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Abstract: Physiological processes cause movements of tree stems and branches that occur in a
circadian rhythm and over longer time periods, but there is a lack of quantitative understanding of
the cause-and-effect relationships. We investigated the movement of tree branches in a long-term
drought experiment and at a circadian time scale using time-series of terrestrial laser scanning
measurements coupled with measurements of environmental drivers and tree water status. Our
results showed that movement of branches was largely explained by leaf water status measured as
leaf water potential in a controlled environment for both measured trees (R2 = 0.86 and R2 = 0.75). Our
hypothesis is that changes in leaf and branch water status would cause branch movements was further
supported by strong relationship between vapor pressure deficit and overnight branch movement
(R2 = [0.57–0.74]). Due to lower atmospheric water demand during the nighttime, tree branches
settle down as the amount of water in leaves increases. The results indicate that the quantified
movement of tree branches could help us to further monitor and understand the water relations of
tree communities.

Keywords: diurnal branch movement; drought; diurnal cycles; terrestrial laser scanning; tree monitoring;
leaf water content; leaf water potential; vapour pressure deficit (VPD); relative water content

1. Introduction

Trees have seemed to be relatively static objects from the human perspective, but some
trees have shown diurnal movements, such as the so-called “Praying Palm of Faridpore”,
that was regarded as a “miracle” in Bengal in the early 20th century [1]. This date palm tree
(Phoenix sylvestris Roxb.) leaned at a large vertical angle and the angle varied diurnally
causing a movement of over a meter at the plant’s tip due to thermonasty, according to
plant biologist Dr. Bose [1]. Despite these early findings, until nowadays, there has been
little research on the diurnal movements of tree branches that is not related to wind due to
the difficulty in measuring branch movement [2–5].

Recent advancements in laser remote sensing technologies have enabled millimeter-
level accuracy in obtaining the 3D structure of plants with light detection and ranging
(LiDAR) methods allowing forest structure analyses that have not been achievable by any
other manually techniques [6–10]. After a century of research recent findings have shown,
with the aid of terrestrial laser scanning (TLS) technology that trees move their branches in
a diurnal pattern, in which tree branches settle down during the nighttime [3–5]. Species
and tree individuals have shown different patterns in their overnight movements, but there
is limited knowledge on the driving forces behind diurnal branch movement [5]. Recent
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findings, however, have indicated a link between atmospheric water demand and branch
movement for a woody shrub species [2].

Trees and forests transport a major part of the water that goes to the atmosphere from
the soil through their canopies using a part of it for their own processes, whereas most of it
is evaporated through stomata as they take carbon in as exchange [11]. Understanding the
water relations of individual trees is crucial for understanding tree responses to changes in
environmental conditions, such as drought periods, and for modeling the movement of
water within the biosphere due to the major contribution of forests to the global terrestrial
water cycle.

The driving force for water movement through the soil-plant-atmosphere continuum is
the transpiration of water at leaves [12–14]. The transpiration decreases leaf water potential
and water content creating a negative pressure which draws more water from the branches,
the stem, and the roots through the xylem transport tissue. This results in decreasing water
content in the branches and the stem, which can be observed as a small decrease in the
diameter of the xylem, which can be measured using dendrometers [15–18]. The change
in stem diameter has been shown to be in high agreement with xylem water potential,
i.e., water pressure in the xylem, with a coefficient of determination of as high as 0.96 [19].
The evaporation rate of water is proportional to air vapor pressure deficit (VPD) for a
given stomatal conductance [20]. The transpiration decreases water content in the branches,
although with a time lag due to hydraulic resistance and capacitance of the leaf and xylem
tissues. Leaf water content has been shown to have a linear relationship with VPD with
several species [21]. In addition to VPD, changes in soil water content can also result in
changes in the water content of both leaves and the stem [22]. When transpiration starts to
decrease in the afternoon, the water content of leaves, branches and xylem tissues also start
to increase again to replenish their water storages before the sun rises the following day.
Stomata remain partially open also during night-time allowing the movement of water
between the leaf and the air also during the night [23].

