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We propose a scheme for enhancing the optomechanical coupling between microwave and mechanical
resonators by up to seven orders of magnitude to the ultrastrong coupling limit in a circuit optomechanical setting.
The tripartite system considered here consists of a Josephson junction Cooper-pair box that mediates the coupling
between the microwave cavity and the mechanical resonator. The optomechanical coupling can be modified by
tuning the gate charge and the magnetic flux bias of the Cooper-pair box which in turn affect the Josephson
capacitance of the Cooper-pair box. We additionally show that with a suitable choice of tuning parameters, the
optomechanical coupling vanishes and the system purely exhibits a cross-Kerr type of nonlinearity between the
cavity and the mechanical resonator. This allows the system to be used for phonon counting.

DOI: 10.1103/PhysRevB.105.144508

I. INTRODUCTION

Cavity optomechanics [1] using superconducting mi-
crowave circuits [2–6] is an emerging platform for studies
of macroscopic quantum phenomena. In particular, there is
growing research interest in the ultrastrong coupling regime
[7–13], where the strength of the single-photon optomechan-
ical coupling is comparable to the resonant frequency of the
mechanical resonator. Optomechanical coupling arises from
the radiation pressure force acting on a mechanical resonator
and, in the microwave regime, this radiation pressure coupling
is intrinsically weak. The weak coupling can be amplified by
applying a strong coherent pump to the cavity which linearizes
the interaction between the cavity and the mechanical res-
onator. In the linear interaction limit, the quantum effects are
observable only close to the quantum zero point fluctuations.
However, a nonlinearity can be introduced into the system
and a single-photon strong coupling regime can be reached
allowing rich quantum physics experiments, e.g., preparing
nonclassical states of light and mechanical resonators [14–18]
for potential quantum information processing applications.

In the superconducting circuit architecture [19], several
types of configurations have been proposed to add nonlinear-
ities into the system such as a transmon qubit [20], SQUID
[21], quantum capacitance of a nanotube in Coulomb block-
ade regime [22], and Josephson inductance [23,24], which
has also been experimentally realized [25]. We propose to
employ the Josephson Capacitance of the Cooper-pair box
(CPB), which is dual to the operation of Josephson inductance
as the nonlinear element for enhancing the optomechanical
coupling. Looking from the gate electrode, a CPB can act as a
nonlinear capacitive element known as the Josephson capac-
itance. This capacitance originates from the curvature of the
energy bands of the CPB with respect to gate charge [26–30].
Josephson capacitance has been proposed to be utilized as
a very sensitive phase detector [31] and a pair-breaking ra-

diation detector [32]. Here, we consider a tripartite system
consisting of a microwave cavity, a CPB, and a mechanically
movable capacitance. The coupling between the cavity and the
mechanical resonator is mediated by the Josephson capaci-
tance of the CPB and can be tuned by the charge and flux
bias of the CPB. We show that with suitably tuned, realistic
experimental parameters, the optomechanical coupling can be
enhanced by seven orders of magnitude compared to direct
optomechanical coupling without the presence of CPB, reach-
ing the ultrastrong coupling regime.

In addition to boosting the optomechanical coupling, a
cross-Kerr (CK)-type nonlinearity between the cavity and the
mechanics is also formed amidst other nonlinear terms in the
system Hamiltonian. The CK coupling gCKn̂an̂b between two
resonators a and b, with number operators n̂a and n̂b, can be
used for quantum nondemolition measurements of number of
quanta in one of the resonators since it directly affects the
resonance frequency of the readout resonator [33]. In recent
years, CK coupling in optomechanical systems has attracted
theoretical interest [34–37], including a recent scheme to
enhance the coupling to the order of the cavity linewidth
[38]. Tunable CK interaction has been experimentally demon-
strated for superconducting microwave circuits [39].

II. DESCRIPTION OF THE SYSTEM

A circuit diagram of the setup is presented in Fig. 1. The
CPB formed of two Josephson junctions (JJs) with Josephson
energies EJ1, EJ2 and capacitances CJ1,CJ2 couples a me-
chanical displacement dependent gate capacitance Cg1(x) to
a superconducting microwave cavity, modeled as a simple
LC oscillator in a bias-T configuration. Here, we assume

Cg1(x) = Cg10 + ∂Cg1(x)
∂x x + 1

2
∂2Cg1(x)

∂x2 x2, where the derivatives
are approximated for a parallel plate capacitor. This config-
uration allows the CPB to act as a capacitive element and,
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FIG. 1. Circuit diagram of the investigated optomechanical setup
with the gate capacitance of the Cooper-pair box connected in paral-
lel to the microwave cavity capacitance. The elements in the circuit
are described in the text.

additionally, blocks the DC gate bias from entering into the
microwave cavity and prevents the AC signal leaking out
through the DC gate. The inductor LB in the bias-T and the
capacitor Cg2 have impedances such that they do not affect the
qubit dynamics. The junction capacitances CJ1 and CJ2 and the
static part of the gate capacitance give the total single electron
charging energy of the qubit, EC = e2/2(Cg10 + CJ1 + CJ2).
Tunneling of a Cooper pair into the qubit island is tunable
by the static gate charge given by the number of Cooper pairs
in the island ng0 = −VgCg10/(2e), where Vg is the gate volt-
age. Furthermore, the CPB is split and hence, by applying a
magnetic flux �E to the superconducting loop, the Josephson
energy of the qubit can be controlled.

To better illustrate the procedure of deriving the effective
Hamiltonian for the system, we assume in the following, with-
out loss of generality, that the Josephson energies of the two
junctions are equal, i.e., EJ1 = EJ2 = EJ/2, in which case the
Hamiltonian of the unperturbed qubit is

ĤQB = − 1
2 (B1σx + B3σz ), (1)

with the ground-state energy, EGS = −
√

B2
1 + B2

3/2 = −B/2,

where B1 = EJ cos(π �E
�0

) and B3 = −4EC(1 − 2δng0). Here
σx(z) is the first (third) Pauli spin matrix and �0 = h/2e is the
flux quantum and δng0 ∈ [0, 1] is the deviation from the two
lowest charge states |int(ng0)〉 = |0〉 and |int(ng0) + 1〉 = |1〉
determining the qubit. In principle, the junction energies can
be different and the explicit full calculations of the system
dynamics are presented in the Appendices.

III. CIRCUIT MODEL

Enhancement of the radiation pressure coupling can be
understood from the quantum capacitance picture where the
effective capacitance of the CPB is affecting the total capac-
itance of the cavity. For band k of the CPB, the effective
capacitance is given by [28,29]

Ck
eff = Cg1CJ

Cg1 + CJ
− C2

g1

4e2

∂2Ek (�E, ng)

∂n2
g

, (2)

where we denote CJ = CJ1 + CJ2.

This effective capacitance Ceff , containing both geomet-
ric and quantum capacitance contributions of the CPB, is
in parallel with the cavity capacitance Cc. As a consistency
check, one sees that in the limit of small Josephson energy
the effective capacitance approaches the geometric gate ca-
pacitance. The resonance frequency of the cavity is then ωc =
1/

√
LcCtot, where the total capacitance consist of the cavity

capacitance in parallel with the second gate capacitance and
the effective CPB capacitance, i.e., Ctot = Cc + ( 1

Cg2
+ 1

Ceff
)−1.

The radiation pressure coupling is given by the linear expan-
sion of the resonant frequency with respect to the mechanical
displacement

h̄grp = −h̄
∂ωc

∂x
xzp, (3)

where xzp is the zero point motion of the mechanical displace-
ment.

A straightforward calculation yields

∂ωc

∂x
= −1

2

C2
g2

(Cg2 + Ceff )2

ωc

Ctot

∂Ceff

∂x
, (4a)

∂Ceff

∂x
= C2

J C′
g1

(Cg1 + CJ )2 − Cg1C′
g1

2e2

∂2Ek

∂n2
g

− C2
g1

4e2

∂

∂x

(
∂2Ek

∂n2
g

)
, (4b)

with ∂
∂x ( ∂2Ek

∂n2
g

) = ∂ng

∂x
∂

∂ng
( ∂2Ek

∂n2
g

) where ∂ng

∂x = −C′
g1

2e Vg.

