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Abstract: Intelligent fault diagnosis (IFD) models have the potential to increase the level of automation
and the diagnosis accuracy of machine condition monitoring systems. Many of the latest IFD models
rely on convolutional layers for feature extraction from vibration data. The majority of these models
employ batch normalisation (BN) for centring and scaling the input for each neuron. This study
includes a novel examination of a competitive approach for layer input normalisation in the scope of
fault diagnosis. Network deconvolution (ND) is a technique that further decorrelates the layer inputs
reducing redundancy among the learned features. Both normalisation techniques are implemented
on three common 1D-CNN-based fault diagnosis models. The models with ND mostly outperform
the baseline models with BN in three experiments concerning fault datasets from two different rotor
systems. Furthermore, the models with ND significantly outperform the baseline models with BN
in the common CWRU bearing fault tests with load domain shifts, if the data from drive-end and
fan-end sensors are employed. The results show that whitened features can improve the performance
of CNN-based fault diagnosis models.

Keywords: CNN architecture; normalization techniques; intelligent fault diagnosis; vibration

1. Introduction

A malfunctioning rotating system is a common concern across a multitude of industries
in the modern world. A malfunction in a rotating system can be caused by a number of
reasons such as faulty bearings, broken shafts or worn gears. Typically, these faults increase
the harmful vibration of the system by exciting the rotating parts on a per revolution basis.
Often these excitations that alter the vibration profile of the system can be observed from
measurements conducted with vibration sensors such as accelerometers.

Vibration based fault diagnosis for rotating systems has been developed for decades [1].
Most developed methods can be described as two step processes of feature extraction and
fault recognition [2]. Features can be extracted from vibration data with a set of signal
processing techniques in the time domain, the frequency domain and the time-frequency
domain [3]. Typically, the features most sensitive to various faults are then exploited in fault
recognition. Some of the studied fault recognition models employing traditional machine
learning rely on, for example, random forests [4], support vector machines [5] and shallow
neural networks [6]. Despite the successful results related to these techniques, they still
suffer from a few disadvantages. Designing the signal processing techniques for feature
extraction requires manual labour and often task-specific feature selection. Furthermore,
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the learning capacity of the models limits their performance if many non-linear relations
between the input space and the fault label space are required.

Currently, deep learning (DL) seems like a promising solution for the challenges
related to the other machine learning (ML) related fault diagnosis techniques. Deep learning
requires no manual feature extraction nor sophisticated signal processing techniques, for it
can be utilized to process the raw vibration data directly. The advantage of DL algorithms
originates from their capacity to learn hierarchical and non-linear features autonomously
between the raw data and the fault label space [7]. This implies that both steps, the feature
extraction and the fault recognition can be simultaneously optimised and combined under
one deep learning model. Furthermore, some studies have indicated that features acquired
with deep learning increase the machine fault classification accuracy and noise tolerance
when compared to features acquired with signal processing tools [8,9].

These advantages have attracted a growing amount of research interest toward
deep learning based fault diagnosis [1,10,11]. Many deep learning architectures, such
as deep-belief networks (DBN) [12], autoencoders (AE) [9] and recurrent neural networks
(RNN) [13] have been proposed for anomaly detection and fault diagnosis tasks. Despite
these impressive results, learning the rich features required for fault recognition is difficult.
Fortunately, many works have shown that convolutional neural networks (CNN) are effec-
tive in extracting features from vibration data [1,10,14]. For example, a number of studies
have shown that 1D-CNNs can diagnose faults from time-series data [15-18]. Furthermore,
a number of studies have also demonstrated that CNNs can effectively diagnose faults from
the vibration frequency spectrum [19-21]. In addition, some studies have demonstrated the
efficiency of 2D-CNNs for diagnosing the faults from time-frequency spectrograms [19,22].
Furthermore, CNN-based fault diagnosis models seem to be at the core of the most recent
research branch of fault diagnosis concerning transfer learning [23-25]. Although deep
learning based fault diagnosis models have been extensively studied and the focus seems
to be shifting towards transfer learning, the techniques improving the feature extraction of
the current models are still relevant.

Many of the recent CNN-based state-of-the-art deep learning algorithms for fault
diagnosis rely on batch-normalisation (BN) [15-17]. BN efficiently accelerates the model
convergence and improves model generalisation [26,27]. In essence, this standardisation
method centres and scales the layer activations based on the mini-batch statistics [26].
Centring and scaling each layer activation per mini-batch effectively stabilises the gradient
distribution for each corresponding weight [27]. Stabilised gradient distribution increases
the consistency of the gradient descent. However, BN can be considered an incomplete
normalisation method, since its design includes a compromise that separates it from
whitening [26]. In addition to centering and scaling, whitening includes decorrelation,
which has been argued to simplify the optimisation of the model weights by making the
adjacent weights independent [28]. Decorrelation has been excluded from BN due to the
heavy toll it introduces to the computation [26]. Fortunately, recent studies have shown how
to implement full whitening of the activations without excessive computational cost. These
studies have also shown that whitening improves the learning results over BN [29-31].