Here, we theorize that variation in leaf and branch water content could explain the
diurnal branch movement that has been recently observed [3,4]. The daily fluctuation
of leaf water content imposes a large fluctuation in weight load on the branches when
converted to shoot units. Because the weight load of each branch varies, also the branching
angle and branch tip position fluctuates during the day. The heaviest load during a given
day (resulting in the lowest branch position) would then occur when stem and leaf water
content is at its highest, which is during the early morning hours before sunrise when VPD
is typically at its lowest [17,18,21]. We therefore hypothesize that:

1. Changes in leaf water content and tree water potential are causing systematic branch
movement. Decrease in water content is related to an upward branch movement.

2. Overnight movement of tree branches can be linked to changes in VPD, which drives
the changes in leaf water content.

We tested our hypotheses by utilizing a time-series of TLS measurements to acquire
accurate 3D snapshots of the environment that can capture the movement of tree branches
between the measurements. To separate external drivers (such as VPD) of branch movement
from the internal drivers (water content), experiments were conducted both in (1) controlled
laboratory conditions where VPD and light were kept constant, whereas soil and tree water
content gradually decreased over 39 days and (2) outside where light and VPD varied
naturally overnight, but trees did not experience drought stress. The long-term branch
movement measurements in a laboratory were coupled with measurements of leaf water
potential (LWP) and relative water content (RWC).

This study contributes to the understanding of the diurnal rhythm and different branch
movement patterns of trees. Improved understanding of branch movements could help us
to explore further various ecophysiological processes, including tree water relations, and to
enable new methods for monitoring these processes within and between tree communities.
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2. Materials and Methods
2.1. Laboratory Experiment

A drought experiment with controlled reduction in water availability was conducted
with two seven-year-old 1.5 m tall potted Scots pine (Pinus sylvestris L.) at ~21 ◦C in a
laboratory at the Viikki campus of University of Helsinki between December 2019 and
January 2020. The saplings were kept outside of greenhouses until they were taken in-
doors for the experiments. Thereafter, the saplings were well-watered for 7 days, after
which watering was stopped and the drought treatment started. A light source (High
Pressure Sodium) was fixed on top of each sapling and lights were configured to 12 h/12 h
light/darkness illumination cycle. Light intensity was tested with a PAR sensor (Li-190
Quantum sensor, LI-COR Inc., Lincoln, NE, USA) resulting in ~1200 µmol m−2 s−1 at the
top and ~300 µmol m−2 s−1 at the bottom of canopies of the seedlings.

The saplings were monitored with TLS measurements at 16-time intervals during
the monitoring period between 4 December and 13 January. A single TLS measurement
was conducted from a 1.5 m distance from the saplings using a Trimble TX5 scanner
(Trimble Inc., Sunnyvale, CA, USA), which utilizes a 905 nm wavelength and phase-shifting
measurement technique to measure distance to the target. Five pieces of white 99 mm
diameter spheres were used as reference targets for registering all of the 16 multitemporal
point clouds spatially together.

Measurements of water status were carried out 16 times, right after the respective TLS
measurements by taking needle samples. The needle samples were used to measure leaf
water potential (LWP) and relative water content (RWC). A set of five needles was taken
from the sapling at each time point for both measurements. The needles were selected
randomly from the current year needles and from the upper half of the canopy. LWP was
measured from the five needles using the Scholander pressure chamber (PMS-1000; PMS
Instruments, Albany, OR, USA) with the help of binoculars. A mean value was calculated
from the five LWP measurements. The five needles, which were used for measurement of
RWC, were cut in half and weighed for fresh mass (FM). Then, the pieces were tied together
with tin string and merged into milliQ water. After 24 h in 5 ◦C water, the turgid mass (TM)
was measured. Then, the samples were placed into the oven to 60 ◦C and their dry mass
(DM) was measured 48 h later. RWC was then calculated using Equation (1).