Plugging Eqs. (4a) and (4b) into Eq. (3), we obtain the final
expression for optomechanical coupling:

h̄grp = h̄xzp

[
1

2

C2
g2

(Cg2 + Ceff )2

ωc

Ctot

]

×
[

C2
J C′

g1

(Cg1 + CJ )2 − Cg1C′
g1

2e2

∂2Ek

∂n2
g

+ C2
g1C

′
g1

8e3
Vg

∂3Ek

∂n3
g

]
.

(5)

The enhancement of the radiation pressure coupling is
compared to the direct optomechanical coupling in the ab-
sence of the qubit

g0 = −1

2

C2
g2

(Cg1 + Cg2)2

ωc

Cd
C′

g1xzp, (6)

where the cavity frequency is influenced by the total capaci-
tance Cd = Cc + Cg1Cg2

Cg1+Cg2
in the direct coupling scheme.

For a numerical estimation of the radiation pressure cou-
pling, presented in Fig. 2(a), we choose a cavity of resonant
frequency ωc/2π = 5 GHz with characteristic impedance
Z0 = 100 � resulting in capacitance Cc = 0.318 pF and in-
ductance Lc = 3.18 nH. The other parameter values chosen
are Vg = 10 V, EC/h = 18 GHz (∼74 μeV), EJ/h = 3 GHz
(∼12 μeV), thus EJ/EC = 1/6. The reason to choose these
values for EC, EJ is to minimize quasiparticle poisoning
which is a well known limiting factor associated with CPB
devices. The band energies of CPB are 2e periodic with re-
spect to gate charge modulation. In practice, however, due
to tunneling of nonequilibrium quasiparticles on and off the

144508-2



ENHANCEMENT OF THE OPTOMECHANICAL COUPLING … PHYSICAL REVIEW B 105, 144508 (2022)

(a) (b)

FIG. 2. (a) The enhancement of the optomechanical radiation pressure coupling grp due to the quantum capacitance compared to direct
coupling g0 as a function of flux bias and gate charge. Here EC/h = 18 GHz and EJ/h = 3 GHz. (b) The enhancement of the radiation pressure
coupling for different EJ/EC ratios as a function of gate charge with EJ/h = 3 GHz at �E = 0.

CPB island [40,41], the periodicity can change from 2e to
1e. To reduce this effect, it is desirable to have EC smaller
than the superconducting energy gap 	g. Typically, qubits
are made of superconducting Aluminum (Al) junctions and
for Al, critical current (TC) is 1.2 K, the superconducting gap
	g ∼ 1.76kBTC ∼ 182 μeV, which is well above the chosen
value.

Another crucial factor that influences the coupling strength
is the EJ/EC ratio. In Fig. 2(b), we plot the coupling enhance-
ment grp/g0 against gate charge ng for several EJ/EC ratios at
flux �E = 0 to better illustrate how the enhancement depends
on ng. The maximum coupling is reachable near the charge
qubit limit EC � EJ.

As depicted below in the quantum mechanical treatment
of the circuit, Eq. (22), the device exhibits a CK type of
nonlinearity gCKa†a(b† + b)2. We do not use here the typical
quantum optics expression given by the product of number
operators because in the strong coupling regime where gCK is
comparable to the mechanical frequency, the b2 + H.c. term

is not negligible. Using the quantum capacitance approach
similar to deriving Eq. (5), we obtain the CK coupling

h̄gCK = 1

2
h̄
∂2ωc

∂x2
x2

zp, (7)

where the second-order derivative of the cavity frequency is

∂2ωc

∂x2
= 1

4
ωcC

2
g2

(
∂Ceff

∂x

)2

× Cg2(4Cc + 3Cg2) + 4(Cc + Cg2)Ceff

(Cg2 + Ceff )2[CcCg2 + (Cc + Cg2)Ceff ]2

− 1

2
ωcC

2
g2

∂2Ceff

∂x2

× 1

(Cg2 + Ceff )[CcCg2 + (Cc + Cg2)Ceff ]
, (8)

with

∂2Ceff

∂x2
= − CJC′2

g1

(Cg1 + CJ )2 + CJC′′
g1

Cg1 + CJ
+ CJCg1

[
2C′2

g1

(Cg1 + CJ )3 − C′′
g1

(Cg1 + CJ )2

]

− 1

4e2

{(
2C′2

g1 + 2Cg1C
′′
g1

)∂2Ek

∂n2
g

−
(

2Cg1C
′2
g1

Vg

e
+ C2

g1C
′′
g1

Vg

2e

)
∂3Ek

∂n3
g

+ C2
g1

(
−Vg

2e
C′

g1

)2
∂4Ek

∂n4
g

}
. (9)

Noticeably, the radiation pressure coupling is antisymmet-
rical with respect to the degeneracy point δng0 = 1/2, whereas
the CK coupling is completely symmetrical in this sense and,
additionally, the radiation pressure vanishes when the gate
charge is tuned to the degeneracy point of the qubit, as shown
in Figs. 2(a) and 2(b). However, the CK term does not vanish
at this point, see Figs. 3(a) and 3(a). By choosing EJ/EC � 1
and detuning very close to charge degeneracy point, we are
able to achieve a very strong Kerr nonlinearity without the
optomechanical radiation pressure coupling. Therefore, with
a proper choice of the gate charge and detuning, the system

can be described with a simple Hamiltonian

ĤCK = h̄ωcâ†â + h̄ωmb̂†b̂ + h̄gCKâ†â(b̂† + b̂)2. (10)

Looking at Eq. (10), the cavity resonant frequency is
starkly shifted due to the number of phonons in the mechani-
cal part, since with proper parameter selection the maximum
predicted gCK can reach up to typical microwave cav-
ity linewidth κ ∼ 2π × 1 − 10 MHz [5,25]. This allows the
system to function as a very good phonon counter with the
cavity as the readout.
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(a) (b)

FIG. 3. (a) The CK coupling gCK, scaled by g0, arising from the circuit quantum capacitance calculations as a function of flux bias and
gate charge. Here EC/h = 18 GHz and EJ/h = 3 GHz. (b) The scaled CK coupling for different EJ/EC ratios with EJ/h = 3 GHz at �E = 0.

IV. PERTURBATIVE QUANTUM MECHANICS APPROACH

Here we consider the dynamics of the system with a fully
quantum mechanical treatment. This approach better high-
lights the involvement of the qubit to the enhancement of the
cavity-mechanics coupling. In the above circuit model, the
quantum capacitance of the Josephson junctions is seen to
affect the total capacitance felt by the cavity, whereas here
the coupling is seen to arise from a direct perturbation of the
cavity and the mechanics on the qubit.

Naturally, the cavity and the mechanics can be considered
as harmonic oscillators with Hamiltonians

Ĥc = h̄ωcâ†â, (11a)

Ĥm = h̄ωmb̂†b̂. (11b)

Here â(†) and b̂(†) are the annihilation (creation) operators
of the cavity photons and the phonons in the moving capacitor,
respectively, and we have neglected some terms arising from
the detailed derivation provided in Appendix D, since these
terms do not contribute to the radiation pressure and CK
couplings.

Note that here the cavity frequency ωc is position depen-
dent. A straightforward calculation yields the direct radiation
pressure and CK couplings from the quantum mechanical
model

g̃rpd = ωc0

2C�c

C2
J C′

g1

(CJ + Cg1)2 xzp, (12a)

g̃CKd = 1

2
ωc0

[
3

4C2
�c

(
C2

J C′
g1

(CJ + Cg1)2

)2

− C2
J

2C�c

×
(−2C′2

g1 + (CJ + Cg1)C′′
g1

(CJ + Cg1)3

)]
x2

zp, (12b)

with C�c = Cc + Cg1CJ

Cg1+CJ
. We denote the optomechanical

couplings arising from quantum mechanical model with
superscript ∼ to distinguish them from the circuit model cou-
plings. The full derivation is in Appendix D.

