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a b s t r a c t 

We consider the kernel completion problem with the presence of multiple views in the data. In this 

context the data samples can be fully missing in some views, creating missing columns and rows to 

the kernel matrices that are calculated individually for each view. We propose to solve the problem of 

completing the kernel matrices with Cross-View Kernel Transfer (CVKT) procedure, in which the features 

of the other views are transformed to represent the view under consideration. The transformations are 

learned with kernel alignment to the known part of the kernel matrix, allowing for finding generalizable 

structures in the kernel matrix under completion. Its missing values can then be predicted with the data 

available in other views. We illustrate the benefits of our approach with simulated data, multivariate 

digits dataset and multi-view dataset on gesture classification, as well as with real biological datasets 

from studies of pattern formation in early Drosophila melanogaster embryogenesis. 

© 2022 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Multi-view learning is a machine learning paradigm referring to 

a learning situation where data contains various, often heteroge- 

nous, modalities that might be obtained from different sources or 

by different measurement techniques [1] . For example a dataset 

might contain images with captions, both of them describing the 

same data samples but from different points of view. Learning by 

taking into account all the views and their interactions is expected 

to give better results than learning from each single view indepen- 

dently, as the views are likely to carry complementary information 

and regularities. 

Gathering multi-view data can be very expensive and in some 

situations (such as some biological applications, or medical diagno- 

sis from several physical examination devices) it might be outright 

impossible to simultaneously measure all the views under investi- 

gation. A typical example of the latter situation arises in develop- 

mental biology when several variables are of interest but cannot 

be measured simultaneously [2] , or when results of heterogeneous 

types of experiments, such as spatial information and single cell 
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transcriptomics, need to be integrated in a common representation 

[3] . While many multi-view learning approaches have been devel- 

oped to work directly with missing data elements for tasks such as 

classification or multi-view clustering among others [4–9] , unfor- 

tunately many successful multi-view methods cannot directly cope 

with data missing from the views. The simplest approach in this 

case would be to neglect the samples with missing views, but de- 

pending on the amount of these samples this might make the data 

set so small as to make applying many of these machine learning 

methods non-feasible. Thus a preprocessing step to fill in the miss- 

ing values is needed. 

Kernel methods in multi-view learning are widely used in many 

fields such as computational biology and computer vision [10,11] . 

One especially successful and widely applied set of methods is 

called Multiple Kernel Learning (MKL) [12] . In kernel methods, the 

data samples are not considered as is by the learning algorithm, 

but rather via a kernel function that takes two samples and acts 

as a kind of similarity measure between them. This can be an es- 

pecially advantageous property for the learning algorithm, as ker- 

nel functions can be defined for many types of data. For exam- 

ple, graphs can be difficult for many machine learning algorithms 

to handle, but kernel-based methods are able to treat them with 

no more difficulty than any other data, as the kernel-based algo- 

rithms consider the kernel matrix calculated with the samples, not 

the samples themselves. There are several possibilities on how to 
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define kernels for many traditionally difficult data types, such as 

strings [13] , histograms [14] or graphs [15] , among others [16,17] . 

Thus, in this framework it is natural to directly complete the ker- 

nels themselves instead of the original missing features. Kernel 

completion in multi-view setting is an emerging topic which has 

not been much investigated so far [18] . 

Existing matrix completion methods can be applied to a kernel 

completion problem only when some individual kernel values are 

missing, and not the whole rows and columns. More often than 

not, in our setting the missing values span indeed whole rows and 

columns, and regular matrix completion approaches cannot cope 

with the completion task. In order to succeed in filling in the val- 

ues, the multi-view structure of the data should be leveraged for 

kernel completion. In this paper we propose a novel method for 

problem of multi-view kernel completion, that is based on the 

idea of information transfer across the views. One assumption in 

multi-view learning is that there are some relationships between 

the views; the views are connected and they describe the same 

data, they are not fully independent. In our method we learn and 

transfer the information that other views contain to represent the 

view we wish to complete. We consider the features of the other 

views and align their transformation to known values we have in 

the kernel of the view we wish to complete, using the notion of 

kernel alignment [19,20] . When we have learned this transforma- 

tion, we can predict the missing values based on the information 

in the other views. Our method is a very general in the sense that 

we do not require any of the views to be complete; all of them 

may have some missing data. 

Going beyond this assumption, [21] and [22] have proposed 

methods filling in missing values of multi-view kernel matrices. 

Both of these methods hinge crucially on treating the kernel matri- 

ces as combinations of each other, something we do not consider 

in our approach. 

Cross-view learning, or learning mappings between the views, 

has been previously considered in the deep learning regime for 

missing view imputation in [23,24] . Of these, [24] considers adver- 

sarial encoder-decoder architecture, and [23] convolutional neural 

networks to work with image data. These works operate in a very 

different regime than our proposition – as deep learning methods, 

they require large amounts of data, and are restricted in the types 

of data they can accept as input. Moreover, [24] considers only two 

views, while our method generalizes to any number of views. 

Previous work has shown that it is possible to use a linear 

transformation on the kernel matrix to learn optimal domain adap- 

tation [25] . This transformation is similar to ours, however in 

[25] the features to be transformed were explicitly fixed to be em- 

pirical features obtained from kernel matrix, and instead of opti- 

mizing with respect to kernel alignment they considered Hilbert- 

Schmidt independence criterion [26] . In contrast to our work, the 

idea of transforming the features was considered in the context of 

domain adaptation, where the goal was to learn a common feature 

representation given kernel containing data from two domains. In 

our case the transfer is done from multiple feature representations 

to one that describes still another kernel. 

This paper is organized as follows. The next section intro- 

duces relevant background about related works and kernel meth- 

ods. Section 3 introduces our algorithm (called CVKT for Cross- 

View Kernel Transfer), which we validate with experiments on sim- 

ulated and real data in Section 4 . Our experiments have a two- 

fold focus: first of all to show the validity of our method from the 

point of view of kernel completion, and secondly we aim to show 

the applicability also when the completed kernels are consequently 

used in classification. For the first goal, of particular interest to us 

is a set of real biological data from studies of pattern formation 

in early Drosophila melanogaster embryogenesis, in part motivating 

our work. Section 5 concludes and discusses possibilities for future 

work. 

2. Background 

We now discuss more in depth the problems of matrix and 

kernel completion, in both traditional and multi-view settings. We 

then follow with short introduction to kernel methods. 

We denote scalars, vectors and matrices as a , a and A , respec- 

tively. We consider the sample size to be n , and denote number of 

views in the data with V . The view of e.g. a matrix is indicated in 

parenthesis in superscript, as M 

(v ) . We denote 〈·, ·〉 F and || · || F the 

Frobenius inner product and norm over matrices, and M 

� denotes 

the matrix transpose. 

2.1. Multi-view kernel matrix completion 

Dealing with missing samples or features is a much studied 

problem in data sciences. Missing data often refers to missing fea- 

ture values in the dataset, for example in a recommendation sys- 

tem a feature of a data sample is missing if an user has not given 

a rating to one item in the catalogue. Usually the data samples 

are stacked in a matrix, and the matrix structure is used in filling 

in the missing values here and there in the matrix. Matrix com- 

pletion approaches often consider a low-rank approximation with 

which the missing values are inputed [27,28] . In addition to matri- 

ces built directly from the features, matrix completion can be used 

in filling in individual missing values in a kernel matrix. However 

matrix completion is not always applicable to kernel completion, 

since kernel matrices have properties (symmetry, positiveness of 

eigenvalues) that matrix completion algorithms might not guaran- 

tee to preserve. 