Despite the promising results regarding feature whitening techniques, CNN-based
fault diagnosis models still mostly rely on BN. This study shows how whitening the layer
activations improves the current state-of-the-art 1D-CNN-based algorithms for machine
fault diagnosis. The novel experiments employ three previously published fault diagnosis
models. These commonly known models are Ince’s model [32], WDCNN [15] and SRD-
CNN [18]. The experiments reveal the fault diagnosis accuracies of these baseline models
in parallel with corresponding models employing a whitening normalisation technique
instead of BN. The whitening technique is adapted from an earlier study showing that
decorrelating layer inputs channel-wise and pixel-wise consistently improved 2D-CNN-
based model performance and training convergence on image data [31]. This “network
deconvolution” (ND) operation, developed in [31], is further adjusted and integrated with
the three 1D-CNN-based fault diagnosis models for time series data in this study. The ex-



Appl. Sci. 2022,12, 4411

30f22

periments of this work complement the previously reported results with ND performance
in 1D-CNN-based models. The three experiments in this study employ two vibration
datasets acquired from different rotor systems. The first dataset is the thoroughly studied
bearing fault dataset produced by Case Western Reserve University [33]. The second
dataset consists of vibration data from three azimuth thrusters before and after bearing
and gear related faults were noticed. Each experiment shows that models with whitened
features achieve high performance. More specifically, the models with whitened features
achieve mostly better or significantly better diagnosis accuracies compared to the baseline
models in the three experiments.

2. CNNs and Normalization Layers

Convolutional neural networks (CNNSs) typically consist of convolutional layers,
pooling layers, normalisation layers and a few fully connected layers. In vibration-based
fault classification, the final fully-connected layer can be considered as the classifier in the
fault recognition step. The other fully-connected layers, convolutional layers, normalisation,
and pooling layers are used for the feature extraction step.

2.1. 1D Convolutional Layer

1D convolutional layers consist of filters computing cross-correlations over local areas
of the input. Each filter consisting of N kernels with M weights computes an output value
for a local area that consists of N x M values, where N denotes the number of channels
e.g., different vibration sensors at the first layer and M denotes the length of the local area
e.g., time steps. The filters process the local areas subsequently along the length axis with
the same set of weights. Equation (1) shows this cross-correlation computation for a given
local area:

N
y ‘
W=y kj.,n x4 b},n 1)
n=0

where yjfi denotes the i-th local area output value of j-th filter on the layer I, k;/n is the

kernel for n-th channel of j-th filter on the layer /, xli! is the n-th channel of the i-th local
area, * denotes the dot product and b} , 18 the bias term of the kernel n of filter j on layer

I. To conclude, the output value y;’i is the sum of the dot-products between the kernels
and the local areas computed at each corresponding input channel n. This computation is
commonly referred to as the depth-wise convolution.

The computation at a given convolutional layer can be formulated as matrix multi-
plication Xw. With one dimensional data and a single input channel, for example, time
series data from a single sensor at the first layer, the rows in matrix X would correspond
to each local area x%’i and w corresponds to a column vector of the weights in the only
kernel kjl-’1 of the filter j. Typically, there are multiple input channels to each convolutional
layer, and the number of kernels in a convolutional layer filter equals the number of input
channels to that layer. The local areas xij' of the latter input channels are concatenated to the
transformed data matrix X, so that each local area xiz, corresponding to the i-th convolution,
are on the same row. Similarly, the weights of each kernel k;, for all channels # are vertically
concatenated to the column vector w. This transformation of input data to matrix X is
similar to the commonly known im2col transformation with the difference that time series
data is one-dimensional. The transformation is visualised in Figure 1.
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Figure 1. Convolutional layer computation composed in the matrix multiplication form visualised
over two non-overlapping local areas and two channels.

2.2. Pooling Layer and ReLU Activation

Pooling layers efficiently reduce the model complexity and redundant information
passed between the layers in CNNSs. Each pooling layer consists of kernels that slide
through the input array similar to the convolution layer kernels. Pooling layers rely on
sub-sampling each local area under the kernels’ receptive field. The most common pooling
layers are the max-pooling and the average-pooling layer. Max-pooling has been shown to
consistently outperform average pooling [34]. A max-pooling layer compresses the signals
between layers by concatenating the maximum values of each local area for every channel
separately. Equation (2) demonstrates the max-pooling operation:

9% = max(y") b)
where yj-'k denotes the values under the max-pooling kernel receptive field from the k-

th local area of the j-th channel between convolutional layers / and I 4+ 1, and ij-’k is the

corresponding maximum value.

Typically between consequent cross-correlation computations, the output values are
processed with a non-linear activation function, such as the rectified linear unit (ReLU)
shown in Equation (3). The processed output values x}“'i can then be passed forward to
the next layer I + 1.

xé“'i = ReLU(y;'i) = max(0, yj.’i) ®)

2.3. Batch Normalisation

Batch normalisation (BN) layers are additional layers that fix the activation distribu-
tions. This technique reduces the effect of internal covariate shift, a phenomenon hindering
stochastic gradient descent optimisation [26]. Internal covariate shift can be described as a
drastic change in the activation distributions due to the changed network parameters. BN
normalises each activation separately with activation mean j;, and variance 0 estimated
from the mini-batch statistics. Furthermore, BN learns an additional set of scale ¢y and
shifts § parameters by backpropagation. The computations related to BN are shown in
Formulas (4)-(7).

1 m
Hp < — )X 4)
mz:Zl !
1 m
o5 ) (i = wy)? )
i=1
7 e S M ®)
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In Formulas (4)—(6), x; denotes the i-th convolution layer output values in a batch, i.e.,
X; = yj-'l as in Equation (1). More explicitly, x; € X = [x1_,], where X is the batch with m

convolution layer activations yé’i. Alternatively, BN can operate on the activation values
given by the ReLU-activation function in Equation (3). In Formulas (4) and (5), the mean p,
and the variance 02 are computed from the distribution of the corresponding output values
in the batch. Formula (6) shows the normalisation computation, where ¥; is the normalised
output, and € is a small constant introduced for numerical stability. In Formula (7), y; is the
BN layer output and y and 8 are weights for scaling and shifting activations, optimised
with backpropagation. Furthermore, during training the moving averages of y; and o7 are
collected and utilised during testing.