The charging energy Hamiltonian of the qubit in the charge
basis, expressed with the number of Cooper pairs, is

Ĥch = 4EC

∑
n

(n̂ − ng(x))2 |n〉 〈n| . (13)

Here AC effects arising from the cavity oscillations are
ignored.

Considering the two lowest Cooper pair charge states
|int(ng0)〉 and |int(ng0) + 1〉 as the ground state and excited
states, |0〉 and |1〉, respectively, the charging energy Hamilto-
nian in the two-level system approximation becomes

Ĥch = −B3

2
σz − gm x̂mσz, (14)

where the following shorthand notation is used:

gm = 4EC
∂ng

∂x
xzp = 4EC

(
− 1

2e
C′

g1Vg

)
xzp, (15a)

x̂m = b̂ + b̂†. (15b)

Here, σx, σy, σz are Pauli matrices acting on the space
spanned by states |0〉 and |1〉, and â(†). The first term gives
the unperturbed qubit excitation energy, and the second arises
from the charge fluctuations δng = ∂Cg1

∂x x̂.
The node fluxes on the cavity side of the Josephson junc-

tions and on the qubit island are φc and φ1, respectively. The
tunneling energy Hamiltonian is thus

HJJ = −EJ1 cos

(
2π

φ1 − φc + 1
2�E

�0

)

− EJ2 cos

(
2π

φ1 − φc − 1
2�E

�0

)

= −EJ cos

(
π

�E

�0

)[
cos

(
2π

φ1

�0

)
cos

(
2π

φc

�0

)

+ sin

(
2π

φ1

�0

)
sin

(
2π

φc

�0

)]
, (16)

where symmetrical Josephson junctions (JJs) are assumed.
The following results are all written assuming EJ1 = EJ2 =
EJ/2 for simplicity, and the full formulas are presented in the
Appendices.
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In general, a node flux can be related to the phase of
the node with ϕi = 2π

φi

�0
. One can show that the quantized

phase of the cavity node can be tied to the annihilation
(creation) operator of photons â(†) so ϕ̂c = η(â + â†), where
η =

√
2e2Z0/h̄ with Z0 = √

Lc/Cc. The approximations in the
quantum mechanical calculation rely on η � 1. The conju-
gate variable of the cavity flux, the cavity charge is similarly
defined Q̂c = −iQzp(â − â†), where the zero-point motion of

charge is Qzp =
√

h̄
2Z0

. See Appendix D for the derivations.

The cavity-qubit coupling parameter η � 1 for typical
microwave cavities. Therefore, we can now expand the sine
and cosine terms of ϕ̂c in Eq. (16) up to second order in η.
Properties of the phase operators also allow us to identify the
superconducting phase of the island with ladder operators in
the effective qubit so considering on states |0〉 and |1〉, we ob-
tain cos(ϕ̂1) 
→ σx/2 and sin(ϕ̂1) 
→ −σy/2, see Appendix D
for derivation. The approximate quantized Hamiltonian for the
Josephson junctions is thus

ĤJJ = −B1

2
σx + g1σyx̂c + g2σxx̂2

c , (17)

with g1 = B1η/2, g2 = B1η
2/4, and x̂c = â + â†.

Let us decompose the Hamiltonians Eqs. (14) and (17) into
parts with the different Pauli matrices and write the full system
Hamiltonian

Ĥ = Ĥc + Ĥm − 1
2 (B̃1σx + B̃2σy + B̃3σz ), (18)

with the perturbed qubit terms

B̃1 = B1 − 2g2x̂2
c , (19a)

B̃2 = −2g1x̂c, (19b)

B̃3 = B3 + 2gm x̂m. (19c)

The Hamiltonian Eq. (18) can thus be interpreted as the
cavity and the mechanics slightly perturbing the isolated
qubit parameters B1,2,3 (B2 = 0 for symmetrical JJs). In other
words, the qubit mediates the interaction between the cavity
and the mechanics leading to a notable enhancement of the
coupling.

Let us consider a perturbative approach to solving the
cavity-mechanics couplings from Eq. (18) and note that
the eigenenergies of a qubit with Hamiltonian − 1

2 (B̃1σx +
B̃2σy + B̃3σz ) are ± 1

2

√
B̃2

1 + B̃2
2 + B̃2

3. We write the Hamilto-
nian Eq. (18) in terms of its ground state

Ĥ = Ĥc + Ĥm − 1

2

√
B̃2

1 + B̃2
2 + B̃2

3

= Ĥc + Ĥm − 1

2
B

√
1 + 1

B2

(
δx̂4

c + εx̂m + λx̂2
m

)
, (20)

with

B =
√

B2
1 + B2

3, (21a)

δ = 4g2
2, (21b)

ε = 4B3gm, (21c)

λ = 4g2
m. (21d)

We can expand the square-root term as
√

1 + x ≈ 1 + x
2 −

x2

8 + x3

16 , and we note that the expansion is more accurate
further away from the degeneracy point of the qubit, where
B is larger. This technique yields cavity-mechanics couplings
that approach the ones obtained from the circuit model far
away from the degeneracy point when EJ � EC.

Up to the third order in the expansion, we obtain

− 1

2

√
B̃2

1 + B̃2
2 + B̃2

3

≈ − 1

2
B − 1

4B

(
δx̂4

c + εx̂m + λx̂2
m

)
+ 1

16B3

(
δx̂4

c + εx̂m + λx̂2
m

)2

− 1

32B5

(
δx̂4

c + εx̂m + λx̂2
m

)3
, (22)

where, after normal ordering the cavity and mechanics op-
erators, we identify the radiation pressure coupling as the
prefactor of the term −h̄grpâ†â(b̂† + b̂),

h̄g̃rpp = δε

4B5
{−6B2 + 315δ + 27λ}, (23)

and the CK coupling as the prefactor of the term h̄gCKâ†â(b̂ +
b̂†)2:

h̄g̃CKp = −1

2

δ

8B5
{−24B2λ + 1260δλ + 18ε2 + 108λ2}. (24)

The complete radiation pressure coupling from the quan-
tum mechanical calculation is the sum of the direct coupling
Eq. (12a) and the qubit mediated coupling Eq. (23) g̃rp =
g̃rpd + g̃rpp. Similarly, Eqs. (12b) and (24) give the full CK
coupling g̃CK = g̃CKd + g̃CKp

The circuit and quantum mechanical descriptions of the
system dynamics agree qualitatively but have differences
quantitatively close to the degeneracy point of the qubit due
to the inaccuracy of the perturbative quantum mechanical
approach in that regime. However, importantly, the circuit
and quantum mechanical models align perfectly in the limit
EJ → 0 and, additionally, good agreement is found far away
from the degeneracy point for small EJ, Z0, and Vg. Better
agreement is also naturally obtained by going to higher orders

in the expansion of the − 1
2

√
B̃2

1 + B̃2
2 + B̃2

3 term. A major
reason for the quantitative differences between the different
approaches is that the classical circuit theory takes into ac-
count only the change in the gate voltage while the quantum
mechanical theory also includes the change in the phase across
the Josephson junctions in the CPB. Thus, the QM model
in fact mixes the quantum capacitance response (Vg change)
and the Josephson inductance response (phase change). The
relevance of the mixing depends on the parameters, which
makes an overall estimation of the influence of this effect
difficult. This effect becomes larger when reducing EJ, which
clarifies why the agreement at low EJ is not achieved as well
as expected when EJ/EC is reduced, even though ultimately at
EJ = 0 a perfect agreement is met. In Appendix E, we present
the full derivation of these couplings. An important agreement
of the two descriptions is also that, at the degeneracy point,
the radiation pressure coupling vanishes and the CK coupling
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obtains a large nonzero value enabling a rich platform for
phonon counting experiments.

V. DISCUSSION

We are interested in reaching the ultrastrong single-photon
coupling regime grp > ωm, where one can observe the intrin-
sic nonlinearity of optomechanical coupling that goes unseen
for weaker couplings that allow the linearization of the in-
teraction. With our scheme, we are able to obtain a radiation
pressure coupling enhancement of seven orders of magnitude
by utilizing the high range of tunability offered by the setup.
With the proper selection of gate charge and the magnetic flux
through the qubit loop, the desired coupling strength for a
specific purpose can be obtained. Moreover, owing to the wide
tuning options, one can find a regime with enhanced radiation
pressure coupling and vanishing CK coupling or vice versa,
which makes this setup practical for multiple types of studies.