Matrix completion usually deals with only one set of data, and 

thus there are some restrictions in the ways the data can be com- 

pleted. For example every data sample must contain some fea- 

tures, and every feature must be present in some samples. In other 

words, there cannot be fully missing data samples or features, or 

fully missing rows or columns in the matrix. Of course in most 

settings if a data sample is fully missing no algorithm can recover 

it. However if there is some additional information available, even 

this can be done. Data completion in multi-view setting uses the 

complementary information from the views as this sort of addi- 

tional information. Even here, filling in a fully missing data sam- 

ple completely is a challenge. As kernel methods are prominent in 

multi-view learning, the kernel matrices containing similarities be- 

tween data samples can be filled instead, giving rise to multi-view 

kernel matrix completion. It is reasonable to predict the similari- 

ties in a view where some of them are missing based on the in- 

formation available in the other views – as the various views are 

related to each other, so are the subsequent kernel matrices. The 

standard assumption in the multi-view learning paradigm is that 

the views are correlated with each other. Even if our method does 

not explicitly use the mathematical formulation of correlation, it 

heavily relies on the relationships between the views in the data in 

order to build the linear feature transformations across the views. 

First works for completing kernels of multiple views contain 

relatively restrictive assumptions, requiring one complete observed 

view [29,30] . Going beyond this assumption, [21] proposed an EM- 

algorithm that minimizes the KL-divergence of all the individual 

view matrices to their linear combination. Lastly, a framework for 

completing kernel matrices in multi-view setting has been pro- 

posed in [22] , where both within- and between-view relationships 

are considered in solving the problem. As within-view relationship 

they learn a low-rank approximation of the kernel based on the 

available values there, while the between-view relationship strat- 
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egy is based on finding a set of related kernels for each missing 

entry and modelling the kernel as a weighted sum of those matri- 

ces. In contrast to these works, our method directly considers the 

data interactions in the other views, and predicts the missing data 

in a kernel matrix with them. The work of [8] considers multi- 

view learning with kernels and in their framework presents a way 

to deal with missing data. However the completion they are inter- 

ested in is done in a specific landmark space, and not on the kernel 

values we wish to complete. 

Some works use matrix completion methods in multi-view 

setting in predicting the labels of a supervised learning prob- 

lem [31,32] . These approaches stack the multi-view data with their 

labels in a large matrix, and complete the test data labels. Usu- 

ally this is done for multi-output predictions, and this transduc- 

tive learning setting (only the labels are learned) is very distinct 

from our problem; we consider unsupervised setting where kernel 

values on the data are learned without considering the associated 

labels. 

It is also possible to bypass the problem of matrix comple- 

tion completely, if one uses learning methods that are able to take 

into account the missing views. For example for incomplete multi- 

view clustering, methods learning a latent space via e.g. matrix 

factorization [4] , consensus graph [6] or with generative adversar- 

ial networks [5] . In supervised setting, works adapting to incom- 

plete multi-view data include for example a landmark-based SVM 

method [8] , deep networks [9] and in the context of weakly la- 

beled multi-label data [7] . 

2.2. Learning with kernels 

We introduce here relevant background of kernel methods, and 

the notation we use in this paper in developing our method to 

solve the kernel completion problem. We consider multi-view data 

x ∈ X = X 

(1) × . . . × X 

(V ) such that each (complete) data sample x 

is observed in V views, x = (x (1) , . . . , x (V ) ) . 

In machine learning kernel methods are a very successful group 

of methods used in various tasks [16] . The main advantage of using 

a kernel function k : X × X → R in a learning task comes from the 

fact that it corresponds to an inner product in some feature space 

(more concretely in the reproducing kernel Hilbert space (RKHS) H
induced by the kernel), that is, 

k (x, z) = 〈 φ(x ) , φ(z) 〉 H 

. 

This allows one to map data inexpensively to some (possibly 

infinite-dimensional) feature space where the data is expected to 

be better represented. In kernel-based learning algorithms the data 

is always dealt with via the kernel function so this feature repre- 

sentation is never explicitly needed. In practice a matrix, K , is built 

with the kernel function applied to all pairs of data samples such 

that K i j = k (x i , x j ) . 

For multi-view learning the simplest and most widely used 

kernel-based approach is to build the kernel as a combination 

of kernels from individual views. This combination is usually a 

weighted sum 

k (x, z) = 

V ∑ 

v =1 

α(v ) k (v ) 
(
x (v ) , z (v ) 

)
, (1) 

where the weights α(v ) are often learned (multiple kernel learning, 

MKL) [12] . Whenever there is some missing data in the views, ob- 

viously the sum cannot be calculated and the corresponding values 

in the final kernel matrix will be missing, too. This is illustrated 

below, where grey areas of the kernel matrices indicate that the 

values are available, and white areas thus unknown. 

The goal of our work is to fill in these missing values in the kernel 

matrices by using the multi-view properties of the data, and lever- 

aging the information contained in the other views in completing 

the missing values of a view. 

Our kernel completion method is based on the idea of trying to 

form a kernel matrix as similar as possible to the one under com- 

pletion by transforming features from other views. In order to do 

this, we need a way to compare two kernel matrices. We choose to 

use the notion of kernel alignment [19,20] as the similarity mea- 

sure between two kernel matrices. Alignment between two matri- 

ces M and N is defined as 

A (M , N ) = 

〈 M c , N c 〉 F 
‖ M c ‖ F ‖ N c ‖ F 

, (2) 

where subscript c refers to centered matrices, that is, M c = CMC 

where C = 

[
I n − 1 

n 1 n 1 
� 
n 

]
with I n the identity matrix, 1 n vector of 

ones, and M is of size n × n . Kernel alignment has been success- 

fully used in kernel learning problems for classification and regres- 

sion, when kernel alignment has been used to match the kernel to 

be learned with a so-called ideal kernel calculated with labels of 

the learning task ( yy � ). This approach is expected to produce good 

predictors [20] . 

3. Cross-View kernel transfer algorithm 

We propose to fill in the missing values in multi-view kernel 

matrices by transferring the information available in other views to 

represent the view in question. Contrary to other approaches based 

on treating/processing the view interactions as linear combinations 

of the kernels on views (or some quantity tied to the kernels), ours 

directly considers the features and feature interactions, and based 

on those is able to predict the missing views. 

3.1. Building blocks of cross-view transfer 

Given a multi-view data set X (1) , . . . , X (V ) containing n sam- 

ples, we can build a n × n kernel matrix for each of the views, 

K 

(1) , . . . , K 

(V ) . Kernel-based learning algorithms take these kernels 

instead of original data samples when solving the learning prob- 

lem. 

As mentioned, a kernel corresponds to an inner product of data 

samples mapped to some feature space. If we know the feature 

map the kernel uses, we can stack the features φ(x i ) , into a matrix 

�(v ) of size n × f , with f the dimensionality of the feature space. 

We can then write K 

(v ) = �(v ) [�(v ) ] � . For example with linear ker- 

nel we would have �(v ) = X 

(v ) and K 

(v ) = X 

(v ) [ X 

(v ) ] � . Of course if 

the feature map is infinite-dimensional (as is the case with Gaus- 

sian kernel, for example), it is not possible to stack the data pro- 

jections into a matrix. However the �(v ) is not unique, and for a 

set of samples it is usually easy to find an alternative feature map 

producing the same kernel matrix. For any kernel matrix, the em- 

pirical feature map [33] defined as ˆ �(v ) = K 

(v ) (K 

(v ) ) −1 / 2 is equally 

valid choice that produces the same kernel matrix, since 

ˆ �(v ) [ ̂  �(v ) ] � = K 

(v ) [ K 

(v ) ] −1 / 2 [ K 

(v ) ] −1 / 2 K 

(v ) = K 

(v ) [ K 

(v ) ] −1 K 

(v ) = K 

(v ) . 

Due to the fact that the empirical feature map is easy to obtain for 

any kernel, our method is applicable no matter what the kernels 

of the views are. 

It is also possible to approximate the feature map, for exam- 

ple through Nystr ȵ m approximation scheme [34] which is widely 
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Table 1 

The components in the CVKT model, their sizes/lengths and corresponding explanations. Here m 

(v ) the dimensionality of the (possibly approximated) 

features of the v th view, and r is the rank (or number of columns) chosen for the transformation matrix. 

