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Abstract: Rock discontinuities play an important role in the behavior of rock masses and have a 

high impact on their mechanical and hydrological properties, such as strength and permeability. 

The surfaces roughness and physical aperture of rock joints are vital characteristics in joint shear 

strength and fluid flow properties. This study presents a method to digitally measure the physical 

aperture of a rock fracture digitized using photogrammetry. A 50 cm × 50 cm rock sample of Kuru 

grey granite with a thoroughgoing fracture was digitized. The data was collected using a high-res-

olution digital camera and four low-cost cameras. The aperture and surface roughness were meas-

ured, and the influence of the camera type and 3D model rasterization on the measurement results 

was quantified. The results showed that low-cost cameras and smartphones can be used for gener-

ating 3D models for accurate measurement of physical aperture and roughness of rock fractures. 

However, the selection of appropriate rasterization grid interval plays a key role in accurate estima-

tions. For measuring the physical aperture from the photogrammetric 3D models, reducing rasteri-

zation grid interval results in less scattered measurement results and a small rasterization grid in-

terval of 0.1 mm is recommended. For roughness measurements, increasing the grid interval results 

in smaller measurement errors, and therefore a larger rasterization grid interval of 0.5 mm is rec-

ommended for high-resolution smartphones and 1 mm for other low-cost cameras. 

Keywords: photogrammetry; physical aperture; roughness; JRC; camera; rock fracture 

 

1. Introduction 

The geometrical properties of rock fractures such as aperture, roughness, orientation, 

length, persistence, and spacing are important in rock engineering projects since they 

have a great impact on rock mass mechanical and hydrological properties like strength 

and permeability. The surfaces roughness and physical aperture of rock fractures are key 

characteristics in fracture shear strength and fluid flow investigation. Rock mass hydrau-

lic and shear strength can be affected by roughness, especially in clean and unfilled frac-

tures [1]. As a result, determining the physical aperture and roughness of rock fractures 

is critical for determining the engineering stability of rock masses. 

The joint roughness coefficient (JRC) is a widely used parameter representing the 

degree of roughness introduced by Barton [2]. The JRC is usually back-calculated using a 

tilt or shear test. These tests are frequently time-consuming and costly. To address this 

problem, a set of 10 standard roughness profiles was proposed by Barton and Choubey, 

representing different JRC values ranging from 0 to 20 [1]. These profiles were approved 

as a standard method to determine fracture roughness by the International Society of Rock 

[3], in which visual comparison with these profiles is used to estimate a JRC value, which 

is rather subjective [4–6]. Numerous studies have tackled this subjective evaluation for 

gaining exact JRC values. This led to many empirical equations based on different 
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approaches, e.g., fractal dimension and other methods, which have been summarized in 

refs. [7,8]. 

The most used method is the Z2, where the root mean square of the first deviation of 

the profile is computed [9–17]. The second method is the roughness profile index (Rp), 

which is calculated as the ratio of the real length of fracture profile to the projected length 

in the fracture plane [4,10,12]. The third approach is the structure function (SF), which 

quantifies the variation in surface texture [4,12,14]. Another approach uses the fractal di-

mension (D) as a degree of surface variation [12,18,19]. The fifth approach (θ*max/(C + 1)2D 

computes the maximum inclination (θ*max) and a dimensionless parameter C calculated 

from the relationship between the normalized length and the inclination threshold [12,20]. 

The parameters tend to be very sensitive to the sampling interval [10]. 

The original JRC profiles have been digitized at different interval ranges by employ-

ing different techniques, for instance, digitizer [4,9], image processing [13,15,16], Auto-

CAD [20], Origin software [12], and GETDATA software [17]. As a result, further research 

on fracture topography shifts away from visual comparison with standard 2D profiles 

toward measurement of 3D surfaces and internal fracture geometry using various ap-

proaches. 

Early investigations employed destructive methods to measure the internal fracture 

geometry such as injection of epoxy into the fracture and slicing the sample (e.g., [21]). A 

range of non-destructive methods was also applied, such as X-ray computed tomography 

scanning [22,23], magnetic resonance imaging [24,25], or transmitted light method for 

transparent fracture analogs [26,27]. Later, high-resolution, precise scanning devices were 

utilized to measure the surface topography and aperture of rock fractures in the labora-

tory, such as optical profilometers (e.g., [28]), 2D microscope cameras (e.g., [29]), or 3D 

laser scanners (e.g., [29,30]). 
Surface properties of rock fractures can also be measured from digitized rock surfaces 

created using Structure-from-motion (SfM) photogrammetry [31–56]. For instance, SfM 

enables estimation of the surface roughness [31,32], and the effect of the type of cameras, 

sensors, and lenses on roughness measurements was investigated in refs. [33,42,51,53–55]. 