For an optomechanical setup with a direct radiation pres-
sure coupling g0 of the order of 10 Hz, we are thus able to
reach a coupling of the order of 100 MHz, which facilitates
probing the ground state of a typical flexural nanomechanical
resonator without the need for sideband cooling.

Above, we performed our model calculations for a cavity
with impedance Z0 = 100 �, which means that the zero-point
fluctuations of flux �zp = √

h̄Z0/2 exceed the zero-point
fluctuation of charge Qzp = √

h̄/(2Z0), making the device
characteristics more strongly influenced by flux than charge
fluctuations. As seen in Figs. 2(a) and 3(a), the enhancement
of the radiation pressure and CK couplings is more affected
by changes in ng than in �E. With proper tuning of ng, sizable
enhancements to grp and gCK can still be obtained even with
averaging effects in �E arising from large phase fluctuations.

In summary, we have analyzed an optomechanical setup
based on utilization of Josephson (quantum) capacitance of
a CPB to boost the optomechanical coupling. We reach an
enhancement of radiation pressure by seven orders of mag-
nitude, which brings the system well into the ultrastrong
coupling regime. The coupling is highly tunable by charge and
flux bias and, by proper selection of the bias point, strongly
enhanced CK coupling without radiation pressure effects can
be achieved for phonon-counting purposes.
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FIG. 4. Schematics of the Cooper-pair box circuit for enhance-
ment of optomechanical coupling. For elements, see text.

APPENDIX A: FORMING THE HAMILTONIAN

We define the node flux at node i at time t as

φi(t ) =
∫ t

Vi(τ ) dτ. (A1)

This implies that the voltage at node i can be expressed as

Vi(t ) = φ̇i. (A2)

The node flux is also related to the phase of the node with

ϕi = 2π
φi

�0
, (A3)

where �0 = h
2e is the flux quantum. The node indices corre-

sponding to each capacitive island of the circuit can be seen
in Fig. 4.

The energy stored in the capacitive elements of the circuit
is

T = CJ

2
(φ̇1 − φ̇c)

2 + Cg1

2
(φ̇1 − φ̇2)

2

+ 1

2
(Cg2 + CB)φ̇2

2 + Cc

2
φ̇2

c , (A4)

where CJ = CJ1 + CJ2 is the capacitance of the Josephson
junctions, Cg1 and Cg2 the gate capacitances, and Cc the
capacitance of the LC cavity. The position dependence of
Cg1 = Cg1(x) is omitted for notational convenience. The bias
capacitance CB is included to induce a bias voltage onto island
2. After taking CB → ∞, the voltage on island 2 corresponds
to the bias voltage. Detailed calculations are given below.
Additionally, for the method of nodes to work, the net of the
capacitive elements connecting all of the nodes of the circuit
needs to be simply connected [42].

Similarly, the inductive energy of the system is

U = −EJ1 cos

(
2π

φ1 − φc + 1
2�E

�0

)

− EJ2 cos

(
2π

φ1 − φc − 1
2�E

�0

)

+ 1

2LB
φ2

2 + 1

2Lc
φ2

c . (A5)
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Here EJ1, EJ2 are the Josephson energies of the junctions, �E

the external flux through the loop of the CPB, LB the bias
inductance, and Lc the inductance of the LC cavity.

The Lagrangian L(φi, φ̇i ) is thus

L = T − U = 1
2
�̇φᵀ[C] �̇φ − U , (A6)

where

[C] =
⎛
⎝CJ + Cg1 −Cg1 −CJ

−Cg1 Cg1 + Cg2 + CB 0
−CJ 0 Cc + CJ

⎞
⎠ �̇φ =

⎛
⎝φ̇1

φ̇2

φ̇c

⎞
⎠.

(A7)
Now the Hamiltonian of the system H(φi, Qi ) can be ex-

pressed with the conjugate momenta

Qi = ∂L
∂φ̇i

(A8)

that correspond to the electric charge on the island i. The
canonical relation between the Lagrangian and the Hamilto-
nian gives

H =
∑

i

φ̇i
∂L
∂φ̇i

− L =
∑

i

φ̇iQi − L

= 1

2
�Qᵀ[C]−1 �Q + U . (A9)

Here, the inverse of the capacitance matrix is

[C]−1 =

⎛
⎜⎝

1
C�1

1
C�12

1
C�1c

1
C�12

1
C�2

1
C�2c

1
C�1c

1
C�2c

1
C�c

⎞
⎟⎠, (A10)

with the following shorthand notations:

1

C�1
= (Cc + CJ )(CB + Cg1 + Cg2)

CcCJ(CB + Cg2) + Cg1[Cc(CB + Cg2) + CJ(CB + Cc + Cg2)]
, (A11a)

1

C�2
= CcCJ + Cg1(Cc + CJ )

CcCJ(CB + Cg2) + Cg1[Cc(CB + Cg2) + CJ(CB + Cc + Cg2)]
, (A11b)

1

C�c
= CJ(CB + Cg2) + Cg1(CB + Cg2 + CJ )

CcCJ(CB + Cg2) + Cg1[Cc(CB + Cg2) + CJ(CB + Cc + Cg2)]
, (A11c)

1

C�12
= Cg1(Cc + CJ )

CcCJ(CB + Cg2) + Cg1[Cc(CB + Cg2) + CJ(CB + Cc + Cg2)]
, (A11d)

1

C�1c
= CJ(CB + Cg1 + Cg2)

CcCJ(CB + Cg2) + Cg1[Cc(CB + Cg2) + CJ(CB + Cc + Cg2)]
, (A11e)

1

C�2c
= Cg1CJ

CcCJ(CB + Cg2) + Cg1[Cc(CB + Cg2) + CJ(CB + Cc + Cg2)]
. (A11f)

Thus, the Hamiltonian can be written out explicitly

H = 1

2C�1
Q2

1 + 1

2C�2
Q2

2 + 1

2C�c
Q2

c + 1

C�12
Q1Q2 + 1

C�1c
Q1Qc + 1

C�2c
Q2Qc + U . (A12)

Define the nominal bias voltage

Vg = Q2

C�2
(A13)

and calculate the real voltage on island 2:

∂H
∂Q2

= 1

C�2
Q2 + 1

C�12
Q1 + 1

C�2c
Qc = Vg + 1

C�12
Q1 + 1

C�2c
Qc. (A14)

In the limit CB → ∞, we obtain ∂H
∂Q2

= Vg, i.e., island 2 is now set to a potential that can be tuned with Vg.
Define the charging energy of the CPB, the number of Cooper pairs on island 1, and the nominal gate charge:

EC = e2

2C�1
, (A15a)

n = Q1

2e
, (A15b)

ng = − 1

2e

C�1C�2

C�12
Vg. (A15c)

With these definitions along with Eq. (A13), the Hamiltonian Eq. (A12) can be reformulated to a standard form

H = 4EC(n − ng)2 + 4EC

(
C2

�12

C�1C�2
− 1

)
n2

g + 1

2C�c
Q2

c +
(

1

C�1c
· 2en + C�12

C�1C�2c
· 2eng

)
Qc + U . (A16)
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Let us now focus on U in Eq. (A5) and, specifically, the Josephson junction part of it. Let us define the Josephson energies of the
junctions as

EJ1 = (1 + d )
EJ

2
, (A17a)

EJ2 = (1 − d )
EJ

2
, (A17b)

where d ∈ [0, 1) describes the difference of the Josephson energies of the two junctions. Using Eq. (A17) and the identity
cos(α ± β ) = cos α cos β ∓ sin α sin β, we can rewrite

−EJ1 cos

(
2π

φ1 − φc + 1
2�E

�0

)
− EJ2 cos

(
2π

φ1 − φc − 1
2�E

�0

)

