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An Artificial Bee Colony optimization-based approach for sizing and
composition of Arctic offshore drilling support fleets considering cost-
efficiency
A. A. Kondratenko , M. Bergström , M. Suominen and P. Kujala

School of Engineering, Department of Mechanical Engineering, Aalto University, Aalto, Finland

ABSTRACT
This article presents an optimization-based approach for sizing and composition of an Arctic
offshore drilling support fleet considering cost-efficiency. The approach studies the main
types of duties related to Arctic offshore drillings: supply, towing, anchor handling, standby,
oil spill response, firefighting, and ice management. The approach considers the combined
effect of the expected costs of accidental events, the versatility of individual support vessels,
and ice management. The approach applies an Artificial Bee Colony algorithm-based
optimization procedure. As demonstrated through case studies, the approach may help to
find a range of cost-efficient fleet compositions. Some of the obtained solutions are similar
to corresponding real-life fleets, indicating that the approach works in principle. Sensitivity
analyses indicate that the consideration of the expected costs from accidental events
significantly impacts the obtained solution, and that investments to reduce these costs may
improve the overall cost-efficiency of an Arctic offshore drilling support fleet.

Abbreviations: ABC: Artificial bee colony; AH: Anchor handling; DP: Dynamic positioning; Fi-Fi:
Firefighting; KPI: Key performance indicator; NM: Nautical mile; OSV: Offshore support vessel;
POLARIS: Polar operational limit assessment risk indexing system; PC: Polar class; RIO: Risk
index outcome; RS: Russian maritime register of shipping; WMO: World meteorological
organization
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1. Introduction

The Arctic contains very significant oil and gas
reserves. As per (U.S. Geological Survey 2008), the
known oil and gas fields in the Arctic account for
some 240 billion barrels of oil and oil-equivalent natu-
ral gas, which is around 10% of the world’s known
conventional petroleum resources. Most of the Arctic,
especially offshore, remains essentially unexplored
with respect to fossil fuels. As per (U.S. Geological
Survey 2008) and (EIA 2012), the unexplored Arctic
reserves may account for an estimated 13% (90 billion
barrels) of the world’s undiscovered conventional oil
resources and 30% of its undiscovered conventional
natural gas resources.

Current Arctic offshore oil and gas exploitation
activities are mainly limited to Norwegian and Russian
waters. In the Norwegian Arctic, the main develop-
ments are the Snøhvit and Goliath fields in the Barents
Sea. A third field– the Johan Castberg field – is cur-
rently being developed around 100 km northwest of
the Snøhvit field. Production there is due to start in
2022 (Equinor 2018). As per (Reuters 2020),

exploitation drilling aiming to develop additional
new fields on the Norwegian Arctic shelf is expected
in the future. In the Russian Arctic, presently, there
is a single offshore field under development, known
as the Prirazlomnoye field, which is located on the
Pechora Sea shelf. The Prizazlomaya field is the only
Arctic field in year-round operation using an ice-
strengthened offshore platform (Tarovik et al. 2018).
Additional fields are expected to be developed in the
future as exploration drilling is taking place in the
Kara Sea. In the American Arctic, on the other hand,
there is currently no offshore drilling. However, this
could change as there are strong economic incentives
to develop the rich oil and gas fields in the area.

Offshore exploration drilling requires an offshore
drilling rig, which is a large complex structure. For
safe and efficient operations, a drilling rig requires
continuous support from an offshore drilling support
fleet. Typical drilling support fleet duties include
supply, towing, anchor handling (AH), crew transpor-
tation, safety standby, as well as emergency functions
such as firefighting (Fi-Fi) and oil recovery. A drilling
support fleet must also deal with ice management in
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ice-infested waters, aiming to protect drilling rigs from
dangerous ice interactions.

In the Arctic, the length of the drilling season is typi-
cally 3–5 months, occurring within the period July –
November, when the presence of ice is minimal. A typi-
cal exploration drilling process can be chronologically
divided into three stages: mobilization, operation, and
demobilization. Support fleet duties related to mobiliz-
ation and demobilization consist mainly of towing and
AH, whereas the operation stage support mainly con-
sists of supply. A drilling support fleet typically consists
of several offshore support vessels (OSVs), including
both multi- and single-purpose vessels.

Due to the complexity of the operations and the
harsh but fragile Arctic environment, an offshore
exploration drilling operation in the Arctic is typically
subject to significant safety, environmental, and econ-
omic risk. Because the support fleet has a strong influ-
ence on the reliability and robustness of the operations,
it has a key role in managing such risks. However,
because support fleet-related costs are high, operators
must find a balance between costs and risks.

Any offshore drilling installation has an upper limit
regarding the ice conditions in which it can operate.
Because drilling installations are unable to maneuver
to avoid ice, ice management is paramount. This
applies especially to the start and end of the drilling
season when the probability of ice and iceberg occur-
rence is the highest. If there is a possibility that the
limit will be exceeded, the installation must be evacu-
ated and relocated from the drilling point in advance
with the help of tugs and icebreakers, resulting in
high financial losses. It is possible to extend the
range of safe operating conditions by increasing the
number of icebreakers to assist in the ice management
around the installation (El Bakkay et al. 2014). How-
ever, the cost of ice management resources is also
high. Thus, finding an appropriate ice management
solution requires a balanced consideration of, among
others, the possible ice scenarios, characteristics of
the installation, and the consequences of an evacua-
tion (Keinonen 2008).