Notation Size Explanation 

K (v ) n × n Kernel matrix on view v 
�(v ) n × m 

(v ) Matrix of features on view v , with �(v ) [�(v ) ] � = K (v ) 

I (v ) i (v ) Set of observed samples of view v 
K (v ) I i (v ) × i (v ) Kernel matrix on the observed samples of view v 
�(v ) n ×

[∑ V 
j=1 m 

( j) − m 

(v ) 
]

Matrix of concatenated feature representations from all views but v , on all samples 

�(v ) 
I i (v ) ×

[∑ V 
j=1 m 

( j) − m 

(v ) 
]

Matrix of concatenated feature representations from all views but v , on the samples known in view v ; I (v ) 

U 

(v ) 
[∑ V 

j=1 m 

( j) − m 

(v ) 
]

× r Matrix transforming the features in �(v ) 
I 

used in approximating kernel matrices. Nystr ȵ m approximation is 

obtained by randomly sampling m < n data samples, and with 

those calculating K 

(v ) ≈ K 

(v ) 
: ,P 

[ K 

(v ) 
P,P 

] −1 K 

(v ) 
P, : 

where subscript P denotes 

the set of these m samples. In this case ˜ �(v ) = K 

(v ) 
: ,P 

[ K 

(v ) 
P,P 

] −1 / 2 and 

K 

(v ) ≈ ˜ �(v ) [ ̃  �(v ) ] � . This is the approach we follow in our ex- 

perimental section, however any proper kernel approximation is 

equally valid to be used in our algorithm. 

Obviously, the kernel matrix K 

(v ) contains missing rows and 

columns if some of the data is missing for this view. We denote 

the set of indices where data is available for view v as I (v ) , and 

the size of the set as i (v ) ≤ n . Whenever clear from the context 

which view is in question we might leave the superscript out, de- 

noting I (v ) = I . We denote the section of the kernel matrix of 

view v containing the known values as K 

(v ) 
I ; this is a matrix of 

size i (v ) × i (v ) . We have summarized this notation (among the no- 

tation introduced in next section describing the CVKT algorithm) 

in Table 1 . 

3.2. Cross-View kernel transfer algorithm 

We propose to learn to represent the kernel K 

(v ) 
I with the fea- 

tures of other views, and their interactions. We can leverage the 

kernel matrices available in other views and obtain the (empiri- 

cal) features for the data samples, which we use for predicting the 

missing values of K 

(v ) . To transfer the knowledge from other views 

towards the view v under question, we firstly build a large feature 

matrix from the feature matrices of all the other views as 

�(v ) 
I = 

[
�(1) 

I (v ) , . . . , �
(v −1) 

I (v ) , �(v +1) 

I (v ) , . . . , �(V ) 

I (v ) 
]
. (3) 

Note that the features of the view under completion task are 

naturally left out from this matrix. From each view we take to 

this matrix only the samples that are available in view under 

study, I (v ) . The new feature matrix �(v ) 
I is thus of size i (v ) ×(

m 

(1) + . . . + m 

(v −1) + m 

(v +1) + . . . + m 

(v ) 
)
. If features are missing 

from some views in �(v ) 
I , they are inputed there with zeros to in- 

dicate this. While we do not assume that no data sample has to 

have complete view in general, we do assume that at least one 

other view is observed at the same time with view under comple- 

tion. Thus every row in �(v ) 
I contains at least some features from 

other views, even if some are missing. This procedure is illustrated 

in Fig. 1 . 

Learning to represent the target kernel K 

(v ) 
I with �(v ) 

I is done 

by considering a linear transformation of these features to some 

other feature space. This transformation is defined by matrix U 

(v ) 

of size 
(
m 

(1) + . . . + m 

(v −1) + m 

(v +1) + . . . + m 

(V ) 
)

× r . Here r refers 

to ”rank” of the transformation and should be less than, or equal to 

m 

(1) + . . . + m 

(v −1) + m 

(v +1) + . . . + m 

(V ) , and is chosen when the 

CVKT algorithm is called. In essence, the parameter r tells what 

is the dimension of the transformed features representing the ker- 

nel K 

(v ) . We wish to learn the optimal transformation U 

(v ) such 

that the transfer kernel �(v ) 
I U 

(v ) [�(v ) 
I U 

(v ) ] � is maximally aligned 

to the target kernel, giving us the optimization problem 

max 
U (v ) ∈ S 

A 

(
K 

(v ) 
I , �(v ) 

I U 

(v ) 
[
�(v ) 

I U 

(v ) 
]� )

, (4) 

where we regularize the transformation matrix U 

(v ) by constrain- 

ing it to the sphere manifold S, meaning that ‖ U 

(v ) ‖ F = 1 . The op- 

timization problem can be solved with gradient-based approach. 

We implemented this with the Pymanopt package [35] . 1 

We wish to highlight the fact that our transformation is very 

general, and indeed much more powerful than simply re-weighting 

the views. Our approach learns, in a sense, one transformation 

for each view other than v . Yet these transformations are learned 

jointly in U 

(v ) , ensuring the overall quality of the alignment. This 

also means that our method is capable of learning if one view 

should be favoured over the others, for example, or more general 

relationships between the views. 

After solving this optimization problem, a prediction on the full 

kernel matrix can be done via selecting all the other views to �(v ) 

as 

�(v ) = 

[
�(1) , . . . , �(v −1) , �(v +1) , . . . , �(V ) 

]
(5) 

and calculating 

˜ K 

(v ) = �(v ) U 

(v ) 
[
�(v ) U 

(v ) 
]� 

. (6) 

We summarize the Cross-view Kernel Transfer (CVKT) procedure in 

Algorithm 1 . 

Algorithm 1 CVKT algorithm 

Require: Set of kernels K 

(1) , . . . , K 

(V ) ; indices of known values 

I (1) , . . . , I (V ) ; parameter r to control the size of transformation 

matrices U 

(v ) 

for v ∈ [1 , . . . , V ] do 

Calculate feature representation �(v ) 
I from K 

(v ) 
I 

end for 

for v ∈ [1 , . . . , V ] do 

Build �(v ) 
I and �(v ) as in Eqs. 3 and 5 

Solve for U 

(v ) in Eq. 4 

Predict ˜ K 

(v ) with �(v ) and U 

(v ) as in Eq. 6 

end for 

return 

˜ K 

(1) , . . . , ̃  K 

(V ) 

It is important to note that we do not assume that the views 

used in completing the other are fully observed. We assume that 

each data sample is fully observed in at least one other view, 

and that each view contains some observed data samples. Thus 

�(v ) will always have some observations available in every row to 

which we can apply the transformation. In learning the transfor- 

mations, we fill in the missing values in the features in �(v ) with 

zeros, as shown in Fig. 1 . When learning the transformation matrix 

1 The CVKT code is available at RH’s personal website. 
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Fig. 1. Illustration on building the feature matrix �(1) 
I (see Eq. (3) ) in our method from the feature representations �(2) − �(4) . The white areas represent the missing data, 

and are filled with zero-inputation. 

U 

(v ) , the zero values in features have no effect on it; the areas of 

U 

(v ) that would be affected by this feature will be multiplied with 

zero, and in a sense left out in the decision process. (Note how- 

ever that there is always at least one view available to learn with, 

as per our assumption.) Thus when learning U 

(v ) , it also learns 

which view combinations work together and how. From this we 

can see that the structure of missing data distribution can affect 

the transformation, as after training CVKT expects to use only cer- 

tain subsets of views in predicting kernel values. More concretely, 

the missing data distributions should be the same in training and 

testing for CVKT to be able to generalize. For example let us con- 

sider a dataset with three views, 0, 1 and 2, from which we want 

to fill in missing values in view 0. If view 1 only has samples avail- 

able where 0 does, and view 2 only where 0 does not, CVKT natu- 

rally will not be able to learn a predictive mapping from view 2 to 

0 as there are no training samples for this configuration. The same 

logic applies similarly also to other settings, for example if view 1 

is as described above and view 2 is full, CVKT should be trained 

only with view 2. Otherwise in training it would learn a mapping 

{ 1 , 2 } → { 0 } , while it should predict { 2 } → { 0 } . 
Multi-view learning paradigm focuses on data where different 

representations (or views) are drawn from one source. The various 

views describe different aspects of the same data, and may con- 

tain complementary information to each other. As the views are 

drawn from the same source, it is to be expected that they agree 

in predictive tasks (consistency). In unsupervised learning settings 

(such as our work for the unsupervised task of multi-view ker- 

nel completion), it can be difficult to talk about view agreement, 

since there is no prediction task in which the views can agree. 