The SfM method allows investigation of the reliability of JRC values with high-resolution 

images [34–37,51], and photogrammetric JRC estimation for the design and stability anal-

ysis of slopes [43,44]. The SfM is advantageous as it allows estimation of JRC error models 

for both laboratory and field photogrammetric surveys [41,42,46]. Other applications of 

SfM related to rock fracture characterization are prediction of peak shear strength [47], 

using 3D models obtained by photogrammetry for simulation of fluid flow through a frac-

ture [48], and validation of photogrammetry data with pull and push shear tests to predict 

friction angle [45,50]. The method was applied successfully for different materials [51–53], 

different sample size [53], and the quality of the reconstructed model was investigated by 

the angular distance between subsequent images [56]. This efficient and low-cost remote 

sensing technique generates high-resolution digital 3D models of rock surfaces from a set 

of images. As a result, accurate measurements can be derived from the 3D models [49]. 

Nonetheless, the trustworthiness of aperture and roughness measurements from 3D mod-

els are governed by the quality of the images, and of the photogrammetric reconstruction 

process [34]. 

However, such techniques for obtaining 3D representations of rock fracture surfaces 

require expensive equipment with a limited scanning area, which limits their widespread 

use in rock fracture surface measurement of large-scale samples. As a result, there is a 

great demand for a low-cost method of obtaining 3D data of rock fracture surface proper-

ties. This is particularly important when low-cost cameras are used to collect the data. 

However, only a limited number of studies exist that quantify the effect of low-cost pho-

togrammetric process on fracture measurements, e.g., [51]. Nowadays, smartphones’ cam-

eras and processors are being developed rapidly. This opens the possibility for many peo-

ple to have access to low-cost and high-quality cameras. In addition, several photogram-

metric software packages exist for reconstructing 3D models, and their processing speed 
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has increased considerably in recent years. The packages provide a great opportunity for 

researchers to do their research with more accessible tools. In addition, no comprehensive 

study has been found in the literature that describes a method for the measurement of 

physical aperture of rock fracture from the photogrammetric models. This can be at-

tributed to the difficulty of the process, as it requires accurate transformation and match-

ing of the top and bottom half of the digitized sample. 

In this study, an attempt has been made to provide a methodology to characterize 

physical aperture using photogrammetry as a non-destructive method. Besides, a com-

parison study was conducted to identify the effect of using different photography devices 

with different resolutions and costs on characterizing geometrical properties of natural 

rock fractures. Using markers gives the opportunity to put two halves of a rock sample in 

the same coordinate system to calculate physical aperture and improve the accuracy of 

3D models. In addition, the effect of the rasterization grid intervals of the rough surfaces 

was investigated on an estimation of physical aperture and roughness value. A proper 

rasterization grid interval could help in order to obtain more precise results and better 

quality of the point clouds. 

The paper presents a workflow to measure physical aperture and estimate the rough-

ness using different photographic tools. The comparison was done between the results 

obtained by a DSLR and low-cost cameras of a rock fracture in a 50 cm × 50 cm sample. 

The physical aperture is calculated using the cloud-to-cloud distance of the top and bot-

tom models and the surface roughness is calculated using the Z2 approach [9] and JRC 

formulas proposed by Yu and Vayssade [10]. The effects of the photogrammetric recon-

struction and model rasterization on the measured aperture and roughness are assessed. 

Finally, some of the benefits and drawbacks of employing this method are highlighted. 

2. Materials and Methods 

The rock fracture is digitized using photogrammetry and a rotating table with five 

cameras. The 3D model of the rock sample is reconstructed from the images and analyzed 

to compute the aperture and roughness of the fracture surface. The workflow overview is 

given in Figure 1. To conduct hydromechanical or shear tests, rock is frequently split into 

two pieces with a single artificial fracture (Figure 1a). Dimensions of the rock were se-

lected based on some limits, such as experimental methods or facilities. The distance be-

tween two pieces is called physical aperture and it plays a key role in the abovementioned 

tests. The photogrammetry was conducted as follows: the whole sample, when two halves 

are tightened together (Figure1d), top and bottom halves separately (Figure 1e). As a re-

sult, there were three point clouds, the top half, the bottom half, and the whole sample. 

Distances between markers were specified in the 3D model to scale the whole sample 

(Figure 1f) and a coordinate system was defined in the 3D model (Figure 1g). This stage 

helps to extract the positions of markers. The exported data of each marker is applied to 

the 3D model of each half (Figure 1h). The georeferenced point clouds of each half were 

in the same coordinate system. The exterior bodies of a rough surface were removed and 

only the rough surface remained. The height distance between the top and bottom rough 

surfaces was calculated (Figure 1i). To measure Joint Roughness Coefficient (JRC), three 

profiles in two perpendicular directions were drawn on the top and bottom rough sur-

faces (Figure 1j). The extracted profiles were digitized and JRC values were estimated 

(Figure 1k). 
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Figure 1. Workflow of the photogrammetric method to measure physical aperture: (a) Kuru grey 

granite sample with a throughgoing rough fracture, (b) top and half parts of the sample are scanned 

together and separately, (c) cameras used to capture the images of the sample, (d) photogrammetric 

processing and the calculated camera positions of the whole sample, (e) photogrammetric pro-

cessing and the calculated camera positions of the two halves, (f) defined distances between markers 

on the whole sample, (g) defined coordinate system for the whole sample and extracting each 

marker position in the same coordinate system, (h) 3D point cloud of the sample with top and bot-

tom halves matched in the same coordinate system with applying obtained markers’ positions for 

each half, (i) physical aperture distribution measured from the digital model, (j) profile extraction, 

and (k) Joint Roughness Coefficient (JRC) estimation. 
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2.1. Sample Preparation 

A rock sample of Kuru grey granite extracted from the Finnish bedrock was selected 

for this study. The sample was homogeneous with no visible pre-existing defects. A tensile 

throughgoing fracture was created with a manual plug and feather technique. Splitting 

was done by drilling holes at 15 cm spacing along the line of the planned fracture trace 

and hammering steadily the plug until the fracture propagated to the end of the block. 