In regions with significant offshore activity, such as
the Norwegian Sea or the North Sea, a drilling support
fleet is often organizationally divided into monofunc-
tional sub-fleets that perform the same duty for mul-
tiple installations. As a result, such sub-fleets can be
optimized for a specific type of duty. However, the dis-
tance between installations might be significant in
remote regions with limited offshore activity, such as
most Arctic regions. As a result, a drilling support
fleet must perform multiple duties for a single installa-
tion (Gauthier and Molyneux 2018), (Kondratenko
and Tarovik 2020). For such cases, the versatility of
individual vessels is essential.

Existing methods for sizing and composition of
offshore support fleets are mainly developed for

regions with significant offshore activity and involve
optimization of monofunctional sub-fleets. Early
works include (Fagerholt and Lindstad 2000), which
addresses monofunctional supply fleet sizing and
composition, focusing on brute-force optimization of
supply schedules. The study by (Fagerholt and Lind-
stad 2000) initiated a significant amount of further
research: (Aas et al. 2007) considered storage capacity
constraints, (Halvorsen-Weare et al. 2012) considered
regular weekly schedules, and (Norlund et al. 2015)
considered schedule robustness. Additional optimiz-
ation criteria, (e.g. travel time, OSV charter, and oper-
ation costs) were considered by (Aas et al. 2007),
(Halvorsen-Weare et al. 2012). Different types of
optimization algorithms (e.g. Tabu search heuristic,
the Genetic algorithm) were adopted by (Gribkovskaia
et al. 2008), (Borthen et al. 2018). Detailed operating
conditions (e.g. wind, waves, and sea ice) were con-
sidered by (Maisiuk and Gribkovskaia 2014). Detailed
models for studying local aspects of support fleet oper-
ations were presented by (Wu and Moan 2017), (Tar-
ovik et al. 2018), (Lu et al. 2019), (Mazurek 2019). The
versatility of an offshore support vessel from the ship
design perspective was studied by (Rehn et al. 2018).

A significant limitation of the existing methods and
approaches is that none of them is applicable to multi-
functional (versatile) Arctic offshore drilling support
fleets. The optimization of the sizing and composition
of such a support fleet represents a complex math-
ematical problem, generally formulated as a con-
strained integer nonlinear programming problem.
The challenge is further complicated by a large num-
ber of potential solutions. For instance, considering
a realistic number of different candidate vessel types
(about thirty or higher) for a typical Arctic offshore
drilling support fleet, there might be more than
3·1012 alternative fleet configurations.

In the optimization of multifunctional Arctic
offshore drilling support fleet, like in most real-world
optimization problems, the objective function is com-
plex, non-linear, highly constrained (discontinuous),
full of logical operators, and consequently cannot be
differentiated. The optimization process is further
complicated by the objective function’s multiple local
optima. As a result, the objective function must be
operated as a black box by an optimization algorithm
that can work with no information available about
the target function. Classic optimization approaches
such as the simplex or gradient descent method can
not be applied for this optimization problem.

As demonstrated by (Fagerholt and Lindstad 2000),
(Aas et al. 2007), (Halvorsen-Weare et al. 2012), some
early attempts using straightforward optimization
algorithms like brute force search, as well as commer-
cial nonlinear problem solvers, for the optimization of
offshore support fleets have required significant model
simplifications to keep the calculation time reasonable.
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As a result, the practical utility and value of the
approaches appear limited. Many recent studies, e.g.
(Gribkovskaia et al. 2008), (Borthen et al. 2018) and
(Ehlers et al. 2019), demonstrated that various meta-
heuristic optimization algorithms, such as the Tabu
search heuristic, Genetic algorithm, and particle
swarm algorithm, enable fast and reliable optimization
of highly-constrained offshore support fleet sizing and
composition problems. However, although it is known
that metaheuristics are preferable for support fleet
optimization, there are different opinions on which
metaheuristic is the most efficient for this task.

One of these alternative methods is the Artificial
Bee Colony algorithm (ABC) – a swarm-based meta-
heuristic whose behaviour is like honeybees. In com-
parison with other optimization metaheuristics, such
as the genetic algorithm, differential evolution algor-
ithm, and particle swarm algorithm, the ABC algor-
ithm has demonstrated significant advantages in
terms of performance and simplicity, especially when
dealing with real-life optimization problems with
high computational complexity and non-linear behav-
iour of the modelled objects (Karaboga and Akay
2009), (Akay 2013). Based on these promising
findings, we adapted the ABC algorithm to the optim-
ization problem at hand.

The development of new approaches for Arctic
offshore drilling support fleet optimization, addressing
the above-described limitation of existing models and
approaches, is well motivated by the needs of the
industry (RAO/CIS Offshore 2019) (Gauthier and
Molyneux 2018). Following the current practice in
fleet sizing and composition, only supply and crew
transportation requirements and corresponding Arc-
tic offshore drilling support fleet capabilities undergo
a quantitative assessment, while other functions are
evaluated based on requirements lumped together,
without a specific level of detail, based on the subjec-
tive opinions of individual experts (Ehlers et al.
2019). It is noted that the experts have no consolidated
opinion on these matters, and that their requirements
are often contradictory (RAO/CIS Offshore 2019).
Recent studies (Gauthier and Molyneux 2018) (Ehlers
et al. 2019) presented approaches for Arctic offshore
support fleet optimization based on the existing para-
digm considering functionality requirements (towing,
AH, safety standby, ice management) as predefined
entities. These requirements are limited to simplified
constraints: the fleet must have one or more vessels
with a specific functionality.