Yet we argue that our alignment-based optimization problem pro- 

motes consistency between the views. One can see the maximal 

alignment between K 

(v ) 
I (the kernel matrix on available data, to be 

completed) and �(v ) 
I U 

(v ) 
[ 
�(v ) 

I U 

(v ) 
] � 

(the kernel matrix built from 

feature representations of other views) as promoting consistency 

between the views: the transformation learns to match the differ- 

ent views as well as possible. 

Compared to the only two other approaches for multi-view ker- 

nel matrix completion [21,22] , CVKT differs in the basic optimiza- 

tion procedure. The other approaches treat the optimization jointly 

over all the views, meaning that all the values have to be com- 

pleted at once, while CVKT treats the view completion problems 

independently, one view at a time. Therefore CVKT can be applied 

to kernel completion problems more flexibly. Moreover, the other 

approaches only consider that the views are interacting via linear 

combinations over the whole views; our algorithm works in trans- 

forming a full feature space concatenated over set of views: its ap- 

plicability is broader. The transformation we learn on the kernel 

features is very expressive, and can be expected to learn compli- 

cated relationships between the views, and thus to adapt to com- 

plementary views better than the more restrictive model of repre- 

senting the kernel matrices as linear combinations of each other. 

The complexity of the CVKT algorithm is naturally dependent 

on the number of samples available in the view processed at each 

iteration, i (v ) , meaning that our algorithm is faster with more miss- 

ing data. The other two important parameters, m 

(v ) for the fea- 

ture dimensions, and r for the number columns in U 

(v ) can be 

pre-set or cross-validated. As CVKT is solved with gradient-based 

method we consider the complexity of calculating the derivative 

of (4) w.r.t U 

(v ) . The derivative is straight-forward to calculate, 

and the complexity arises from simple matrix multiplications. The 

matrix multiplications can be performed in various orders, and 

the preferred order depends on which variables are assumed to 

be small. For convenience, let us denote m = m 

(1) + . . . + m 

(v −1) + 

m 

(v +1) + . . . + m 

(V ) . Recall that r ≤ m . If we further assume that 

it is very small (i.e. r � m ), and that the feature approximations 

are relatively small (i.e. m < i (v ) , we can calculate the gradient in 

O([ i (v ) ] 2 m ) . 

4. Experiments 

In this section we empirically validate our approach (CVKT) in 

order to illustrate and validate its properties and performance. 2 

In our experiments we aim to show that CVKT performs the ker- 

nel matrix completion accurately, and we do this with simple 

2 The CVKT code and the datasets used in the experiments are available at 

riikkahuusari.com . 
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simulated data alongside with a real dataset from study of pat- 

tern formation in Drosophila melanogaster embryogenesis. We fur- 

ther show its utility for classification problems with multi-view 

datasets containing also class labels (handwritten digits and time- 

series data on gestures). Our results show that using CVKT-inputed 

kernel matrices in learning problems will yield superior perfor- 

mance w.r.t classification accuracy, compared to other ways to fill 

in the data in the kernel matrices. This shows that our kernel com- 

pletion results, while being accurate with respect to completion er- 

ror measures, are also suitable to be used in consecutive machine 

learning tasks. 

4.1. Compared methods 

There are very few works in multi-view kernel completion set- 

ting, and very few relevant methods to compare ours to. Taking ex- 

ample from another paper solving multi-view kernel matrix com- 

pletions problem [21] , we compare our method to two simple 

baselines; mean and zero imputation, where the missing values are 

replaced with kernel mean value, or zeros, respectively. Addition- 

ally, we also consider the more elaborate MKC [22] method, and 

use the code provided. 3 From the methods introduced in the pa- 

per, we focus on MKC emdb(ht) , as it is very general in the sense that 

it is intended to be used when kernel functions in different views 

are not the same and the kernel matrices have different eigen- 

spectra. In their experiments, [22] have considered as a competing 

method an EM-based algorithm. However it operates with more 

restrictive assumptions than our algorithm, requiring a view where 

there are no missing samples present. In order for us to use this 

method, we would need to make our experimental setting consid- 

erably easier than that which our paper considers, and thus we 

have left it out. 

Going beyond the specific area of multi-view kernel matrix 

completion, many methods exist that work with incomplete multi- 

view data. For example for classification with kernel methods, 

[8] adapts a landmark-based approach, and provides also an ex- 

tension for adapting the method to the case with missing samples 

in the data. Unfortunately this method assumes that the landmarks 

are fully observed under all the views, which is not applicable to 

our experimental setting where each view can have missing sam- 

ples, and each data sample can have missing views. 

In the multi-view clustering literature there are many works 

dealing with missing views. One line of work in this context is 

based on nonnegative matrix factorization (NMF). While cluster- 

ing with incomplete views is very different from the problem of 

kernel matrix completion tackled in this paper and thus compar- 

ing for completion accuracy is not possible, we can nevertheless 

make some comparisons to this approach. Namely, as these meth- 

ods build a common representation of the views, we can use this 

common representation in classification task, instead of applying 

k-means clustering on it. Thus, we consider the MIC method pre- 

sented in [4] as a competitor for our classification experiments. 

Even with this change to the method the settings are still very 

different: while with the other methods we can use the individ- 

ual views completed with the different schemes, with MIC we only 

have the common representation from all the views. 

We wish to highlight that NMF applied on the individual views 

is not applicable in missing views setting by itself, since in this 

case the whole row of data is missing. Moreover, the NMF ap- 

proaches assume that the features for the data are available, which 

is something we do not require (we require only the incomplete 

kernel matrices). Also, the NMF methods require vectorial data 

from all the data views, while as a kernel method our CVKT can 

3 https://github.com/aalto-ics-kepaco/MKC_software 

handle views of widely different data types, as long as a kernel 

can be defined on them. 

4.2. Experimental protocols 

In all CVKT experiments we use features extracted with 

Nystr ȵ m approximation, and cross-validate over different approx- 

imation levels (20%, 40%, ..., 100%). We also cross-validate over the 

rank (or number of columns r) of matrices U 

(v ) , over similar inter- 

vals (20%, 40%, ..., 100% of the full rank m ). For MKC, we performed 

the cross-validation over the parameters suggested in the code 

( c 1 = [10 0 0] , c 2 = [1 , 10] and c 3 = [0 . 001 , 0 . 01 , 0 . 1 , 1 , 10] ), adding 

values 10 and 0.1 for c 1 . With MIC method we fix α = β = 0 . 01 for 

all the views as suggested [4] . We cross-validate over the ”mean 

fit ratio” and ”error” parameters, in [0, 0.2, 0.4, 0.6, 0.8, 1] and 

[0.1, 0.01, 0.001, 0.0 0 01], respectively, and use random initialisa- 

tion for initial NMFs for the views. In choosing the best results in 

cross-validation we used the CA error measure defined below. For 

all our experiments we choose the samples assumed to be miss- 

ing randomly, taking care that no view or sample would go fully 

unobserved. 

