
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Zhu, Jingwei; Peng, Jun; Zhang, Liang; Truong, Linh
Improving Business Process Resilience to Long-tailed Business Events via Low-code

Published in:
2022 IEEE International Conference on Web Services (ICWS)

DOI:
10.1109/ICWS55610.2022.00057

Published: 16/09/2022

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Zhu, J., Peng, J., Zhang, L., & Truong, L. (2022). Improving Business Process Resilience to Long-tailed
Business Events via Low-code. In C. A. Ardagna, N. Atukorala, B. Benatallah, A. Bouguettaya, F. Casati, C. K.
Chang, R. N. Chang, E. Damiani, C. G. Guegan, R. Ward, F. Xhafa, X. Xu, & J. Zhang (Eds.), 2022 IEEE
International Conference on Web Services (ICWS) (pp. 343-348). IEEE.
https://doi.org/10.1109/ICWS55610.2022.00057

https://doi.org/10.1109/ICWS55610.2022.00057
https://doi.org/10.1109/ICWS55610.2022.00057


Improving Business Process Resilience to
Long-tailed Business Events via Low-code

Jingwei Zhu, Jun Peng, Liang Zhang
School of Computer Science, Fudan University

Shanghai Key Laboratory of Data Science
Shanghai Institute of Intelligent Electronics & Systems

Shanghai, China
{jwzhu20, jpeng21, lzhang}@fudan.edu.cn

Hong-Linh Truong
Department of Computer Science,

Aalto University
Espoo, Finland

linh.truong@aalto.fi

Abstract—Among different types of changes, a specific type
named long-tailed change (LTC), induced by wide-spectrum and
sporadic events (hereafter long-tailed business events (LBEs),
poses fresh challenges to available change management solutions
in business process management. The disorder in economic and
social life caused by the competition of COVID-19 epidemics and
countermeasures all over the world fully demonstrates the impact
of this new change management problem. Based on the principle
of separation of concerns, this paper proposes a systematic
framework to solve the above problem. The solution consists of a
low-code mechanism for process adaptation and business policy
conformance. As a result, front-line practitioners can quickly
react to changes by using a domain-specific language (DSL) while
a corresponding verification of functional and non-functional
attributes maintains compliance with business constraints. We
validate the solution through a case study of an e-commerce
scenario during the COVID-19 pandemic.

Index Terms—Business process, long-tailed business event, low-
code, domain-specific language, process adaptation.

I. INTRODUCTION

Change management of business processes (BPs) has be-
come an active research topic in business process management
(BPM) [1]–[4] and in service-oriented computing (SOC) [5].
Although there are numerous process change management
schemes, there is a lack of effective solutions to a special
kind of change, i.e., long-tailed change (LTC), of processes
caused by long-tailed business events (LBEs) due to their wide
spectrum and sporadic nature. From the impacts of COVID-
19 on the global economy, it is obvious to see the damage
in functionality loss and destruction of the non-functional
attributes of business processes. In a word, LTC strongly
hinders business continuity and hurts BP resilience.

Consider an imaginary online grocery chaining business,
named CAICAI, which provides non-staple foods for residents
in many cities in China. Each CAICAI’s franchisee (front-line
in a general sense) operates independently but all franchisees
share a common business process model shown as Fig. 1 (a).
For quality assurance and brand control, the franchiser (back-
end in a general sense) enforces strict governance rules on the
business and handles all changes in business processes.

Everything goes smoothly until COVID-19 came. New
problems have steadily emerged and almost perished the
business of franchises. Because of the dynamic evolution of

Fig. 1. The business process model of the online grocery chain store CAICAI
(a), and the real-time epidemic map of Shanghai (b) and Beijing (c).

the epidemic as in Fig. 1 (b) and frequent adjustment of
countermeasures, CAICAI’s business governance scheme is
paralyzed. Orders cannot be fulfilled owing to the lockdown of
communities (functional failure). Deliveries delay from time
to time due to tightened management policy on visitors (non-
functional failure). Even worse, situations are different from
city to city, e.g., in Shanghai (b) in contrast to in Beijing (c)
in Fig. 1, the policies of municipal governments for epidemic
control are distinct, and the pace of policy change varies.
The franchiser can no longer afford to provide customized
solutions for franchisees everywhere (the LTC requirement),
and the back-end IT department is unable to modify process
models in keeping up with the pace of the situation evolution
(the timeliness of solutions).