To support the sustainable development of Arctic
oil and gas, this article proposes an optimization-
based approach for sizing and composition of cost-
efficient drilling support fleets for offshore exploration
in the Arctic. The proposed approach assesses a fleet’s
functionality quantitatively, considering current
offshore marine practices. The quantitative assessment

is based on a novel formulation of the support fleet
optimization problem, considering the expected
costs of accidental events, support vessel versatility
(i.e. the ability of an individual vessel to perform var-
ious duties, including ice management), as well as cur-
rent statistics and offshore regulations. The proposed
approach aims to facilitate a systematic search for a
support fleet configuration (number of vessels of
different types) that minimizing the overall expected
costs while meeting set criteria for safety and perform-
ance using a limited amount of data typical for Arctic
offshore logistics management.

In this context, the study addresses the following
research questions: Does a quantitative assessment of
fleet functionality contribute to a systemic and inte-
grated search for an optimal Arctic offshore drilling
support fleet? Does the consideration of the expected
costs of accidental events significantly impacts the
choice of support fleet composition? Is it economically
motivated to invest in safety? Is it feasible to apply an
ABC algorithm to optimize an Arctic offshore drilling
support fleet?

As indicated by the research questions, the study
has an exploratory nature, with the aim to make a
first step towards developing a holistic approach that
reduces the level of subjectivity in high-level Arctic
offshore support fleet sizing and composition. Related
topics not addressed include stochastic simulation,
ship-ice interaction and resistance modelling, and
offshore crew transportation. Ship-ice interaction-
related issues are not specifically addressed as Arctic
offshore drilling operations typically are carried out
in summer when the occurrence of sea ice is rare.
Crew transport is not specifically addressed as the
typical passenger capacity of an Arctic OSV of around
30 persons is high in relation to the typical crew size of
an Arctic drilling installation of around 130 persons.
The study does not include any holistic risk assess-
ment and considers only those hazards that are depen-
dent on the fleet configuration; other hazards, e.g.
icing, grounding, loss of stability, are not specifically
considered.

2. Theory and methods

2.1. Problem formulation

The objective function of the optimization process
estimates the total costs of operations and is deter-
mined as per Equation (2.1). The objective function
is minimized using the ABC algorithm (see Sec. 2.8).
Candidate vessels are selected from the vessel pool V
that includes a specific number of vessels of each pre-
defined vessel type.

Equation (2.1) contains different types of risk-
associated costs, which are added to the normal char-
ter costs (C cr

v,d) and fuel costs (C f
v,d). All risks Ck.,
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where k is the type of risk, are divided into three main
categories: asset risks C ra

v,d, human life risks C rh
v,d, and

risks specifically related to the presence of ice Cri
ib.

The objective function is calculated as the sum of
the costs of the various duties performed by each
vessel.

Equation 2.2 determines duty requirements for
each vessel v aiming to execute duty d. Parameters
and constraints of Equation (2.1– 2.5) are defined as
per the methods described in Sec. (2.2–2.5).

The risk management procedure is handled at two
different levels. At the first level, constraints set by
Equation (2.3–2.5) are applied. These concern the
minimum number of vessels n min

d and their character-
istics that are needed to safely perform a duty d, as well
as the minimum acceptable Risk Index Outcome
(RIO) value (see Sec. 2.7) to assess limitations for
operations in ice. As per Equation (2.5), as a conserva-
tive criterion, only RIO values indicating ‘normal’
operations e accepted. At the second level, the impact
of various fleet configurations i [ I on the risk values
is measured (I is the set of feasible fleet configur-
ations). In general, the influence of any vessel v on i
is nonlinear and therefore different for various i.

The study is limited to risks that are dependent on
the fleet configuration. These risks are defined as
Rk
d = F k

d E k
d, where F k

d = f(i) is the frequency of an

event occurrence, and E k
d = f(i) is the corresponding

consequence (economic loss) in USD. The individual
risk contribution Ck

v,d of an OSV (see Equation 2.1)

is calculated as Rk
d/

∑
veV

xv,d. The same approach is

applied for an icebreaker with the contribution Cri
ib.

Risks associated with asset losses are expressed in
repair cost, cost of new assets, or lost profit. The
same applies to risks associated with the presence of
ice, which are considered as lost profit and wasted
resources due to unscheduled operational
interruptions.

An economic-based approach is applied to assess
the risk of human losses (Viscusi and Gayer 2002).
As per this approach, a risk-reducing measure is
motivated as long as its cost of averting a statistical
fatality is below the value of a statistical life.

Sets:
V: Available OSVs, indexed by v
IB: Available icebreakers, indexed by ib
D: Required duties (supply, towing, anchor hand-

ling, safety standby, firefighting, oil recovery) to sup-
port the platform, indexed by d

Nmin
d : Set of minimum numbers of vessels to per-

form duty d, indexed by nd
min

Pv,d: Set of performance capacities to execute duty d
by vessel v, indexed by pv,d

Rd: Set of functional specific requirements to the
fleet for successful performing duty d, indexed by rd

Parameters:

Ccr
v,d: Charter cost for vessel v to perform duty d

Cf
v,d: Fuel cost for vessel v to perform duty d

Cra
v,d: Contribution of vessel v performing duty d to

the risk of asset loss
Crh
v,d: Contribution of vessel v performing duty d to

the risk of loss of human life
Cri
ib: Contribution of icebreaker vessel ib to the risk

of economic loss due to ice

av,d = 1, if vessel v is specified to perform duty d
0, otherwise.