2.4. From BN to Whitening Features

Image data may contain correlating data between nearby pixels and channels. For
example, the pixels nearby a blurry object in an image correlate spatially. In addition, a
grey object in an RGB image results in channel-wise correlation, since the RGB values are
close to equal in the grey pixels. Machine vibration data may contain a similar correlation.
For example, nearby sensors likely collect similar vibration patterns. Such data can hamper
the optimisation process by inducing a correlation between the features learned by the
neural network. Moreover, correlated features have been deemed problematic for neural
network optimisation in the past [28].

Although BN has been shown to be effective in numerous state-of-the-art works [35-38],
it merely scales and shifts the activations. BN was not designed to decorrelate the features
due to the expense of computing the inverse square root of the activation covariance ma-
trix and the corresponding derivatives. Nevertheless, several normalisation techniques
that also decorrelate features have been proposed. These techniques typically seek better
optimisation results by whitening the activations directly. Activations can be whitened
for example according to the population statistics [39,40]. However, the estimation of the
population statistics is hindered by the computational constraints and the changes to the
activation distributions caused by the weight updates during optimisation [27]. Fortu-
nately, these problems can be avoided by whitening the activations based on the mini-batch
statistics. Such techniques are, for example, decorrelated batch normalisation (DBN) [30],
IterNorm [41] and network deconvolution [31]. These three techniques first estimate the
covariance matrix of the activations in the batch, as shown in Equation (8). In Equation (8),
X € RE*N js the activation matrix with C channels and N samples, and u# € RC is the
mean of the N activations in the batch. The batch of activations is then whitened with
the inverse square root of the covariance matrix, i.e., the whitening matrix, and the batch
mean, as shown in Equation (9). DBN has a slight disadvantage since it computes the
whitening matrix with eigenvalue decomposition. IterNorm was proposed to solve the
computational problems of DBN. IterNorm approximates the inverse square root of the
whitening matrix with Newton’s iteration. Network Deconvolution is similar to IterNorm.
However, it employs coupled Newton-Schulz iteration, which was shown both a quick and
stable approximation technique for the whitening matrix [31].

Cov = —(X—p) (X—p) ®)

z|=

X = (X — p)Cov ™2 ©)

3. Proposed Improvement for Fault Diagnosis Models

This study seeks to improve the current state-of-the-art CNN-based techniques for
diagnosing faults from raw vibration data. The experiments in this study adapt three
reportedly highly performing 1D-CNN models, remove all BN functions and normalise the
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layer inputs with ND instead. The study then evaluates the original models employing
BN in parallel with the corresponding models employing ND. The baseline models are
known as Ince’s model [32], the stacked residual dilated convolutional neural network
(SRDCNN) [18] and the Deep Convolutional Neural Networks with Wide First-layer Ker-
nels (WDCNN) [15]. Although numerous other fault diagnosis models exist, these were
chosen due to their simple and effective architectures. For example, WDCNN has been
shown to produce the best bearing fault diagnosis results with slight modifications as an
ensemble [16] and with an additional RNN-path [17]. However, the contrast in the results
between models employing ND and BN can be sufficiently shown with these models
without additional modifications.

This section is divided into three parts. Section 3.1 visits briefly the baseline model
architectures. Then, Section 3.2 describes the ND practical implementation details. Finally,
some general training algorithmic design choices are presented in Section 3.3.

3.1. Model Architectures

Ince’s model [32] was one of the first CNN-based models proposed for vibration-
based fault diagnosis of a rotating system. The original study showed that the model
could accurately detect bearing faults from induction motor currents. The original model
architecture consists of three CNN layers (Conv1D) and two fully-connected layers (FCL).
The original model was slightly modified for the experiments in this study. Table 1 details
the modified model architecture. Furthermore, Figure 2 shows the corresponding feature
maps between the model layers. The modified version of Ince’s model only employs one
fully connected layer. The output space spans over 10 probabilities for every bearing
health state in the CWRU dataset. In addition, the output space can include only one value
corresponding to the probability of a fault, if the model is optimised for the binary thruster
fault detection tasks. Furthermore, BN was placed after every CNN layer, despite BN not
being mentioned in the original publication proposing Ince’s model.

Table 1. Ince’s model architecture.

Layer Kernel Size  Channels in Filters Stride Padding
Conv1D 9x1 lor2 60 5 18
Conv1D 9x1 60 40 5 4
ConvlD 9x1 40 40 9 3

FCL 1x1 400 lor10 N/A N/A
2@2048x1
60@416x1
——
40@84x1
—
| 40@10x1
\\\\ @10 400x1
;/ /D 10x1
— | L==========
i s S s ¢ v
x$ x$ ><$ %égﬁ QQ
S S S M
o o o°°

Figure 2. Feature maps of the Ince’s model employed in this study. These feature maps correspond
to a model that diagnoses the probability of 10 health states from vibration data measured with two
vibration sensors.
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WDCNN is an accurate model for vibration based condition monitoring [15]. The
model consists of two levels. The first level includes five 1D-CNN, BN and pooling layers
employed for feature extraction. The second level includes two fully connected layers with
BN for fault recognition. Table 2 details the WDCNN architecture. Furthermore, Figure 3
shows the corresponding feature maps between the model layers. The first layer filters
consist of wider 64 x 1 kernels. Each filter includes a kernel for every input channel. The
rest of the CNN layers consist of 3 x 1 kernels. After every CNN layer, there is a BN
layer, max-pooling layer and a (ReLU) activation function, in this order. All max-pooling
layers apply 2 x 1 kernel with a stride of 2. The final fully connected layers compute the
probabilities for the system health states.

Table 2. WDCNN architecture.

