
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Huusari, Riikka; Capponi, Cécile; Villoutreix, Paul; Kadri, Hachem
Cross-view kernel transfer

Published in:
Pattern Recognition

DOI:
10.1016/j.patcog.2022.108759

Published: 01/09/2022

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Huusari, R., Capponi, C., Villoutreix, P., & Kadri, H. (2022). Cross-view kernel transfer. Pattern Recognition, 129,
1-14. Article 108759. https://doi.org/10.1016/j.patcog.2022.108759

https://doi.org/10.1016/j.patcog.2022.108759
https://doi.org/10.1016/j.patcog.2022.108759

Pattern Recognition 129 (2022) 108759

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/patcog

Cross-View kernel transfer

Riikka Huusari a , b , ∗, Cécile Capponi b , Paul Villoutreix

b , c , Hachem Kadri b

a Helsinki Institute for Information Technology HIIT, Department of Computer Science, Aalto University, Espoo, Finland
b Aix-Marseille University, Universit ̧E de Toulon, LIS, CNRS, Marseille, France
c Turing Center for Living Systems (CENTURI), Marseille, France

a r t i c l e i n f o

Article history:

Received 31 August 2020

Revised 3 January 2022

Accepted 28 April 2022

Available online 7 May 2022

Keywords:

Multi-view learning

Cross-view transfer

Kernel completion

Kernel learning

a b s t r a c t

We consider the kernel completion problem with the presence of multiple views in the data. In this

context the data samples can be fully missing in some views, creating missing columns and rows to

the kernel matrices that are calculated individually for each view. We propose to solve the problem of

completing the kernel matrices with Cross-View Kernel Transfer (CVKT) procedure, in which the features

of the other views are transformed to represent the view under consideration. The transformations are

learned with kernel alignment to the known part of the kernel matrix, allowing for finding generalizable

structures in the kernel matrix under completion. Its missing values can then be predicted with the data

available in other views. We illustrate the benefits of our approach with simulated data, multivariate

digits dataset and multi-view dataset on gesture classification, as well as with real biological datasets

from studies of pattern formation in early Drosophila melanogaster embryogenesis.

© 2022 The Author(s). Published by Elsevier Ltd.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Multi-view learning is a machine learning paradigm referring to

a learning situation where data contains various, often heteroge-

nous, modalities that might be obtained from different sources or

by different measurement techniques [1] . For example a dataset

might contain images with captions, both of them describing the

same data samples but from different points of view. Learning by

taking into account all the views and their interactions is expected

to give better results than learning from each single view indepen-

dently, as the views are likely to carry complementary information

and regularities.

Gathering multi-view data can be very expensive and in some

situations (such as some biological applications, or medical diagno-

sis from several physical examination devices) it might be outright

impossible to simultaneously measure all the views under investi-

gation. A typical example of the latter situation arises in develop-

mental biology when several variables are of interest but cannot

be measured simultaneously [2] , or when results of heterogeneous

types of experiments, such as spatial information and single cell

∗ Corresponding author at: Helsinki Institute for Information Technology HIIT, De-

partment of Computer Science, Aalto University, Espoo, Finland.

E-mail addresses: riikka.huusari@aalto.fi (R. Huusari), cecile.capponi@lis-lab.fr

(C. Capponi), paul.villoutreix@lis-lab.fr (P. Villoutreix), hachem.kadri@lis-lab.fr (H.

Kadri) .

transcriptomics, need to be integrated in a common representation

[3] . While many multi-view learning approaches have been devel-

oped to work directly with missing data elements for tasks such as

classification or multi-view clustering among others [4–9] , unfor-

tunately many successful multi-view methods cannot directly cope

with data missing from the views. The simplest approach in this

case would be to neglect the samples with missing views, but de-

pending on the amount of these samples this might make the data

set so small as to make applying many of these machine learning

methods non-feasible. Thus a preprocessing step to fill in the miss-

ing values is needed.

Kernel methods in multi-view learning are widely used in many

fields such as computational biology and computer vision [10,11] .

One especially successful and widely applied set of methods is

called Multiple Kernel Learning (MKL) [12] . In kernel methods, the

data samples are not considered as is by the learning algorithm,

but rather via a kernel function that takes two samples and acts

as a kind of similarity measure between them. This can be an es-

pecially advantageous property for the learning algorithm, as ker-

nel functions can be defined for many types of data. For exam-

ple, graphs can be difficult for many machine learning algorithms

to handle, but kernel-based methods are able to treat them with

no more difficulty than any other data, as the kernel-based algo-

rithms consider the kernel matrix calculated with the samples, not

the samples themselves. There are several possibilities on how to

https://doi.org/10.1016/j.patcog.2022.108759

0031-3203/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.patcog.2022.108759
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2022.108759&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:riikka.huusari@aalto.fi
mailto:cecile.capponi@lis-lab.fr
mailto:paul.villoutreix@lis-lab.fr
mailto:hachem.kadri@lis-lab.fr
https://doi.org/10.1016/j.patcog.2022.108759
http://creativecommons.org/licenses/by/4.0/

R. Huusari, C. Capponi, P. Villoutreix et al. Pattern Recognition 129 (2022) 108759

define kernels for many traditionally difficult data types, such as

strings [13] , histograms [14] or graphs [15] , among others [16,17] .

Thus, in this framework it is natural to directly complete the ker-

nels themselves instead of the original missing features. Kernel

completion in multi-view setting is an emerging topic which has

not been much investigated so far [18] .

Existing matrix completion methods can be applied to a kernel

completion problem only when some individual kernel values are

missing, and not the whole rows and columns. More often than

not, in our setting the missing values span indeed whole rows and

columns, and regular matrix completion approaches cannot cope

with the completion task. In order to succeed in filling in the val-

ues, the multi-view structure of the data should be leveraged for

kernel completion. In this paper we propose a novel method for

problem of multi-view kernel completion, that is based on the

idea of information transfer across the views. One assumption in

multi-view learning is that there are some relationships between

the views; the views are connected and they describe the same

data, they are not fully independent. In our method we learn and

transfer the information that other views contain to represent the

view we wish to complete. We consider the features of the other

views and align their transformation to known values we have in

the kernel of the view we wish to complete, using the notion of

kernel alignment [19,20] . When we have learned this transforma-

tion, we can predict the missing values based on the information

in the other views. Our method is a very general in the sense that

we do not require any of the views to be complete; all of them

may have some missing data.

Going beyond this assumption, [21] and [22] have proposed

methods filling in missing values of multi-view kernel matrices.

Both of these methods hinge crucially on treating the kernel matri-

ces as combinations of each other, something we do not consider

in our approach.

Cross-view learning, or learning mappings between the views,

has been previously considered in the deep learning regime for

missing view imputation in [23,24] . Of these, [24] considers adver-

sarial encoder-decoder architecture, and [23] convolutional neural

networks to work with image data. These works operate in a very

different regime than our proposition – as deep learning methods,

they require large amounts of data, and are restricted in the types

of data they can accept as input. Moreover, [24] considers only two

views, while our method generalizes to any number of views.

Previous work has shown that it is possible to use a linear

transformation on the kernel matrix to learn optimal domain adap-

tation [25] . This transformation is similar to ours, however in

[25] the features to be transformed were explicitly fixed to be em-

pirical features obtained from kernel matrix, and instead of opti-

mizing with respect to kernel alignment they considered Hilbert-

Schmidt independence criterion [26] . In contrast to our work, the

idea of transforming the features was considered in the context of

domain adaptation, where the goal was to learn a common feature

representation given kernel containing data from two domains. In

our case the transfer is done from multiple feature representations

to one that describes still another kernel.

This paper is organized as follows. The next section intro-

duces relevant background about related works and kernel meth-

ods. Section 3 introduces our algorithm (called CVKT for Cross-

View Kernel Transfer), which we validate with experiments on sim-

ulated and real data in Section 4 . Our experiments have a two-

fold focus: first of all to show the validity of our method from the

point of view of kernel completion, and secondly we aim to show

the applicability also when the completed kernels are consequently

used in classification. For the first goal, of particular interest to us

is a set of real biological data from studies of pattern formation

in early Drosophila melanogaster embryogenesis, in part motivating

our work. Section 5 concludes and discusses possibilities for future

work.

2. Background

We now discuss more in depth the problems of matrix and

kernel completion, in both traditional and multi-view settings. We

then follow with short introduction to kernel methods.

We denote scalars, vectors and matrices as a , a and A , respec-

tively. We consider the sample size to be n , and denote number of

views in the data with V . The view of e.g. a matrix is indicated in

parenthesis in superscript, as M

(v) . We denote 〈·, ·〉 F and || · || F the

Frobenius inner product and norm over matrices, and M

� denotes

the matrix transpose.

2.1. Multi-view kernel matrix completion

Dealing with missing samples or features is a much studied

problem in data sciences. Missing data often refers to missing fea-

ture values in the dataset, for example in a recommendation sys-

tem a feature of a data sample is missing if an user has not given

a rating to one item in the catalogue. Usually the data samples

are stacked in a matrix, and the matrix structure is used in filling

in the missing values here and there in the matrix. Matrix com-

pletion approaches often consider a low-rank approximation with

which the missing values are inputed [27,28] . In addition to matri-

ces built directly from the features, matrix completion can be used

in filling in individual missing values in a kernel matrix. However

matrix completion is not always applicable to kernel completion,

since kernel matrices have properties (symmetry, positiveness of

eigenvalues) that matrix completion algorithms might not guaran-

tee to preserve.