= −EJ cos

(
π

�E

�0

)[
cos

(
2π

φ1

�0

)
cos

(
2π

φc

�0

)
+ sin

(
2π

φ1

�0

)
sin

(
2π

φc

�0

)]

+EJd sin

(
π

�E

�0

)[
− cos

(
2π

φ1

�0

)
sin

(
2π

φc

�0

)
+ sin

(
2π

φ1

�0

)
cos

(
2π

φc

�0

)]
. (A18)

Now, the total Hamiltonian of the system can be written as

H = 4EC(n − ng)2 + 4EC

(
C2

�12

C�1C�2
− 1

)
n2

g

+ 1

2C�c
Q2

c +
(

1

C�1c
2en + C�12

C�1C�2c
2eng

)
Qc

− EJ cos

(
π

�E

�0

)[
cos

(
2π

φ1

�0

)
cos

(
2π

φc

�0

)
+ sin

(
2π

φ1

�0

)
sin

(
2π

φc

�0

)]

+ EJd sin

(
π

�E

�0

)[
− cos

(
2π

φ1

�0

)
sin

(
2π

φc

�0

)
+ sin

(
2π

φ1

�0

)
cos

(
2π

φc

�0

)]

+ 1

2LB
φ2

2 + 1

2Lc
φ2

c . (A19)

In the limit CB → ∞, the definitions introduced in Eqs. (A11)
and (A15) simplify to

1

C�1
→ Cc + CJ

CcCJ + Cg1(Cc + CJ )
, (A20a)

1

C�2
→ 0, (A20b)

1

C�c
→ Cg1 + CJ

CcCJ + Cg1(Cc + CJ )
, (A20c)

1

C�1c
→ CJ

CcCJ + Cg1(Cc + CJ )
, (A20d)

1

C�12
→ 0, (A20e)

1

C�2c
→ 0, (A20f)

ng → −Cg1

2e
Vg, (A20g)

recovering the result that the gate charge is solely determined
by the voltage bias and the gate capacitor.

APPENDIX B: DERIVING THE EFFECTIVE
CAPACITANCE

In the following, we determine the effective capacitance of
the CPB part of the circuit. Let us first determine the electric
charges on the different islands of the circuit. These arise from
the relation in Eq. (A8):

Q1 = ∂L
∂φ̇1

= (CJ + Cg1)φ̇1 − Cg1φ̇2 − CJφ̇c, (B1a)

Q2 = ∂L
∂φ̇2

= (Cg1 + Cg2 + CB)φ̇2 − Cg1φ̇1, (B1b)

Qc = ∂L
∂φ̇3

= (Cc + CJ )φ̇c − Cg1φ̇1. (B1c)

Recall the definition of Vg in Eq. (A13). In the large CB limit,
C�2 → CB, and together with the relation Eq. (B1b), φ̇2 = Vg

is implied. Now that the voltage on the island is fixed to Vg

in this limit, the number of Cooper pairs on island 1 can
be determined by combining the relations Eqs. (A15b) and
(B1a):

n = Q1

2e
= (CJ + Cg1)φ̇1 − Cg1φ̇2 − CJφ̇c

2e
. (B2)
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The voltage on the CPB island is thus

VI = φ̇1 = Cg1

CJ + Cg1
Vg + 2en

CJ + Cg1
+ CJ

CJ + Cg1
φ̇c (B3)

and, therefore, the charge across Cg1 can be written

Qg1 = Cg1(Vg − VI ) = CJCg1

CJ + Cg1
Vg − Cg1

CJ + Cg1
2en

− CJCg1

CJ + Cg1
φ̇c. (B4)

Notice that here the second term has the opposite sign
compared to the calculation presented by Duty et al. [29].
However, our gate charge is also defined with the opposite
sign with respect to the gate voltage, see Eq. (A20g). Thus the
effective capacitance [Eq. (2) in the main text] obtained here
aligns with the results in Ref. [29],

Ceff = ∂Qg1

∂Vg
= Cg1CJ

Cg1 + CJ
− C2

g1

4e2

∂2Ek

∂n2
g

, (B5)

where Ek is the kth energy band of the CPB. We do not have
to take the position dependence of Cg1 into consideration in
this part of the derivation. Since we are considering a voltage
bias setup with a resonance frequency well below RC cutoff
effects, the voltage on the CPB island is able to follow the
movement of the capacitor without difficulties.

APPENDIX C: RADIATION PRESSURE AND CROSS-KERR
COUPLINGS

Consider the resonance frequency of an LC circuit

ωc = 1√
LcCtot

, (C1)

where the total capacitance Ctot arises from the cavity capac-
itor that is parallel with the second gate capacitor and the
effective CPB capacitor

Ctot = Cc +
(

1

Cg2
+ 1

Ceff

)−1

. (C2)

The cavity frequency can be expanded in the position of the
moving capacitor Cg1(x):

ωc � ωc0 + ∂ωc

∂x
x + 1

2

∂2ωc

∂x2
x2. (C3)

Here, the linear term corresponds to the radiation pressure
coupling. Thinking about a simple optical cavity, the decrease
in cavity length should lead to the increase in cavity frequency.
The quantization of the circuit gives the position operator the
form x̂ = xzp(b† + b), where xzp is the zero point motion. Thus
the radiation pressure coupling is

h̄grp = −h̄
∂ωc

∂x
xzp. (C4)

A straightforward calculation yields

∂ωc

∂x
= −1

2

C2
g2

(Cg2 + Ceff )2

ωc

Ctot

∂Ceff

∂x
, (C5)

with

∂Ceff

∂x
= − C2

J C′
g1

(Cg1 + CJ )2 − Cg1C′
g1

2e2

∂2Ek

∂n2
g

− C2
g1

4e2

∂

∂x

(
∂2Ek

∂n2
g

)
,

(C6)
arising from the expression Eq. (2). Here the prime notation
is used to mark the x derivatives. Using the chain rule, we can
determine

∂

∂x

(
∂2Ek

∂n2
g

)
= ∂ng

∂x

∂

∂ng

(
∂2Ek

∂n2
g

)
= −Vg

2e
C′

g1
∂3Ek

∂n3
g

, (C7)

where the gate charge definition Eq. (A20g) is used. Thus we
obtain

∂Ceff

∂x
= − C2

J C′
g1

(Cg1 + CJ )2 − Cg1C′
g1

2e2

∂2Ek

∂n2
g

+ C2
g1C

′
g1

8e3
Vg

∂3Ek

∂n3
g

,

(C8)
leading to the radiation pressure coupling [Eq. (5) in the main
text]

h̄grp =h̄xzp

[
1

2

C2
g2

(Cg2 + Ceff )2

ωc

Ctot

][
C2

J C′
g1

(Cg1 + CJ )2 − Cg1C′
g1

2e2

∂2Ek

∂n2
g

+ C2
g1C

′
g1

8e3
Vg

∂3Ek

∂n3
g

]
(C9)

by plugging Eqs. (C5) and (C8) back to (C4).
Conversely, the CK coupling arises from h̄ 1

2
∂2ωc
∂x2 x̂2, leading to

h̄gCK = 1

2
h̄
∂2ωc

∂x2
x2

zp. (C10)

A direct calculation leads to

∂2ωc

∂x2
= ωcC

2
g2

Cg2(4Cc + 3Cg2) + 4(Cc + Cg2)Ceff

4(Cg2 + Ceff )2[CcCg2 + (Cc + Cg2)Ceff ]2

(
∂Ceff

∂x

)2

−ωcC
2
g2

1

2(Cg2 + Ceff )[CcCg2 + (Cc + Cg2)Ceff ]

∂2Ceff

∂x2
, (C11)
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where

∂2Ceff

∂x2
= − 2CJC′2

g1

(Cg1 + CJ )2 + CJC′′
g1

Cg1 + CJ
+ CJCg1

[
2C′2

g1

(Cg1 + CJ )3 − C′′
g1

(Cg1 + CJ )2

]