LTC is tricky because:

• Although it significantly hurts the business and induces
LTC, the LBE is accidental and sporadic, which must be
reacted to, but exists in too many situations. Thus, it could
hardly be learned or predicted by automated analytics.
COVID-19 and natural disasters are such a kind of LBE;

• LTC cannot be tackled proactively. If we could capture
LBEs, corresponding LTCs are still hard to fulfill because



of their nature of wide variety in types. Too many
gateways in business processes will produce spaghetti-
like models that are hard to understand and govern;

• When an LTC appears, current process-aware information
system (PAIS) cannot react to it timely. Classic change
management techniques in BPM are too stiff to control
the trade-off between flexibility and compliance.

Some of these challenges have been recognized recently,
but have not been effectively addressed yet. Technology such
as CMMN can adapt to new scenarios, but it heavily relies
on the manual guidance of knowledge workers, which cannot
meet the BPM capacity required at the production level as
BPMN does. DecSerFlow [6] and its successor Declare [7]
have presented extreme flexibility for process models via a
declarative formal modeling language, but they are yet widely
accepted by practitioners. With traditional PAIS, business prac-
titioners, decision-makers, domain experts, and IT technicians
lack novel frameworks to quickly cooperate but rely on a
long bureaucratic procedure from LTC perception to business
adaptation, to technical specification and deployment.

This paper focuses on issues faced by PAIS in response
to LTC, and the challenge of the conflict between PAIS
flexibility and compliance. We leave how to capture LBE
and how to extract LTC from LBE for further research. The
study contributes a set of practical techniques to improve the
resilience of PAIS in the face of LTC, i.e., the front-line reacts
to LTC timely via domain-specific language (DSL) annotations
according to local situations, the back-end specifies core
business constraints, and a tool embeds annotations into the
PAIS engine and verifies constraints.

The rest of this paper is organized as follows: Section II
discusses related work. Section III highlights our framework
to solve resilience issues. Section IV elaborates the annota-
tion mechanism for the front-line to react to LTCs and the
constraint verification mechanism for the back-end to make
reactions to LTCs comply with business regulations. Section
V conducts a case study to explain the effectiveness of our
framework. Section VI concludes the study.

II. RELATED WORK

Process change/flexibility: There are plenty of studies on
change/flexibility of business processes, at model level (static
change) or at instance level (dynamic change), e.g., [1],
[8], [9]. Two distinguished works on this topic are worth
highlighting. Weber et al. [2] suggest a set of change patterns
for modifying process models. Song and Jacobsen [5] give a
comprehensive survey of process change. Our work is different
from the above solutions in that we develop a low-code
mechanism and a smart reaction scheme by separating the
adaptation into the collaboration of front-line and back-end.
Process variability/configuration: Studies about variant fam-
ilies [10] or process configuration [11]–[14] can deal with
process changes to some extent. They rely on a common
assumption that all changes have to be predictable, which is
not true in unpredictable LBE settings. On the contrary, our
method focuses on LTC induced by LBE.

Reaction to long-tailed changes: Our early studies have
noticed the existence of LBE and provided some ad hoc
solutions, e.g., [15], [16], for LTC induced by LBE. Inspired
by these previous studies, we now develop a systematic frame-
work for LTC and a more elegant annotation implementation
to react to LTC. The solution in this paper does not modify
process engines, and the DSL interface is more friendly to
business persons.

III. FRAMEWORK BASED ON SEPARATION OF CONCERNS

Given the characteristics of LTCs, we argue that front-line
business persons, rather than IT persons, are the most suitable
role to react to LTCs quickly. It is of paramount importance
w.r.t. costs and efficiency, if a business person can adjust the
business process models once a particular LTC occurs. From
the effectiveness perspective, managers of a franchise (known
as process participants in [17]) are the first to perceive such
changes and will eventually react to changes. In contrast, IT
technicians who usually implement the business processes or
administrators who govern the business cannot feel the impact
of these changes unless a long period has passed. From the
efficiency perspective, measures based on local conditions and
contexts avoid the waste of investment in any contingency
plans for LTCs. To realize this vision we develop a process
behavior intervention framework1 that allows business persons
to react to LTC with low-code annotations.

A. Separation of Concerns

We apply the separation of concerns principle to resolve the
conflict of flexibility and business compliance. At the front-
line, business persons focus on customizing solutions to LTCs
by facilities assigned; decision-makers and IT architects at the
back-end are concerned about preparing these facilities and
guarantee all activities are compliant with business regulations;
the PAIS supports business process adaptation. As a result,
the adaptation of business processes becomes the cooperation
among these roles whose responsibilities are summarized in
Table I. The setting greatly improves flexibility and agility.