{ }

RIOv: Risk Index Outcome to assess limitations for
operations in ice

Variables:

xv,d = 1 if vessel v performs duty d
0 otherwise

{

min
∑
v[V

∑
d[D

xv,d(C
cr
v,d + Cf

v,d + Cra
v,d + Crh

v,d)

+
∑
ib[IB

Cri
ib, (2.1)

xv,d = 1 if av,d = 1, v [ V , d [ D, (2.2)
∑
v[V

xv,d ≥ nmin
d , d [ D, nmin

d [ Nmin
d (2.3)

∑
v[V

xv,dpv,d ≥ rd, v [ V , d [ D, pv,d

[ Pv,d, rd [ Rd, (2.4)

RIOv ≥ 0, v [ V. (2.5)

To improve computing efficiency, the optimized
process is divided into two stages. In the first stage
(see Sec. 2.4), optimization of the ‘traditional’ drilling
support fleet, responsible for supply, towing, AH,
safety standby, Fi-Fi, and oil recovery, is carried out.
In the second stage (see Sec. 2.5), considering the out-
come of the optimization of the ‘traditional support
fleet’, optimization of the ‘ice management fleet’ is car-
ried out. The ‘ice management fleet’ is an independent
part of the Arctic offshore support fleet, which is orga-
nized to modify the ice to extend the range of safe
operating ice conditions. An Arctic offshore support
fleet is formed from the optimal vessels of the ‘tra-
ditional’ drilling support fleet and the ‘ice manage-
ment fleet’.

Anyhow, the optimization process could also be
described as a single process as the ‘separation’ of
the processes is solely added to simplify the related
mathematical operation. The separation does not
impact the optimization results as the optimization
objective of both the ‘traditional support fleet’ and
the ‘ice management fleet’ are the same, namely
cost-efficiency, and because the consequences of an
undesired event for the ‘ice management fleet’ are
defined as a linear function of the expenses associated
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with the ‘traditional support fleet’, meaning that any
improvement in the objective of the ‘traditional sup-
port fleet’ always results in an improvement of the
cost-efficiency of the ‘ice-management fleet’.

2.2. Constraints

Equation (2.3–2.4) defines seven constraints concern-
ing the minimum number of vessels required per duty
and their required characteristics. These are listed in
Table 1 and described in the following.

Constraint 1 requires the monthly supply capacity
of the fleet Srate (the total available deck area, m2 per
month) to be equal or higher than the monthly con-
sumption rate Consrate of the installation. The value
of Srate is determined considering redundancy (see
Sec. 2.4). Constraint 2 determines the minimum
machinery power N min

pp, towing (kW) of vessels involved
in towing operations. The minimum required power
is calculated as a function of the number of vessels
involved in the task, towing speed, characteristics of
the installation, and environmental conditions as per
(Russian Maritime Register of Shipping 2014). The
aim is to prevent a loss of control of an installation
due to the lack of power – something that could
have severe consequences (Necci et al. 2019). Con-
straint 3 determines that AH operation requires at
least two vessels- one vessel to secure the anchor,
and another vessel to keep the installation in position
(Gibson 1999). The machinery power of the main
anchor handling vessel must be at least N min

pp, AH
(kW), which is determined as per (Gibson 1999).
Meeting this constraint is important in terms of the
safety of AH operation (Gibson 1999), (Laverick
2011). For secondary AH vessels, there is no specific
criterion for Npp, as any vessel certified to perform
AH is assumed to have sufficient machinery power.
Constraint 4 requires the continuous presence of at
least one safety standby vessel in the vicinity of an
installation as per existing industry standards (Coles
et al. 2000), (Gauthier and Molyneux 2018). In the
case of an evacuation, the capacity of a single certified

safety standby vessel is assumed to be sufficient to pro-
vide shelter for the whole crew. Constraint 5 requires
the fleet to include at least two vessels with Fi-Fi capa-
bilities. Two vessels are needed both for redundancy,
and to be able and to fight a fire on an installation sim-
ultaneously from two different directions. Constraint
6 requires the fleet to include at least one vessel with
certified oil recovery capability, which is usually
sufficient to manage the consequences of an oil spill
at an early stage. Constraint 7 requires the presence
of at least one vessel with an ice class higher than
the minimum required by Equation (2.5). This is
necessary for the safe demobilization of an offshore
installation from its location in case of an emergency
(See sec. 2.5, passive ice management scenario).

2.3. Categories of risk events

In this study, risks associated with an Arctic offshore
drilling support activity are analyzed based on empiri-
cal data by (Oil & Gas UK 2009). This database rep-
resents offshore operations in harsh environments
and includes data from multiple sources, including
the Offshore Safety Division of the Health and Safety
Executive (United Kingdom), SINTEF (Norway),
DNV GL (Norway, Germany), and the Marine Acci-
dent Investigation Branch (United Kingdom). The
applied database (Oil & Gas UK 2009) was formed
by processing the raw accident data, revealing the
chains of events that have resulted in an accident
and the frequencies of event occurrences.

Categories of risk events and drilling support fleet
parameters influencing those risk events were deter-
mined by analyzing the database as per Table 2. The
risk event categories were determined as per (DNV
GL 2013). Description of Fi-Fi and DP classes is pro-
vided in Table 3. The contents of Table 2 are explained
in the following.

Different types of towing-related risk- events may
occur when moving an installation from one location
to another. The potential consequences are severe. For
instance, a loss of control of a platform during a tow-
ing operation could result in the grounding or sinking
of a rig (Necci et al. 2019). Such risks can be managed
using multiple tugs for high redundancy. Thus, in thisTable 1. Constraints applied in the optimization model.