For measuring the unsupervised kernel completion perfor- 

mance, we consider the metrics in the two other multi-view kernel 

matrix completion papers; the completion accuracy (CA) in [21] and 

average relative error (ARE) in [22] . The CA error measure is defined 

as 

CA = 

1 

V 

V ∑ 

v =1 

( 

1 −
Tr 

(
K 

(v ) 
true K 

(v ) 
pred 

)∥∥K 

(v ) 
true 

∥∥
F 

∥∥K 

(v ) 
pred 

∥∥
F 

) 

, (7) 

and the ARE over one view as 

ARE = 

1 

n 

(v ) − i (v ) 

∑ 

t �∈I (v ) 

∥∥K 

(v ) 
pred 

[ t, :] − K 

(v ) 
true [ t, :] 

∥∥
2 ∥∥K 

(v ) 
true [ t, :] 

∥∥
2 

, (8) 

where K 

(v ) 
true and K 

(v ) 
pred 

are the correct and the predicted kernel ma- 

trices on view v , respectively, and [ t, :] refers to the row t of the 

kernel matrix. Unlike CA, the error measure ARE is only computed 

over the rows corresponding to the originally missing samples. We 

also consider Frobenius norm error, that is, 

F ro = ‖ K 

(v ) 
true − K 

(v ) 
pred 

‖ F / ‖ K 

(v ) 
true ‖ F . (9) 

Compared to ARE, this measure considers also the already known 

rows of kernel matrix. In all of these error measures lower value 

means better completion performance. In addition to these two 

measures, we use the structural similarity index [36] , defined as 

S.sim = 

(
2 μ

K (v ) true 
μ

K (v ) 
pred 

+ c 1 

)(
2 σ

K (v ) true K 
(v ) 
pred 

+ c 2 

)
(

μ2 

K (v ) true 

+ μ2 

K (v ) 
pred 

+ c 1 

)(
σ 2 

K (v ) true 

+ σ 2 

K (v ) 
pred 

+ c 2 

) , (10) 

in which μx is mean of x , σx is variance of x , σxy is covariance 

of x and y , and c 1 and c 2 are variables for stabilizing the divi- 

sion (see [36] ). It is a measure dedicated for image comparisons, 

in which properties like luminance or contrast do not affect the 

comparison result since they do not affect the structure of the im- 

age. For structural similarity index ( s.sim ) a high value means that 

the two images are similar. 

In the second set of our experiments with labeled multi-view 

data, we use the traditional classification accuracy in assessing the 

performance of our method. We further validate these results with 

the McNemar’s test of statistical significance. 

Our method is expected to find generalizable structures on the 

kernel and predicting them in the completed matrices. It is impor- 

tant to notice that while this is the case, the original known val- 

ues of the kernel are not necessarily fully preserved in the learned 
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Table 2 

The kernel completion results on simulated data averaged over the seven views in the data with various amounts of missing 

views per data sample ( a ). The arrow below error measure shows whether higher values ( ↑ ), or lower values ( ↓ ) indicate 

superior performance. 

Error measure a CVKT MKC zero-input. mean-input. 

CA 1 0.010 ±0.003 0.071 ± 0.065 0.143 ± 0.039 0.015 ± 0.006 

(↓ ) 2 0.012 ±0.002 0.054 ± 0.024 0.285 ± 0.048 0.027 ± 0.007 

3 0.015 ±0.004 0.114 ± 0.058 0.427 ± 0.049 0.038 ± 0.009 

4 0.025 ±0.002 0.309 ± 0.062 0.571 ± 0.043 0.047 ± 0.011 

ARE 1 0.152 ±0.025 0.599 ± 0.286 1.000 ± 0.000 0.328 ± 0.033 

(↓ ) 2 0.169 ±0.026 0.486 ± 0.121 1.000 ± 0.000 0.335 ± 0.028 

3 0.198 ±0.015 0.592 ± 0.162 1.000 ± 0.000 0.336 ± 0.029 

4 0.283 ±0.026 0.825 ± 0.060 1.000 ± 0.000 0.336 ± 0.032 

Fro. 1 0.138 ±0.020 0.330 ± 0.167 0.509 ± 0.069 0.166 ± 0.035 

(↓ ) 2 0.154 ±0.016 0.341 ± 0.078 0.695 ± 0.050 0.231 ± 0.031 

3 0.176 ±0.018 0.482 ± 0.106 0.817 ± 0.034 0.272 ± 0.032 

4 0.254 ±0.020 0.758 ± 0.075 0.902 ± 0.020 0.301 ± 0.034 

S.sim 1 0.701 ±0.035 0.417 ± 0.216 0.269 ± 0.105 0.633 ± 0.110 

(↑ ) 2 0.606 ±0.036 0.326 ± 0.097 0.106 ± 0.032 0.480 ± 0.072 

3 0.516 ±0.026 0.205 ± 0.074 0.055 ± 0.017 0.418 ± 0.043 

4 0.385 ± 0.048 0.072 ± 0.025 0.030 ± 0.006 0.401 ±0.021 

kernel. Thus in all the experiments we perform post-processing on 

the kernel predicted with CVKT by scaling the kernel values to the 

range of values in original kernel matrix, and shifting it so that the 

mean is the same as in the known part of the original kernel. 

4.3. Experiments in multi-view kernel matrix completion 

We now describe our experiments on multi-view kernel ma- 

trix completion with unsupervised setting; i.e. there are no labels 

available and we assess the performance of the compared meth- 

ods only on the matrix completion error measures introduced in 

the previous section. Thus, the MIC method is not applicable for 

comparison in this section. 

4.3.1. Simulated data 

To validate our algorithm and to illustrate its generalization 

properties in predicting kernel values, we performed experiments 

with a simple simulated data set. We have created 100 data sam- 

ples with a simple vector autoregression model of memory 1 

where we periodically change the parameters of the model evo- 

lution, and constructed 7 views from overlapping column groups 

of the matrix to which the time series vectors have been stacked 

into. We calculated RBF kernels from these views. We consider a 

missing data scenario where every data sample is missing from 

randomly selected a views, a ranging from 1 to 4. 

We report the results averaged over all the views for the vari- 

ous levels of missing data in Table 2 , where we compare our CVKT 

to the other completion methods. To highlight the difference of our 

method to mean imputation that also performs relatively well with 

respect to the error measures, we show examples of completed 

kernel matrices in Fig. 2 . Our method learns the overall trends in 

the kernel matrices, and is able to predict and generalize those. 

4.3.2. Drosophila melanogaster pattern formation data set 

We now turn to a kernel completion task with a complex real- 

world multi-view dataset in order to validate our CVKT approach. 

Image multiplexing is a relevant application of the cross-view 

kernel transfer method in biology. To study how cell fates are 

established by gene regulatory networks in the field of develop- 

mental biology, it has recently been proposed that a first neces- 

sary step is to integrate multiple views from heterogeneous image 

datasets [2] . Gene regulatory networks describe the sequence of in- 

teraction between various chemical species inside a cell or within 

a tissue, which ultimately lead to cell differentiation into a variety 

of functional types. The number of variables in these networks can 

go up to hundreds and each of them have to be measured sepa- 

rately with specific reporters. To understand the kinetics of these 

interactions it is necessary to reconstruct the time courses of their 

levels in various parts of the embryo. Despite many advances in 

microscopy techniques, it is still challenging to measure more than 

three of these variables at the same time, in addition, in the ab- 

sence of reliable live reporters, some variables can only be mea- 

sured in fixed images where the development is arrested, hence 

the need to integrate multiple views. As an illustration, live imag- 

ing of gastrulation provides information about nuclear positions as 

a function of time, but is silent about the levels of gene expres- 

sion. On the other hand, an image of a fixed embryo reveals the 

distribution of an active enzyme but has no direct temporal infor- 

mation. 

In the following example, we follow [2] and focus on the dorso- 

ventral patterning in Drosophila melanogaster early development. 

In this model system a graded profile of nuclear localization of 

a transcription factor named Dorsal (Dl) establishes the dorsoven- 

tral (DV) stripes of gene expression. Four datasets of fixed images 

were acquired to visualize nuclei (referred to as M, for morphol- 

ogy), protein expression of doubly phosophorylated ERK (dpERK, 

V1), Twist (V2), and Dorsal (V4), and mRNA expression of ind (V3) 

and rho (V5). The first dataset contains 108 images stained for 

dpERK and Twist. The second dataset contains 59 images stained 

for dpERK, ind , and Dorsal. The third dataset contains 58 images 

stained for dpERK, ind , and rho . The fourth dataset contains 30 im- 

ages stained for Twist, ind , and rho . Examples of the images the 

data contains can be seen in Fig. 3 . The distribution of the vari- 

ables are shown on Fig. 4 . 4 

In order to quantify the success of the proposed CVKT method, 

we select randomly samples to be missing for each of the views. 