RWC(%) = [(FM − DM)/(TM − DM)] × 100. (1)

2.2. Field Experiment

To test how tree branch movement can be explained by VPD, we collected a TLS time-
series in Masala, Southern Finland (Kirkkonummi, N. 60◦9.7′, W. 24◦32.8′). The experiment
focused on quantifying overnight branch movement coupled with measurements of envi-
ronmental conditions that can be linked to tree physiological processes. The experiment
site was on the edge of a semi-eutrophic mixed boreal forest stand, consisting of Norway
spruce (Picea abies H. Karst.), silver birch, Norway maple, European oak (Quercus robur L.)
and small-leaved lime (Tilia cordata Mill.). The overnight measurements were taken on
24 and 25 August 2016. Both measurements focused on two Norway maples and a silver
birch (Table 1). The rationale for selecting deciduous tree species for the overnight mea-
surements was the larger amount of leaf area near the tip of the branches, which based on
our hypothesis would increase overnight branch movement and facilitate the detection
of the branch movement. Figure 1 shows the overview of the measurement site and the
scanner locations.

The overnight measurements in August were conducted between 21:00 and 10:00. The
measurements were carried out using three terrestrial laser scanners mounted on tripods.
The positions of the laser scanners were selected based on the best possible visibility to
the tree crowns for the measurements. FARO Focus 3D X 330 (FARO Inc., Lake Mary, FL,
USA) was located on an open road approximately 20 m from the trees. The other two
scanners were located on the roof of a nearby building (FARO Focus 3D S 120—southern,
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Trimble TX5—northern) approximately 35 and 20 m from the trees, respectively. The height
difference between the scanner on the road and those on the roofs was approximately
10 m. The trees were monitored for 9 h in total, in which 130 separate scans were collected.
Altogether 123 of 130 scans, representing 41 data acquisition times, were selected based on
subjective estimation of wind speed (not detectable or very small airflows). Five spheres
of 0.099 m radius were used as reference targets in the measurements facilitating the
co-registration of the TLS scans. The ranging accuracy of the laser scanners was ±2 mm.

Table 1. Tree characteristics: diameter at breast height (DBH) and height for the investigated trees in
the field.

Species DBH (cm) Height (m)

Silver birch (Betula pendula Roth.) 42.1 22.1
Small Norway maple (Acer Platanoides L.) 6.2 5.9

Moderate-sized Norway maple 19.5 9.1
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Figure 1. The measurement configuration in August 2016. Scanner locations are marked with colored
boxes, being the FARO Focus X330 (red); FARO Focus 3D 120 S 1 (dark blue); and TRIMBLE T5X
(green). The gray points denote the combined measured point cloud of all three scanners viewed
from above. The trees monitored are marked with different colors in the figure; in addition, the small
Norway maple is highlighted with a red rectangle. The five reference sphere locations are marked
with black circles in the figure.

Figure 2 shows the daily rainfall and mean temperature in the test area during August
2016. There was 54 mm of rainfall in total two weeks before the measurements were
conducted. The average air temperature during that time was 15.4 ◦C. Thus, there was no
significant drought during the field measurements.
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2.3. TLS Data Processing

The point clouds from each measurement location were co-registered to a common
local coordination system using the external sphere targets as reference points. The regis-
tration was performed in FARO Scene point cloud processing software (FARO Inc., Lake
Mary, FL, USA). The spheres were located automatically in the point cloud and a sphere
fitting was performed. After all spheres were located, their coordinates were registered
with the sphere coordinates scanned from the first scan file. Point cloud data collected
with the Leica scanner were pre-processed with Leica Cyclone (v. 7.3), following the same
described procedure for point cloud registration. Each tree was then manually delineated
from the point clouds for further processing.

To monitor the crown dynamics, each delineated tree point cloud was segmented
using a similar approach as presented in [24]. The segmentation approach begins by doing
a Euclidean clustering for the initial point cloud with predefined minimum cluster size
and point number. After this initial segmentation, the subsequently measured point clouds
are labeled based on the initial segmentation. Individual segment movement over time
is monitored by following the movement of their centroid. The segmentation framework
works under the assumption that segment movement between the consequent scans is
smaller than the monitored cluster size.

2.4. Quantifying Branch Movement

For the laboratory experiment, six and five branches from seedlings 1 and 2, respec-
tively, were selected for further investigation. The movement of branches was quantified as
the Euclidean distance from the first measurement in all the experiments. Two additional
features were measured for the pine seedlings: branch length and branch angle in relation
to the stem. These features were measured manually from the point clouds to explore their
effect on branch movement.