Layer Kernel Size Channels in Filters Stride Padding
ConvlD 64 x 1 lor2 16 16 24
Conv1D 3x1 16 32 1 1
ConvlD 3x1 32 64 1 1
ConvlD 3x1 64 64 1 1
Conv1D 3x1 64 64 1 1

FCL 1x1 192 18 N/A N/A

FCL 1x1 18 1or10 N/A N/A
2@2048x1

16@64x1
] 32@32x1
|'77””" 64@16x1

I \ [ 4@3x1 1921
. ’ — 18x1
10x1
] > > N N N & s o
R $ R $ *Qe *Qo *Qo S @ & Y
e e e P pr & QO) QC'\)
X X X X X
)(Qe )(Qé >($é )($é )($e
&\0 &\0 &\0 &\0 &\0
<& o o <& <&

Figure 3. Feature maps of the WDCNN employed in this study. These feature maps correspond to
a model that diagnoses the probability of 10 health states from vibration data measured with two
vibration sensors.

SRDCNN [18] is a promising model, which achieved relatively high accuracies in bear-
ing fault diagnosis tests in the original study. Similar to Ince’s model and WDCNN, SRD-
CNN extracts features with 1D convolutional layers and then computes the probabilities for
the system health with fully-connected layers. Table 3 lists the main components of SRD-
CNN architecture. Furthermore, Figure 4 shows the corresponding feature maps between
the model layers. The model consists of five convolutional layers and two fully-connected
layers. However, the convolutional layers of SRDCNN differ from the convolutional layers
of WDCNN and Ince’s model. SRDCNN applies dilated convolutions. Furthermore, each
convolutional layer includes two adjacent convolutional sublayers and a residual connec-
tion. These adjacent sublayers are structured similarly to the input gates in the recurrent
neural network type known as long short-term memory (LSTM). The activation values of
these sublayers are multiplied element-wise together and then added element-wise to the
residual values. The residual values are the input values to the layer passed through a third
adjacent 1D-convolutional sublayer with 1 x 1 kernels. These dilated convolutional layers
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were named residual dilated convolutional layers (RDConv1D) in the original publication.
BN is employed after every convolutional sublayer and fully-connected layer except the
convolutional sublayers with 1 x 1 kernels for residual connections.

Table 3. SRDCNN architecture.

Layer Kernel Size  Channels in Filters Stride Padding Dilation
RDConv1D 64 x 1 lor2 32 2 31 1
RDConv1D 32x1 32 32 2 31 2
RDConv1D 16 x 1 32 64 2 30 4
RDConv1D 8§x1 64 64 2 28 8
RDConv1D 4x1 64 64 2 24 16

FCL 1x1 4096 100 N/A N/A N/A

FCL 1x1 100 1or10 N/A N/A N/A

2@2048x1
W 32@1024x1
— 32@512x1
T 64@256x1
—— 64@128x1
E 64@64x1
B 4096x1

f%»\ / 100x1
L / 10x1

é
R & & R & & $ 9
& x &)
S S S s e
& & & & &
S S S S S

Figure 4. Feature maps of the SRDCNN employed in this study. These feature maps correspond to
a model that diagnoses the probability of 10 health states from vibration data measured with two
vibration sensors.

All these models can function with vibration data from an arbitrary number of sensors.
The number of input sensors corresponds to the number of input channels in the first layer
of the model. Tables 1-3 show that the number of the first layer input channels in all the
models in this study is either one or two because the datasets in this study contain vibration
data measured with one or two accelerometers. Furthermore, all these models can compute
an arbitrary number of probabilities for the health states of the rotor system. The tables
in this section show that the output dimensions of the final fully-connected layers of the
models can be either 1 or 10. These dimensions correspond to the health states in the two
datasets in this study.

Depending on the number of probabilities, this study employs two classification
functions computing the diagnosed health state from the probability values. Softmax
function, Equation (10), processes the 10 model output values into a probability distribution
of 10 probabilities that sum to 1. The diagnosed health state of the system is the label with
the highest probability. Sigmoid function, Equation (11), computes the model output value
into a probability between [0, 1]. This probability corresponds to the probability of a fault
occurring in the system.

S(z) = ——— (10)
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(11)

3.2. Whitening CNN Inputs

ND, as proposed in [31], employs the matrix multiplication composition of a convo-
lutional layer, as explained in Section 2.1. ND performs the whitening of the layer input
X by subtracting its mean, and then by multiplying it with the inverse square root of
the corresponding covariance matrix. Subtracting the mean centres the layer input, and
multiplying with the inverse square root of the covariance matrix decorrelates the layer
input local area-wise and channel-wise. Ideally, after ND the layer inputs have a mean
of zero and the covariance matrix is approximately an identity matrix. The computations
related to this whitening operation are shown in the following equations:

Cov = < (X ) (X~ ) (12)
D~ (Cov)*% (13)
yj:(X—‘u)~D~W]'+bj. (14)

In Equation (12), the covariance of layer input data is computed. X is the transformed
input data matrix and p are the mean of N values in the columns of X, i.e., the mean of
values multiplied by an arbitrary weight. N depends on the number of samples in a mini-
batch and the number of local areas. D is the deconvolution kernel in Equation (13), which
is an approximation of the inverse square root of the covariance matrix. Equation (14)
shows the computation of the output values y; of the j-th filter with the centered and

transformed input X — p, the deconvolution kernel D ~ COV*%, the filter weights w; and
the filter bias terms b;.

The whitening computations, as presented above, may decelerate the optimisation of
a deep neural network excessively. Therefore, computation acceleration techniques for ND
were also proposed [31]. These techniques include subsampling the layer input matrix X
for lighter covariance matrix computation, coupled Newton-Schulz iteration for the inverse
square root of the covariance matrix approximation, and implicit decorrelation of layer
inputs. This work optimised these acceleration algorithms for the 1D-CNN-based fault
diagnosis models. The remainder of this subsection explains the practical implementation
of ND and the required acceleration techniques.