Nr. Duty d

nd
min, see

Equation
(2.3) rd, see Equation (2.4)

1 Supply 1 Srate ≥ Consrate
2 Towing 1 Npp ≥ Nmin

pp, towing

Nmin
pp, towing = f

∑
v[V

Xv, towing

( )

3 AH 2 At least one vessel with
Npp ≥ Nmin

pp,AH
4 Safety Standby 1 Full time
5 Fi-Fi 2 –
6 Oil recovery 1 –
7 Ice

management
(if applicable)

1 At least one vessel with ice class
= min ice class + 1

Table 2. Risk events, the corresponding support fleet duties,
and the influencing parameters.
Duty Risk event (WOAD) Fleet parameters

Towing Towing/towline (Loss of control of
platform)

Number of tugs

AH Miscellaneous Constraints
compliance

Supply Contact DP class
Fi-Fi Fire Fi-Fi class
Safety
standby

Miscellaneous Constraints
compliance

Oil recovery Spill/release Constraints
compliance
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study, the risk of such accidents is assumed dependent
on the number of tugs.

Supply operations are associated with a high risk of
collision as they require proximity between the
involved vessel and offshore installation. In this
study, following (IMCA 2015), a ship’s DP class is
assumed to affect both the frequency and conse-
quences of unintended contact events. Another factor
affecting the risk of a collision is the frequency at
which supply vessels visit an installation nspw (Aas,
Halskau, & Wallace, The role of supply vessels in
offshore logistics, 2009). The frequency of visits
(nspw) depends both on the rate of consumption
(Consrate) and the capacity of an installation AI (m

2).
A fire onboard an installation can rapidly escalate

into a catastrophic event (Halim et al. 2018). The
main objective of a support vessel certified for Fi-Fi
activity is to fight a fire at an early stage or to suppress
a fire until a specialized firefighting fleet has arrived. In
this study, as per Table 3, a vessel’s firefighting capa-
bility is quantified in terms of its Fi-Fi class.

The resources for other duties, including AH, safety
standby, and oil recovery, are assumed fixed. For these
vital duties, the minimum criteria as per Table 1 must
be met.

2.4. Evaluation of the traditional support fleet
performance

The traditional support fleet performs duties 1–6 (see
Table 1). The consequences of risk events associated

with towing and supply duties (Table 4) are categor-
ized and assessed following (DNV GL 2013) (GL
2008). Accordingly, economic losses are determined
in terms of loss equivalents, estimated considering
the actual cost of repair works, delivery of spares,
and operational downtime for an installation with an
assumed price of USD 700 million (Kaiser and Snyder
2012). As per (Health and Safety Executive 2019), acci-
dents involving offshore support vessels typically have
a limited impact on the environment, resulting in
minor clean-ups after potential collisions (included
in the economic losses estimation). Major significant
oil spills in the offshore practice are related to the indi-
vidual operation of an offshore installation or large
transport vessels, which is outside the study’s scope.
Thus, the environmental impact of offshore support
fleet operation is assumed to be mainly associated
with exhaust gas emissions related to regular fuel
consumption.

Human losses are estimated conservatively based
on (Gunter et al. 2013), (Ibrion et al. 2020) using the
Equivalent Fatality Concept (IMO 2015). Accordingly,
for instance, two human fatalities equal 20 cases of
severe injury or 200 cases of minor injuries. Because
the uncertainty in the assessment of risk consequences
is substantial, in Section 3.5 we present a sensitivity
analysis of the related parameters.

Towing-related costs, including accident costs, are
calculated as per Equation (2.6–2.9); Ccr

v,towing is the
charter cost for vessel v to perform towing; Cf

v,towing
is the fuel cost for vessel v to perform towing.

Ccr
v,towing = CRvttow, (2.6)

where CRv is the daily charter rate in USD (see Sec.
2.6), ttow = 2disttow/(24vtow) is the total towing time in
days, considering two transfer voyages (shore – dril-
ling point -shore); disttow is the towing distance from
the port to the drilling location in nautical miles;
vtow is the towing speed in knots.

Cf
v,towing = p fuel(24ttowkredN

min
pp,towingq), (2.7)

where pfuel is the fuel price in USD, kred = 0.9 is the
reduction coefficient, which considers the difference
between the actual power used in operation and the
nominal required power N min

pp, towing; q = 0.221·10−3, t/
kW·h is the specific fuel consumption.

Towing risk losses associated with assets Rra
towing and

human lives R rh
towing are calculated for the whole fleet as

per Equation (2.8–2.9).

Rra
towing =

FtowingEratowing(top + ttow + tAH)

365
, (2.8)

Rrh
towing =

FtowingErhtowing(top + ttow + tAH)

365
, (2.9)

Table 3. Description of the firefighting and dynamic
positioning classes (GL 2008) (IMO 1994).
Class 0 1 2 3

Fi-Fi – Fighting only the
initial stage of
fire in the
vicinity of the
installation.

Sustained
fighting of
large fires
and cooling
parts of the
installation.

Class 2 is
complemented by
greater fire
extinguishing
capacity and
additional
equipment.

DP – No redundancy.
Loss of position
due to a single
fault.

No single fault in
an active
system results
in position
loss.

No position loss
during and
following any
single fault,
including loss of a
compartment.