Finally, the block was cut into 50 cm × 50 cm × 20 cm dimensions (Figure 1a). 

2.2. Photography Procedure and Data Acquisition 

A Structure-from-Motion (SfM) photogrammetric approach is used to scan the ge-

ometry of the sample. In this case, a set of overlapping images is captured from equally 

spaced locations around the sample at two angles. Shape and position of an object are 

determined by reconstructing bundles of rays. A combination of each camera location, 

each image point, and the corresponding perspective center defines the spatial direction 

of the ray to the corresponding object point. From the intersection of at least two corre-

sponding (homologous), spatially separated image rays, an object point can be located in 

three dimensions [57]. Photogrammetric recording of rock fracture surfaces aims to auto-

mate detecting the rock fracture surface roughness and physical aperture without any 

manual sampling and costly laboratory experiments. Photogrammetry produces high-res-

olution and accurate three-dimensional (3D) models from two-dimensional (2D) images. 

Since the 3D object is reconstructed from 2D images, the quality of the 3D models 

depends on image resolution and sharpness, camera sensor size and quality, position of 

the camera, and sufficient coverage of the captured subject. Finally, a resultant recon-

structed 3D model can be affected by other elements such as light sources, texture of the 

object recorded, image processing, and reconstruction software. In this study, cameras of 

varying image resolution and sensor size were selected to test the influence on photo-

grammetric reconstruction. The data were collected using five different cameras. Canon 

EOS5DS R DSLR camera has the best sensor and high-resolution images of good quality, 

and previous research [50] successfully used this camera for measurement of JRC, which 

was confirmed by shear tests. Therefore, the Canon EOS 5DS R DSLR camera was consid-

ered as a benchmark for this research. and data acquired by other low-cost cameras was 

compared with Canon EOS 5DS R DSLR data. Raspberry Pi High Quality, as a customized 

camera, and GoPro Hero 8, as an action camera, were selected, as they have similar reso-

lutions and sensor sizes. Two smartphones were chosen with high resolution (Xiaomi 10T 

Pro) and normal resolution (iPhone 12 Pro Max), also with different sensor sizes. To re-

duce the risk of the noise as much as possible, the lowest ISO values were selected. The 

specifications of each camera are presented in Table 1. 

Table 1. Camera specifications. 

Item 
Canon EOS 5DS 

R DSLR 

Raspberry Pi High-

Quality Camera 
GoPro Hero 8 Xiaomi 10T Pro iPhone 12 Pro Max 

Max resolution (Mpix) 50.6  12.3  12  108  12 

Sensor size (mm × mm) 36 × 24  6.287 × 4.712 6.16 × 4.62  9.6 × 7.2  6.85 × 5.14 

Image resolution (pix) 8688 × 5792  2592 × 1944 4000 × 3000 12,032 × 9024 4032 × 3024 

Pixel size (μm) 4.17 2.43 1.54 0.8 1.7 

Lens 
Canon EF 35 mm 

f/1.4 L II USM 

Arducam 2.8–12 mm 

Varifocal 
- - - 

Lens focal length (mm) 35 3 3 7 5 

35 mm equivalent  35 16.9 16.4 26 26 

Format JPEG + RAW JPEG JPEG JPEG DNG 

ISO 100 100 100 50 32 

F-Stop (aperture) f/11 f/2 f/2.8 f/1.7 f/1.6 
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The images were taken in the largest resolution available and JPEG or RAW formats 

(see Table 1). The Depth of Field (DoF) was estimated based on the distance between the 

camera and the focus point on a portion of the sample once the settings and the location 

of the camera have been chosen. 

Slabs were compactly matched to each other and each of them were fitted using dual 

ring 12-bit circular targets for photogrammetry (Figure 1a). For the aim of keeping the 

consistency with the global system and to scale the 3D model and align the two halves 

that are scanned separately, the circular reference points were placed around the upper 

and lower halves of all samples (see Figure 1a,b). A set of 6 dual-ring 12-bit markers was 

distributed on each side of the sample (in total 24 markers for the sample). To minimize 

the possibility of false matches due to repeated targets, each marker was unique, so that 

it can be automatically detected by the photogrammetric software. The markers were also 

used to test the accuracy of reconstruction by measuring the distances between each 

marker. A more detailed description of the measurement is given in Section 2.4. 

Light is important to reduce the presence of noise in the image and shadows on the 

fracture surface. As the photogrammetry was performed indoors, it was necessary to pro-

vide enough illuminance on the rock surface. Eight portable LED lights were placed 

around the sample on a circle with 2 m radius from the sample center, as shown in Figure 

2a, to provide the necessary luminous flux. The luminous flux was measured before the 

capture with a lux meter placed at nine different points (Figure 2b) of the slab’s surface. 