After the layer input formulation to matrix X, as shown in Figure 1, the covariance
matrix is computed as expressed in Equation (12). Since the covariance matrix computation
is performed for every layer and during every forward pass, subsampling the layer input
matrices X' likely decreases the required training time. That is, the number of rows N in
a layer input matrix X, consisting of local areas from all mini-batch samples, decreases
by subsampling the rows. Subsampling is likely to have a small effect on the covariance
matrix because the number of input values N is relatively high compared to the covariance
matrix dimensions.

To whiten the layer inputs, the inverse square root of the covariance matrix needs to
be computed. Several techniques exist for computing the inverse square root of a matrix.
However, the coupled Newton-Schulz iteration was shown to be both a numerically stable
and fast algorithm for approximating the inverse square root of the covariance matrix [31].
The iteration starts by initialising matrices Yo = Cov + € -1 and Zy = I. The matrices
Y) and Z; are updated every iteration with Equations (15) and (16), respectively. The
matrices converge to approximate values of the square root and the inverse square root of
the covariance matrix, as shown in Formulas (17) and (18).

1
Yir1 = 5 k(31 = ZYy) (15)
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1
Zit = 5(31 = ZiYy)Zy (16)

Y., — Cov? (17)

Zi.1 — Cov 2 (18)

Once the inverse square root of the covariance matrix has been approximated, the
inverse correction can be applied to the layer input matrix X. However, ND performs this
whitening correction implicitly by correcting the weights w of the convolutional layers
instead of decorrelating the input data. This whitening can be considered as decorrelating
the weights of each kernel in a filter. During training, a running mean of the deconvolution

matrix D ~ (Cov +¢€ - I)_% is collected for each layer. A small constant € is added for
numerical stability and regulatory effect. After training has finished, the running average
of the deconvolution kernels D' are frozen and kept constant during testing to reduce
the computation time. This implicit deconvolution is expressed mathematically on the
right-hand side of Equation (19).

y}:(xl—y’)-(Dl-w§)+b§:xl-D’-w§+b§—yl-Dl-w§ (19)

3.3. Training the Models

The training convergence of a deep neural network depends heavily on the training
algorithm design. With suitable choices, the sample efficiency and the test performance are
likely to increase. This work deployed various techniques, such as time window division,
learning rate scheduling and early stopping. The following discusses briefly the major
choices. The repository for this study is linked in Appendix A for further evaluation.

A disadvantage of deep neural network solutions for fault diagnosis originates from
their need for a large number of training samples in order to converge to a satisfying
optimum. Fortunately, the number of training samples can be increased with data augmen-
tation. This work employed overlapping time window division for data augmentation.
That is, the time series samples were split into shorter time windows including time steps
over multiple rotor revolutions. Figure 5 demonstrates this overlapping time window divi-
sion technique. The extracted time windows correspond to an input sample of 2048 time
steps in this study.

The loss function for multi-categorical fault diagnosis tasks is cross-entropy loss (CE
loss), as shown in Equation (20). The CE loss is a measure for the difference of the target
distribution and the estimated distribution over K categories averaged over N samples
in a batch. In Equation (20), y;l € {0,1} are the K values in the target distribution with
the correct category encoded as 1 and f]?1 € [0,1] are the K probabilities in the estimated
distribution. The loss function for binary fault detection tasks is the binary cross-entropy
loss (BCE loss), as shown in Equation (21). Similarly to CE loss, the BCE loss is averaged
over the N samples in the batch. In Equation (21), y"* € {0,1} is the correct label and
f™ € [0,1] is the probability of a fault.

1 N K
CE loss = N r;];y;llog ) (20)
1 N
BCE loss = -5 Y (y'log(f") + (1 —y™)(1 — log(f™)) (21)
n=1

The gradient optimisation steps of all models were controlled with Adam optimiser [42]
and decaying learning rate. The learning rate decayed by half every tenth epoch. Further-
more, all models were optimised with early stopping and checkpoints. That is, at the end of
every epoch, if the validation loss decreases, the model weights are saved. If the validation
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loss increases, the previous best weights are loaded to the model. The optimisation ends
after a maximum number of epochs or after the validation loss increases seven times. A
maximum number of epochs and other training and model related hyperparameters are
detailed in Appendix B.
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Figure 5. Time series sample consisting of two input signals divided to overlapping training samples.

4. Validation of ND for Fault Diagnosis

This section presents the performance of the baseline models relying on BN and the
modified models relying on ND under two different tasks. The first task in Section 4.1
relates to the extensively studied benchmark dataset for bearing fault diagnosis. The dataset
consists of rotor system vibration data sampled at different motor loads. The second task in
Section 4.2 demonstrates the model’s performance at detecting faults from vibration data
acquired in more diverse operating conditions. The dataset of this task consists of thruster
vibration data sampled in real operation conditions.

4.1. Case 1: Bearing Fault Diagnosis under Varied Load Conditions

The CWRU bearing fault dataset [33] is a well-established machine fault classification
benchmark. The vibration dataset includes samples of healthy and faulty bearings placed
in the test rig in Figure 6. There are four different bearing health conditions in the dataset:
healthy (H), ball fault (B), inner race fault (I) and outer race fault (O). Each fault type was
machined with three different diameters: 0.1778 mm (*1), 0.3556 mm (*;1) and 0.5334 mm
(*g)- Thus, the number of different health states in the dataset is 10. Each fault type was
measured at three different motor loads: 0.746 kW (1 hp), 1.491 kW (2 hp) and 2.237 kW
(3 hp). Each time series sample was measured with two accelerometers at the drive-end
and the fan-end of the motor. The sampling frequency was 12 kHz. Earlier related studies
have mostly trained the fault diagnosis models with the vibration data acquired with the
drive-end sensor only [15,18,19]. However, often condition monitoring systems include
multiple sensors. Therefore, this subsection also presents the fault diagnosis experiments
employing both, the drive-end and the fan-end sensor data as model inputs.
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Figure 6. Bearing fault test rig [33].