Matrix completion usually deals with only one set of data, and

thus there are some restrictions in the ways the data can be com-

pleted. For example every data sample must contain some fea-

tures, and every feature must be present in some samples. In other

words, there cannot be fully missing data samples or features, or

fully missing rows or columns in the matrix. Of course in most

settings if a data sample is fully missing no algorithm can recover

it. However if there is some additional information available, even

this can be done. Data completion in multi-view setting uses the

complementary information from the views as this sort of addi-

tional information. Even here, filling in a fully missing data sam-

ple completely is a challenge. As kernel methods are prominent in

multi-view learning, the kernel matrices containing similarities be-

tween data samples can be filled instead, giving rise to multi-view

kernel matrix completion. It is reasonable to predict the similari-

ties in a view where some of them are missing based on the in-

formation available in the other views – as the various views are

related to each other, so are the subsequent kernel matrices. The

standard assumption in the multi-view learning paradigm is that

the views are correlated with each other. Even if our method does

not explicitly use the mathematical formulation of correlation, it

heavily relies on the relationships between the views in the data in

order to build the linear feature transformations across the views.

First works for completing kernels of multiple views contain

relatively restrictive assumptions, requiring one complete observed

view [29,30] . Going beyond this assumption, [21] proposed an EM-

algorithm that minimizes the KL-divergence of all the individual

view matrices to their linear combination. Lastly, a framework for

completing kernel matrices in multi-view setting has been pro-

posed in [22] , where both within- and between-view relationships

are considered in solving the problem. As within-view relationship

they learn a low-rank approximation of the kernel based on the

available values there, while the between-view relationship strat-

2

R. Huusari, C. Capponi, P. Villoutreix et al. Pattern Recognition 129 (2022) 108759

egy is based on finding a set of related kernels for each missing

entry and modelling the kernel as a weighted sum of those matri-

ces. In contrast to these works, our method directly considers the

data interactions in the other views, and predicts the missing data

in a kernel matrix with them. The work of [8] considers multi-

view learning with kernels and in their framework presents a way

to deal with missing data. However the completion they are inter-

ested in is done in a specific landmark space, and not on the kernel

values we wish to complete.

Some works use matrix completion methods in multi-view

setting in predicting the labels of a supervised learning prob-

lem [31,32] . These approaches stack the multi-view data with their

labels in a large matrix, and complete the test data labels. Usu-

ally this is done for multi-output predictions, and this transduc-

tive learning setting (only the labels are learned) is very distinct

from our problem; we consider unsupervised setting where kernel

values on the data are learned without considering the associated

labels.

It is also possible to bypass the problem of matrix comple-

tion completely, if one uses learning methods that are able to take

into account the missing views. For example for incomplete multi-

view clustering, methods learning a latent space via e.g. matrix

factorization [4] , consensus graph [6] or with generative adversar-

ial networks [5] . In supervised setting, works adapting to incom-

plete multi-view data include for example a landmark-based SVM

method [8] , deep networks [9] and in the context of weakly la-

beled multi-label data [7] .

2.2. Learning with kernels

We introduce here relevant background of kernel methods, and

the notation we use in this paper in developing our method to

solve the kernel completion problem. We consider multi-view data

x ∈ X = X

(1) × . . . × X

(V) such that each (complete) data sample x

is observed in V views, x = (x (1) , . . . , x (V)) .

In machine learning kernel methods are a very successful group

of methods used in various tasks [16] . The main advantage of using

a kernel function k : X × X → R in a learning task comes from the

fact that it corresponds to an inner product in some feature space

(more concretely in the reproducing kernel Hilbert space (RKHS) H
induced by the kernel), that is,

k (x, z) = 〈 φ(x) , φ(z) 〉 H

.

This allows one to map data inexpensively to some (possibly

infinite-dimensional) feature space where the data is expected to

be better represented. In kernel-based learning algorithms the data

is always dealt with via the kernel function so this feature repre-

sentation is never explicitly needed. In practice a matrix, K , is built

with the kernel function applied to all pairs of data samples such

that K i j = k (x i , x j) .

For multi-view learning the simplest and most widely used

kernel-based approach is to build the kernel as a combination

of kernels from individual views. This combination is usually a

weighted sum

k (x, z) =

V ∑

v =1

α(v) k (v)
(
x (v) , z (v)

)
, (1)

where the weights α(v) are often learned (multiple kernel learning,

MKL) [12] . Whenever there is some missing data in the views, ob-

viously the sum cannot be calculated and the corresponding values

in the final kernel matrix will be missing, too. This is illustrated

below, where grey areas of the kernel matrices indicate that the

values are available, and white areas thus unknown.

The goal of our work is to fill in these missing values in the kernel

matrices by using the multi-view properties of the data, and lever-

aging the information contained in the other views in completing

the missing values of a view.

Our kernel completion method is based on the idea of trying to

form a kernel matrix as similar as possible to the one under com-

pletion by transforming features from other views. In order to do

this, we need a way to compare two kernel matrices. We choose to

use the notion of kernel alignment [19,20] as the similarity mea-

sure between two kernel matrices. Alignment between two matri-

ces M and N is defined as

A (M , N) =

〈 M c , N c 〉 F
‖ M c ‖ F ‖ N c ‖ F

, (2)

where subscript c refers to centered matrices, that is, M c = CMC

where C =

[
I n − 1

n 1 n 1
�
n

]
with I n the identity matrix, 1 n vector of

ones, and M is of size n × n . Kernel alignment has been success-

fully used in kernel learning problems for classification and regres-

sion, when kernel alignment has been used to match the kernel to

be learned with a so-called ideal kernel calculated with labels of

the learning task (yy �). This approach is expected to produce good

predictors [20] .

3. Cross-View kernel transfer algorithm

We propose to fill in the missing values in multi-view kernel

matrices by transferring the information available in other views to

represent the view in question. Contrary to other approaches based

on treating/processing the view interactions as linear combinations

of the kernels on views (or some quantity tied to the kernels), ours

directly considers the features and feature interactions, and based

on those is able to predict the missing views.

3.1. Building blocks of cross-view transfer

Given a multi-view data set X (1) , . . . , X (V) containing n sam-

ples, we can build a n × n kernel matrix for each of the views,

K

(1) , . . . , K

(V) . Kernel-based learning algorithms take these kernels

instead of original data samples when solving the learning prob-

lem.

As mentioned, a kernel corresponds to an inner product of data

samples mapped to some feature space. If we know the feature

map the kernel uses, we can stack the features φ(x i) , into a matrix

�(v) of size n × f , with f the dimensionality of the feature space.

We can then write K

(v) = �(v) [�(v)] � . For example with linear ker-

nel we would have �(v) = X

(v) and K

(v) = X

(v) [X

(v)] � . Of course if

the feature map is infinite-dimensional (as is the case with Gaus-

sian kernel, for example), it is not possible to stack the data pro-

jections into a matrix. However the �(v) is not unique, and for a

set of samples it is usually easy to find an alternative feature map

producing the same kernel matrix. For any kernel matrix, the em-

pirical feature map [33] defined as ˆ �(v) = K

(v) (K

(v)) −1 / 2 is equally

valid choice that produces the same kernel matrix, since

ˆ �(v) [̂ �(v)] � = K

(v) [K

(v)] −1 / 2 [K

(v)] −1 / 2 K

(v) = K

(v) [K

(v)] −1 K

(v) = K

(v) .

Due to the fact that the empirical feature map is easy to obtain for

any kernel, our method is applicable no matter what the kernels

of the views are.

It is also possible to approximate the feature map, for exam-

ple through Nystr ȵ m approximation scheme [34] which is widely

3

R. Huusari, C. Capponi, P. Villoutreix et al. Pattern Recognition 129 (2022) 108759

Table 1

The components in the CVKT model, their sizes/lengths and corresponding explanations. Here m

(v) the dimensionality of the (possibly approximated)

features of the v th view, and r is the rank (or number of columns) chosen for the transformation matrix.

Notation Size Explanation

K (v) n × n Kernel matrix on view v
�(v) n × m

(v) Matrix of features on view v , with �(v) [�(v)] � = K (v)

I (v) i (v) Set of observed samples of view v
K (v) I i (v) × i (v) Kernel matrix on the observed samples of view v
�(v) n ×

[∑ V
j=1 m

(j) − m

(v)
]

Matrix of concatenated feature representations from all views but v , on all samples

�(v)
I i (v) ×

[∑ V
j=1 m

(j) − m

(v)
]

Matrix of concatenated feature representations from all views but v , on the samples known in view v ; I (v)

U

(v)
[∑ V

j=1 m

(j) − m

(v)
]

× r Matrix transforming the features in �(v)
I

used in approximating kernel matrices. Nystr ȵ m approximation is

obtained by randomly sampling m < n data samples, and with

those calculating K

(v) ≈ K

(v)
: ,P

[K

(v)
P,P

] −1 K

(v)
P, :

where subscript P denotes

the set of these m samples. In this case ˜ �(v) = K

(v)
: ,P

[K

(v)
P,P

] −1 / 2 and

K

(v) ≈ ˜ �(v) [̃ �(v)] � . This is the approach we follow in our ex-

perimental section, however any proper kernel approximation is

equally valid to be used in our algorithm.