For the field experiment, the timing of the movement maximums was determined
from consensus of cluster centers located on the tips of branches. Stable branch clusters
were determined with following thresholds: (i) They had to be present throughout the
experiment window, (ii) the relative standard deviation of their point number had to be
less than 30% compared with their initial size, and (iii) their maximum movement within
the timeframe had to be more than 3.0 cm. The last threshold filtered out clusters located
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on the tree stems and large branches. The number of observed branches were 14, 13 and 17
for silver birch, small Norway maple and moderate-sized Norway maple, respectively.

For all trees, one to two clusters located on the stem were selected as fixed references
to confirm the point cloud clustering stability. In all cases, the stem cluster centers showed
less than one-centimeter displacement from their initial position thus confirming the
clustering stability.

2.5. Statistical Analysis

Multiple regression modelling was used to investigate how leaf water status (RWC
and LWP), branch length and branch angle explain variations in branch movement using
the observations collected at laboratory experiment.

Linear regression modelling was used to determine the relationship between leaf water
status and branch movement for the laboratory experiment as well as for the overnight
branch movement and VPD. Regression models were built between the movement of
each branch, which was our response variable, and RWC, LWP and VPD, which were our
predicting variables. Coefficient of determination (R2) and root-mean-square-error (RMSE)
were used to examine the goodness of fit of the developed regression models. All the
analysis were conducted within the R software package [25].

3. Results
3.1. Variation in Leaf Water Content Causes Branch Movement in Controlled Environments

We tested how changes in leaf water content affect branch movement with Scots
pine (Pinus sylvestris L.) seedlings in a controlled laboratory environment with minimum
variation in environmental variables other than soil water availability. We found strong
relationships between LWP and branch position (n = 15) for both trees (R2 = 0.86 and 0.75)
during the monitoring period of 38 days (Table 2). Distinct upward branch movement
occurred as the LWP decreased. A similar relationship was found between RWC and
branch movement for the trees (R2 = 0.83 and 0.64). The strength of the relationships
was dependent on the measured branch, i.e., different branches showed variation in their
movement during the monitoring period. Additionally, the slope of the relationship differed
between branches (Figure 3).

Table 2. Summary of statistics for linear regression models for individual branches between relative
water content (RWC), leaf water potential (LWP) and branch movement for Scots pine. Mean,
minimum (Min), maximum (Max) and standard deviation (Std) for coefficient of determination (R2)
and root mean square error (RMSE) calculated from six and nine branches from seedlings 1 and 2,
respectively.

Pine Seedling 1 Pine Seedling 2

Movement
vs. RWC

Movement
vs. LWP

Movement
vs. RWC

Movement
vs. LWP

Mean R2 0.83 0.86 0.64 0.75
Min R2 0.71 0.50 0.38 0.57
Max R2 0.95 0.94 0.84 0.97
Std R2 0.11 0.18 0.16 0.13

Mean RMSE (%-units/bars) 4.98 4.02 8.86 4.66
Min RMSE (%-units/bars) 2.72 2.82 5.94 1.70
Max RMSE (%-units/bars) 6.96 8.34 11.82 6.39
Std RMSE (%-units/bars) 1.81 2.12 2.04 1.50
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Figure 3. Relationship between relative water content (%) and branch movement (cm) for each branch
in (a) Pine seedling 1 and (b) Pine seedling 2. Each line represents a regression line between branch
movement and relative water content. The different symbols denote different branches.

We used multiple regression to determine the relative effects of tree water status
(defined using LWP and RWC), branch length and branch angle on observed branch
movement. We observed that RWC explained significant amount of the variation (49%) in
branch movement across all measured branches (Table 3). The inclusion of branch angle as
an explanatory variable increased the proportion of explained variation to 55% and further
the inclusion of branch length improved the model performance to explain 63% of the
variation in branch position.