B. Intervention in the Behavior of Business Processes

To react to LTCs, front-line business persons need to
intervene in the behavior of business processes. Unlike IT
persons, business persons lack the technical skills to directly
modify executable process models. To enable business persons
to augment the behavior of business processes, we employ
an annotation mechanism. When an LTC occurs, a business
person can use a DSL to annotate the process model. The
annotation can intervene in the behavior of the business
process by modifying the values of its process variables.

C. Compliance with Business Regulations

Compliance with business regulations, which is vital for
successful execution of business processes, must still be
guaranteed when dealing with LTCs. To make reactions to

1The source code and documents can be reached at https://github.com/
SOARingLab/RESILIENCE-ICWS2022

https://www.omg.org/spec/CMMN
https://github.com/SOARingLab/RESILIENCE-ICWS2022
https://github.com/SOARingLab/RESILIENCE-ICWS2022


TABLE I
RESPONSIBILITIES OF ROLES IN LTC REACTION ACCORDING TO SOC PRINCIPAL

Abbreviations: FC: functional constraint. NFC: non-functional constraints. BoD: board of directors. SA: system architect.

Role Concern Task Notation

Front-line (franchise manager) Continuity of local busi-
ness

Localization of business process adaptation via anno-
tation, API binding, localization of NFC parameters

Annotation in green and param-
eter in green (Fig. 4)

Back-end (franchiser, headquar-
ters, BoD, SA, IT engineers)

Business compliance, vital
business performance

DSL design, type system definition, third-party API
registry establishment, FC and NFC

FC in red and NFC in orange
(Fig. 4)

PAIS Business process adapta-
tion support

Transformation of annotation, model construction for
FC and NFC, verification of FC and NFC

LTCs comply with business regulations, we enable back-end
persons to specify functional and non-functional constraints on
business processes. Our framework will verify whether process
models still meet these constraints after adaptation.

IV. DSL-BASED ANNOTATION AND CONSTRAINTS
VERIFICATION

As a generic means, an annotation in BPMN is just a kind of
auxiliary text that is not interpreted by the process engine. In
[15], we use annotations on business process models to instruct
a modified process engine to adjust the behavior of models
in reacting to LTCs. This paper inherits the basic idea, but
develops a smarter script mechanism to automatically explain
the annotations added by front-line business persons in DSL
snippets, which can intervene in business process behavior but
with a more elegant non-intrusive reaction to LTC.

Compared to directly modifying the process model, adding
DSL annotations has two advantages. First, DSL is more user-
friendly for business persons, so the front-line can deal with
LTCs more agilely. Second, it is lightweight to match the
nature of LTCs that adapts to current situations and is easy
to drop changes afterward. It is flexible enough while keeping
the stability of process models to a certain extent.

A. Grammar of DSL

Back-end IT persons design a DSL for their business. For
example, the back-end of CAICAI designs a DSL, whose
grammar is shown in Fig. 2. The DSL can specify, e.g., when
a certain condition is met, some actions should be done to
respond to the condition.

The current status of a process instance is reflected by the
values of its process variables. In the DSL, a condition is ex-
pressed in whether process variables have certain values. The
values of process variables determine the execution behavior
of the process instance in the future. In the DSL, an action is
an assignment of a value to a variable.

B. Value Ranges of Process Variables

Front-line business persons intervene in the behavior of
a business process by modifying the values of its process
variables. In order for the process to execute correctly, process
variables have certain value ranges. Back-end persons specify
the value ranges of process variables, and front-line persons
can specify more concrete value ranges according to their local

code = { sentence } ;
sentence = "WHEN" , condition ,

{ "SET" , action } ;
condition = variable , ( "==" | "!="

| "<" | "<=" | ">" | ">=" ) , value
| condition , "AND" , condition
| condition , "OR" , condition ;

action = variable , "=" , value ;
variable = ? variable identifier ? ;
value = ? literal value ? | variable

| value , ( "*" | "/" ) , value
| value , ( "+" | "-" ) , value
| "(" , value , ")" ;

Fig. 2. Grammar of the DSL for CAICAI.