The amount of each point is tabulated in Table 2. 

 
 

(a) (b) 

Figure 2. (a) LED light tripods around the slab and (b) the pattern of measuring the luminous flux 

on the sample surface as indicated by the numbers. 

Table 2. Illuminance measurement results on the sample surface. Locations correspond to markings 

in Figure 2b. 

Location 1 2 3 4 5 6 7 8 9 

Illuminance (lux) 4010 4030 3920 4000 4040 4060 4000 4050 4130 

The camera was mounted on a tripod in a fixed position and tilted at 30° towards the 

sample placed on a rotating platform (Figure 3). The shooting distance was selected so 

that the photographed object fits onto the picture (Table 3). The slab was rotated in incre-

ments of 9°, with pictures taken at each rotation step. After each full rotation, three extra 

photos were taken to close a loop. This helps the software match the first and the final of 

the taken photos for the reconstruction of a 3D model. The full rotation produces 43 im-

ages. After each 360° rotation, the camera height and vertical angle were adjusted to 60°, 

and the process was repeated. In total, 86 photos were captured of the bottom and top 
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halves of the sample. In addition, a total of 86 photos were taken of the sample when two 

pairs were matched together. 

 

Figure 3. Sketch of the camera position in relation to the photographed sample. 

Table 3. Shooting distances measured during data capture. 

Camera 

Shooting Distance (m) 

Whole Sample Bottom Top 

30° 60° 30° 60° 30° 60° 

Canon EOS 5DS R DSLR 1.07 1.25 1.21 1.29 0.97 1.29 

Raspberry Pi HQ camera 0.88 1.10 0.93 1.12 0.90 1.14 

GoPro Hero 8 0.56 0.52 0.55 0.53 0.55 0.53 

Xiaomi 10T Pro 0.72 1.10 0.75 0.97 0.79 0.98 

iPhone 12 Pro Max 0.69 0.80 0.69 0.85 0.76 0.88 

2.3. Data Processing 

The reconstruction of the 3D models was done using the photogrammetric software 

RealityCapture 1.2 [58]. First, both the top and bottom samples are photographed to-

gether, then the bottom, and finally the top sample. Each assembly produces a total of 86 

photographs. All photos from varying camera positions (3 × 86 = 258) were used to align 

the sample pair together. Next, the bottom and top images were aligned separately from 

86 images. This process results in three alignment components: bottom, top, and bottom 

and top together. 

Since the top and bottom halves of the sample were scanned separately to reconstruct 

the fracture surface, it was necessary to develop an approach for accurate positioning and 

matching of the top and bottom digital models in space so that it matched their original 

position when they were physically matched together. This enabled to calculate the phys-

ical aperture of the fracture. Moreover, the accuracy of the point cloud can be affected by 

the photogrammetric process. Therefore, the use of control points and measured distances 

between control points is also necessary to improve the accuracy of alignment. The mark-

ers on the sample surface were detected from the photos automatically in the software 

and added as control points on the images. The distances between markers were meas-

ured by a caliper with the accuracy of 0.1 mm and added as measured distances between 

control points. Next, the control point type was changed from the tie point to the ground 

control so that the xyz coordinates of each point can be specified. In the model of the whole 

sample, one control point was set as the origin of the coordinate system (0,0,0) and the 

coordinates of two other control points were set, from which two lie on the same plane 
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with the origin (Figure 1g). Finally, the alignment was updated so that the aligned model’s 

position and scale is updated. Next, the calculated coordinates of all control points were 

extracted and imported into the bottom and top aligned models so that each model is 

positioned correctly in space with the same coordinate system. Next, the 3D dense clouds 

were calculated and colorized on the highest quality settings. Finally, reconstructed 3D 

point clouds were exported in the *.xyz format (Figure 1h). 

Further processing of the point clouds was done in CloudCompare software version 

2.10.2 [59], which is one of the best softwares to extract and calculate geometrical features 

of point clouds. The point clouds were cleaned by the elimination of the unnecessary 

points, such as background or noise. During this process, the models were cropped to 

eliminate the side surfaces of the samples, leaving only the fracture surface for further 

analysis. 

The surface point density was measured with CloudCompare by using Compute Ge-

ometric Features operations. A sampling radius of 1 mm2 was selected to evaluate the 

number of neighboring points for the estimation of surface density of each point cloud. 

Finally, the point clouds were rasterized using the rasterize function in CloudCompare 

with a specified grid interval. The rasterization was done with the grid intervals of 0.1, 

0.25, 0.5, and 1 mm for measuring the physical aperture and 0.25, 0.5, and 1 mm for esti-

mating the JRC values. 

The models obtained from other cameras were compared to the Canon EOS 5DS R 

DSLR model—the Canon DSLR. For example, the difference between the bottom surface 

of the Canon DSLR and smartphone point clouds was measured to show the differences 

in accuracy. In addition, the physical aperture and JRC values obtained from point clouds 

of each camera were compared to JRC values measured from the Canon DSLR models. 