Table 3. Coefficient of determination (R2) and adjusted R2 (Adj. R2) of multiple regression models
explaining variation in branch movement (n = 171) in Scots pine seedlings. The predictors were
relative water content (RWC), branch angle and branch length. Variable coefficients are given for the
model including all predictors.

Predictors R2 Adj. R2

RWC 0.49 0.49
RWC + branch angle 0.55 0.54

RWC + branch angle + branch
length 0.63 0.62

Variable Coefficients Estimate p-Value

Intercept 0.034 <0.0001
RWC −0.00041 <0.0001

Branch angle −0.00013 <0.0001
Branch length 0.00029 <0.0001
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3.2. Overnight Branch Movement Is Controlled by Atmospheric Water Demand

The measured tree branches showed significant movement overnight that varied
between 2 and 16 cm. The largest movements were observed in the moderate-sized Norway
maple and silver birch. All three trees showed considerable variation in the amplitude of
overnight branch movement between branches.

The overnight movement patterns were similar between all the observed test trees.
As VPD decreased during the night, the branches moved downwards. VPD reached its
minimum value at the time of sunrise at 06:00 and the lowest branch positions took place
40 min (small Norway maple) (Figure 4), 60 min (silver birch) (Figure 5) and 80 min
(moderate-sized Norway maple) (Figure 6) after the VPD minimum and started moving
upwards towards the initial position at sunset. We found that overnight branch position
showed a relatively good agreement with VPD and that there was a time lag between
the change in VPD and branch movement (Table 4). The agreement between VPD and
overnight branch position was the highest with a time lag of 2.5 h and 3 h for individual
branches of the smaller Norway maple and the larger trees, respectively. At the tree-level,
the best agreement between VPD and overnight branch movement was observed at 2
h for the silver birch and the smaller Norway maple, and at 3 h for the moderate-sized
Norway maple.
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Figure 4. (a) Point cloud of the small Norway maple (Norway maple L.) in August 2016. Movements
were analyzed by detecting the same cluster of points from each time point. Horizontal axis shows
the distance of the tree width with respect to the point cloud mean and the vertical axis shows the
tree height. Point sizes in the colored clusters are emphasized for visual clarity. (b) Overnight branch
movement during monitoring period. Branch movements are marked with the dashed and dotted
lines (right y-axis) and the vapor-pressure deficit (VPD) with the solid blue line (left y-axis). The
times of sunset and sunrise are marked with the blue and red vertical lines, at 8:40 p.m. and 6:00 a.m.,
respectively (y-axis). Civil twilight time is marked with the light gray area, and time of nautical and
astronomical twilight with the dark gray area.
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1 
 

 
Figure 5. (a) Point cloud of the silver birch (Betula pendula Roth.) in August 2016. (b) Overnight
branch movement during monitoring period. Branch movements are marked with the dashed lines
and the vapor-pressure deficit (VPD) with the solid blue line. The times of sunset and sunrise are
marked with the blue and red vertical lines, at 8:40 p.m. and 6:00 a.m., respectively. Civil twilight
time is marked with the light gray area, and time of nautical and astronomical twilight with the dark
gray area.
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Figure 6. (a) Point cloud of the moderate-sized Norway maple (Acer platanoides L.) in August 2016.
(b) Overnight branch movement during monitoring period. Branch movements are marked with the
dashed lines and the vapor-pressure deficit (VPD) with the solid blue line. The times of sunset and
sunrise are marked with the blue and red vertical lines, at 8:40 p.m. and 6:00 a.m., respectively. Civil
twilight time is marked with the light gray area, and time of nautical and astronomical twilight with
the dark gray area.
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Table 4. Median, minimum (Min) and maximum (Max) of coefficient of determination (R2) of linear
regression models between vapor-pressure deficit (VPD) and the overnight branch movements
measured in August. Number of observed branches were 14, 13 and 17 for silver birch, small Norway
maple and moderate-sized Norway maple, respectively. Characteristics of the trees are presented in
Table 2.