Obviously, the kernel matrix K

(v) contains missing rows and

columns if some of the data is missing for this view. We denote

the set of indices where data is available for view v as I (v) , and

the size of the set as i (v) ≤ n . Whenever clear from the context

which view is in question we might leave the superscript out, de-

noting I (v) = I . We denote the section of the kernel matrix of

view v containing the known values as K

(v)
I ; this is a matrix of

size i (v) × i (v) . We have summarized this notation (among the no-

tation introduced in next section describing the CVKT algorithm)

in Table 1 .

3.2. Cross-View kernel transfer algorithm

We propose to learn to represent the kernel K

(v)
I with the fea-

tures of other views, and their interactions. We can leverage the

kernel matrices available in other views and obtain the (empiri-

cal) features for the data samples, which we use for predicting the

missing values of K

(v) . To transfer the knowledge from other views

towards the view v under question, we firstly build a large feature

matrix from the feature matrices of all the other views as

�(v)
I =

[
�(1)

I (v) , . . . , �
(v −1)

I (v) , �(v +1)

I (v) , . . . , �(V)

I (v)
]
. (3)

Note that the features of the view under completion task are

naturally left out from this matrix. From each view we take to

this matrix only the samples that are available in view under

study, I (v) . The new feature matrix �(v)
I is thus of size i (v) ×(

m

(1) + . . . + m

(v −1) + m

(v +1) + . . . + m

(v)
)
. If features are missing

from some views in �(v)
I , they are inputed there with zeros to in-

dicate this. While we do not assume that no data sample has to

have complete view in general, we do assume that at least one

other view is observed at the same time with view under comple-

tion. Thus every row in �(v)
I contains at least some features from

other views, even if some are missing. This procedure is illustrated

in Fig. 1 .

Learning to represent the target kernel K

(v)
I with �(v)

I is done

by considering a linear transformation of these features to some

other feature space. This transformation is defined by matrix U

(v)

of size
(
m

(1) + . . . + m

(v −1) + m

(v +1) + . . . + m

(V)
)

× r . Here r refers

to ”rank” of the transformation and should be less than, or equal to

m

(1) + . . . + m

(v −1) + m

(v +1) + . . . + m

(V) , and is chosen when the

CVKT algorithm is called. In essence, the parameter r tells what

is the dimension of the transformed features representing the ker-

nel K

(v) . We wish to learn the optimal transformation U

(v) such

that the transfer kernel �(v)
I U

(v) [�(v)
I U

(v)] � is maximally aligned

to the target kernel, giving us the optimization problem

max
U (v) ∈ S

A

(
K

(v)
I , �(v)

I U

(v)
[
�(v)

I U

(v)
]�)

, (4)

where we regularize the transformation matrix U

(v) by constrain-

ing it to the sphere manifold S, meaning that ‖ U

(v) ‖ F = 1 . The op-

timization problem can be solved with gradient-based approach.

We implemented this with the Pymanopt package [35] . 1

We wish to highlight the fact that our transformation is very

general, and indeed much more powerful than simply re-weighting

the views. Our approach learns, in a sense, one transformation

for each view other than v . Yet these transformations are learned

jointly in U

(v) , ensuring the overall quality of the alignment. This

also means that our method is capable of learning if one view

should be favoured over the others, for example, or more general

relationships between the views.

After solving this optimization problem, a prediction on the full

kernel matrix can be done via selecting all the other views to �(v)

as

�(v) =

[
�(1) , . . . , �(v −1) , �(v +1) , . . . , �(V)

]
(5)

and calculating

˜ K

(v) = �(v) U

(v)
[
�(v) U

(v)
]�

. (6)

We summarize the Cross-view Kernel Transfer (CVKT) procedure in

Algorithm 1 .

Algorithm 1 CVKT algorithm

Require: Set of kernels K

(1) , . . . , K

(V) ; indices of known values

I (1) , . . . , I (V) ; parameter r to control the size of transformation

matrices U

(v)

for v ∈ [1 , . . . , V] do

Calculate feature representation �(v)
I from K

(v)
I

end for

for v ∈ [1 , . . . , V] do

Build �(v)
I and �(v) as in Eqs. 3 and 5

Solve for U

(v) in Eq. 4

Predict ˜ K

(v) with �(v) and U

(v) as in Eq. 6

end for

return

˜ K

(1) , . . . , ̃ K

(V)

It is important to note that we do not assume that the views

used in completing the other are fully observed. We assume that

each data sample is fully observed in at least one other view,

and that each view contains some observed data samples. Thus

�(v) will always have some observations available in every row to

which we can apply the transformation. In learning the transfor-

mations, we fill in the missing values in the features in �(v) with

zeros, as shown in Fig. 1 . When learning the transformation matrix

1 The CVKT code is available at RH’s personal website.

4

R. Huusari, C. Capponi, P. Villoutreix et al. Pattern Recognition 129 (2022) 108759

Fig. 1. Illustration on building the feature matrix �(1)
I (see Eq. (3)) in our method from the feature representations �(2) − �(4) . The white areas represent the missing data,

and are filled with zero-inputation.

U

(v) , the zero values in features have no effect on it; the areas of

U

(v) that would be affected by this feature will be multiplied with

zero, and in a sense left out in the decision process. (Note how-

ever that there is always at least one view available to learn with,

as per our assumption.) Thus when learning U

(v) , it also learns

which view combinations work together and how. From this we

can see that the structure of missing data distribution can affect

the transformation, as after training CVKT expects to use only cer-

tain subsets of views in predicting kernel values. More concretely,

the missing data distributions should be the same in training and

testing for CVKT to be able to generalize. For example let us con-

sider a dataset with three views, 0, 1 and 2, from which we want

to fill in missing values in view 0. If view 1 only has samples avail-

able where 0 does, and view 2 only where 0 does not, CVKT natu-

rally will not be able to learn a predictive mapping from view 2 to

0 as there are no training samples for this configuration. The same

logic applies similarly also to other settings, for example if view 1

is as described above and view 2 is full, CVKT should be trained

only with view 2. Otherwise in training it would learn a mapping

{ 1 , 2 } → { 0 } , while it should predict { 2 } → { 0 } .
Multi-view learning paradigm focuses on data where different

representations (or views) are drawn from one source. The various

views describe different aspects of the same data, and may con-

tain complementary information to each other. As the views are

drawn from the same source, it is to be expected that they agree

in predictive tasks (consistency). In unsupervised learning settings

(such as our work for the unsupervised task of multi-view ker-

nel completion), it can be difficult to talk about view agreement,

since there is no prediction task in which the views can agree.

Yet we argue that our alignment-based optimization problem pro-

motes consistency between the views. One can see the maximal

alignment between K

(v)
I (the kernel matrix on available data, to be

completed) and �(v)
I U

(v)
[
�(v)

I U

(v)
] �

(the kernel matrix built from

feature representations of other views) as promoting consistency

between the views: the transformation learns to match the differ-

ent views as well as possible.

Compared to the only two other approaches for multi-view ker-

nel matrix completion [21,22] , CVKT differs in the basic optimiza-

tion procedure. The other approaches treat the optimization jointly

over all the views, meaning that all the values have to be com-

pleted at once, while CVKT treats the view completion problems

independently, one view at a time. Therefore CVKT can be applied

to kernel completion problems more flexibly. Moreover, the other

approaches only consider that the views are interacting via linear

combinations over the whole views; our algorithm works in trans-

forming a full feature space concatenated over set of views: its ap-

plicability is broader. The transformation we learn on the kernel

features is very expressive, and can be expected to learn compli-

cated relationships between the views, and thus to adapt to com-

plementary views better than the more restrictive model of repre-

senting the kernel matrices as linear combinations of each other.

The complexity of the CVKT algorithm is naturally dependent

on the number of samples available in the view processed at each

iteration, i (v) , meaning that our algorithm is faster with more miss-

ing data. The other two important parameters, m

(v) for the fea-

ture dimensions, and r for the number columns in U

(v) can be

pre-set or cross-validated. As CVKT is solved with gradient-based

method we consider the complexity of calculating the derivative

of (4) w.r.t U

(v) . The derivative is straight-forward to calculate,

and the complexity arises from simple matrix multiplications. The

matrix multiplications can be performed in various orders, and

the preferred order depends on which variables are assumed to

be small. For convenience, let us denote m = m

(1) + . . . + m

(v −1) +

m

(v +1) + . . . + m

(V) . Recall that r ≤ m . If we further assume that

it is very small (i.e. r � m), and that the feature approximations

are relatively small (i.e. m < i (v) , we can calculate the gradient in

O([i (v)] 2 m) .

4. Experiments

In this section we empirically validate our approach (CVKT) in

order to illustrate and validate its properties and performance. 2

In our experiments we aim to show that CVKT performs the ker-

nel matrix completion accurately, and we do this with simple

2 The CVKT code and the datasets used in the experiments are available at

riikkahuusari.com .

5

R. Huusari, C. Capponi, P. Villoutreix et al. Pattern Recognition 129 (2022) 108759

simulated data alongside with a real dataset from study of pat-

tern formation in Drosophila melanogaster embryogenesis. We fur-

ther show its utility for classification problems with multi-view

datasets containing also class labels (handwritten digits and time-

series data on gestures). Our results show that using CVKT-inputed

kernel matrices in learning problems will yield superior perfor-

mance w.r.t classification accuracy, compared to other ways to fill

in the data in the kernel matrices. This shows that our kernel com-

pletion results, while being accurate with respect to completion er-

ror measures, are also suitable to be used in consecutive machine

learning tasks.