2.4. Estimation of Physical Aperture 

Cloud Compare software [59] was used to calculate the physical aperture distribu-

tion from the point cloud data of the top and bottom halves (Figure 1h,i) using the cloud-

to-cloud distance feature. The physical apertures of all 3D models of the cameras were 

measured after rasterizing the bottom and top surfaces with same X and Y coordinates in 

CloudCompare. The physical aperture was estimated by calculating the mean distance 

between the two-point clouds along the Z direction. 

2.5. Estimation of JRC Values and JRCerror 

Each surface of the digital sample was intersected with three parallel lines in direc-

tion X and three lines in direction Y to extract data points for the measurement of JRC 

values (Figure 4). The measurement lines are equidistant. The 2D cross-sectional lines 

were therefore drawn on the original samples’ point clouds and their data were extracted, 

similarly, to Figure 4. 

 

Figure 4. Visualization of the measurement lines for calculating JRC, B signifies the bottom and T is 

the top part of the sample. 
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In this study, the root mean square (RMS) of local slope of the profile (Z2) (Equation 

(1)) was used to calculate the JRC [9]. 

�� = �
�

�(�)�
∑ (����−��)

��
��� �

�

�
, (1)

where N signifies the number of intervals along each section, P is the point interval, and 

zi is the height of the asperities corresponding to the height local point. Varying uniform 

point interval with 0.25, 0.5, and 1 mm was used based on Equations (2)–(4) proposed by 

Yu and Vayssade [10]: 

JRC = 60.32(Z2) − 4.51 (Point interval: 0.25 mm), (2)

JRC = 61.79(Z2) − 3.47 (Point interval: 0.5 mm), (3)

JRC = 64.22(Z2) − 2.31 (Point interval: 1.0 mm). (4)

Each line was divided into five 10-cm sections and JRC was calculated for each sec-

tion. The overall JRC value for each line was calculated as an average of all sections. The 

Canon DSLR data was considered as the data closest to reality [50]. The JRC values ob-

tained from the data reconstructed from images captured with other low-cost cameras 

(JRCcamera) were compared with the JRC values obtained from the Canon DSLR images 

(JRCDSLR) to estimate the JRCerror (Equation (5)): 

JRC����� =
�����������������

�������
. (5)

3. Results and Discussion 

3.1. Constructed 3D Models 

Figure 5 depicts the reconstructed 3D point clouds from the images captured with 

the Canon DSLR. The topography of the surfaces was extracted from the top and bottom 

halves as the height along Z-axis in the same coordinate system (Figure 5c,d). The differ-

ence between the height values of the two surfaces approximates the physical fracture 

aperture. 

  
(a) (b) 
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(c) (d) 

 
(e) 

Figure 5. 3D point clouds of the sample reconstructed from the images obtained using Canon DSLR 

camera, (a) the bottom half, (b) the top half, (c) topography of bottom surface (d) topography of top 

surface, and (e) the whole sample. 

The difference between the measured distances between markers obtained with the 

caliper and the calculated distances from photogrammetric software for each camera are 

given in Table 4. The mean, standard deviation (SD), and root mean square error (RMSE) 

of those distances were calculated. As can be seen, the Canon DSLR (high-resolution cam-

era) has the least error, and the Raspberry Pi HQ (low-resolution camera) has the highest 

error. However, the range of those errors is under 0.5 mm. 

Table 4. The difference between measured and calculated marker spacing in 3D models produced 

using each camera. 

Camera 
Mean Control Distance Accuracy 

(mm) 
SD (mm) RMSE (mm) 

Canon EOS 5DS R DSLR −0.0016 0.230 0.228 

Raspberry Pi HQ camera 0.3189 0.291 0.430 

GoPro Hero 8 0.02163 0.232 0.230 

Xiaomi 10T Pro −0.0025 0.323 0.320 

iPhone 12 Pro Max 0.0175 0.257 0.255 

Table 5 shows the surface point density of the fracture surface obtained by each cam-

era, ranging from 0.48 million to 12.6 million points. The Raspberry Pi HQ camera pro-

duced the lowest mean point density and Xiaomi 10T Pro smartphone the maximum. This 

is related to the image resolution of the cameras as shown in Figure 6, where the surface 

density is linearly proportional to the image resolution. The cameras arranged based on 

mean point density from highest to lowest are as follows: Xiaomi 10T Pro, Canon DSLR, 

iPhone 12 Pro Max, GoPro Hero 8, and Raspberry Pi HQ. Even though the surface density 
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of points in the Canon DSLR model is not the highest, it is much smoother than others 

due to superior image quality of the Canon DSLR camera. 

  
(a) (b) 

Figure 6. Mean surface point density of the top (a) and bottom (b) half of the sample as a function 

of camera resolution in megapixels. 

Table 5. Mean surface point density of the 3D point clouds of the fracture surface. 