TABLE II
THE VALUE RANGES OF PROCESS VARIABLES IN CAICAI’S PROCESS

Process variable Type Value range
order status String ”pending”, ”finished”, or ”canceled”
region String Non-empty strings
delivery method String ”home delivery”, ”contact-

less locker”, or ”at store”
amount Number Decimals greater than 0

situations. For example, the value ranges of process variables
in CAICAI’s process are shown in Table II.

C. Binding Third-party APIs

Some third-party APIs provide information about the cur-
rent situation and local contexts that is helpful in responding
to LTCs. A blog [18] introduces a method of calling public
APIs without programming. We employ this method to let
front-line business persons bind third-party APIs. A front-line
person can bind a third-party API by specifying the URL of
the API, variables as arguments, and variables to store return
values. In addition, back-end persons can establish an API
repository to guide front-line persons to third-party APIs.

D. Enhanced Process Modeler

In order to facilitate front-line persons to annotate process
models with DSL, we develop an enhanced process modeler
based on bpmn.io. Inspired by [16], we design a syntax-
directed editor for writing DSL codes, so that the syntax
correctness of DSL codes can be guaranteed.

https://bpmn.io/


Fig. 3. Interface for specifying change annotations based on DSL.

A front-line person can choose an activity and add a text
annotation to it. Then, the business person can write a DSL
code on the text annotation using the syntax-directed editor,
as shown in Fig. 3.

For example, a franchise manager of CAICAI decides to
annotate the process model, so that the delivery of goods
can be adjusted according to the risk level of the region the
customer is in:

• If the risk level is high, goods cannot be delivered at all,
and the order has to be canceled.

• If the risk level is medium, goods will be placed in a
contactless locker near the customer.

• If the risk level is low, goods will be delivered to the
customer’s home as usual.

The franchise manager adds a text annotation to the activity
Issue goods, in order to adjust the delivery of goods, as shown
in Fig. 4. The risk level is obtained from a third-party API and
is stored in the variable risk level. If its value is ”high”, the
variable order status should be set to ”canceled”, so that the
order will be canceled; if its value is ”medium”, the variable
delivery method should be set to ”contactless locker”, so that
goods will be placed in a contactless locker.

E. Process Model Transformer

Typically, process engines will ignore text annotations while
executing a process model. We develop a process model
transformer to let annotations go into effect. The transformer
can transform a process model annotated with DSL into an
ordinary process model, so that existing process engines can
perceive the semantics of text annotations when executing the
process model. During transformation, each text annotation
will be converted into a script task placed before the activity
to which the text annotation is added.

The process model transformer includes a DSL code trans-
lator which can translate a DSL code into a Groovy code.
The Groovy code will be embedded into a script task. Groovy
codes embedded in script tasks can be executed by a process
engine, such as Camunda or Activiti.

The process model transformer works independently of
process engines. With the help of the transformer, we can
continue to use existing process engines directly, instead of
modifying existing process engines or developing new process
engines. In contrast to the method in [15], which has to modify

Fig. 4. The process model of CAICAI with annotation, a set of functional
constraints, and a set of non-functional constraints. Green parts are customized
by the front-line; red and orange ones are specified by the back-end.

process engines, our framework has a significant advantage of
non-invasive enhancement of BPM systems.

F. Constraints and Verification

The compliance is enforced by modeling and verifying
functional and non-functional constraints attached to annotated
business process models.
Functional constraints: We employ DecSerFlow [6] to model
functional constraints, i.e., the execution relations between
activities. For example, the back-end specifies the functional
constraint payment must be fulfilled once goods are delivered
with the notation Deliver goods •→ Process payment that is equiv-
alent to the LTL formula □(Deliver goods→♢Process payment), as
depicted as the red arrow in Fig. 4. Then we can verify if
all executable paths fulfill the constraint.
Non-functional constraints: Non-functional constraints and
verification are delegated to G-STNU [19], e.g., the green
brackets customized by a franchisee and orange texts and
arrows specified by the franchiser in Fig. 4. Controllable
temporal constraints are expressed with single brackets such
as [10, 30], whereas uncontrollable ones are expressed with
double brackets such as [[1, 10]]. Then we can test if we could
set the controllable ones to meet all constraints regardless of
those uncontrollable ones. Note that besides time constraints
by STNU [20], G-STNU supports more general qualitative and
quantitative constraints. Details are refereed to [19].