− 1

4e2

[
4Cg1C

′
g1

∂

∂x

(
∂2Ek

∂n2
g

)
+ (

2C′2
g1 + 2Cg1C

′′
g1

)∂2Ek

∂n2
g

+ C2
g1

∂2

∂x2

(
∂2Ek

∂n2
g

)]
. (C12)

Utilizing the second-order chain rule ∂2y
∂x2 = ∂2y

∂z2 ( ∂z
∂x )2 + ∂y

∂z
∂2z
∂x2 , we obtain

∂2

∂x2

(
∂2Ek

∂n2
g

)
=

(
∂ng

∂x

)2
∂4Ek

∂n4
g

+ ∂2ng

∂x2

∂3Ek

∂n3
g

=
(

−Vg

2e
C′

g1

)2
∂4Ek

∂n4
g

− Vg

2e
C′′

g1
∂3Ek

∂n3
g

, (C13)

giving the explicit form of the second derivative

∂2Ceff

∂x2
= − CJC′2

g1

(Cg1 + CJ )2 + CJC′′
g1

Cg1 + CJ
+ CJCg1

[
2C′2

g1

(Cg1 + CJ )3 − C′′
g1

(Cg1 + CJ )2

]

− 1

4e2

[(
2C′2

g1 + 2Cg1C
′′
g1

)∂2Ek

∂n2
g

−
(

2Cg1C
′2
g1

Vg

e
+ C2

g1C
′′
g

Vg

2e

)
∂3Ek

∂n3
g

+ C2
g1

(
−Vg

2e
C′

g1

)2
∂4Ek

∂n4
g

]
, (C14)

which is the result Eq. (9) in the main text

. APPENDIX D: QUANTIZING THE HAMILTONIAN

Let us divide the full Hamiltonian Eq. (A19) into parts. The
cavity, mechanics, cavity-mechanics-CPB coupling, charging,
and Josephson-junction sub-Hamiltonians are

H = Hc + Hm + Hcm + Hch + HJJ, (D1a)

Hc = 1

2C�c
Q2

c + 1

2Lc
φ2

c , (D1b)

Hm = 4EC

(
C2

�12

C�1C�2
− 1

)
n2

g, (D1c)

Hcm = C�12

C�1C�2c
2engQc, (D1d)

Hch = 4EC(n − ng)2 + 1

C�1c
2enQc, (D1e)

HJJ = −EJ cos

(
π

�E

�0

)
[cos (ϕ1) cos (ϕc)

+ sin (ϕ1) sin (ϕc)] + EJd sin

(
π

�E

�0

)
× [− cos (ϕ1) sin (ϕc) + sin (ϕ1) cos (ϕc)]. (D1f)

1. Cavity Hamiltonian

Let us first quantize the cavity Hamiltonian Eq. (D1b).
Quantized cavity flux and its conjugate momentum (charge)
fulfill the canonical commutation relation

[φ̂c, Q̂c] = ih̄, (D2)

and introduce bosonic operators â, â† with [â, â†] = 1 so

φ̂c = �zp(â + â†), (D3a)

Q̂c = −iQzp(â − â†). (D3b)

Applying these to the canonical commutation relation
Eq. (D2) implies

2�zpQzp = h̄. (D4)

Thus we can rewrite the quantized cavity Hamiltonian

Ĥc =
(

Q2
zp

C�c
+ �2

zp

Lc

)(
â†â + 1

2

)
+

(
− Q2

zp

2C�c
+ �2

zp

2Lc

)

× (â2 + â†2), (D5)

where we can denote h̄ωc = Q2
zp

C�c
+ �2

zp

Lc
. �zp and Qzp can be

solved from this using the relation Eq. (D4) and the standard
way of writing the cavity angular frequency:

ωc = 1√
LcC�c

. (D6)

We find that

Qzp =
√

h̄

2Z0
, (D7a)

�zp =
√

h̄Z0

2
, (D7b)

Z0 =
√

Lc

C�c
, (D7c)

and thus the cavity Hamiltonian can be written

Ĥc = h̄ωc
(
â†â + 1

2

)
, (D8)

where the constant term can be neglected without loss of
generality.

Recall that in Eq. (D6) we have a position-dependent
capacitance C�c. Thus we obtain a direct optomechanical cou-
pling that is not enhanced by the qubit similar to the terms not
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involving derivatives of the qubit energy bands in the circuit
approach. A straightforward calculation yields us the result
Eq. (12a) in the main text,

g̃rpd = −∂ωc

∂x
xzp = ωc0

2C�c

C2
J C′

g1

(CJ + Cg1)2 xzp, (D9)

and similarly for the direct CK coupling

g̃CKd = 1

2

∂2ωc

∂x2
x2

zp = 1

2

[
3ωc0

4C2
�c

(
C2

J C′
g1

(CJ + Cg1)2

)2

− ωc0C2
J

2C�c

(−2C′2
g1 + (CJ + Cg1)C′′

g1

(CJ + Cg1)3

)]
x2

zp, (D10)

i.e., Eq. (12b) in the main text.
A simple calculation shows that the direct optomechanical

couplings from the circuit method Eqs. (C9) and (C10) align
with the corresponding quantum mechanical results Eqs. (12a)
and (12b) when Cg2 is large. From the circuit model, the direct
couplings are obtained by ignoring the energy band terms, i.e.,
setting EJ = 0.

2. Mechanics Hamiltonian

The mechanics Hamiltonian Eq. (D1c) can be quantized in
a similar fashion. Notice that the gate charge ng is displace-
ment x dependent as the capacitance Cg1(x) depends on the
separation of the gate electrodes. We approximate

ng ≈ ng0 + ∂ng

∂x
x, (D11)

and using the definition of ng Eq. (A20g), we find

∂ng

∂x
= −C′

g1

2e
Vg. (D12)

By defining bosonic operators for the mechanics b̂, b̂† with
[b̂, b̂†] = 1, we may quantize the displacement as

x̂ = xzp
(
b̂ + b̂†

)
. (D13)

The quantized mechanics Hamiltonian is thus (neglecting con-
stants)

Ĥm = 4EC

(
C2

�12

C�1C�2
− 1

)[
2

(
∂ng

∂x

)2

x2
zpb̂†b̂

+ 2ng
∂ng

∂x
xzp

(
b̂† + b̂

) +
(

∂ng

∂x

)2

x2
zp

(
b̂†2 + b̂2)]

= h̄ωmb̂†b̂ + h1
(
b̂† + b̂

) + h2
(
b̂†2 + b̂2

)
. (D14)

We now have enough information to also quantize Hcm

Eq. (D1d) that directly couples the cavity to the mechanics,
and obtain

Ĥcm = C�12

C�1C�2c
· 2e

(
ng0 + ∂ng

∂x
x̂

)
Q̂c

= −i2e
C�12

C�1C�2c

[
ng0 − C′

g1

2e
Vgxzp

(
b̂ + b̂†

)]
Qzp

(
â − â†

)
.

(D15)

This term is, however, omitted in the discussion since the
cavity-mechanics coupling arising from it is not of the radi-
ation pressure or CK form.

3. Josephson junction Hamiltonian

To quantize the Josephson junction Hamiltonian Eq. (D1f),
let us first discuss how the phase on the CPB island relates to
the qubit operations when the tunneling junctions are consid-
ered as two-level systems. The following derivation closely
follows the treatment of tunnel junctions by Vool and Devoret
[42]. The tunneling Hamiltonian of a Josephson junction can
be written in a number basis using the transmitted charge
through the junction, which in terms of Cooper pairs reads as

ĤT = −ET

2

N=∞∑
N=−∞

[|N〉 〈N + 1| + |N + 1〉 〈N |], (D16)

where the tunneling energy is denoted by ET. This number
basis representation can be related to the alternate phase basis
by equations

|ϕ〉 =
∞∑

N=−∞
eiNϕ |N〉, (D17a)

|N〉 = 1

2π

∫ 2π

0
dϕe−iNϕ |ϕ〉. (D17b)

A straightforward calculation reveals that the operator

eiϕ̂ = 1

2π

∫ 2π

0
dφeiϕ |ϕ〉 〈ϕ| (D18)

has the following translation properties:

eiϕ̂ |N〉 = |N − 1〉, (D19a)

e−iϕ̂ |N〉 = |N + 1〉. (D19b)

Confining our approach to a two-level setting, i.e., we only
consider qubit states |0〉 and |1〉, directly leads to

cos ϕ̂ = 1

2
[eiϕ̂ + e−iϕ̂] = 1

2
[|1〉 〈0| + |0〉 〈1|] = 1

2
σx,

(D20a)

sin ϕ̂ = 1

2i
[eiϕ̂ − e−iϕ̂] = i

2
[|1〉 〈0| − |0〉 〈1|] = −1

2
σy.