Table 4. Damage categorization with approximate losses
equivalents.
Damage Insignificant Minor Severe

Description Damage to
towline,
thrusters,
generators, and
drivers

Minor damage
to single
essential
equipment

Severe damage
to one or
more
modules of
the unit

Assets losses,
USD

200,000 1 million 70 million

Human
losses
(fatalities)

0 0.2 2
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where Ftowing = 0.03 is the towing/towline risk event
occurrence frequency per unit per year; E ra

towing is the
assumed value of assets losses related to a towing/tow-
line risk event. The severity of the consequences (see
Table 4) is assumed to be dependent on the number
of tugs involved in the operation as follows (DNV
GL 2013) (Necci et al. 2019):

- Scenario A: Insignificant damage in the case of three
or more tugs, ensuring towing force in two direc-
tions following a fault disabling one of the tugs.
Consequences are assumed limited to those
caused directly by the occurred fault.

- Scenario B: Minor damage in the case of two tugs
(sufficient redundancy to prevent the complete
loss of control of an installation, but a fault may
nevertheless result in reduced control of an instal-
lation due to a single direction of towing force).

- Scenario C: Severe damage in the case of a single tug
(no redundancy, any fault disabling the single tug
will result in a loss of control of the installation).

The sum of the time spent to support the drilling
operations (top), towing operations (ttow), and anchor
handling operations (tAH) represents the total active
time of an installation during the considered explora-
tion project (one season). In this study, the values of
top and tAH are treated as inputs. E rh

towing is the
human life loss, determined as the product of the
number of human fatalities (see Table 4) and the
assumed value of a human life.

AH related costs are calculated as per Equation
(2.10–2.11), based on the charter price C cr

v,d and fuel
cost C f

v,d of each AH vessel. The anchor handling
time (tAH) represents the assumed duration of two
AH operations.

Ccr
v,AH = CRvtAH , (2.10)

Cf
v,AH = p fueltAH (2.11)

where cAH is the fuel consumption rate [ton/day]
during an AH operation.

Costs related to supply duties are calculated as per
Equation (2.12–2.13), based on the charter price C cr

v,d
and fuel cost C f

v,d of each supply vessel.

Ccr
v,supply = CRvtop, (2.12)

Cf
v,supply =

p fueltop
tv,voyagecv,voyage

, (2.13)

where tv, voyage = tv,p+tv,pl+2tv,mov is the duration of a
return voyage for a vessel v in days; cv, voyage is fuel
consumption [ton] of a vessel v per voyage; tv,p =
1.426 + 0.0005DWv is the duration of loading and
unloading operations at the supply base (Kondratenko
and Tarovik 2020); tv,pl = 0.6 + 0.00021DWv is the dur-
ation of loading and unloading at the installation

(Kondratenko and Tarovik 2020); tv,mov = distsup
/(24vcr); distsup is the distance from the supply base
to the drilling point in nautical miles; vcr is the average
cruising speed [knots] of the vessel during a voyage.
The cruising speed is an important parameter as it
impacts the overall supply fleet performance and
should be calculated considering wind and wave
characteristics. For this, we apply an approach pro-
posed by (Kwon 2008), which estimates the loss in
vessel speed due to wind as a function of f(BN, Cb,,Δ
and Fr), where BN is the Beaufort number, Cb is the
vessel’s block coefficient, Δ is the vessel’s displacement
in tons, Fr is the Froude number.

The total fuel consumption of a vessel per voyage is
calculated as per Equation (2.14) as the sum of fuel
consumption for cargo operations and moving
between the supply port and the installation.

cv,voyage = tv,pcv,p + tv,plcv,pl + 2tv,movcv,mov, (2.14)

where cv,p is the fuel consumption rate [tons/day]
for cargo operations at the supply port; cv,pl is the
fuel consumption rate [tons/day] for cargo operations
at the installation. The values of cv,p and cv,pl could be
taken from the vessel specification and do not differ
significantly between vessels. Parameter cv,mov rep-
resents the vessel’s fuel consumption at cruising
speed. According to (MarineTraffic 2020), the maxi-
mum cruising speed of supply vessels rarely exceeds
10 knots, which is set as the default value of vcr for
operations when BN = 0 and applied for the esti-
mation of cv,mov. The fuel consumption cv,mov varies
between different vessels, and the variation is particu-
larly significant between open water and ice-going
vessels. In this study, the fuel consumption rate of
different vessels was calculated based on their techni-
cal characteristics (see Table A2) as per a methodology
by (Kondratenko and Tarovik 2020).

The transport capacity of the support fleet is
expressed by the supply rate Srate, which is determined
as per Equation (2.15) in m2 per month.

Srate =
∑
v[V

xv,supplySrate,v, (2.15)

where xv,supply is a Boolean variable that equals 0 if a
vessel does not perform supplies and 1 otherwise; Srate,
v is the supply rate of vessel v in m2 per month, calcu-
lated by Equation (2.16).

Srate,v =
30Sv,useful
tv,voyage

(2.16)

For vessels engaged in a supply activity, the deck
area used for supplies Sv, useful is determined as per
Equation (2.17).

Sv,useful = Svks, if Svks ≤ Sdeck
Sdeck, if Svks . Sdeck

{ }
, (2.17)
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where Sv represents the nominal useful deck area of
a vessel v; ks = 0.7 is a safety factor considering the par-
tial utilization of a cargo deck area (15%) and redun-
dancy (15%). Sdeck represents the cargo deck area of
the installation. Following Equation (2.17), there
must be enough storage area on the deck of an instal-
lation for all cargoes supplied by a vessel. This is an
important constraint as exploration drilling rigs
often have a limited deck area, which may decrease
the utilization of large supply vessels. To obtain high
operational reliability, which is vital in offshore dril-
ling operations, for the calculation of the voyage
time tv,voyage we used conservative assumptions (90
percentiles) for the wind speed and wave height (Liu
et al. 2016).