V. CASE STUDY

We conduct two case studies for the proposed solution,
one to evaluate the effectiveness/efficiency, and the other to
validate the applicability for multiple open-source BPM suites.
Effectiveness/efficiency validation: We emulate different sit-
uations for CAICAI to fight against the situation of the
Omicron outbreak in Shanghai since March 2022.

https://www.groovy-lang.org/
https://camunda.com/
https://www.activiti.org/


Fig. 5. Illustration of epidemic evolution and corresponding adjustments of countermeasure policies in Shanghai, and CAICAI’s adaptation actions for its
business process:
(1) The timeline in the middle shows the development in the number of asymptomatic infections (black dash line) and confirmed infections (black solid
line) of Omicron officially reported in Shanghai from 2022-03-01 to 2022-04-20. The Omicron outbreak resulted in the long-tailed business event (LBE), the
frequent adjustment of countermeasure policies (texts in green, orange, or red in boxes) poses a series of long-tailed change (LTC) requirements (marked
as explosion marks at the middle area) that disrupt CAICAI’s original franchising business due to various failures, e.g., orders cannot be fulfilled owing to
the lockdown of communities (the functional failure), deliveries delay from time to time due to tightened management policy on visitors (the non-functional
failure), the franchiser is unable to modify process models in keeping up with the pace of the situation evolution (the timeliness failure).
(2) CAICAI’s customized adaptation agilely by each franchisee according to the local situations leads to various change decisions depicted in text boxes
linked to events.
(3) CAICAI changes its business processes (in the top and bottom parts of the figure) and controls its business compliance via the functional constraints (in
red arrows between tasks) and non-functional ones (in yellow arrows among tasks) specified by the franchiser. The DSL annotation enables each franchisee
to react in time to LTC and carries out her business smoothly. In general, the proposed method enhances the resilience of CAICAI’s PAIS.
Further details of the example can be referred to the GitHub repository of our project.

https://github.com/SOARingLab/RESILIENCE-ICWS2022


With the development of the epidemic situation (see Fig. 5),
the epidemic counter policy of the municipal government is
also changing rapidly, from the initial non-interference with
daily life to the temporary closure of certain buildings or
communities, to the separated treatment under the lockdown
of the whole city on April 1 (see Fig. 5). On the contrary,
Wuhan, which had the greatest impact of COVID-19 in 2020,
did not have any infection. Other cities (such as Beijing in Fig.
1 (c)) had only sporadic infection cases, and the prevention and
control measures were much looser.

CAICAI decided to change its business governance to the
cooperation of the franchiser and franchisees: according to the
solution proposed in this paper, each local franchisee can tailor
her business processes through DSL annotation in response to
her perception of LBEs, including the adjustment of process
execution path and non-functional attributes (e.g., extending
delivery time). The franchiser focuses only on regulating
the functional and non-functional constraints on CAICAI’s
core business and verifying the compliance of the process
customized by franchisees. Some LBEs and corresponding
reactions are shown in Fig. 5. As a result, CAICAI obtains
the following benefits from the proposed solution:

• Franchise managers work on the front line. They can
sense the change in epidemic counter policies in the first
place. As an ancient Chinese saying goes: the duck knows
first when the river becomes warm in spring.

• Since franchise managers actually live in their cities,
they can get first-hand experience of the exact epidemic
counter policies. They know isolation policies, which
communities are closed, etc.

• Each franchise manager is only responsible for reacting
to LTCs in his or her own franchise. The effort to react to
LTCs is distributed to each franchise manager. He or she
has enough time to frequently adapt the process model.

• Adapting via annotation is lightweight. It makes process
models more stable. Modification of process variables
is limited to their value ranges. Functional and non-
functional constraints are imposed on process models.
Correctness of adaptation can be easily ensured.

Applicability validation: We have transported the business
processes of CAICAI from Camunda to other popular open-
source business process engines, i.e., Activiti and jBPM.
Despite some syntactic differences, our solution can be suc-
cessfully applied to all the three platforms. Whenever an LTC
occurs, annotations attached to deployed process models can
react to LTCs effectively and agilely, which demonstrates the
excellence of the solution.

VI. CONCLUSION AND FUTURE WORK

This paper develops an adaptation framework for PAIS to
LTC induced by LBE. When an LTC occurs, front-line busi-
ness persons can use a DSL to annotate process models and
change the process behavior via modifying process variables in
addressing LBE. Based on the SoC principle, the framework
also helps back-end experts to impose functional and non-
functional constraints on business processes. In a word, this

approach neatly balances the conflict between flexibility and
compliance of the process models.