Table 4 shows the details related to the bearing fault dataset. The training samples
were acquired by sampling overlapping time windows from the 10 time series samples
corresponding to the health states. Each training sample is 2048 timesteps long. The shift
between adjacent training samples is 32 timesteps. Test samples share the length with
training samples, however, they do not overlap.

Table 4. Number of training and test samples per bearing health state and motor load.

Load Split H Br Bym By 153 Im Iy Or Om (07

1hp Train 1980 1980 1980 1980 1980 1980 1980 1980 1980 1980
Test 59 59 59 59 59 59 59 59 59 59
2hp Train 1980 1980 1980 1980 1980 1980 1980 1980 1980 1980
Test 59 59 59 59 59 59 59 59 59 59
3hp Train 1980 1980 1980 1980 1980 1980 1980 1980 1980 1980
Test 59 59 59 59 59 59 59 59 59 59

The baseline models with BN and the modified models with ND were trained to recog-
nise the health state of the bearing from the vibration data. Every model was trained on
each motor load domain and then evaluated on the other motor load domains. These tests
were repeated 10 times for each model and load domain. Furthermore, these experiments
were conducted with data from both accelerometers and with data from the drive-end
accelerometer only. Figure 7 presents the means and standard deviations of the model
accuracies when only the data from the drive-end accelerometer was available. Figure 8
presents the results from repeated experiments with data from both accelerometers.

Figure 7 shows that all models diagnose the bearing health states with over 80%
accuracy on average from the drive-end accelerometer data. In the same experiments, the
modified WDCNN and SRDCNN models achieve more than 5 percentage points (pp) better
average classification accuracies than the corresponding baseline models. The accuracy
of the modified Ince’s model is 0.35 pp less than the corresponding baseline. Overall
the modified models achieve similar or significantly better diagnosis accuracies than the
corresponding baselines in these experiments.
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Average accuracies over 10 trials with drive-end sensor
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Figure 7. Means and standard deviations of the accuracies of the baseline models with BN (red) and
the same models with ND (green) on six different load domain shift problems over ten trial runs. The
models diagnosed the bearing health state from the drive-end sensor data. The test data was drawn
from the motor load domains the arrows point and the training data was drawn from the motor load

domains the arrows point from.

Average accuracies over 10 trials with fan-end & drive-end sensors
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Figure 8. Means and standard deviations of the accuracies of the baseline models with BN (red)
and the same models with ND (green) on six different load domain shift problems over ten trial
runs. The models diagnosed the bearing health state from the drive-end and the fan-end sensors
simultaneously. The test data was drawn from the motor load domains the arrows point and the
training data was drawn from the motor load domains the arrows point from.

Figure 8 shows that the average diagnosis accuracies of the models decreased after
introducing data from both accelerometers to the task. Only modified Ince’s model and
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modified SRDCNN increased the diagnostic accuracy compared to the results in Figure 7.
Especially the baseline models performed significantly worse when they were trained with
data acquired with the motor load of 3 hp. Overall, the average diagnosis accuracies of the
modified models were significantly higher than the corresponding baseline counterparts.

4.2. Case 2: Azimuth Thruster Fault Detection

Three azimuth thrusters of a similar configuration of the same drill ship were moni-
tored frequently from mid-2018 to the end of 2019. An azimuth thruster is a rotor system
which ships may use for movement or for preserving position. The three thrusters were
operated in diverse environments at various rotating speeds and thrusting angles. Figure 9
shows the rotating speed distribution of the vibration samples in the dataset. Each vibration
sample in the dataset is a time series sample including four revolutions sampled at 1024
distinct encoder positions totalling 4096 sampling points. Therefore, the time dimension
differs between the vibration samples measured at different rotating speeds.

200 1

Number of samples
—_ —_
(@) ot
(@] o
1 1

at
o
1

200 300 400 500 600 700
Thruster rotating speed (RPM)

Figure 9. Thruster rotating speed varied between the acquired vibration samples in the range between
100 RPM and 750 RPM.

The vibration samples were acquired with accelerometers in similar positions near
the input shafts (IS) of the thrusters. During the monitoring period, the thrusters were
healthy in the beginning but suffered malfunctions in matching components. The faults
were related to the bearing near the gear end of the pinion shaft (B) and the gear pinion
and the gear wheel (G). Figure 10 shows the thruster assembly, the fault locations and the
sensor position. All faults occurred in all three thrusters during the period of observations.
The faults in the dataset were recognised by condition monitoring specialists.

Some samples with abnormal data were filtered from the dataset with a quality control
function. Appendix C describes the quality control function in detail. The resulting dataset
is described in Table 5, where the components were either labelled as healthy or faulty. The
severity of the faults in a single thruster changes between the samples, due to the long
observation period. That is, vibration samples were collected over a long period of time
before and after the malfunctions were first noticed.
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Figure 10. The azimuth thruster vibration was measured with an accelerometer sensor near the input

shaft. The positions of the sensor and the faulty components are pointed with red lines.

The lowest row in Table 5 shows the number of samples drawn and augmented to
training, validation and test datasets. The relatively high number of training, validation and
test samples is due to data augmentation with time window division. Each time window
was 2048 time steps long. The time windows were overlapped during training data and
validation data augmentation, but not overlapped during test data augmentation. The
same number of samples were drawn randomly 10 times for each trial consisting of training
and evaluation of all models. Furthermore, each set holds an equal number of healthy and

faulty samples.