(D20b)

We may thus identify

cos(ϕ̂1) = 1
2σx, (D21a)

sin (ϕ̂1) = − 1
2σy, (D21b)

where σx,y are the Pauli matrices with conventions

σx = |1〉 〈0| + |0〉 〈1| =
(

0 1
1 0

)
, (D22a)

σy = i(|0〉 〈1| − |1〉 〈0|) = i

(
0 −1
1 0

)
, (D22b)

|0〉 =
(

0
1

)
, (D22c)

|1〉 =
(

1
0

)
. (D22d)
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By recalling the cavity flux operator Eq. (D3a) and the
phase-flux relation ϕc = 2π

φc

�0
, we can write

ϕ̂c = η(â + â†), (D23a)

η =
√

2e2Z0

h̄
. (D23b)

We can expand the trigonometric functions of the cavity
flux operators in the JJ Hamiltonian Eq. (D1f):

sin(ϕ̂c) ≈ ϕ̂c = η(â + â†), (D24a)

cos(ϕ̂c) ≈ 1 − 1
2 ϕ̂2

c = 1 − 1
2η2(â + â†)2. (D24b)

Taking the lowest order approximation of the trigonometric
functions is an important limiting factor of the accuracy of the
quantum mechanical approach to the circuit dynamics. This
allows only very small values of η, i.e., small values of Z0,
to be considered. Higher order approximation would improve
the accuracy of the results compared to the circuit method but
our aim here is only to highlight the intermediate steps of the
quantum mechanical calculation.

Now the Josephson junction Hamiltonian simplifies to

ĤJJ = − EJ

2

[
cos

(
π

�E

�0

)
σx + d sin

(
π

�E

�0

)
σy

]

+ EJ

2

[
cos

(
π

�E

�0

)
σy − d sin

(
π

�E

�0

)
σx

]
η(â + â†)

+ EJ

4

[
cos

(
π

�E

�0

)
σx + d sin

(
π

�E

�0

)
σy

]
η2(â + â†)2

= − B1

2
σx − B2

2
σy + g1σyx̂c + g2σxx̂2

c + g3σxx̂c + g4σyx̂2
c ,

(D25)

with

B1 = EJ cos

(
π

�E

�0

)
, (D26a)

B2 = EJd sin

(
π

�E

�0

)
, (D26b)

g1 = B1

2
η, (D26c)

g2 = B1

4
η2, (D26d)

g3 = −B2

2
η, (D26e)

g4 = B2

4
η2, (D26f)

x̂c = â + â†. (D26g)

In the limit d → 0, i.e., symmetric Josephson junctions,
Eq. (17) in the main text is obtained.

4. Charging Hamiltonian

The full charging Hamiltonian Eq. (D1e) can be written in
a quantized form

Ĥch =
∑

n

[
4EC(n̂ − ng)2 + 2e

C�1c
n̂Q̂c

]
|n〉 〈n| . (D27)

To obtain the result Eq. (13) in the main text, we omit the sec-
ond term with the cavity charge Q̂c since we restrict ourselves
to a low-frequency analysis of the circuit. The neglected term
is of the form ∼ − i2enωc�zp(â − â†), essentially coupling
the voltage of the cavity to the qubit charge. With low enough
cavity resonance frequencies, this term is not significant and
including it would only result in unnecessary algebraic com-
plications in the perturbation theory approach that we use
to estimate the quantum mechanical couplings due to it not
commuting with other terms in the Hamiltonian. The eigenen-
ergies are thus En = 4EC(n − ng)2 parabolas as the function
of ng. Assuming that EJ � EC, the contribution from the JJ
Hamiltonian Eq. (D25) to the qubit energy is negligible and
the total qubit energy can be approximated with the parabolas
En.

Denote ng0 = int(ng0) + δng0 with δng0 ∈ [0, 1] and con-
centrate on the states closest to ng0, i.e., n = int(ng0) and
n = int(ng0) + 1, and call these states |0〉 and |1〉, respectively.
From En, we can see that the degeneracy point of this well-
defined qubit is at ng = 1

2 .
Thus, in the two-level system approximation, the charging

Hamiltonian is

Ĥch = 2EC(1 − 2δng)σz

= 2EC(1 − 2δng0)σz − 4EC
∂ng

∂x
x̂σz

= −B3

2
σz − gm x̂mσz,

(D28)

where

B3 = −4EC(1 − 2δng0), (D29a)

gm = 4EC
∂ng

∂x
xzp = 4EC

(
− 1

2e
C′

g1Vg

)

xzp = −2

e
ECVgC

′
g1xzp, (D29b)

x̂m = b̂ + b̂†. (D29c)

APPENDIX E: PERTURBATIVE APPROACH
TO THE QUBIT

Let us regroup the quantized Hamiltonians based on their
effects on the qubit,

Ĥ = Ĥ0 + Ĥx + Ĥy + Ĥz, (E1a)

Ĥ0 = Ĥc + Ĥm + Ĥcm, (E1b)

Ĥx = [− 1
2 B1 + g3x̂c + g2x̂2

c

]
σx = − 1

2 B̃1σx, (E1c)

Ĥy = [− 1
2 B2 + g1x̂c + g4x̂2

c

]
σy = − 1

2 B̃2σy, (E1d)

Ĥz = [− 1
2 B3 − gm x̂m

]
σz = − 1

2 B̃3σz, (E1e)

with

B̃1 = B1 − 2g3x̂c − 2g2x̂2
c , (E2a)

B̃2 = B2 − 2g1x̂c − 2g4x̂2
c , (E2b)

B̃3 = B3 + 2gm x̂m. (E2c)

Provided that EC � EJ, the additional terms in B̃ j on can
be considered as a small perturbation to the unperturbed qubit
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Hamiltonian

ĤQ0 = − 1
2 (B1σx + B2σy + B3σz ). (E3)

We can treat our system with a perturbation approach to the

ĤQ0 with eigenenergies ± 1
2

√
B2

1 + B2
2 + B2

3. Thus we can ap-
proximate the full Hamiltonian as a perturbation to the qubit
ground state

Ĥ = Ĥ0 − 1
2

√
B̃2

1 + B̃2
2 + B̃2

3. (E4)

Let us write in the above expression explicitly

− 1

2

√
B̃2

1 + B̃2
2 + B̃2

3

= − 1

2
B

√
1 + 1

B2

(
αx̂c + β x̂2

c + ρx̂3
c + δx̂4

c + εx̂m + λx̂2
m

)
,

(E5)

with

B =
√

B2
1 + B2

2 + B2
3, (E6a)

α = −4(B1g3 + B2g1) = 0, (E6b)

β = 4
(
g2

3 + g2
1 − B1g2 − B2g4

) = 0, (E6c)

ρ = 8(g2g3 + g1g4) = 0, (E6d)

δ = 4
(
g2

2 + g2
4

)
, (E6e)

ε = 4B3gm, (E6f)

λ = 4g2
m. (E6g)

Recall that
√

1 + x ≈ 1 + x
2 − x2

8 + x3

16 , which allows us to
expand the above expression provided that B is large, i.e., EC

is large:

− 1

2

√
B̃2

1 + B̃2
2 + B̃2

3

≈ −1

2
B − 1

4B

(
δx̂4

c + εx̂m + λx̂2
m

)
+ 1

16B3

(
δx̂4

c + εx̂m + λx̂2
m

)2

− 1

32B5

(
δx̂4

c + εx̂m + λx̂2
m

)3
. (E7)

We can now identify the terms contributing the radiation pres-
sure coupling (x̂2k

c x̂2l+1
m ), CK coupling (x̂2k

c x̂2l
m ). We also need

to take into account the prefactors arising from normal or-
dering the terms contributing to these couplings â†â(b̂† + b̂),
â†â(b̂ + b̂†)2, respectively.