In the future, we will enhance the approach in two di-
rections, i.e., leveraging the framework to support process
instance adaptations and supporting the negotiation mechanism
in constraint specification and verification.

Acknowledgement: This work is supported by Projects of
International Cooperation and Exchanges NSFC-DFG (Grant
No. 62061136006)

REFERENCES

[1] W. M. Van Der Aalst and T. Basten, “Inheritance of workflows: an
approach to tackling problems related to change,” Theoretical computer
science, vol. 270, no. 1-2, pp. 125–203, 2002.

[2] B. Weber, M. Reichert, and S. Rinderle-Ma, “Change patterns and
change support features–enhancing flexibility in process-aware infor-
mation systems,” Data & knowledge engineering, vol. 66, no. 3, pp.
438–466, 2008.

[3] W. Xu, J. Su, Z. Yan, J. Yang, and L. Zhang, “An artifact-centric
approach to dynamic modification of workflow execution,” in Procs.
of CoopIS’11. Springer, 2011, pp. 256–273.

[4] M. Reichert and B. Weber, Enabling Flexibility in Process-Aware
Information Systems. Springer, 2012.

[5] W. Song and H. Jacobsen, “Static and dynamic process change,” IEEE
Transactions on Services Computing, vol. 11, no. 1, pp. 215–231, 2018.

[6] W. M. van der Aalst and M. Pesic, “Decserflow: Towards a truly
declarative service flow language,” in Procs. of WS-FM’06. Springer,
2006, pp. 1–23.

[7] W. M. van der Aalst, M. Pesic, and H. Schonenberg, “Declarative work-
flows: Balancing between flexibility and support,” Computer Science -
Research and Development, vol. 23, no. 2, pp. 99–113, 2009.

[8] F. Casati, S. Ceri, B. Pernici, and G. Pozzi, “Workflow evolution,” Data
& Knowledge Engineering, vol. 24, no. 3, pp. 211–238, 1998.

[9] M. Reichert, S. Rinderle, U. Kreher, and P. Dadam, “Adaptive process
management with adept2,” in Procs. of ICDE’05. IEEE, 2005, pp.
1113–1114.

[10] A. Schnieders and F. Puhlmann, “Variability mechanisms in e-business
process families,” in Procs. of BIS’06. DBLP, 2006, pp. 583–601.

[11] M. La Rosa, M. Dumas, A. H. Ter Hofstede, and J. Mendling, “Config-
urable multi-perspective business process models,” Information Systems,
vol. 36, no. 2, pp. 313–340, 2011.

[12] A. Hallerbach, T. Bauer, and M. Reichert, “Capturing variability in
business process models: the provop approach,” Journal of Software
Maintenance and Evolution: Research and Practice, vol. 22, no. 6-7,
pp. 519–546, 2010.

[13] M. Moon, M. Hong, and K. Yeom, “Two-level variability analysis for
business process with reusability and extensibility,” in Procs. COMP-
SAC’08. IEEE, 2008, pp. 263–270.

[14] M. L. Rosa, W. M. V. D. Aalst, M. Dumas, and F. P. Milani, “Business
process variability modeling: A survey,” ACM Computing Surveys,
vol. 50, no. 1, pp. 1–45, 2017.

[15] X. Chen, H. Cao, L. Ye, and L. Zhang, “Fulfilling functional demands
of bpm in long-tailed change environments,” in Procs. of CCF ICSS’20,
2020.

[16] H. Cao, X. Chen, L. Zhang, T. Zhang, and X. Xiao, “Guaranteeing sound
reactions to long-tailed changes a syntax-directed annotation approach,”
in Procs. of CCF ICSS’20, 2020.

[17] M. Weske, Business Process Management: Concepts, Languages, Archi-
tectures. Springer-Verlag Berlin Heidelberg, 01 2019.

[18] B. Silver, “Call public apis without programming,”
Jan 2022. [Online]. Available: https://www.trisotech.com/
call-public-apis-without-programming/

[19] J. Peng, J. Zhu, and L. Zhang, “Generalizing stnu to model non-
functional constraints for business processes,” in Procs. of CCF ICSS’22,
2022.

[20] J. Eder, M. Franceschetti, and J. Köpke, “Controllability of business
processes with temporal variables,” in Procs. of SAC’19. ACM, 2019,
pp. 40–47.

https://camunda.com/
https://www.activiti.org/
https://www.jbpm.org/
https://www.trisotech.com/call-public-apis-without-programming/
https://www.trisotech.com/call-public-apis-without-programming/