Relationships between supply vessel DP class, the
basic frequency of collisions between a supply vessel
and an installation Fsupply, 0, and the related conse-
quences are determined as per Table 5 based on:

- Accident database (Oil & Gas UK 2009);
- Data provided in Table 3;
- Statistics and descriptions of individual collisions

(Health and Safety Executive 2019).

As per Table 5, vessels of DP class 3 are assumed to
be able to maintain a safe distance to an installation in
all possible scenarios, as such vessels are assumed to
have superior maneuverability in comparison with
vessels of DP class 0–2, and the ability to maintain
their position following a technical fault in any of
their systems, resulting in negligible collision risk.
Vessels of DP class 0–2 are assumed to have an
equal level of maneuverability and hence the same col-
lision frequency, but the consequences of a potential
collision are assumed different. Most modern OSVs
have DP class 2 and can hold their position in some
cases (see Table 3) (IMO 1994), which according to
the accident statistics, typically is enough to limit the
consequences to insignificant damage, but minor
damage is nevertheless possible. For vessels of DP
class 1–2, accidents resulting in minor damage are
assumed to be associated with a loss of position,
which in the case of vessels of DP class 1 occurs follow-
ing a single fault (see Table 3). Vessels of DP class 0 are
operated manually without any automatic positioning

system. Collisions involving such vessels are likely to
have severe consequences due to human factors.

The frequency of collisions between a supply vessel
and an installation Fsupply is calculated as per Equation
(2.18), considering the number of visits to an installa-
tion per week.

Fsupply =
Fsupply, 0nspw

nspw,0
, (2.18)

where nspw = 7Consrate/(30Suseful) is the average
number of supply vessel visits to an installation per
week (seven days); Suseful is the average value of Sv,useful
for all supply vessels. In this study, the average weekly
number of supply vessel visits to an installation
(nspw,0) is assumed to be 2 as per (Aas et al. 2009).

The risk of asset losses related to supply operations
is calculated as per Equation (2.19).

Rra
supply =

∑3
i=0 R

ra
supply,DPinDPi∑

v[V xv,supply
, (2.19)

where Rra
supply, DPi represents the accident conse-

quences of vessels of DP class i, and nDpi represents
the number of supply vessels of DP class i. Rra

supply, DPi
value is determined as per Equation (2.20).

Rra
supply,DPi =

∑
j[J Fsupply,DPi,jE

ra
j (top + ttow + tAH)

365
,

(2.20)

where J is a set of consequence types j (insignificant,
minor, severe), Fsupply, DPi, j is the frequency of a supply
risk events with consequences type j, calculated for a
vessel with DP class i; Eraj is the value of asset losses
associated with consequences type j. The value of
Rrh
supply is calculated in the same manner as Rra

supply,
but by replacing Eraj with Erh

j , representing human
losses.

The consequences of a fire are assumed to depend
on the available firefighting resources as per Table 6
(Halim et al. 2018), (Paik et al. 2011). Specifically,
the economic loss associated with a fire Rra

Fi−Fi is calcu-
lated as per Equation (2.21).

Rra
Fi−Fi =

F fireErafire(top + ttow + tAH)

365
, (2.21)

where Ffire is the annual occurrence frequency of a
fire on an installation; and Erafire is the assets losses
associated with fire as determined by Table 6. The cor-
responding risk to a human life Rrh

Fi−Fi, is calculated as
per Equation (2.21), but by replacing Erafire with Erhfire,
which is the product of the number of fatalities (see
Table 6) and the assumed value of human life.

The final step to evaluate the support fleet perform-
ance is to estimate the charter price and fuel price for
safety standby vessels as per Equation (2.22–2.23) for

Table 5. Basic frequencies [events per year] of vessel-
installation collisions for various vessel DP classes and
damage categories.
Damage Insignificant Minor Severe

DP 0 0 0 0.217
DP 1 0 0.217 0
DP 2 0.195 0.022 0
DP 3 0 0 0
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the total operational time.

Ccr
v,SS = CRv(top + ttow + tAH), (2.22)

Cf
v,SS = p fuel(top + ttow + tAH)cSS, (2.23)

where cSS is the fuel consumption rate [tons/day]
for a safety standby operation.

2.5. Evaluation of the ice management fleet
performance

The most severe ice conditions in which an installa-
tion can operate is quantified in terms of equivalent
ice thickness heq as per Equation 2.24. (CNIIMF 2014).

heq = c(hi + 0.25bhi + ksnhsn), (2.24)

where c is the ice concentration; hi is the level ice
thickness [m]; b is the amount of ice ridging on the
so-called ball-scale; ksn = 0.5 if hsn ≥ 0.5 m and ksn =
0.33 otherwise; hsn is the snow cover thickness [m].

To determine a link between the configuration of
the ice management fleet and its ability to reduce the
value of heq, we apply a strategy-based approach as
per Table 7. Specifically, three different strategies are
considered: (A) complete ice management, (B) active
ice management, and (C) passive ice management.
In strategy C, the installation leaves the drilling
location in advance if ice forecasts indicate that a
specific upper limit value (hmax) of heq will be
exceeded. In that case, a single vessel with a high ice
class (see Table 1, constraint 7) provides escort to a
safe location. In strategy B, active ice management is
provided by two vessels. One of the icebreakers has a
higher ice class than required for independent oper-
ations in the prevailing ice conditions (see Table 1,
constraint 7) and acts as the leader for the other vessel.
The effectiveness of this strategy is assessed as per

(Keinonen 2008) in terms of the obtained equivalent
reduction in ice thickness hred. Considering a coeffi-
cient of determination R2 of 0.95, we approximated
this approach as per Equation (2.25).

hred = min {0.0204EXP(1.9304heq); heq}. (2.25)

In strategy A, protection against all possible ice
conditions is provided throughout the drilling period.
This is achieved by a lead icebreaker, supported by
four secondary vessels (Keinonen 2008).