Table 5. Azimuth thruster dataset statistics.

Thruster Condition B G
1 Healthy 263 283
Faulty 468 448
2 Healthy 108 200
Faulty 843 751
3 Healthy 125 216
Faulty 405 314
Total Healthy 496 699
Faulty 1716 1513
Data Train 48,230 77,740
splits Val 11,960 19,110
Test 368 592

The baseline models with BN and the modified models with ND were optimised to
recognise faulty behaviour in a specific component. Therefore, the models were subjected
to binary classification tasks. All models were trained and then evaluated 10 times for
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each task with the hyperparameters listed in Appendix B. Figure 11 shows the average test
classification accuracies of the models in the fault diagnosis tasks. All models achieved
similar diagnosis accuracies between 84% and 91% in both tasks. Overall, the modified
models with ND performed slightly better. The modified SRDCNN and Ince’s model
diagnosed the bearing condition less than 1 pp more accurately than the corresponding
baseline models. Moreover, the modified WDCNN and SRDCNN diagnosed the bearing
condition less than 2 pp more accurately than the corresponding baseline models.

Average accuracies over 10 trials
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Figure 11. Mean and standard deviation of accuracies of the baseline models with BN (red) and the
modified models with ND (green) on both binary fault detection problems over 10 trial runs. Datasets
were randomly drawn for each trial separately. Every model was tested with the same randomly

drawn set of samples.

5. Discussion

Based on the results, ND seems like a competitive solution for BN in CNN-based
machine fault diagnosis from vibration data. In Section 4.1, the modified models with
ND were compared to the baseline models with a well-established benchmark dataset
for bearing fault diagnosis. In this multi-categorical bearing fault recognition task, the
modified models with ND mostly outperformed the baseline models with BN in terms of
the average accuracy of all experiments. Whitening seemed to especially improve WDCNN
performance. The average accuracy of modified WDCNN was 5.18 pp and 11.73 pp higher
than the baseline in results shown in Figures 7 and 8, respectively. Furthermore, the
modified WDCNN and modified SRDCNN outperformed remarkably the corresponding
baselines in experiments with training data drawn from the vibration data sampled at a
3 hp motor load.

In Section 4.2, the modified models and the baseline models were compared by using
a real world dataset consisting of ship thrusters in diverse environments. In these thruster
fault detection tasks, all models achieved relatively high accuracies of over 84%. However,
there were no significant differences between the fault detection accuracies of the compared
models. Based on these thruster fault detection tasks, ND can be considered as good as BN
for normalising the activations of CNN-based fault detection models.

Although ND is a promising technique for whitening the features between CNN lay-
ers, it introduces a few extra hyperparameters for fault diagnosis model training. Moreover,
the models relying on ND can be very sensitive toward these hyperparameters. That is, the
sampling stride, the number of coupled Newton-Schulz iterations and the regularisation
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term ¢, for example, may affect optimisation results and require careful tuning. For con-
venience, Appendix D shows accuracies at different subsampling strides and batch sizes.
Furthermore, Appendix E provides some examples of the deconvolution matrix D after
a different number of coupled Newton-Schulz iterations. Fortunately, similar ND hyper-
parameters seemed to perform well in both model validation case studies, even though
the data was significantly different due to the measurement circumstances and due to the
health state spaces. Therefore, the values searched in this work for ND hyperparameters
are likely suitable for other vibration diagnosis tasks.

Overall, whitening the layer inputs seems to consistently provide high test perfor-
mance for CNN-based fault diagnosis models. By whitening the layer inputs, the model
learns uncorrelated features containing less redundant information than correlated features.
With uncorrelated features, the domain adaptation of the model improves on average, as
shown in Section 4.1. The difference in domain adaptation between whitened features
and batch normalised features is significant, especially when shifting from the higher load
domains to lower load domains. Furthermore, decor-related features seem to significantly
increase the accuracies of the diagnosis models compared to the baseline models when
data from two sensors were employed, as Figure 8 shows. This indicates that decorrelating
CNN-based model features may increase fault diagnosis accuracy of condition monitoring
systems with many sensors.

6. Conclusions

This study demonstrated the effect of whitening the features of 1D-CNN-based fault
diagnosis models. The features of three commonly known and highly accurate fault
diagnosis models were whitened with network deconvolution. Network deconvolution is a
recently proposed, implicit and approximative whitening technique. The models modified
with network deconvolution were compared to the originally proposed models relying on
batch normalisation under two validation case studies. In the first case study, the models
were evaluated on a well established bearing fault dataset under varied load domains. The
second case study evaluated the model performances in more challenging real thruster
fault detection tasks. The first case study showed that whitened features increased the
1D-CNN model performances on average. Furthermore, the same case study showed
that the models with whitened features were significantly more accurate at diagnosing
the bearing health state from the vibration data acquired with two sensors. However,
the second case study showed that the models with whitened features achieved similar
fault detection accuracies to the corresponding baseline models. Overall, this study shows
that whitening 1D-CNN-based fault diagnosis model features may improve the diagnosis
performance. These results are significant for CNN-based fault diagnosis algorithms since
the whitening technique employed in this study can replace all batch normalisation layers
in any CNN-based fault diagnosis model.
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Abbreviations

The following abbreviations are used in this manuscript:

IFD Intelligent Fault Diagnosis

BN Batch Normalization

ND Network Deconvolution

CNN Convolutional Neural Network
DL Deep Learning

ML Machine Learning

DBN Deep Belief Network

AE Autoencoder

RNN Recurrent Neural Network

WDCNN  Deep Convolutional Neural Networks with Wide First-layer Kernels
SRDCNN  Stacked Residual Dilated Convolutional Neural Network

ReLU Rectified Linear Unit
LSTM Long Short-Term Memory
CE Cross-Entropy

BCE Binary Cross-Entropy

PP Percentage Point

Appendix A. Source Code

The repository linked below contains the source code related to this study.
https:/ / github.com /miettij/Intelligent-fault-diagnosis; accessed on 4 April 2022.