The samples are selected in addition to the already missing sam- 

ples, meaning that the selection is done in the teal coloured ar- 

eas in Fig. 4 . We then complete these samples with the informa- 

tion available in the other views. Note that we do not try to com- 

plete the truly missing samples, as our goal is to evaluate our al- 

gorithm and we want to be able to compare the completion re- 

sults to known values. Thus for example when we consider view 

2, we will only deal with datasets 1 and 4 (see Fig. 4 ), and we 

have five problems of different sizes. In addition to validating our 

method, this experiment mimics a real cross-validation situation 

when some samples in the data are truly missing. 

4 the view ind of the third dataset remains unused because of the lesser quality 

of the staining [2] . 
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Fig. 2. Examples of target kernel matrices (left), our predicted kernel matrices (second from left), MKC completed kernel matrices (second from right) and mean imputed 

kernel matrices (right) on simulated data. On top row the matrices correspond to view 1 in the scenario when two views are missing per data sample, on the bottom row 

to view 4 in the scenario when three views are missing per data sample. The kernel matrices are reordered for better visualization such that top left corner contains the 

originally known data samples. 

Fig. 3. Example images from the embryo dataset. In these images the colours identifying the views are modified so that they correspond over the datasets, e.g. dpERK is 

shown in red in all the images. In the dataset the views are highly correlated, a fact that can be exploited in the kernel completion task. Figure is adapted from Villoutreix 

et al. [2] . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article). 

Our CVKT performs better in most of the views than other 

state-of-the-art methods with respect to CA error measure, shown 

in Table 3 . Moreover, from Fig. 5 we can see that the structure of 

the kernel matrix is learned very well; however the exact values 

in our learned kernel matrices are slightly different (”lighter” im- 

ages), which is no doubt then seen in the error measures. For the 

sake of clarity and brevity, we have focused in showing the case 

with 30% of missing data (a significant amount) in detail. 

4.4. Classification accuracy with completed kernels 

While it is good to analyse the performance of our method 

in only matrix completion task, it is important to remember that 

the reason for filling in the data in kernels is to make it possible 

to perform classification (or some other learning task) with them. 

Thus, in our next experiments our goal is to validate our CVKT as a 

kernel completion method also by applying the completed kernel 

matrices to their accompanying classification problem. This is done 

in order to highlight the differences between CVKT and mean im- 

putation, methods producing very different results but for which 

the kernel completion error measures are sometimes very similar. 

We highlight that CVKT acts here as a preprocessing method for 

classification, as it only fills in the missing values in the multi-view 

kernel matrices. After applying CVKT (or other imputation method) 

we train a standard SVM classifier using the learned kernel matri- 

ces. 

We consider the multiple features digits dataset 5 consisting of 

six views, as well as the uWaveGesture dataset 6 [37] containing 

three views. For the digits dataset, we selected 20 samples from 

5 https://archive.ics.uci.edu/ml/datasets/Multiple +Features 
6 http://www.timeseriesclassification.com/description.php?Dataset= 

UWaveGestureLibraryAll 
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Fig. 4. Data availability in the views of Drosophila melanogaster data, coloured part referring to available data and white to missing; D to dataset and V to view. The datasets 

are of different sizes: 108, 59, 58 and 30 samples, respectively. 

Table 3 

Kernel matrix completion results on embryo data set [2] where 30% of available 

data is selected to be missing randomly per view. The arrow below the error mea- 

sure shows whether higher values ( ↑ ) or lower values ( ↓ ) of the error measure 

indicate superior performance when comparing the various methods. 

Error measure view CVKT MKC zero-input. mean-input. 

CA 1 0.295 0.230 0.254 0.206 

(↓ ) 2 0.179 0.190 0.251 0.165 

3 0.162 0.244 0.259 0.166 

4 0.129 0.148 0.246 0.151 

5 0.132 0.170 0.225 0.164 

ARE 1 0.843 0.966 1.000 0.919 

(↓ ) 2 0.723 0.915 1.000 0.842 

3 0.739 0.968 1.000 0.831 

4 0.690 0.805 1.000 0.820 

5 0.734 0.884 1.000 0.882 

Fro 1 0.717 0.647 0.666 0.608 

(↓ ) 2 0.574 0.608 0.663 0.551 

3 0.546 0.656 0.671 0.551 

4 0.490 0.528 0.657 0.529 

5 0.497 0.559 0.632 0.549 

S.sim 1 0.526 0.584 0.692 0.672 

(↑ ) 2 0.740 0.641 0.554 0.704 

3 0.722 0.571 0.519 0.673 

4 0.730 0.703 0.530 0.690 

5 0.636 0.566 0.602 0.566 

all the 10 classes, resulting in six 200 × 200 -sized kernel matrices 

for the completion problem. The views are various descriptions ex- 

tracted from digit images, such as Fourier coefficients (view ’fou’) 

or Karhunen-Lo ȿ ve coefficients (view ’kar’). We use RBF kernels for 

views with data samples in R 

d , and Chi 2 kernels for views with 

data samples in Z 

d . The view ’mor’ seems to 7 contain features fit- 

ting to both categorical and real data, so we consider a sum of the 

two appropriate kernels. 

We randomly set samples to be assumed missing in this 

dataset. We vary the level of total missing samples in the whole 

dataset from 10% to 50%, by taking care that all the samples are ob- 

served at least in one view, and that all views have observed sam- 

ples. We note that in order to fill in missing values for a given view 

v , we need data at least from one other view to learn the trans- 

formation from. Thus we cannot consider arbitrarily high levels of 

missing data in our experiments. For example with 3-view data 

this threshold would be 33% missing values; with 5-view data 60% 

7 According to the data source, the source image dataset is lost, and there is very 

little information on the views. 

missing values. When we consider levels higher than this threshold 

not all the samples will end up having enough data to be used in 

learning the transformation (i.e. they will only be observed in one 

view), and in essence our training set size diminishes. For example 

the uWaveGesture experiments end up operating in this regime for 

the highest levels of missing data. 

After we perform kernel completion with CVKT and the com- 

peting methods, we give the completed matrices (selected again 

w.r.t. highest CA) to SVM classifiers. For CVKT the selection based 

on CA was done individually for all the views, since it performs in- 

dividual optimization. For MKC the errors were averaged over the 

views, and the result with lowest overall error was chosen, as MKC 

performs joint optimization. The MIC method, originally introduced 

for incomplete multi-view clustering, builds a common representa- 

tion of the views that can be then used in the classification task, 

while the individual views rest incomplete. Thus, with this method 

we cannot compare the view-specific performance, but show com- 

parisons to this common representation. With MIC we also use 

SVM classifier, with RBF kernel. In order to perform classification 

we divide the data in half for training and testing, and this selec- 

tion is the same for all the kernel matrices. Both training and test- 

ing sets contain samples for which the views were assumed miss- 

ing in completion task. 

We report the accuracies on test data averaged over five differ- 

ent selections for missing data in Fig. 6 for the digits dataset. Our 

CVKT performs the classification superiorly to other kernel com- 

pletion methods, and comparably to using the original fully known 

kernel matrix up to the case with 30% of missing data. The MIC 

method does not perform as well as CVKT in most of the views, 

except in two where it is the same with the lowest amount of data 

missing. However even in these views its performance drops much 

more rapidly with level of missing data than for example CVKT, 

and for 50% of missing data it performs always worse than even 

mean or zero inputed kernels. 