4.1. Compared methods

There are very few works in multi-view kernel completion set-

ting, and very few relevant methods to compare ours to. Taking ex-

ample from another paper solving multi-view kernel matrix com-

pletions problem [21] , we compare our method to two simple

baselines; mean and zero imputation, where the missing values are

replaced with kernel mean value, or zeros, respectively. Addition-

ally, we also consider the more elaborate MKC [22] method, and

use the code provided. 3 From the methods introduced in the pa-

per, we focus on MKC emdb(ht) , as it is very general in the sense that

it is intended to be used when kernel functions in different views

are not the same and the kernel matrices have different eigen-

spectra. In their experiments, [22] have considered as a competing

method an EM-based algorithm. However it operates with more

restrictive assumptions than our algorithm, requiring a view where

there are no missing samples present. In order for us to use this

method, we would need to make our experimental setting consid-

erably easier than that which our paper considers, and thus we

have left it out.

Going beyond the specific area of multi-view kernel matrix

completion, many methods exist that work with incomplete multi-

view data. For example for classification with kernel methods,

[8] adapts a landmark-based approach, and provides also an ex-

tension for adapting the method to the case with missing samples

in the data. Unfortunately this method assumes that the landmarks

are fully observed under all the views, which is not applicable to

our experimental setting where each view can have missing sam-

ples, and each data sample can have missing views.

In the multi-view clustering literature there are many works

dealing with missing views. One line of work in this context is

based on nonnegative matrix factorization (NMF). While cluster-

ing with incomplete views is very different from the problem of

kernel matrix completion tackled in this paper and thus compar-

ing for completion accuracy is not possible, we can nevertheless

make some comparisons to this approach. Namely, as these meth-

ods build a common representation of the views, we can use this

common representation in classification task, instead of applying

k-means clustering on it. Thus, we consider the MIC method pre-

sented in [4] as a competitor for our classification experiments.

Even with this change to the method the settings are still very

different: while with the other methods we can use the individ-

ual views completed with the different schemes, with MIC we only

have the common representation from all the views.

We wish to highlight that NMF applied on the individual views

is not applicable in missing views setting by itself, since in this

case the whole row of data is missing. Moreover, the NMF ap-

proaches assume that the features for the data are available, which

is something we do not require (we require only the incomplete

kernel matrices). Also, the NMF methods require vectorial data

from all the data views, while as a kernel method our CVKT can

3 https://github.com/aalto-ics-kepaco/MKC_software

handle views of widely different data types, as long as a kernel

can be defined on them.

4.2. Experimental protocols

In all CVKT experiments we use features extracted with

Nystr ȵ m approximation, and cross-validate over different approx-

imation levels (20%, 40%, ..., 100%). We also cross-validate over the

rank (or number of columns r) of matrices U

(v) , over similar inter-

vals (20%, 40%, ..., 100% of the full rank m). For MKC, we performed

the cross-validation over the parameters suggested in the code

(c 1 = [10 0 0] , c 2 = [1 , 10] and c 3 = [0 . 001 , 0 . 01 , 0 . 1 , 1 , 10]), adding

values 10 and 0.1 for c 1 . With MIC method we fix α = β = 0 . 01 for

all the views as suggested [4] . We cross-validate over the ”mean

fit ratio” and ”error” parameters, in [0, 0.2, 0.4, 0.6, 0.8, 1] and

[0.1, 0.01, 0.001, 0.0 0 01], respectively, and use random initialisa-

tion for initial NMFs for the views. In choosing the best results in

cross-validation we used the CA error measure defined below. For

all our experiments we choose the samples assumed to be miss-

ing randomly, taking care that no view or sample would go fully

unobserved.

For measuring the unsupervised kernel completion perfor-

mance, we consider the metrics in the two other multi-view kernel

matrix completion papers; the completion accuracy (CA) in [21] and

average relative error (ARE) in [22] . The CA error measure is defined

as

CA =

1

V

V ∑

v =1

(

1 −
Tr

(
K

(v)
true K

(v)
pred

)∥∥K

(v)
true

∥∥
F

∥∥K

(v)
pred

∥∥
F

)

, (7)

and the ARE over one view as

ARE =

1

n

(v) − i (v)

∑

t �∈I (v)

∥∥K

(v)
pred

[t, :] − K

(v)
true [t, :]

∥∥
2 ∥∥K

(v)
true [t, :]

∥∥
2

, (8)

where K

(v)
true and K

(v)
pred

are the correct and the predicted kernel ma-

trices on view v , respectively, and [t, :] refers to the row t of the

kernel matrix. Unlike CA, the error measure ARE is only computed

over the rows corresponding to the originally missing samples. We

also consider Frobenius norm error, that is,

F ro = ‖ K

(v)
true − K

(v)
pred

‖ F / ‖ K

(v)
true ‖ F . (9)

Compared to ARE, this measure considers also the already known

rows of kernel matrix. In all of these error measures lower value

means better completion performance. In addition to these two

measures, we use the structural similarity index [36] , defined as

S.sim =

(
2 μ

K (v) true
μ

K (v)
pred

+ c 1

)(
2 σ

K (v) true K
(v)
pred

+ c 2

)
(

μ2

K (v) true

+ μ2

K (v)
pred

+ c 1

)(
σ 2

K (v) true

+ σ 2

K (v)
pred

+ c 2

) , (10)

in which μx is mean of x , σx is variance of x , σxy is covariance

of x and y , and c 1 and c 2 are variables for stabilizing the divi-

sion (see [36]). It is a measure dedicated for image comparisons,

in which properties like luminance or contrast do not affect the

comparison result since they do not affect the structure of the im-

age. For structural similarity index (s.sim) a high value means that

the two images are similar.

In the second set of our experiments with labeled multi-view

data, we use the traditional classification accuracy in assessing the

performance of our method. We further validate these results with

the McNemar’s test of statistical significance.

Our method is expected to find generalizable structures on the

kernel and predicting them in the completed matrices. It is impor-

tant to notice that while this is the case, the original known val-

ues of the kernel are not necessarily fully preserved in the learned

6

R. Huusari, C. Capponi, P. Villoutreix et al. Pattern Recognition 129 (2022) 108759

Table 2

The kernel completion results on simulated data averaged over the seven views in the data with various amounts of missing

views per data sample (a). The arrow below error measure shows whether higher values (↑), or lower values (↓) indicate

superior performance.

Error measure a CVKT MKC zero-input. mean-input.

CA 1 0.010 ±0.003 0.071 ± 0.065 0.143 ± 0.039 0.015 ± 0.006

(↓) 2 0.012 ±0.002 0.054 ± 0.024 0.285 ± 0.048 0.027 ± 0.007

3 0.015 ±0.004 0.114 ± 0.058 0.427 ± 0.049 0.038 ± 0.009

4 0.025 ±0.002 0.309 ± 0.062 0.571 ± 0.043 0.047 ± 0.011

ARE 1 0.152 ±0.025 0.599 ± 0.286 1.000 ± 0.000 0.328 ± 0.033

(↓) 2 0.169 ±0.026 0.486 ± 0.121 1.000 ± 0.000 0.335 ± 0.028

3 0.198 ±0.015 0.592 ± 0.162 1.000 ± 0.000 0.336 ± 0.029

4 0.283 ±0.026 0.825 ± 0.060 1.000 ± 0.000 0.336 ± 0.032

Fro. 1 0.138 ±0.020 0.330 ± 0.167 0.509 ± 0.069 0.166 ± 0.035

(↓) 2 0.154 ±0.016 0.341 ± 0.078 0.695 ± 0.050 0.231 ± 0.031

3 0.176 ±0.018 0.482 ± 0.106 0.817 ± 0.034 0.272 ± 0.032

4 0.254 ±0.020 0.758 ± 0.075 0.902 ± 0.020 0.301 ± 0.034

S.sim 1 0.701 ±0.035 0.417 ± 0.216 0.269 ± 0.105 0.633 ± 0.110

(↑) 2 0.606 ±0.036 0.326 ± 0.097 0.106 ± 0.032 0.480 ± 0.072

3 0.516 ±0.026 0.205 ± 0.074 0.055 ± 0.017 0.418 ± 0.043

4 0.385 ± 0.048 0.072 ± 0.025 0.030 ± 0.006 0.401 ±0.021

kernel. Thus in all the experiments we perform post-processing on

the kernel predicted with CVKT by scaling the kernel values to the

range of values in original kernel matrix, and shifting it so that the

mean is the same as in the known part of the original kernel.

4.3. Experiments in multi-view kernel matrix completion

We now describe our experiments on multi-view kernel ma-

trix completion with unsupervised setting; i.e. there are no labels

available and we assess the performance of the compared meth-

ods only on the matrix completion error measures introduced in

the previous section. Thus, the MIC method is not applicable for

comparison in this section.

4.3.1. Simulated data

To validate our algorithm and to illustrate its generalization

properties in predicting kernel values, we performed experiments

with a simple simulated data set. We have created 100 data sam-

ples with a simple vector autoregression model of memory 1

where we periodically change the parameters of the model evo-

lution, and constructed 7 views from overlapping column groups

of the matrix to which the time series vectors have been stacked

into. We calculated RBF kernels from these views. We consider a

missing data scenario where every data sample is missing from

randomly selected a views, a ranging from 1 to 4.