Silver Birch Norway Maple (Small) Norway Maple (Moderate-Size)

Lag (h) Median R2 Min R2 Max R2 Median R2 Min R2 Max R2 Median R2 Min R2 Max R2

0 0.26 0.08 0.57 0.42 0.07 0.60 0.20 0.03 0.51
0.5 0.35 0.03 0.52 0.51 0.05 0.73 0.30 0.07 0.62
1.0 0.45 0.06 0.57 0.62 0.07 0.77 0.40 0.14 0.73
1.5 0.53 0.01 0.69 0.66 0.27 0.77 0.52 0.21 0.75
2 0.57 0.01 0.70 0.66 0.31 0.79 0.63 0.31 0.73

2.5 0.55 0.00 0.72 0.60 0.27 0.80 0.70 0.44 0.77
3 0.54 0.00 0.78 0.48 0.22 0.77 0.74 0.39 0.83
0 0.26 0.08 0.57 0.42 0.07 0.60 0.20 0.03 0.51

0.5 0.35 0.03 0.52 0.51 0.05 0.73 0.30 0.07 0.62
1.0 0.45 0.06 0.57 0.62 0.07 0.77 0.40 0.14 0.73
1.5 0.53 0.01 0.69 0.66 0.27 0.77 0.52 0.21 0.75

The Norway maples showed slightly higher correlations with VPD than the silver
birch, but all the trees showed strong (R2 > 0.57) correlations with VPD. The time lag
between VPD and overnight branch movement seemed to vary to some extent also within
trees, as can be observed from the variation in the R2 in Table 4. The smaller Norway maple
showed slightly smaller time lags between VPD, and branch movement compared with
the larger trees. It could be observed that there were differences between trees in the time
that it took branches to move upwards after VPD increased substantially in the morning
(approximately 7:30). The branches of the smaller Norway maple moved upwards faster
than the branches of the larger trees.

4. Discussion

We had two hypotheses aiming to explain the observed branch movement and their
spatiotemporal patterns. The first one was that in a controlled environment variation in
leaf water content would be related to changes in branch position. This was tested in a
drought experiment where leaf water content decreased gradually. The water stress was
characterized by measures of RWC and LWP, which both explained up to 95% and 97%
of the changes in position (upward movement) of individual branches, respectively. On
average LWP explained a slightly larger portion of the branch movement, which may be due
to smaller variability of values between individual needles. There was, however, significant
variation in the observed branch movements between individual branches and the slope
in the relationship between water status and branch position varied. It was observed that
the branch angle and branch length significantly affected the changes in branch position
during the monitoring period in addition to water status. We were able to explain 63%
of the variation in branch movement, when a general model of all branches was built to
describe variation in branch movement using RWC, branch angle and branch length.

Often, changes in leaf water content are driven by atmospheric water demand (or
VPD) as water vapor diffusion rate through the stomata is proportional to VPD, especially
in conditions where soil water availability is not a limiting factor [26]. Although stomata
partially close for the night, significant overnight stomatal conductance in boreal trees has
been observed allowing the movement of water between the air and the leaf [23]. Therefore,
we hypothesized that a decrease in VPD would cause a downward branch movement,
because a decreasing VPD increases leaf water content. Although we cannot explicitly
prove this, because we did not measure leaf water content, our findings supported this
hypothesis as VPD explained 57–74% of overnight branch movement of single trees. Similar
relationship between VPD and branch movement has been found for a woody shrub species
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recently [2]. It should be noted that there were differences in the time lag between VPD and
overnight movement between branches. Based on visual observations of the movement
of branches in Figures 5 and 6, it seems that the larger the overnight branch movement
is, the longer is the time lag between VPD and branch movement. Branches with a larger
number of leaves and leaf area are likely to show greater overnight movement due to
the larger mass of water within the leaves, and therefore the amount of water exchanged
with the atmosphere is also greater. It was observed that the amplitude of overnight
branch movement was greater in the larger trees with more foliage supporting this theory.
Additionally, the branches of the smaller tree showed to react faster to increased VPD
during the morning than the branches of the larger trees.