In previous experiments the mean imputation has sometimes 

performed similarly to CVKT with respect to matrix completion 

error measures. It is the case also with the digits dataset (see 

Table 4 ), but the classification accuracy CVKT obtains is consis- 

tently higher than that of mean imputation (see Fig. 6 ). This is 

as expected; the inputed mean values do not carry meaningful in- 

formation about the data samples they are supposed to represent, 

and thus will not allow for successful classification. It is interesting 

to notice that for view ’fou’, the classification accuracy after com- 

pleting 10% missing data is higher with CVKT kernel than with the 

original full kernel matrix. It might be that in this case CVKT has 
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Fig. 5. Target kernel matrices (left), our predicted kernel matrices (middle) with CVKT, and MKC predicted kernel matrices (right) of embryo data [2] when randomly selected 

30% of the available samples were set to be missing. The kernel matrices are reordered for better visualization such that top left corner contains the originally known data 

samples (areas with unknown and known samples are separated with white lines). 
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Fig. 6. Accuracies of classification with full, mean inputed, zero inputed, CVKT-completed and MKC-completed kernel matrices for all six views of the digits dataset as a 

function of level of missing data in views. The MIC results are for a common representation, and thus identical in all the plots. 

Table 4 

Completion error measures on digits data set with various levels of missing data samples in the views, averaged over the 

views. The arrow below the error measure shows whether higher values ( ↑ ) or lower values ( ↓ ) of the error measure 

indicate superior performance when comparing the various methods. 

Error measure missing % CVKT MKC zero-input. mean-input. 

CA 10 0.0097 ±0.0059 0.214 ±0.281 0.097 ±0.021 0.004 ±0.002 

(↓ ) 20 0.0104 ±0.0062 0.147 ±0.205 0.195 ±0.026 0.008 ±0.004 

30 0.012 ±0.006 0.143 ±0.043 0.295 ±0.031 0.012 ±0.005 

40 0.014 ±0.007 0.189 ±0.051 0.392 ±0.035 0.015 ±0.007 

50 0.018 ±0.009 0.232 ±0.064 0.493 ±0.042 0.017 ±0.008 

ARE 10 0.148 ±0.054 4.916 ±12.008 1.000 ±0.000 0.217 ±0.057 

(↓ ) 20 0.155 ±0.049 1.808 ±4.356 1.000 ±0.000 0.213 ±0.052 

30 0.167 ±0.048 0.739 ±0.112 1.000 ±0.000 0.214 ±0.052 

40 0.181 ±0.048 0.790 ±0.141 1.000 ±0.000 0.214 ±0.053 

50 0.197 ±0.052 0.851 ±0.269 1.000 ±0.000 0.213 ±0.052 

Fro 10 0.131 ±0.044 2.579 ±6.389 0.427 ±0.045 0.090 ±0.024 

(↓ ) 20 0.137 ±0.045 1.914 ±5.539 0.591 ±0.036 0.124 ±0.030 

30 0.146 ±0.042 0.545 ±0.092 0.708 ±0.031 0.148 ±0.035 

40 0.163 ±0.044 0.631 ±0.121 0.793 ±0.027 0.167 ±0.039 

50 0.182 ±0.047 0.731 ±0.246 0.860 ±0.026 0.181 ±0.042 

S.sim 10 0.760 ±0.117 0.304 ±0.150 0.393 ±0.088 0.862 ±0.050 

(↑ ) 20 0.730 ±0.114 0.252 ±0.132 0.185 ±0.057 0.755 ±0.068 

30 0.678 ±0.115 0.146 ±0.072 0.105 ±0.039 0.660 ±0.087 

40 0.598 ±0.124 0.101 ±0.047 0.069 ±0.025 0.581 ±0.092 

50 0.509 ±0.134 0.078 ±0.027 0.048 ±0.016 0.509 ±0.104 

been able to filter out some noise distortions in samples, which 

could give it better performance than the baseline. This could be 

analogous to using kernel approximation schemes as regulariza- 

tion [38] . We emphasize that in the experiments the kernel matrix 

completion is done fully independently from the consecutive clas- 

sification task, without knowing which samples would be used in 

training and which in testing. 

We follow the same experimental protocol also for the 

uWaveGesture dataset, where we consider the 896 training sam- 

ples in three views, with 8 classes. We report the completion er- 

ror measures in Table 5 . Again, according to some error measures, 

the mean imputation seems to be performing better than the ded- 

icated matrix completion methods. However, again, from Fig. 7 , we 

can see that CVKT performs better in the subsequent classification 

task in most of the cases. It is clear that CVKT retains more rele- 

vant information about the data than the simple imputation meth- 

ods, yet this is not always reflected in the completion error mea- 

sures. The MIC method performs here better than other baselines, 

but were we to consider MKL-style combinations of the individual 

kernels used in experiments of Fig. 7 , the performance of CVKT and 

MIC would be almost identical. 

Furthermore, we performed statistical testing to assess the sig- 

nificance of our classification results, excluding the MIC method 

since it cannot be used for individual views, nor can it be used in 

the task of kernel matrix completion. First of all, we consider the 

McNemar test. We compared the CVKT-based classification to the 

four other methods: classification with full kernels, MKC-filled ker- 

nels, and mean and zero-inputed kernels. We show in Tables 6 and 

7 the obtained p-values, and also how often the null hypothesis 

was rejected (p-value threshold 0.05), i.e. how often the two clas- 

sification results were significantly different. We observe that the 

differences mostly grow with the level of missing values. For the 

digits dataset, the CVKT results with 10% and 20% of missing data 

are almost indistinguishable from the full classification according 
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Table 5 

Completion error measures on uWaveGesture data set with various levels of missing data samples 

in the views, averaged over the views. The arrow below the error measure shows whether higher 

values ( ↑ ) or lower values ( ↓ ) of the error measure indicate superior performance when comparing 

the various methods. 

Error measure missing % CVKT MKC zero-input. mean-input. 

CA 10 0.021 ±0.001 0.101 ±0.031 0.097 ±0.009 0.006 ±0.001 

(↓ ) 20 0.023 ±0.001 0.099 ±0.037 0.192 ±0.012 0.011 ±0.001 

30 0.025 ±0.002 0.184 ±0.100 0.302 ±0.022 0.016 ±0.003 

40 0.027 ±0.003 0.223 ±0.106 0.379 ±0.041 0.019 ±0.003 

50 0.028 ±0.003 0.252 ±0.078 0.452 ±0.072 0.022 ±0.001 

ARE 10 0.198 ±0.004 0.889 ±0.146 1.000 ±0.000 0.246 ±0.018 

(↓ ) 20 0.207 ±0.005 0.679 ±0.178 1.000 ±0.000 0.245 ±0.017 

30 0.217 ±0.009 0.750 ±0.180 1.000 ±0.000 0.244 ±0.015 

40 0.226 ±0.012 0.770 ±0.171 1.000 ±0.000 0.243 ±0.015 

50 0.229 ±0.011 0.757 ±0.175 1.000 ±0.000 0.244 ±0.015 

Fro 10 0.205 ±0.004 0.587 ±0.204 0.430 ±0.019 0.108 ±0.009 

20 0.213 ±0.005 0.468 ±0.086 0.589 ±0.016 0.147 ±0.009 

30 0.222 ±0.009 0.559 ±0.128 0.716 ±0.022 0.178 ±0.014 

40 0.230 ±0.012 0.615 ±0.118 0.782 ±0.034 0.194 ±0.013 

50 0.235 ±0.011 0.664 ±0.090 0.832 ±0.050 0.206 ±0.003 

S.sim 10 0.466 ±0.064 0.244 ±0.176 0.508 ±0.033 0.898 ±0.010 

(↑ ) 20 0.424 ±0.057 0.192 ±0.143 0.294 ±0.037 0.793 ±0.014 

30 0.362 ±0.047 0.217 ±0.059 0.178 ±0.014 0.670 ±0.025 

40 0.304 ±0.021 0.149 ±0.061 0.129 ±0.029 0.588 ±0.049 

50 0.278 ±0.026 0.108 ±0.034 0.099 ±0.044 0.503 ±0.075 

Fig. 7. Accuracies of classification with full, mean inputed, zero inputed, CVKT-completed and MKC-completed kernel matrices for all three views of the uWaveGesture 

dataset as a function of level of missing data in views. The MIC results are for a common representation, and thus identical in all the plots. 

