable accuracy down to 
the molecular level, due to which they had to be left out of 
the discussion. The group size in this pilot study was also 
relatively small. As sampling for IFP would have affected 
the control patients’ surgery procedures and caused addi-
tional invasive manipulation with ethical permits difficult 
to obtain, IFP samples could only be harvested from the 
pOA and RA patients. In these groups, the sampling of 
IFP did not significantly affect the course of the default 
operation, as during arthroplasty lots of tissue is removed. 
However, this narrows the scope of the conclusions that 
could be drawn from the IFP results.

Finally, it must be acknowledged that due to the 
inevitable natural progress of OA and RA, knee replace-
ment surgery patients tend to be significantly older than 
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knee trauma patients, who are usually of the younger gen-
eration, physically more active, and prone to accidents in 
sports causing joint damage. These issues are recurring 
confounding factors in joint disease research, and age-
related dissimilarities between study groups could, thus, 
have masked or augmented some of the observed differ-
ences when pOA and RA SFs were compared to C SF. 
This could be especially relevant regarding the androgen 
and bile acid metabolites that generally show decreasing 
levels with advancing age [69, 70], but as these com-
pounds mostly displayed differences between the pOA 
and RA patients that had similar ages, they could be reli-
ably used to assess the differences between these two joint 
diseases. In contrast, the deoxyguanosine levels tend to 
increase with aging [71], and as they showed significantly 
higher values in pOA and RA SFs compared to C SF, age-
related effects cannot be excluded in this case. In addi-
tion, there was a significant difference in BMIs between 
the pOA and RA patients, and the potential influence of 
adiposity on their divergent metabolomic profiles should 
be recognized.

CONCLUSIONS

There was parallel downregulation of androgen and 
bile acid metabolism by RA in both SF and the adjacent 
IFP. L-Pipecolic acid, deoxyguanosine, LPC(16:0), and 
oleamide could be potential biomarkers for oxidative 
stress and inflammation in end-stage pOA and/or RA. 
Further studies are required to find out if there could be 
associations of these metabolites with early-stage joint 
diseases or with pain parameters. Testosterone/andros-
terone sulfates, bile acids, histamine, L-arginine, and 
oleamide are among metabolites that could be useful 
targets for therapeutic manipulation. In addition, some 
interesting but scarcely investigated pathways, especially 
biotin metabolism, offer attractive future research targets.
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