Specimen Camera Point Count 
Mean Point Density 

(point/mm2) 
SD 

Top 

Canon EOS 5DS R DSLR 4,017,779 16.14 2.14 

Raspberry Pi HQ camera 503,843 2.299 0.34 

GoPro Hero 8 801,591 3.24 0.87 

Xiaomi 10T Pro 10,340,587 42.26 6.24 

iPhone 12 Pro Max 1,463,411 6.15 1.26 

Bottom 

Canon EOS 5DS R DSLR 7,186,385 28.97 4.45 

Raspberry Pi HQ camera 481,749 2.16 0.32 

GoPro Hero 8 734,769 2.88 0.6 

Xiaomi 10T Pro 12,558,026 51.56 8.45 

iPhone 12 Pro Max 1,674,754 6.99 1.50 

Figure 7 illustrates the bottom surface models for each camera. The blue color repre-

sents the minimum density of points in the middle of the reconstructed 3D surfaces, and 

it is a pattern that repeats in all models. This is related to the specifics of the rotary table 

method where the edges of the sample are always closest to the camera and the center is 

the furthest. As a result, the pixel size of the sample’s center is smaller compared to the 

edges, which results in lower point density of the center. 

Table 6 shows the rasterized cloud-to-rasterized cloud distance between each sur-

face obtained by the different cameras and the Canon DSLR, for the bottom and top sur-

faces with different grid intervals. The mean, standard deviation (SD), and root mean 

square error (RMSE) of those distances is calculated. It can be observed that the RMSEs 

increase with an increasing grid interval. If the mean differences are zero and the stand-

ard deviation values are close to each other, it means the point clouds are alike. Figure 8 

demonstrates the computed RMSE of the rasterized cloud-to-rasterized cloud distance 

acquired by different devices. The different cameras show the good performances with 

low RMSEs. However, the lowest RMSE values are obtained from Xiaomi 10T Pro 
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camera. It means the data obtained with this device is the closest to the Canon DSLR. 

The cameras can be ranked according to RMSE values of Figure 8 as follows: Xiaomi 10T 

Pro camera, iPhone 12 Pro Max, GoPro Hero 8, and Raspberry Pi HQ camera. iPhone 12 

Pro Max and GoPro Hero 8 cameras show differences of RMSE values for the bottom 

and top surfaces. For Xiaomi 10T Pro and Raspberry Pi HQ cameras, the results are simi-

lar for both surfaces. 

Table 6. Comparison of cloud-to-cloud distance of low-cost camera point clouds in relation to the 

Canon EOS 5DS R DSLR point cloud. 

Rasterization 

Grid Interval 

(mm) 

Camera 

Sample 

Bottom Top 

Mean (mm) SD (mm) RMSE (mm) Mean (mm) SD (mm) RMSE (mm) 

0.1 

GoPro Hero 8 0.004 0.117 0.117 −0.002 0.094 0.0917 

Raspberry Pi HQ 0.000 0.148 0.148 0.000 0.141 0.141 

Xiaomi 10T Pro 0.002 0.057 0.057 −0.004 0.054 0.054 

iPhone 12 Pro Max 0.001 0.085 0.085 −0.002 0.113 0.113 

0.25 

GoPro Hero 8 0.016 0.124 0.125 −0.013 0.105 0.105 

Raspberry Pi HQ 0.002 0.151 0.151 −0.009 0.149 0.149 

Xiaomi 10T Pro −0.014 0.061 0.062 0.004 0.058 0.058 

iPhone 12 Pro Max 0.005 0.086 0.086 −0.010 0.116 0.117 

0.5 

GoPro Hero 8 0.046 0.127 0.135 −0.046 0.107 0.117 

Raspberry Pi HQ 0.034 0.156 0.160 −0.043 0.152 0.158 

Xiaomi 10T Pro −0.022 0.065 0.063 0.007 0.057 0.058 

iPhone 12 Pro Max 0.023 0.089 0.092 −0.033 0.119 0.123 

1 

GoPro Hero 8 0.065 0.129 0.144 −0.064 0.107 0.125 

Raspberry Pi HQ 0.075 0.158 0.175 −0.078 0.153 0.172 

Xiaomi 10T Pro −0.028 0.058 0.063 0.011 0.057 0.058 

iPhone 12 Pro Max 0.027 0.087 0.092 −0.040 0.117 0.124 

 

  
(a) Canon EOS 5DS R DSLR (b) GoPro Hero 8 
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(c) Raspberry Pi HQ  (d) Xiaomi 10T Pro 

 
(e) iPhone 12 Pro Max 

Figure 7. Surface density of the bottom surface in the 3D models. 

    

Figure 8. The root mean square error (RMSE) of the cloud-to-cloud distance between each low-cost 

camera model compared to Canon EOS 5DS R DSLR for the top and bottom samples with different 

rasterization grid interval. 
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Figure 9 shows the rasterized cloud-to-rasterized cloud distance with 0.1 mm grid 

interval between each device and Canon DSLR data. GoPro Hero 8 shows good results 

(green area) at the corners, but differences appear in the middle (yellow area) of the frac-

ture surface (Figure 9a). One explanation for such a difference can be the wide angle of 

the GoPro Hero 8 camera, which results in large image distortions. The Raspberry Pi HQ 

results shows large height differences that occur locally, so that the point cloud height is 

lower and higher than the Canon DSLR model. The Xiaomi 10T Pro point cloud is slightly 

elevated compared to the Canon DSLR point cloud, but it is negligible based on obtained 

RMSE, SD, and mean values. The GoPro Hero 8 and iPhone 12 Pro Max values of differ-

ences are less than 1 mm at the highest and lowest spots. 