Table 6 

McNemar’s test on various classification results compared to CVKT classification results with the digits dataset. The 

table displays the average p-values ± its standard deviation, and in parenthesis as percentage with how many of the 

runs McNemar’s test rejects the null hypothesis (i.e. the results can be said to be statistically significantly different) 

with p-value threshold at 0.05. 

missing % full MKC zero-input. mean-input. 

all 0.299 ± 0.317 (33.3) 0.000 ± 0.001 (100.0) 0.023 ± 0.086 (90.7) 0.023 ± 0.086 (90.7) 

10% 0.505 ± 0.284 (3.3) 0.000 ± 0.001 (100.0) 0.066 ± 0.104 (63.3) 0.066 ± 0.104 (63.3) 

20% 0.445 ± 0.310 (3.3) 0.000 ± 0.002 (100.0) 0.031 ± 0.148 (96.7) 0.031 ± 0.148 (96.7) 

30% 0.362 ± 0.299 (20.0) 0.000 ± 0.000 (100.0) 0.009 ± 0.039 (96.7) 0.009 ± 0.039 (96.7) 

40% 0.171 ± 0.265 (50.0) 0.000 ± 0.000 (100.0) 0.002 ± 0.006 (100.0) 0.002 ± 0.006 (100.0) 

50% 0.011 ± 0.025 (90.0) 0.000 ± 0.000 (100.0) 0.004 ± 0.014 (96.7) 0.004 ± 0.014 (96.7) 

Table 7 

McNemar’s test on various classification results compared to CVKT classification results with the uWaveGesture 

dataset. The table displays the average p-values ± its standard deviation, and in parenthesis as percentage with 

how many of the runs McNemar’s test rejects the null hypothesis (i.e. the results can be said to be statistically 

significantly different) with p-value threshold at 0.05. 

missing % full MKC zero-input. mean-input. 

all 0.071 ± 0.200 (83.3) 0.007 ± 0.034 (96.7) 0.272 ± 0.317 (33.3) 0.272 ± 0.317 (33.3) 

10% 0.337 ± 0.334 (16.7) 0.000 ± 0.000 (100.0) 0.387 ± 0.327 (33.3) 0.387 ± 0.327 (33.3) 

20% 0.016 ± 0.011 (100.0) 0.000 ± 0.001 (100.0) 0.166 ± 0.213 (50.0) 0.166 ± 0.213 (50.0) 

30% 0.000 ± 0.000 (100.0) 0.000 ± 0.000 (100.0) 0.376 ± 0.379 (16.7) 0.376 ± 0.379 (16.7) 

40% 0.000 ± 0.000 (100.0) 0.004 ± 0.009 (100.0) 0.286 ± 0.309 (16.7) 0.286 ± 0.309 (16.7) 

50% 0.000 ± 0.000 (100.0) 0.032 ± 0.071 (83.3) 0.146 ± 0.245 (50.0) 0.146 ± 0.245 (50.0) 
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Table 8 

Summary of the results of Friedman-Nemenyi test, showing if CVKT 

results are statistically significantly different (in bold: test value 

larger than critical difference, ”CD”) to other compared multi-view 

kernel completion methods (mean and zero imputation, MKC) with 

uWaveGesture and digits datasets, with α = 0 . 1 and α = 0 . 05 . 

error measure CD MKC mean i. zero.i. 

α = 0 . 1 CA 1.32 1.35 0.7 1.95 

ARE 1.32 2.2 1.0 2.8 

Accuracy 0.62 2.91 1.28 1.46 

α = 0 . 05 CA 1.48 1.35 0.7 1.95 

ARE 1.48 2.2 1.0 2.8 

Accuracy 0.70 2.91 1.28 1.46 

to the test, and the mean and zero imputation results are very dif- 

ferent from those obtained with CVKT. 

Secondly, we perform the Friedman-Nemenyi test [39] on 

uWave gesture and digits datasets in both classification and ker- 

nel matrix completion settings, in order to verify if the results of 

the different methods are overall statistically significantly different. 

Here we consider the various levels of missing data as different 

datasets from the point of view of the test, in classification we 

also consider the different views. In kernel completion we consider 

only the CA and ARE error measures, as the Frobenius norm error 

and structural similarity index give very similar results to the CA 

measure. 

First, for all the error measures, we perform the Friedman test. 

For this we compute the Friedman statistic 

X 

2 
F = 

12 N 

k (k + 1) 

[ ∑ 

j 

[ R x ] 
2 
j −

k (k + 1) 2 

4 

] 

, 

in which R x is either R CA , R ARE or R acc , and [ R x ] j stands for aver- 

age ranking for the method j; the mean values of the rankings 

with CA, ARE or accuracy measure. As we consider four algorithms, 

k = 4 , and N stands for the number of experiments. For CA and 

ARE as we have averaged the results over the views N = 10 (both 

datasets are considered with five different levels of missing data), 

while with accuracy score we perform and show classification with 

the views independently: N = 45 . We can use directly the Fried- 

man statistic in rejecting the null hypothesis, or as it is somewhat 

conservative (see [39] and references therein), we can consider 

F F = 

(N − 1) χ2 
F 

N(k − 1) − χ2 
F 

, 

and reject the null hypothesis by comparing its values to the criti- 

cal values of f-distribution. 

After observing that the null hypothesis is in all the cases re- 

jected, we proceed with the pairwise comparisons (CVKT to MKC, 

mean imputation and zero imputation) and perform the Nemenyi 

test by comparing the differences of the average rankings to the 

critical difference value 

CD = q α

√ 

k (k + 1) 

6 N 

with both α = 0 . 05 and α = 0 . 1 . From this, we obtain information 

whether the results of the two algorithms are statistically signifi- 

cantly different or not. We summarize the results in Table 8 . It is 

easy to conclude that while the matrix completion error measures 

have not necessarily shown much difference between CVKT and 

mean imputation (or MKC with α = 0 . 05 ), the performance differ- 

ence measured in classification accuracy clearly shows the superior 

performance of CVKT. 

5. Conclusion 

We have introduced a novel idea for performing multi-view 

kernel matrix completion by transferring cross-view knowledge to 

represent the views with missing values. We learn to represent 

the kernels with features of other views linearly transformed to 

a new feature space. This allows predicting the missing values of 

a kernel with features available in the other views. Our algorithm 

solves the problem efficiently, since the views can be treated in- 

dividually, and no heavy joint optimization is performed. This in- 

dividual treatment of views also gives more flexibility to our ap- 

proach. As our experiments with simulated and real data demon- 

strate, our method is able to find generalizable structures from the 

incomplete kernel matrices, and is able to predict those structures 

in completing them. Our method completes the kernel matrices in 

a way that allows using them successfully in machine learning ap- 

plications, as demonstrated with experiments on datasets of hand- 

written digits and images of flowers. The competing method, MKC, 

performed worse than expected. It might be that the assumptions 

of the chosen algorithm, MKC embd(ht) , are not optimal for this spe- 

cific problem, and one of the slower ones would have performed 

better. In [22] it is assumed that each view has a small basis set 

of samples with which the view can be characterized, and it might 

not be the case in our experiments. Additionally, the experimental 

setting is challenging with a lot of missing data samples. As the 

data is randomly missing from views for some data samples, even 

in lower levels of missing data, only one or two views might be 

available. 

Our experiments propose that the current metrics to evaluate 

the matrix completion results are not fully usable by themselves. 

Two very different approaches can give similar errors on kernel 

completion, but give widely different accuracies on application to 

classification. One possible line of future work would be studying 

how one could better quantify the success of the kernel comple- 

tion task. 

As a successful multi-view kernel completion method, this work 

opens up novel avenues of research also for the reconstruction of 

the initial data samples. As multi-view kernel learning method, 

it would be interesting to further study the suitability of feature 

transfer, for example in aligning the features with ideal kernel 

formed on the labels. This might prove a competitive way to form 

a multi-view kernel, compared to the currently widely used multi- 

ple kernel learning framework. Also, investigating the connections 

to operator-valued kernels on multi-view setting with missing data 

could be a possible way to move forward with this research. 
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