The qubit-mediated part of the radiation pressure coupling
[Eq. (23) of the main text] is thus

h̄g̃rpp = δε

4B5
{−6B2 + 315δ + 27λ}. (E8)

Here we have an extra minus sign fixing the radiation pressure
coupling to grp = − ∂ωc

∂x , i.e., h̄ωc(x)â†â ≈ h̄(ωc − grpx̂m )â†â.
Finally, the qubit-mediated part of CK coupling [Eq. (24) of

the main text] is

h̄g̃CKp = −1

2

δ

8B5
{−24B2λ + 1260δλ + 18ε2 + 108λ2}.

(E9)
Now the full optomechanical couplings are obtained from the
direct couplings Eqs. (D9), (D10), and the qubit mediated
couplings Eqs. (E8) and (E9) as g̃rp = g̃rpd + g̃rpp and g̃CK =
g̃CKd + g̃CKp.

The third-order expansion for the radiation pressure cou-
pling is not crucial for the result to align well with the circuit
model far away from the degeneracy point of the qubit. How-
ever, for the CK coupling, expanding to third order offers
much better results compared to the circuit model than just
the second-order expansion, the third order being the lowest
approximation with complete qualitative agreement between
the circuit and QM models. The second-order expansion
of the CK coupling only captures the maximum amplification
at the degeneracy point but the side peaks on both sides of the
maximum enhanced coupling are missing.

In Fig. 5(a), we see that the radiation pressure coupling
arising from the perturbative quantum mechanical method
coincides with the result from the circuit model far away
from the degeneracy point of the qubit. Similarly, in Fig. 5(b),
results for the CK couplings from the two approach each
other far away from the degeneracy point. The accuracy of
the QM perturbation approach relies on the magnitude of
the expansion parameter 1

B2 (δx̂4
c + εx̂m + λx̂2

m ) being small.
However, this parameter reaches its maximum values, i.e., the
approximation of the qubit ground-state energy has its largest
inaccuracy, in the domain of δng0 ∼ 0.5, where the enhance-
ment maxima of the optomechanical couplings are obtained.
This contributes to the quantitative difference between the
circuit and QM approaches in the vicinity of the degeneracy
point of the qubit. Besides the ng tunability, magnitude of the
expansion parameter depends on multiple system parameters
and the validity of the expansion should be checked on a
case by case basis. The circuit method, therefore, provides a
more reliable picture in terms of the quantitative predictions
when discussing the charge tuning regime that is relevant in
obtaining the maximum enhancement of the optomechanical
couplings.

Going to the limit EJ � EC significantly improves the
agreement until at EJ = 0 one obtains the same limiting di-
rect couplings from the two methods. A better agreement
between the circuit approach and the quantum mechanical
calculation is also achieved for small Vg and Z0. Reducing
Vg overall decreases the optomechanical couplings, and for
small cavity impedance Z0, the term 2e

C�1c
n̂Q̂c in the charging

Hamiltonian Eq. (D27) describing the effect that the cavity
voltage has on the charge of the qubit becomes less significant
and the approximation that we have performed in omitting
it becomes better justified. The radiation pressure couplings
from the classical circuit and QM approaches converge faster
to the same value when reducing EJ than the CK couplings
due to the CK coupling being a higher order effect that
our perturbative approach just barely captures, as discussed
above. Going to the next higher order in the perturbatation
theory would also result in faster convergence for the CK
couplings.
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(a) (b)

FIG. 5. (a) Comparison between radiation pressure coupling from the quantum mechanical perturbation theory and the circuit model.
Ratio between them approaches 1 far away from charge degeneracy points as EJ/EC ratio becomes smaller. (b) Similar comparison for the
CK couplings obtained from the two approaches. Here Vg = 1 V and Z0 = 1 � to showcase a limit with a good agreement between the two
approaches due to the significance of the omitted 2e

C�1c
n̂Q̂c term from the charging Hamiltonian Eq. (D27) becoming negligible with smaller

cavity impedance. The ratios diverting from 1 closer to the degeneracy point of the qubit are due to the maximum enhancement being achieved
at slightly different bias points and small difference in the widths of the enhancement peaks in the two methods. Also the parameter used to
expand the ground-state energy of the qubit in the QM approach reaches its maximum value close to the degeneracy point, increasing the
inaccuracy of the perturbation approach in this regime. EC/h = 10 GHz is fixed in these simulations.

[1] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity
optomechanics, Rev. Mod. Phys. 86, 1391 (2014).

[2] A. D. Armour, M. P. Blencowe, and K. C. Schwab, Entangle-
ment and Decoherence of a Micromechanical Resonator via
Coupling to a Cooper-Pair Box, Phys. Rev. Lett. 88, 148301
(2002).

[3] C. A. Regal, J. D. Teufel, and K. W. Lehnert, Measuring
nanomechanical motion with a microwave cavity interferom-
eter, Nat. Phys. 4, 555 (2008).

[4] M. D. LaHaye, J. Suh, P. M. Echternach, K. C. Schwab, and
M. L. Roukes, Nanomechanical measurements of a supercon-
ducting qubit, Nature (London) 459, 960 (2009).

[5] T. Rocheleau, T. Ndukum, C. Macklin, J. B. Hertzberg, A. A.
Clerk, and K. C. Schwab, Preparation and detection of a me-
chanical resonator near the ground state of motion, Nature
(London) 463, 72 (2010).

[6] J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman,
K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and
R. W. Simmonds, Sideband cooling of micromechanical mo-
tion to the quantum ground state, Nature (London) 475, 359
(2011).

[7] P. D. Nation, J. Suh, and M. P. Blencowe, Ultrastrong optome-
chanics incorporating the dynamical Casimir effect, Phys. Rev.
A 93, 022510 (2016).

[8] L. Neumeier, T. E. Northup, and D. E. Chang, Reaching the
optomechanical strong-coupling regime with a single atom in a
cavity, Phys. Rev. A 97, 063857 (2018).

[9] L. Neumeier and D. E. Chang, Exploring unresolved sideband,
optomechanical strong coupling using a single atom coupled to
a cavity, New J. Phys. 20, 083004 (2018).

[10] A. Settineri, V. Macrí, A. Ridolfo, O. Di Stefano, A. F. Kockum,
F. Nori, and S. Savasta, Dissipation and thermal noise in hybrid

quantum systems in the ultrastrong-coupling regime, Phys. Rev.
A 98, 053834 (2018).

[11] E. Romero-Sánchez, W. P. Bowen, M. R. Vanner, K. Xia, and
J. Twamley, Quantum magnetomechanics: Towards the ultra-
strong coupling regime, Phys. Rev. B 97, 024109 (2018).

[12] J.-Q. Liao, J.-F. Huang, L. Tian, L.-M. Kuang, and C.-P. Sun,
Generalized ultrastrong optomechanical-like coupling, Phys.
Rev. A 101, 063802 (2020).

[13] M. Kounalakis, Y. M. Blanter, and G. A. Steele, Flux-mediated
optomechanics with a transmon qubit in the single-photon
ultrastrong-coupling regime, Phys. Rev. Research 2, 023335
(2020).

[14] S. Ashhab and F. Nori, Qubit-oscillator systems in the
ultrastrong-coupling regime and their potential for preparing
nonclassical states, Phys. Rev. A 81, 042311 (2010).

[15] W.-j. Gu, G.-x. Li, S.-p. Wu, and Y.-p. Yang, Generation of non-
classical states of mirror motion in the single-photon strong-
coupling regime, Opt. Express 22, 18254 (2014).

[16] C. Sánchez Muñoz, A. Lara, J. Puebla, and F. Nori, Hy-
brid Systems for the Generation of Nonclassical Mechanical
States via Quadratic Interactions, Phys. Rev. Lett. 121, 123604
(2018).
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