 
 

(a) GoPro Hero 8 (b) Raspberry Pi HQ 

  
(c) Xiaomi 10T Pro (d) iPhone 12 Pro Max 

Figure 9. Comparison of cloud-to-cloud distance of low-cost camera point clouds to Canon EOS 5DS 

R DSLR point clouds of the bottom surfaces. The rasterization grid interval is 0.1 mm. 

3.2. Calculated Physical Aperture 

Figure 10 and Table 7 show the mean rasterized cloud-to-cloud distance between 

each surface (physical aperture) obtained by all cameras for the bottom and top surfaces 

for different rasterization grid intervals. By decreasing the interval grid values, the frac-

ture aperture values obtained by different devices converged (Figure 10) so that the small-

est interval values resulted in more precise estimation of the aperture for all cameras. A 

smaller interval means that more measurement between top and bottom surfaces are 
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made to get the mean value of the approximated physical aperture. By increasing the in-

terval values, the range of resulting values increases. Physical aperture acquired by high-

resolution cameras such as Canon DSLR, iPhone 12 Pro Max, and Xiaomi 10T Pro 

smartphones are more scattered than low-resolution cameras such as Raspberry Pi HQ 

and GoPro Hero 8. One plausible cause for this result is the lower surface point density of 

the models reconstructed from the low-resolution cameras, resulting in smoother surfaces 

and not enough data points to be averaged. The Xiaomi 10T Pro trend of physical aperture 

estimations for varying grid interval changes more steeply than others. On the other hand, 

for GoPro Hero 8 and Raspberry Pi HQ, those changes are smaller. These results indicate 

that to get better results with different cameras, the small interval grid should be select 

during the rasterization of the models. Figure 11 shows the rasterized cloud-to-cloud dis-

tance for each camera with a grid interval of 0.5 mm. 

 

Figure 10. Comparison of estimated physical apertures obtained by all cameras for different raster-

ization grid intervals. 

Table 7. Measured physical aperture using different grid intervals. 

Rasterization Grid 

Interval (mm) 
Camera 

Physical Aperture 

(Mean Value) (mm) 

SD 

(mm) 

0.1 

Canon EOS 5DS R DSLR 0.299 0.184 

Raspberry Pi HQ camera 0.283 0.157 

GoPro Hero 8 0.303 0.202 

Xiaomi 10T Pro 0.277 0.174 

iPhone 12 Pro Max 0.297 0.179 

0. 25 

Canon EOS 5DS R DSLR 0.318 0.170 

Raspberry Pi HQ camera 0.283 0.148 

GoPro Hero 8 0.292 0.187 

Xiaomi 10T Pro 0.321 0.168 

iPhone 12 Pro Max 0.299 0.166 

0.5 

Canon EOS 5DS R DSLR 0.388 0.182 

Raspberry Pi HQ camera 0.284 0.152 

GoPro Hero 8 0.298 0.197 

Xiaomi 10T Pro 0.411 0.187 

iPhone 12 Pro Max 0.334 0.190 

1 
Canon EOS 5DS R DSLR 0.517 0.213 

Raspberry Pi HQ camera 0.343 0.168 
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GoPro Hero 8 0.389 0.219 

Xiaomi 10T Pro 0.547 0.209 

iPhone 12 Pro Max 0.443 0.193 

 

  
(a) Canon EOS 5DS R DSLR (b) GoPro Hero 8 

  
(c) Raspberry Pi HQ (d) Xiaomi 10T Pro 

 
(e) iPhone 12 Pro Max 

Figure 11. Physical apertures determined by cloud-to-cloud distance of bottom and top surfaces of 

each camera with a rasterization grid interval of 0.5 mm. 
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3.3. Calculated JRC Values 

The 3D models were further analyzed to extract the roughness of the rock fracture 

surfaces. Similar to aperture measurements, the JRC evaluation was done for three differ-

ent rasterization grid intervals: 0.25, 0.5, and 1 mm. The models were sectioned by the 2D 

profiles (L1 to L6), as illustrated in Figure 4. Then, the points along the 2D profiles (L1 to 

L6) were extracted to calculate JRC according to Equations (1) to (4). The Canon DSLR 

model was chosen as a benchmark model due to a previous study by ref. [50]. It was 

shown that the JRC values obtained using Canon DSLR camera are similar to the JRC 

values calculated from shear tests. 

As can be seen in Figure 12, by increasing the grid interval, the JRC values are in-

creased, except the values obtained from the Xiaomi 10T Pro model, where the JRC in-

creased slightly. In addition, the data points from the Xiaomi 10T Pro model result in the 

highest JRC values. The JRC calculated with the smallest interval values for iPhone 12 Pro 

Max, Raspberry Pi HQ, and GoPro Hero 8 are smaller than Canon DSLR. However, by 

increasing the grid interval, the calculated JRC of those cameras becomes closer to each 

other and to the Canon DSLR JRC values. It seems that the formulas used for estimating 

JRC values are sensitive to the dense data in the models rasterized with a small interval 

(0.25 mm). The calculated JRC values (5 to 7) with 1 mm interval for GoPro Hero 8, Rasp-

berry Pi HQ and iPhone 12 Pro Max models are almost equal to the JRC values (5 to 7) 

estimated from the Canon DSLR model with 0.25 mm interval. Therefore, the resolution 

and optical quality of a camera should be considered to evaluate JRC values accurately. It 

means that not only grid interval value plays a key role in the estimation of JRC values, 

but also other parameters, such as image resolution, optical quality of the camera sensor, 

and quality of the extracted point cloud should be considered. 
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(b) Top 

Figure 12. JRC values with different rasterization grid intervals obtained by different cameras along-

side the 2D profiles (L1 to L6). 