We report the results averaged over all the views for the vari-

ous levels of missing data in Table 2 , where we compare our CVKT

to the other completion methods. To highlight the difference of our

method to mean imputation that also performs relatively well with

respect to the error measures, we show examples of completed

kernel matrices in Fig. 2 . Our method learns the overall trends in

the kernel matrices, and is able to predict and generalize those.

4.3.2. Drosophila melanogaster pattern formation data set

We now turn to a kernel completion task with a complex real-

world multi-view dataset in order to validate our CVKT approach.

Image multiplexing is a relevant application of the cross-view

kernel transfer method in biology. To study how cell fates are

established by gene regulatory networks in the field of develop-

mental biology, it has recently been proposed that a first neces-

sary step is to integrate multiple views from heterogeneous image

datasets [2] . Gene regulatory networks describe the sequence of in-

teraction between various chemical species inside a cell or within

a tissue, which ultimately lead to cell differentiation into a variety

of functional types. The number of variables in these networks can

go up to hundreds and each of them have to be measured sepa-

rately with specific reporters. To understand the kinetics of these

interactions it is necessary to reconstruct the time courses of their

levels in various parts of the embryo. Despite many advances in

microscopy techniques, it is still challenging to measure more than

three of these variables at the same time, in addition, in the ab-

sence of reliable live reporters, some variables can only be mea-

sured in fixed images where the development is arrested, hence

the need to integrate multiple views. As an illustration, live imag-

ing of gastrulation provides information about nuclear positions as

a function of time, but is silent about the levels of gene expres-

sion. On the other hand, an image of a fixed embryo reveals the

distribution of an active enzyme but has no direct temporal infor-

mation.

In the following example, we follow [2] and focus on the dorso-

ventral patterning in Drosophila melanogaster early development.

In this model system a graded profile of nuclear localization of

a transcription factor named Dorsal (Dl) establishes the dorsoven-

tral (DV) stripes of gene expression. Four datasets of fixed images

were acquired to visualize nuclei (referred to as M, for morphol-

ogy), protein expression of doubly phosophorylated ERK (dpERK,

V1), Twist (V2), and Dorsal (V4), and mRNA expression of ind (V3)

and rho (V5). The first dataset contains 108 images stained for

dpERK and Twist. The second dataset contains 59 images stained

for dpERK, ind , and Dorsal. The third dataset contains 58 images

stained for dpERK, ind , and rho . The fourth dataset contains 30 im-

ages stained for Twist, ind , and rho . Examples of the images the

data contains can be seen in Fig. 3 . The distribution of the vari-

ables are shown on Fig. 4 . 4

In order to quantify the success of the proposed CVKT method,

we select randomly samples to be missing for each of the views.

The samples are selected in addition to the already missing sam-

ples, meaning that the selection is done in the teal coloured ar-

eas in Fig. 4 . We then complete these samples with the informa-

tion available in the other views. Note that we do not try to com-

plete the truly missing samples, as our goal is to evaluate our al-

gorithm and we want to be able to compare the completion re-

sults to known values. Thus for example when we consider view

2, we will only deal with datasets 1 and 4 (see Fig. 4), and we

have five problems of different sizes. In addition to validating our

method, this experiment mimics a real cross-validation situation

when some samples in the data are truly missing.

4 the view ind of the third dataset remains unused because of the lesser quality

of the staining [2] .

7

R. Huusari, C. Capponi, P. Villoutreix et al. Pattern Recognition 129 (2022) 108759

Fig. 2. Examples of target kernel matrices (left), our predicted kernel matrices (second from left), MKC completed kernel matrices (second from right) and mean imputed

kernel matrices (right) on simulated data. On top row the matrices correspond to view 1 in the scenario when two views are missing per data sample, on the bottom row

to view 4 in the scenario when three views are missing per data sample. The kernel matrices are reordered for better visualization such that top left corner contains the

originally known data samples.

Fig. 3. Example images from the embryo dataset. In these images the colours identifying the views are modified so that they correspond over the datasets, e.g. dpERK is

shown in red in all the images. In the dataset the views are highly correlated, a fact that can be exploited in the kernel completion task. Figure is adapted from Villoutreix

et al. [2] . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

Our CVKT performs better in most of the views than other

state-of-the-art methods with respect to CA error measure, shown

in Table 3 . Moreover, from Fig. 5 we can see that the structure of

the kernel matrix is learned very well; however the exact values

in our learned kernel matrices are slightly different (”lighter” im-

ages), which is no doubt then seen in the error measures. For the

sake of clarity and brevity, we have focused in showing the case

with 30% of missing data (a significant amount) in detail.

4.4. Classification accuracy with completed kernels

While it is good to analyse the performance of our method

in only matrix completion task, it is important to remember that

the reason for filling in the data in kernels is to make it possible

to perform classification (or some other learning task) with them.

Thus, in our next experiments our goal is to validate our CVKT as a

kernel completion method also by applying the completed kernel

matrices to their accompanying classification problem. This is done

in order to highlight the differences between CVKT and mean im-

putation, methods producing very different results but for which

the kernel completion error measures are sometimes very similar.

We highlight that CVKT acts here as a preprocessing method for

classification, as it only fills in the missing values in the multi-view

kernel matrices. After applying CVKT (or other imputation method)

we train a standard SVM classifier using the learned kernel matri-

ces.

We consider the multiple features digits dataset 5 consisting of

six views, as well as the uWaveGesture dataset 6 [37] containing

three views. For the digits dataset, we selected 20 samples from

5 https://archive.ics.uci.edu/ml/datasets/Multiple +Features
6 http://www.timeseriesclassification.com/description.php?Dataset=

UWaveGestureLibraryAll

8

https://archive.ics.uci.edu/ml/datasets/Multiple
http://www.timeseriesclassification.com/description.php?Dataset=UWaveGestureLibraryAll

R. Huusari, C. Capponi, P. Villoutreix et al. Pattern Recognition 129 (2022) 108759

Fig. 4. Data availability in the views of Drosophila melanogaster data, coloured part referring to available data and white to missing; D to dataset and V to view. The datasets

are of different sizes: 108, 59, 58 and 30 samples, respectively.

Table 3

Kernel matrix completion results on embryo data set [2] where 30% of available

data is selected to be missing randomly per view. The arrow below the error mea-

sure shows whether higher values (↑) or lower values (↓) of the error measure

indicate superior performance when comparing the various methods.

Error measure view CVKT MKC zero-input. mean-input.

CA 1 0.295 0.230 0.254 0.206

(↓) 2 0.179 0.190 0.251 0.165

3 0.162 0.244 0.259 0.166

4 0.129 0.148 0.246 0.151

5 0.132 0.170 0.225 0.164

ARE 1 0.843 0.966 1.000 0.919

(↓) 2 0.723 0.915 1.000 0.842

3 0.739 0.968 1.000 0.831

4 0.690 0.805 1.000 0.820

5 0.734 0.884 1.000 0.882

Fro 1 0.717 0.647 0.666 0.608

(↓) 2 0.574 0.608 0.663 0.551

3 0.546 0.656 0.671 0.551

4 0.490 0.528 0.657 0.529

5 0.497 0.559 0.632 0.549

S.sim 1 0.526 0.584 0.692 0.672

(↑) 2 0.740 0.641 0.554 0.704

3 0.722 0.571 0.519 0.673

4 0.730 0.703 0.530 0.690

5 0.636 0.566 0.602 0.566

all the 10 classes, resulting in six 200 × 200 -sized kernel matrices

for the completion problem. The views are various descriptions ex-

tracted from digit images, such as Fourier coefficients (view ’fou’)

or Karhunen-Lo ȿ ve coefficients (view ’kar’). We use RBF kernels for

views with data samples in R

d , and Chi 2 kernels for views with

data samples in Z

d . The view ’mor’ seems to 7 contain features fit-

ting to both categorical and real data, so we consider a sum of the

two appropriate kernels.

We randomly set samples to be assumed missing in this

dataset. We vary the level of total missing samples in the whole

dataset from 10% to 50%, by taking care that all the samples are ob-

served at least in one view, and that all views have observed sam-

ples. We note that in order to fill in missing values for a given view

v , we need data at least from one other view to learn the trans-

formation from. Thus we cannot consider arbitrarily high levels of

missing data in our experiments. For example with 3-view data

this threshold would be 33% missing values; with 5-view data 60%

7 According to the data source, the source image dataset is lost, and there is very

little information on the views.

missing values. When we consider levels higher than this threshold

not all the samples will end up having enough data to be used in

learning the transformation (i.e. they will only be observed in one

view), and in essence our training set size diminishes. For example

the uWaveGesture experiments end up operating in this regime for

the highest levels of missing data.

After we perform kernel completion with CVKT and the com-

peting methods, we give the completed matrices (selected again

w.r.t. highest CA) to SVM classifiers. For CVKT the selection based

on CA was done individually for all the views, since it performs in-

dividual optimization. For MKC the errors were averaged over the

views, and the result with lowest overall error was chosen, as MKC

performs joint optimization. The MIC method, originally introduced

for incomplete multi-view clustering, builds a common representa-

tion of the views that can be then used in the classification task,

while the individual views rest incomplete. Thus, with this method

we cannot compare the view-specific performance, but show com-

parisons to this common representation. With MIC we also use

SVM classifier, with RBF kernel. In order to perform classification

we divide the data in half for training and testing, and this selec-

tion is the same for all the kernel matrices. Both training and test-

ing sets contain samples for which the views were assumed miss-

ing in completion task.