Appendix B. Model Specific Hyperparameters

Before the model optimisation, some of the training related and model related hyper-
parameters were optimised for every model separately. Table Al lists the hyperparameters
employed in the bearing fault diagnosis experiments in Section 4.1. Table A2 details the hy-
perparameters of the thruster experiments in Section 4.2. The models marked with ‘ND’ in
parenthesis refer to the models modified with network deconvolution. First layer iterations
refers to the number of coupled Newton-Schulz iterations at the first convolutional layer.
Deconv iterations refers to the number of coupled Newton-Schulz iterations on other model
layers. € is the small constant for regularisation and numerical stability of the iteration.
Sampling stride defines the subsampling factor for the layer input matrix X.

Table Al. Hyperparameters deployed in bearing fault experiments *.

Param Ince SRDCNN WDCNN Ince (ND) SRDCNN (ND) WDCNN (ND)
Batch size 32 64 64 8 128 (8) 8
Learning rate 0.001 0.0001 0.001 0.0001 0.1 (0.0001) 0.0001
Max epochs 60 60 70 70 40 70
Bias False True True True True True
First layer iterations N/A N/A N/A 15 15 15
Deconv iterations N/A N/A N/A 5 5 5
€ N/A N/A N/A 1075 1075 1073
Sampling stride N/A N/A N/A 5 5 5

* Hyperparameters employed in experiments with the drive-end and the fan-end sensors are in parentheses
if different.
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Table A2. Hyperparameters deployed in thruster fault experiments.
Param Ince SRDCNN WDCNN Ince (ND) SRDCNN (ND) WDCNN (ND)

Batch size 32 64 64 8 8 8

Learning rate 0.001 0.0001 0.001 0.0001 0.0001 0.0001
Max epochs 60 60 70 70 70 70

Bias False True True True True True
First layer iterations N/A N/A N/A 15 15 25
Deconv iterations N/A N/A N/A 5 5 5

€ N/A N/A N/A 1075 1075 1073

Sampling stride N/A N/A N/A 5 5 36

Appendix C. Quality Control Function for Filtering Abnormal Samples

Although the thruster data was sampled in diverse environments and the time series
samples differed, some samples containing outliers were removed from the dataset. Outlier
samples originated likely due to many reasons, such as faulty sensor or heavy storm
conditions. For this purpose, a quality control algorithm was developed to reject the
outlying samples based on three checks. Firstly, the data sample consisting of 4096 x 1 time
series was divided into sliding time windows of 100 x 1, with the step size of 1. A
mean value was then computed for all the sliding windows. The sample was rejected
if the difference between the maximum and the minimum mean value was higher than
0.2 x 9.81 m/s?. Secondly, the sample was rejected if the maximum and minimum values
of the time series were the same. Thirdly, the sample was rejected if the absolute mean of
the time series was over 0.5 x 9.81 m/s?. If the sample passed each check, it was accepted
for further processing.

Appendix D. Batch Size and Sampling Stride Effect on ND

The batch size and sampling stride both affect the number of values in the layer input
X, as in Figure 1. With larger batch sizes, the number of values in each column increases.
With higher sampling strides, the number of values in each column decreases. The number
of values in each column correlates with the representability of the covariance matrix, and
thus affects the decorrelation reliability. With a low number of inputs per neuron, the
covariance matrix might not represent the true input distribution over the whole dataset.
Therefore, the sampling stride and batch size were searched. Figure Al shows three
different grid search results for batch size, sampling stride and learning rate. The model in
this grid search was WDCNN and the input data included vibration data from the fan-end
and the drive-end sensors. Each accuracy in the figure corresponds to average accuracy
of six load domain shift tasks, as in Section 4.1. The experiments were repeated 10 times
with less than 20 training epochs. Each standard deviation in the figure corresponds to the
distribution of all load domain shift test accuracies over the ten experiments. In addition,
Figure A2 visualises covariance matrices of the WDCNN first layer inputs corresponding
to a random sample with drive-end and fan-end data from the bearing fault dataset. The
covariance matrices are computed with different sampling strides. Figure A2 shows that
the covariance between the inputs decreases as the sampling stride increases.
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Figure A1l. Mean and standard deviations of WDCNN test accuracies over 10 trials of load domain
shift tests with the bearing fault dataset. Specifically, each accuracy and standard deviation in the
figure is the total average of the six load domain shift results, similar to the ones in Section 4.1.
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Figure A2. Covariance matrices of the first layer input related to a batch of vibration samples with
two channels (fan-end and drive-end sensors) from the bearing fault dataset. The sampling stride
corresponds to the sampling strides in Figure Al. The covariance is highest between inputs in the
same channel (diagonal corner quarters of the heatmaps) and between the nearby weights within a
kernel. The first layer filter of WDCNN has two kernels of size 64 x 1, which explains the covariance
matrix dimension of 128 x 128.

Appendix E. Iteration Count Effect on the Approximation of the Deconvolution Kernel

The coupled Newton-Schulz iteration for approximating the inverse square root of the
covariance of layer input matrix X converges to values with more contrast as the number
of iterations increases. Figure A3 shows these deconvolution matrices approximated with
different number of iterations.
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Figure A3. Three deconvolution matrices with different number of iterations approximated from the
leftmost covariance matrix in Figure A2. The deconvolution matrix approximation grow significantly
sharper as the number of iterations increase.
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