The main limitation in the field is the requirement of windless conditions, which
hampers the measurements and applications. Thus, we focused on measuring overnight
branch movement during a windless night in the summer and ensured that air flows did
not influence our measurements using subjective estimation of air flows. Furthermore,
the constant trends in branch movement between individual branches verify that our
results were not a result of the effect of wind. More investigations are needed also with
daytime measurements in windless conditions to further confirm the findings of this
study. Continuous TLS measurements of tree canopies over longer time periods may bring
new possibilities to study the phenomenon of branch movement [27]. Growth during
the summer can influence branch length and the distribution of weight, which can affect
branch position as well, and thus further complicate deductions based on branch position
and movement. Other techniques on the other hand rely on interactions between trees and
wind. Tree sway has been shown to be affected by tree water status and could possibly
complement branch measurements in evaluating tree-water relations [28,29].

Monitoring the movement of branches could have applications in determining the
water status of plants, especially in controlled environments. The benefit of the technique
lies in its ability to measure several entire trees simultaneously rather than just a part of
trees such as dendrometers [24]. Variation in water content dynamics within trees could be
detected using the presented technique, which could help us to monitor and understand
within tree water dynamics in detail. The cost of laser scanning instruments is decreasing
enabling novel practical solutions to water status monitoring that do not involve spectral
measurements or tedious manual measurements of leaf water content or water potential
using the pressure chamber or more expensive measurements of water potential using
psychrometers which also require close monitoring and maintenance [30–32]. The benefit
of laser scanning in a greenhouse environment would be that it is not so sensitive to
viewing angle or illumination conditions compared with spectral information and can give
accurate distance measurements from a 50 m distance and beyond. Plant growth can also
be measured using the same instrument [33].

Further studies should be conducted to verify the results with a wider range of tree
and plant species and environmental conditions. Other factors that could influence the
movement of branches include local illumination and atmospheric conditions. Branches
that receive a greater photon influx and are warmed more by the sun should transpire more
and therefore have a greater amplitude of diurnal branch movement based on our theory.
If our theory is correct and branch movement is driven by variation in leaf water content,
we could expect that tree stress, which often causes changes in stomatal behavior and
transpiration [34], could be detected as altered patterns of diurnal branch movement [28].

Furthermore, mechanical factors can affect the magnitude of branch movement, such
as the angle of the branch relative to the stem, branch thickness and length and wood
properties, requiring additional investigations. For instance, we observed that branch
length and angle had a significant effect on the magnitude of branch movement in our
first experiment in a controlled environment. Branches that point more straight up are less
affected by gravitational differences that variation in mass can induce. Branches that have
a greater leaf area in relation to branch thickness and a lower wood density are likely to
show larger overnight movement. Increase in the water content and mass of the branches
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and needles during the night-time will cause the branch to move downwards. Changes
in the turgor pressure of living cells affect the elasticity of the cells, which could further
influence branch movement, but separating the effect of turgor pressure and water status is
complicated by the strong correlation of the two variables [35]. The amount of movement
of the branches due to a given weight load can be described mathematically if the flexural
rigidity of the branch, branch length and the distribution of the weight on the branch
are known [36]. Tree stem stiffness has been shown to increase with increasing water
content, which could inflict a counterforce to the gravitational pull, which is caused by
increasing leaf water mass [28]. A more comprehensive model including different wood
properties and more detailed branch dimensions are needed to fully model and understand
branch movement.

In summary, the findings of our experiments support the hypothesis that branch
movement is driven by variation in leaf water content, opening new perspectives for
forest analyses since branch movement can be monitored by remote sensors, such as
TLS. Therefore, the measurements of branch movements could open new avenues in
understanding whole plant water relations and provide implications also for forest health
and resilience monitoring. Although it can be challenging to explicitly quantify the changes
in leaf water content in a branch based on its dimensions, the branch movement can give
rapid information on the direction and speed of change in leaf water content. When the
movement of a branch has stopped, there is no change in leaf water content, and an upward
or downward movement indicates that a change in leaf water content is occurring in either
direction. It could be observed that there were differences between branches in the timing
and the slope of overnight branch movement, which could be caused by differences, e.g.,
in stomatal behavior or branch mechanical or structural characteristics. When individual
branches can be observed, we can simultaneously observe the changes in leaf water content
in a vertical gradient in a tree or a plant.
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