We report the accuracies on test data averaged over five differ-

ent selections for missing data in Fig. 6 for the digits dataset. Our

CVKT performs the classification superiorly to other kernel com-

pletion methods, and comparably to using the original fully known

kernel matrix up to the case with 30% of missing data. The MIC

method does not perform as well as CVKT in most of the views,

except in two where it is the same with the lowest amount of data

missing. However even in these views its performance drops much

more rapidly with level of missing data than for example CVKT,

and for 50% of missing data it performs always worse than even

mean or zero inputed kernels.

In previous experiments the mean imputation has sometimes

performed similarly to CVKT with respect to matrix completion

error measures. It is the case also with the digits dataset (see

Table 4), but the classification accuracy CVKT obtains is consis-

tently higher than that of mean imputation (see Fig. 6). This is

as expected; the inputed mean values do not carry meaningful in-

formation about the data samples they are supposed to represent,

and thus will not allow for successful classification. It is interesting

to notice that for view ’fou’, the classification accuracy after com-

pleting 10% missing data is higher with CVKT kernel than with the

original full kernel matrix. It might be that in this case CVKT has

9

R. Huusari, C. Capponi, P. Villoutreix et al. Pattern Recognition 129 (2022) 108759

Fig. 5. Target kernel matrices (left), our predicted kernel matrices (middle) with CVKT, and MKC predicted kernel matrices (right) of embryo data [2] when randomly selected

30% of the available samples were set to be missing. The kernel matrices are reordered for better visualization such that top left corner contains the originally known data

samples (areas with unknown and known samples are separated with white lines).

10

R. Huusari, C. Capponi, P. Villoutreix et al. Pattern Recognition 129 (2022) 108759

Fig. 6. Accuracies of classification with full, mean inputed, zero inputed, CVKT-completed and MKC-completed kernel matrices for all six views of the digits dataset as a

function of level of missing data in views. The MIC results are for a common representation, and thus identical in all the plots.

Table 4

Completion error measures on digits data set with various levels of missing data samples in the views, averaged over the

views. The arrow below the error measure shows whether higher values (↑) or lower values (↓) of the error measure

indicate superior performance when comparing the various methods.

Error measure missing % CVKT MKC zero-input. mean-input.

CA 10 0.0097 ±0.0059 0.214 ±0.281 0.097 ±0.021 0.004 ±0.002

(↓) 20 0.0104 ±0.0062 0.147 ±0.205 0.195 ±0.026 0.008 ±0.004

30 0.012 ±0.006 0.143 ±0.043 0.295 ±0.031 0.012 ±0.005

40 0.014 ±0.007 0.189 ±0.051 0.392 ±0.035 0.015 ±0.007

50 0.018 ±0.009 0.232 ±0.064 0.493 ±0.042 0.017 ±0.008

ARE 10 0.148 ±0.054 4.916 ±12.008 1.000 ±0.000 0.217 ±0.057

(↓) 20 0.155 ±0.049 1.808 ±4.356 1.000 ±0.000 0.213 ±0.052

30 0.167 ±0.048 0.739 ±0.112 1.000 ±0.000 0.214 ±0.052

40 0.181 ±0.048 0.790 ±0.141 1.000 ±0.000 0.214 ±0.053

50 0.197 ±0.052 0.851 ±0.269 1.000 ±0.000 0.213 ±0.052

Fro 10 0.131 ±0.044 2.579 ±6.389 0.427 ±0.045 0.090 ±0.024

(↓) 20 0.137 ±0.045 1.914 ±5.539 0.591 ±0.036 0.124 ±0.030

30 0.146 ±0.042 0.545 ±0.092 0.708 ±0.031 0.148 ±0.035

40 0.163 ±0.044 0.631 ±0.121 0.793 ±0.027 0.167 ±0.039

50 0.182 ±0.047 0.731 ±0.246 0.860 ±0.026 0.181 ±0.042

S.sim 10 0.760 ±0.117 0.304 ±0.150 0.393 ±0.088 0.862 ±0.050

(↑) 20 0.730 ±0.114 0.252 ±0.132 0.185 ±0.057 0.755 ±0.068

30 0.678 ±0.115 0.146 ±0.072 0.105 ±0.039 0.660 ±0.087

40 0.598 ±0.124 0.101 ±0.047 0.069 ±0.025 0.581 ±0.092

50 0.509 ±0.134 0.078 ±0.027 0.048 ±0.016 0.509 ±0.104

been able to filter out some noise distortions in samples, which

could give it better performance than the baseline. This could be

analogous to using kernel approximation schemes as regulariza-

tion [38] . We emphasize that in the experiments the kernel matrix

completion is done fully independently from the consecutive clas-

sification task, without knowing which samples would be used in

training and which in testing.

We follow the same experimental protocol also for the

uWaveGesture dataset, where we consider the 896 training sam-

ples in three views, with 8 classes. We report the completion er-

ror measures in Table 5 . Again, according to some error measures,

the mean imputation seems to be performing better than the ded-

icated matrix completion methods. However, again, from Fig. 7 , we

can see that CVKT performs better in the subsequent classification

task in most of the cases. It is clear that CVKT retains more rele-

vant information about the data than the simple imputation meth-

ods, yet this is not always reflected in the completion error mea-

sures. The MIC method performs here better than other baselines,

but were we to consider MKL-style combinations of the individual

kernels used in experiments of Fig. 7 , the performance of CVKT and

MIC would be almost identical.

Furthermore, we performed statistical testing to assess the sig-

nificance of our classification results, excluding the MIC method

since it cannot be used for individual views, nor can it be used in

the task of kernel matrix completion. First of all, we consider the

McNemar test. We compared the CVKT-based classification to the

four other methods: classification with full kernels, MKC-filled ker-

nels, and mean and zero-inputed kernels. We show in Tables 6 and

7 the obtained p-values, and also how often the null hypothesis

was rejected (p-value threshold 0.05), i.e. how often the two clas-

sification results were significantly different. We observe that the

differences mostly grow with the level of missing values. For the

digits dataset, the CVKT results with 10% and 20% of missing data

are almost indistinguishable from the full classification according

11

R. Huusari, C. Capponi, P. Villoutreix et al. Pattern Recognition 129 (2022) 108759

Table 5

Completion error measures on uWaveGesture data set with various levels of missing data samples

in the views, averaged over the views. The arrow below the error measure shows whether higher

values (↑) or lower values (↓) of the error measure indicate superior performance when comparing

the various methods.

Error measure missing % CVKT MKC zero-input. mean-input.

CA 10 0.021 ±0.001 0.101 ±0.031 0.097 ±0.009 0.006 ±0.001

(↓) 20 0.023 ±0.001 0.099 ±0.037 0.192 ±0.012 0.011 ±0.001

30 0.025 ±0.002 0.184 ±0.100 0.302 ±0.022 0.016 ±0.003

40 0.027 ±0.003 0.223 ±0.106 0.379 ±0.041 0.019 ±0.003

50 0.028 ±0.003 0.252 ±0.078 0.452 ±0.072 0.022 ±0.001

ARE 10 0.198 ±0.004 0.889 ±0.146 1.000 ±0.000 0.246 ±0.018

(↓) 20 0.207 ±0.005 0.679 ±0.178 1.000 ±0.000 0.245 ±0.017

30 0.217 ±0.009 0.750 ±0.180 1.000 ±0.000 0.244 ±0.015

40 0.226 ±0.012 0.770 ±0.171 1.000 ±0.000 0.243 ±0.015

50 0.229 ±0.011 0.757 ±0.175 1.000 ±0.000 0.244 ±0.015

Fro 10 0.205 ±0.004 0.587 ±0.204 0.430 ±0.019 0.108 ±0.009

20 0.213 ±0.005 0.468 ±0.086 0.589 ±0.016 0.147 ±0.009

30 0.222 ±0.009 0.559 ±0.128 0.716 ±0.022 0.178 ±0.014

40 0.230 ±0.012 0.615 ±0.118 0.782 ±0.034 0.194 ±0.013

50 0.235 ±0.011 0.664 ±0.090 0.832 ±0.050 0.206 ±0.003

S.sim 10 0.466 ±0.064 0.244 ±0.176 0.508 ±0.033 0.898 ±0.010

(↑) 20 0.424 ±0.057 0.192 ±0.143 0.294 ±0.037 0.793 ±0.014

30 0.362 ±0.047 0.217 ±0.059 0.178 ±0.014 0.670 ±0.025

40 0.304 ±0.021 0.149 ±0.061 0.129 ±0.029 0.588 ±0.049

50 0.278 ±0.026 0.108 ±0.034 0.099 ±0.044 0.503 ±0.075

Fig. 7. Accuracies of classification with full, mean inputed, zero inputed, CVKT-completed and MKC-completed kernel matrices for all three views of the uWaveGesture

dataset as a function of level of missing data in views. The MIC results are for a common representation, and thus identical in all the plots.