The Canon DSLR JRC values are almost in the same range for 0.25- and 0.5-mm in-

tervals. However, by increasing the interval to 1 mm, the JRC value increased around 1 (6 

to 7). 

The mean value of JRCerror of all 3D models for varying gird intervals were calculated 

according to Equation (5) (Figure 13). The JRCerror decreases when the grid intervals values 

increase. The JRC values are higher with minimum error if the large interval values are 

selected. It seems that by choosing the small interval, an underestimation error occurs for 

low-resolution cameras. The high-resolution cameras, for instance Xiaomi 10T Pro and 

iPhone 12 Pro Max, have lower errors (−40% to +40% for 0.25 mm interval and almost 

between −20% and +20% for 1 mm interval) than low-resolution cameras (−60% to −80% 

for 0.25 mm interval and −20% to −40% for 1 mm interval). 

 

Figure 13. Mean value of the JRCerror extracted from the fracture 3D models rasterized with grid 

intervals set to 0.25, 0.5, and 1 mm. 
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Figures 14a,b, 15a,b and 16a,b show the profile L6 with 0.25, 0.5. and 1-mm intervals 

for the bottom and top surfaces obtained with different cameras. The horizontal line 

shows the X-axis direction, and the vertical line represents the Z-axis direction. The two 

surfaces of the fracture are in the same coordinate system and the height is measured from 

the same reference level. Noticeably, there are some visual differences among those pro-

files. To compare those in detail, Figures 14c,d, 15c,d and 16c,d are drawn to illustrate the 

deviations of heights in the Canon DSLR profiles used as a benchmark and other cameras 

for different intervals. The range of deviation fluctuates between −1 and 1 mm, except for 

interval 0.5 mm iPhone 12 Pro Max profiles ranging from −2 to 2 mm. By increasing the 

gird interval, the deviation between the profiles becomes smoother, most likely due to 

lower amount of extracted data for larger grid intervals. 
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Figure 14. Comparison of the Canon EOS 5DS R DSLR and low-cost camera profiles with 0.25 mm 

rasterization grid interval. (a) Original profiles of bottom surface, (b) top surface, (c) height differ-

ences of bottom profiles, and (d) top profiles. 
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Figure 15. Comparison of the Canon EOS 5DS R DSLR and cameras profiles with 0.5 mm rasteriza-

tion grid interval. (a) Original profiles of bottom surface, (b) top surface, (c) height differences of 

bottom profiles, and (d) top profiles. 
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Figure 16. Comparison of the Canon EOS 5DS R DSLR and low-cost cameras profiles with 1 mm 

rasterization grid interval. (a) Original profiles of bottom surface, (b) top surface, (c) height differ-

ences of bottom profiles, and (d) top profiles. 

4. Conclusions 

1. A new photogrammetric method to determine physical aperture and roughness of a 

rock fracture was developed. In the new method, the sample pair is photographed 

using a circular table three times: the bottom sample, the top sample, and both sam-

ples in contact. Markers are used to align the top and bottom scans together to cap-

ture both the top and bottom fracture surfaces. 

2. Low-cost cameras and smartphones can be used for the evaluation of physical aper-

ture and JRC of rock fractures based on the accuracy of the aperture and the indicated 

JRC measurements. The cameras from best to lowest quality are Canon 5DS R DSLR, 

Xiaomi 10T Pro, iPhone 12 Pro Max, GoPro Hero 8, and Raspberry Pi HQ camera, in 

terms of the precision of distance estimation from the 3D models compared to the 

distances measured manually with a caliper. 

3. A strong influence of the rasterization grid interval was observed. To rasterize 3D 

point clouds obtained by the cameras, four different grid intervals of with 0.1, 0.25, 

0.5, and 1 mm were used. Reducing the rasterization grid interval for physical aper-

ture measurement results in less scattered results, with the results converging at the 

0.25 mm interval. The rasterization grid interval 0.1 mm shows the best results and 

is recommended. 

4. For the 3D model derived JRC calculation, rasterization with a grid interval set to 0.5 

mm gave the most reliable results. Measured JRC values are nearly identical to the 

results obtained by Canon DSLR. However, for low-resolution cameras, a rasteriza-

tion grid interval of 1 mm resulted in the best result. 
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Abbreviations 

SfM Structure from motion 

JRC Joint roughness coefficient 

DoF Depth of Field 

DSLR Canon EOS 5DS R DSLR 

Raspi Raspberry Pi High-Quality camera 

GoPro GoPro Hero 8 

Xi Xiaomi 10T Pro 

iPhone iPhone 12 Pro Max 

L Profile 

RMS The root mean square 

Z2 The root mean square of the first deviation of the profile 

SD Standard deviation 

RMSE Root mean square error 

C2C Cloud to cloud 
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