Table 6

McNemar’s test on various classification results compared to CVKT classification results with the digits dataset. The

table displays the average p-values ± its standard deviation, and in parenthesis as percentage with how many of the

runs McNemar’s test rejects the null hypothesis (i.e. the results can be said to be statistically significantly different)

with p-value threshold at 0.05.

missing % full MKC zero-input. mean-input.

all 0.299 ± 0.317 (33.3) 0.000 ± 0.001 (100.0) 0.023 ± 0.086 (90.7) 0.023 ± 0.086 (90.7)

10% 0.505 ± 0.284 (3.3) 0.000 ± 0.001 (100.0) 0.066 ± 0.104 (63.3) 0.066 ± 0.104 (63.3)

20% 0.445 ± 0.310 (3.3) 0.000 ± 0.002 (100.0) 0.031 ± 0.148 (96.7) 0.031 ± 0.148 (96.7)

30% 0.362 ± 0.299 (20.0) 0.000 ± 0.000 (100.0) 0.009 ± 0.039 (96.7) 0.009 ± 0.039 (96.7)

40% 0.171 ± 0.265 (50.0) 0.000 ± 0.000 (100.0) 0.002 ± 0.006 (100.0) 0.002 ± 0.006 (100.0)

50% 0.011 ± 0.025 (90.0) 0.000 ± 0.000 (100.0) 0.004 ± 0.014 (96.7) 0.004 ± 0.014 (96.7)

Table 7

McNemar’s test on various classification results compared to CVKT classification results with the uWaveGesture

dataset. The table displays the average p-values ± its standard deviation, and in parenthesis as percentage with

how many of the runs McNemar’s test rejects the null hypothesis (i.e. the results can be said to be statistically

significantly different) with p-value threshold at 0.05.

missing % full MKC zero-input. mean-input.

all 0.071 ± 0.200 (83.3) 0.007 ± 0.034 (96.7) 0.272 ± 0.317 (33.3) 0.272 ± 0.317 (33.3)

10% 0.337 ± 0.334 (16.7) 0.000 ± 0.000 (100.0) 0.387 ± 0.327 (33.3) 0.387 ± 0.327 (33.3)

20% 0.016 ± 0.011 (100.0) 0.000 ± 0.001 (100.0) 0.166 ± 0.213 (50.0) 0.166 ± 0.213 (50.0)

30% 0.000 ± 0.000 (100.0) 0.000 ± 0.000 (100.0) 0.376 ± 0.379 (16.7) 0.376 ± 0.379 (16.7)

40% 0.000 ± 0.000 (100.0) 0.004 ± 0.009 (100.0) 0.286 ± 0.309 (16.7) 0.286 ± 0.309 (16.7)

50% 0.000 ± 0.000 (100.0) 0.032 ± 0.071 (83.3) 0.146 ± 0.245 (50.0) 0.146 ± 0.245 (50.0)

12

R. Huusari, C. Capponi, P. Villoutreix et al. Pattern Recognition 129 (2022) 108759

Table 8

Summary of the results of Friedman-Nemenyi test, showing if CVKT

results are statistically significantly different (in bold: test value

larger than critical difference, ”CD”) to other compared multi-view

kernel completion methods (mean and zero imputation, MKC) with

uWaveGesture and digits datasets, with α = 0 . 1 and α = 0 . 05 .

error measure CD MKC mean i. zero.i.

α = 0 . 1 CA 1.32 1.35 0.7 1.95

ARE 1.32 2.2 1.0 2.8

Accuracy 0.62 2.91 1.28 1.46

α = 0 . 05 CA 1.48 1.35 0.7 1.95

ARE 1.48 2.2 1.0 2.8

Accuracy 0.70 2.91 1.28 1.46

to the test, and the mean and zero imputation results are very dif-

ferent from those obtained with CVKT.

Secondly, we perform the Friedman-Nemenyi test [39] on

uWave gesture and digits datasets in both classification and ker-

nel matrix completion settings, in order to verify if the results of

the different methods are overall statistically significantly different.

Here we consider the various levels of missing data as different

datasets from the point of view of the test, in classification we

also consider the different views. In kernel completion we consider

only the CA and ARE error measures, as the Frobenius norm error

and structural similarity index give very similar results to the CA

measure.

First, for all the error measures, we perform the Friedman test.

For this we compute the Friedman statistic

X

2
F =

12 N

k (k + 1)

[∑

j

[R x]
2
j −

k (k + 1) 2

4

]

,

in which R x is either R CA , R ARE or R acc , and [R x] j stands for aver-

age ranking for the method j; the mean values of the rankings

with CA, ARE or accuracy measure. As we consider four algorithms,

k = 4 , and N stands for the number of experiments. For CA and

ARE as we have averaged the results over the views N = 10 (both

datasets are considered with five different levels of missing data),

while with accuracy score we perform and show classification with

the views independently: N = 45 . We can use directly the Fried-

man statistic in rejecting the null hypothesis, or as it is somewhat

conservative (see [39] and references therein), we can consider

F F =

(N − 1) χ2
F

N(k − 1) − χ2
F

,

and reject the null hypothesis by comparing its values to the criti-

cal values of f-distribution.

After observing that the null hypothesis is in all the cases re-

jected, we proceed with the pairwise comparisons (CVKT to MKC,

mean imputation and zero imputation) and perform the Nemenyi

test by comparing the differences of the average rankings to the

critical difference value

CD = q α

√

k (k + 1)

6 N

with both α = 0 . 05 and α = 0 . 1 . From this, we obtain information

whether the results of the two algorithms are statistically signifi-

cantly different or not. We summarize the results in Table 8 . It is

easy to conclude that while the matrix completion error measures

have not necessarily shown much difference between CVKT and

mean imputation (or MKC with α = 0 . 05), the performance differ-

ence measured in classification accuracy clearly shows the superior

performance of CVKT.

5. Conclusion

We have introduced a novel idea for performing multi-view

kernel matrix completion by transferring cross-view knowledge to

represent the views with missing values. We learn to represent

the kernels with features of other views linearly transformed to

a new feature space. This allows predicting the missing values of

a kernel with features available in the other views. Our algorithm

solves the problem efficiently, since the views can be treated in-

dividually, and no heavy joint optimization is performed. This in-

dividual treatment of views also gives more flexibility to our ap-

proach. As our experiments with simulated and real data demon-

strate, our method is able to find generalizable structures from the

incomplete kernel matrices, and is able to predict those structures

in completing them. Our method completes the kernel matrices in

a way that allows using them successfully in machine learning ap-

plications, as demonstrated with experiments on datasets of hand-

written digits and images of flowers. The competing method, MKC,

performed worse than expected. It might be that the assumptions

of the chosen algorithm, MKC embd(ht) , are not optimal for this spe-

cific problem, and one of the slower ones would have performed

better. In [22] it is assumed that each view has a small basis set

of samples with which the view can be characterized, and it might

not be the case in our experiments. Additionally, the experimental

setting is challenging with a lot of missing data samples. As the

data is randomly missing from views for some data samples, even

in lower levels of missing data, only one or two views might be

available.

Our experiments propose that the current metrics to evaluate

the matrix completion results are not fully usable by themselves.

Two very different approaches can give similar errors on kernel

completion, but give widely different accuracies on application to

classification. One possible line of future work would be studying

how one could better quantify the success of the kernel comple-

tion task.

As a successful multi-view kernel completion method, this work

opens up novel avenues of research also for the reconstruction of

the initial data samples. As multi-view kernel learning method,

it would be interesting to further study the suitability of feature

transfer, for example in aligning the features with ideal kernel

formed on the labels. This might prove a competitive way to form

a multi-view kernel, compared to the currently widely used multi-

ple kernel learning framework. Also, investigating the connections

to operator-valued kernels on multi-view setting with missing data

could be a possible way to move forward with this research.

Declaration of Competing Interest

None.

Acknowledgements

This work is mainly granted by the french national project ANR

Lives ANR-15-CE23-0026, and by the Turing Center for Living Sys-

tems (CENTURI) for PV. For the most part work by RH has been

done in Aix-Marseille University – the part in Aalto University has

been funded by Academy of Finland grants 334790 (MAGITICS) and

310107 (MACOME).

References

[1] S. Sun, L. Mao, Z. Dong, L. Wu, Multiview Machine Learning, Springer, 2019,

doi: 10.1007/978- 981- 13- 3029- 2 .
[2] Villoutreix, P. Andén, J. Lim, B. Lu, H. Kevrekidis, I.G. Singer, A. Shvartsman,

Y. Stanislav, Synthesizing developmental trajectories, PLOS Computational Bi-
ology 13 (9) (2017) 1–15, doi: 10.1371/journal.pcbi.1005742 .

13

https://doi.org/10.13039/501100002341
https://doi.org/10.1007/978-981-13-3029-2
https://doi.org/10.1371/journal.pcbi.1005742

R. Huusari, C. Capponi, P. Villoutreix et al. Pattern Recognition 129 (2022) 108759

[3] N. Karaiskos, P. Wahle, J. Alles, A. Boltengagen, S. Ayoub, C. Kipar, C. Kocks,
N. Rajewsky, R.P. Zinzen, The drosophila embryo at single-cell transcriptome

resolution, Science 358 (6360) (2017) 194–199 .
[4] W. Shao, L. He, S.Y. Philip, Multiple incomplete views clustering via weighted

nonnegative matrix factorization with L _ { 2 , 1 } regularization, in: Joint Euro-
pean Conference on Machine Learning and Knowledge Discovery in Databases,

Springer, 2015, pp. 318–334 .
[5] C. Xu, Z. Guan, W. Zhao, H. Wu, Y. Niu, B. Ling, Adversarial incomplete multi-

-view clustering, in: IJCAI, 2019, pp. 3933–3939 .

[6] J. Liu, S. Teng, L. Fei, W. Zhang, X. Fang, Z. Zhang, N. Wu, A novel consen-
sus learning approach to incomplete multi-view clustering, Pattern Recognition

(2021) 107890 .
[7] Q. Tan, G. Yu, C. Domeniconi, J. Wang, Z. Zhang, Incomplete multi-view

weak-label learning, in: IJCAI, 2018, pp. 2703–2709 .
[8] V. Zantedeschi, R. Emonet, M. Sebban, Fast and provably effective multi-

-view classification with landmark-based svm, in: Joint European Conference

on Machine Learning and Knowledge Discovery in Databases, Springer, 2018,
pp. 193–208 .

[9] C. Zhang, Y. Cui, Z. Han, J.T. Zhou, H. Fu, Q. Hu, Deep partial multi-view learn-
ing, IEEE transactions on pattern analysis and machine intelligence (2020) .

[10] C.H. Lampert, et al., Kernel methods in computer vision, Foundations and
Trends® in Computer Graphics and Vision 4 (3) (2009) 193–285 .

[11] P. Pavlidis, J. Weston, J. Cai, W.S. Noble, Learning gene functional classifica-

tions from multiple data types, Journal of computational biology 9 (2) (2002)
401–411 .

[12] M. Gönen, E. Alpaydın, Multiple kernel learning algorithms, Journal of machine
learning research 12 (Jul) (2011) 2211–2268 .

[13] H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, C. Watkins, Text classifica-
tion using string kernels, Journal of Machine Learning Research 2 (Feb) (2002)

419–4 4 4 .

[14] A. Barla, F. Odone, A. Verri, Histogram intersection kernel for image classifica-
tion, in: Proceedings 2003 international conference on image processing (Cat.

No. 03CH37429), volume 3, IEEE, 2003, pp. III–513 .
[15] N.M. Kriege, F.D. Johansson, C. Morris, A survey on graph kernels, Applied Net-

work Science 5 (1) (2020) 1–42 .
[16] T. Hofmann, B. Schölkopf, A.J. Smola, Kernel methods in machine learning, The

annals of statistics (2008) 1171–1220 .

[17] T. Gartner, Kernels for structured data, volume 72, World Scientific, 2008 .
[18] S. Bhadra, Multi-view data completion, in: Linking and Mining Heterogeneous

and Multi-view Data, Springer, 2019, pp. 1–25 .
[19] N. Cristianini, J. Shawe-Taylor, A. Elisseeff, J.S. Kandola, On kernel-target align-

ment, in: NIPS, 2002, pp. 367–373 .
[20] C. Cortes, M. Mohri, A. Rostamizadeh, Two-stage learning kernel algorithms,

in: ICML, 2010, pp. 239–246 .

[21] R. Rivero, R. Lemence, T. Kato, Mutual kernel matrix completion, IEICE transac-
tions on Information and Systems 100 (8) (2017) 1844–1851 .

[22] S. Bhadra, S. Kaski, J. Rousu, Multi-view kernel completion, Machine Learning
106 (5) (2017) 713–739 .

[23] L. Castrejon, Y. Aytar, C. Vondrick, H. Pirsiavash, A. Torralba, Learning aligned
cross-modal representations from weakly aligned data, in: Proceedings of

the IEEE conference on computer vision and pattern recognition, 2016,
pp. 2940–2949 .

[24] L. Cai, Z. Wang, H. Gao, D. Shen, S. Ji, Deep adversarial learning for multi–
modality missing data completion, in: Proceedings of the 24th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, 2018,
pp. 1158–1166 .

[25] S.J. Pan, I.W. Tsang, J.T. Kwok, Q. Yang, Domain adaptation via transfer compo-

nent analysis, IEEE Transactions on Neural Networks 22 (2) (2011) 199–210 .
[26] A. Gretton, O. Bousquet, A. Smola, B. Schölkopf, Measuring statistical depen-

dence with hilbert-schmidt norms, in: International conference on algorithmic
learning theory, Springer, 2005, pp. 63–77 .

[27] X.P. Li, L. Huang, H.C. So, B. Zhao, A survey on matrix completion: Perspective
of signal processing, arXiv preprint arXiv:1901.10885 (2019) .

[28] M. Ashraphijuo, X. Wang, V. Aggarwal, Fundamental sampling patterns for

low-rank multi-view data completion, Pattern Recognition (2020) 107307 .
[29] K. Tsuda, S. Akaho, K. Asai, The EM algorithm for kernel matrix comple-

tion with auxiliary data, Journal of machine learning research 4 (May) (2003)
67–81 .

[30] A. Trivedi, P. Rai, H. Daumé III, S.L. DuVall, Multiview clustering with incom-
plete views, NIPS Machine Learning for Social Computing Workshop, 2010 .

[31] Y. Luo, T. Liu, D. Tao, C. Xu, Multiview matrix completion for multilabel image

classification, IEEE Transactions on Image Processing 24 (8) (2015) 2355–2368 .
[32] M. Liu, Y. Luo, D. Tao, C. Xu, Y. Wen, Low-rank multi-view learning in matrix

completion for multi-label image classification, in: Twenty-Ninth AAAI Confer-
ence on Artificial Intelligence, 2015 .

[33] B. Schölkopf, S. Mika, C.J.C. Burges, P. Knirsch, K.-R. Müller, G. Rätsch,
A.J. Smola, Input space versus feature space in kernel-based methods, IEEE

transactions on neural networks 10 (5) (1999) 10 0 0–1017 .

[34] P. Drineas, M.W. Mahoney, On the nyström method for approximating a gram

matrix for improved kernel-based learning, journal of machine learning re-

search 6 (Dec) (2005) 2153–2175 .
[35] J. Townsend, N. Koep, S. Weichwald, Pymanopt: A python toolbox for optimiza-

tion on manifolds using automatic differentiation, Journal of Machine Learning
Research 17 (137) (2016) 1–5 . http://jmlr.org/papers/v17/16-177.html

[36] Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, et al., Image quality assess-

ment: from error visibility to structural similarity, IEEE transactions on image
processing 13 (4) (2004) 600–612 .

[37] J. Liu, L. Zhong, J. Wickramasuriya, V. Vasudevan, uwave: Accelerometer-based
personalized gesture recognition and its applications, Pervasive and Mobile

Computing 5 (6) (2009) 657–675 .
[38] A. Rudi, R. Camoriano, L. Rosasco, Less is more: Nyström computational regu-

larization, in: Advances in Neural Information Processing Systems (NIPS), 2015,

pp. 1657–1665 .
[39] J. Demšar, Statistical comparisons of classifiers over multiple data sets, Jour-

nal of Machine Learning Research 7 (1) (2006) 1–30 . http://jmlr.org/papers/v7/
demsar06a.html

14

http://refhub.elsevier.com/S0031-3203(22)00240-0/sbref0003
http://refhub.elsevier.com/S0031-3203(22)00240-0/sbref0004
http://refhub.elsevier.com/S0031-3203(22)00240-0/sbref0005
http://refhub.elsevier.com/S0031-3203(22)00240-0/sbref0006
http://refhub.elsevier.com/S0031-3203(22)00240-0/sbref0007
http://refhub.elsevier.com/S0031-3203(22)00240-0/sbref0008
http://refhub.elsevier.com/S0031-3203(22)00240-0/sbref0009
http://refhub.elsevier.com/S0031-3203(22)00240-0/sbref0010
http://refhub.elsevier.com/S0031-3203(22)00240-0/sbref0011
http://refhub.elsevier.com/S0031-3203(22)00240-0/sbref0012
http://refhub.elsevier.com/S0031-3203(22)00240-0/sbref0013
http://refhub.elsevier.com/S0031-3203(22)00240-0/sbref0014
http://refhub.elsevier.com/S0031-3203(22)00240-0/sbref0015
http://refhub.elsevier.com/S0031-3203(22)00240-0/sbref0016
http://refhub.elsevier.com/S0031-3203(22)00240-0/sbref0017
http://refhub.elsevier.com/S0031-3203(22)00240-0/sbref0018
http://refhub.elsevier.com/S0031-3203(22)00240-0/sbref0019
http://refhub.elsevier.com/S0031-3203(22)00240-0/sbref0020
http://refhub.elsevier.com/S0031-3203(22)00240-0/sbref0021
http://refhub.elsevier.com/S0031-3203(22)00240-0/sbref0022
http://refhub.elsevier.com/S0031-3203(22)00240-0/sbref0023
http://refhub.elsevier.com/S0031-3203(22)00240-0/sbref0024
http://refhub.elsevier.com/S0031-3203(22)00240-0/sbref0025
http://refhub.elsevier.com/S0031-3203(22)00240-0/sbref0026
http://refhub.elsevier.com/S0031-3203(22)00240-0/sbref0027
http://refhub.elsevier.com/S0031-3203(22)00240-0/sbref0028
http://refhub.elsevier.com/S0031-3203(22)00240-0/sbref0029
http://refhub.elsevier.com/S0031-3203(22)00240-0/sbref0030
http://refhub.elsevier.com/S0031-3203(22)00240-0/sbref0031
http://refhub.elsevier.com/S0031-3203(22)00240-0/sbref0032
http://refhub.elsevier.com/S0031-3203(22)00240-0/sbref0033
http://refhub.elsevier.com/S0031-3203(22)00240-0/sbref0034
http://jmlr.org/papers/v17/16-177.html
http://refhub.elsevier.com/S0031-3203(22)00240-0/sbref0036
http://refhub.elsevier.com/S0031-3203(22)00240-0/sbref0037
http://refhub.elsevier.com/S0031-3203(22)00240-0/sbref0038
http://jmlr.org/papers/v7/demsar06a.html