The charter and fuel costs for the ice management
vessels are estimated as per Equation (2.26–2.27).

Ccr
v,IM = CRv(top + ttow + tAH), (2.26)

Cf
v,IM = p fuel(top + ttow + tAH)cIM , (2.27)

where cIM equals the fuel consumption rate [tons/
day] during the ice management activity.

Risks associated with the presence of sea ice are
determined as per Equation (2.28).

Rri = FriEri, (2.28)

where F ri is the probability of an operational inter-
ruption due to sea ice and E ri is the financial conse-
quences of an interruption.

We assume that operations might be interrupted by
two different types of ice: difficult sea ice condition,
and icebergs. Specifically, the probability of an oper-
ational interruption due to ice (Fri) is estimated as
per Equation (2.29).

Fri = Fri0 + (1− Fri
0 )piceberg , (2.29)

where F ri
0 is associated with sea ice, and the rest of

the equation is associated with icebergs. The par-
ameter piceberg is the probability of iceberg occurrence
during the drilling season. For ice management strat-
egy A, the value of Fri is assumed to be 0. Parameter
F ri
0 is determined as per Equation (2.30).

Fri0 =
∑
ic[IC

iicFic, (2.30)

where IC is a set of possible ice condition types ic
(mild, average, severe); Fic is the assumed occurrence
probability of ice condition of type ic; iic is a Boolean
value determined as per Equation (2.31), indicating
whether a drilling interruption is needed in the ice

Table 7. Considered ice management strategies.
Ice
management
strategy

Scenario A:
Complete ice
management

Scenario B:
Active ice

management

Scenario C:
Passive ice

management

Description Protection of the
drilling rig from
impacts with ice
and icebergs in
all possible
scenarios

Measures to
reduce the
heq value

No active
measures to
affect the ice
condition

Fleet 5 vessels 2 vessels 1 vessel

Table 6. Different fire accident scenarios and approximate loss equivalents.

Scenario

Scenario A: Insignificant loss
(two or more vessels with Fi-

Fi class 3)
Scenario B: Average loss

(two or more vessels with Fi-Fi class 2)
Scenario C: Severe loss

(two or more vessels with Fi-Fi class 1)

Description Fire is suppressed in the
initial stage

Prevention of the fire escalation until the arrival of
specialized firefighting vessels

Rapid fire escalation resulting in substantial
damage to the installation

Assets losses
(USD)

100000 142000 7000000

Human losses 0.13 0.17 8.9
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conditions ic.

iic = 0, if hred,ic ≤ hmax

1, if hred,ic . hmax

{ }
, (2.31)

where hred,ic is reduced ice thickness, which for the
active ice management strategy is calculated following
Equation (2.25). For the passive ice management strat-
egy, hred,ic is assumed equal to heq.

It should be noted that the estimation of the finan-
cial consequences of a drilling interruption Eri is case-
specific and thus difficult to assess. Anyhow, in this
study, the value of Eri is assumed to correspond to
the sum of the traditional fleet associated expenses
from Equation (2.1) and the operational cost of the
drilling installation calculated as per Equation (2.32).

Eopinst = Rop(top + ttow + tAH), (2.32)

where Rop is the daily charter rate of the installation,
including operating expenses.

2.6. Time charter rate

To determine vessel charter rates (time charter), we
use a methodology based on (Døsen and Langeland
2015). Accordingly, the daily charter rate CRv is deter-
mined in USD as per Equation (2.33). To account for
that a vessel’s icebreaking capabilities might signifi-
cantly affect its charter rate, we introduced an
additional coefficient kIC that we determine based on
empirical data (Deynego and Gehaev 2019).

Ln(CRv)

=kIC,v
b0+b1Sv+b2Npp,v+b3DWv+b4kDP2,v+b5Agev+b6Dur+
b7DF+b8Kp+b9Kd+b10Kbr+b11Poil+b12Pspot+b13Oprod

( )
,

(2.33)

where kIC,v = 0.55 hice,v+1; bi (i = 0..13); hice,v, Sv,
Npp,v, and DWv are characteristics of vessel v; kDP2,v
is a Boolean expression, which has a value of 1 if vessel
DP class ≥ 2, otherwise it has a value of 0; Agev indi-
cates a vessel’s age, counted from its year launched;
Dur is the duration of a charter contract in days; DF
is the number of days from the contract initiation to
the start date of the charter period; Kp is a Boolean
expression, which has a value of 1 if an assignment
is limited to the production support, otherwise it has
a value of 0 (this is a discount factor considering the
level of difficulty of the operation); Kd is a Boolean
coefficient, which has a value of 1 if an assignment is
limited to typical drilling support (this is another dis-
count factor considering the level of difficulty of the
operation); Kbr is the so-called Brazil coefficient,
which has a Boolean value of 1 for operations in a
developing market, and a Boolean value 0 for oper-
ations in a developed market. Lower charter rates in
developed markets are associated with a high organiz-
ation level and market oversaturation. Poil

corresponds to the price per barrel of Brent crude
oil; Pspot is the monthly average spot charter rate;
Oprod is the worldwide monthly oil production.

2.7. Limitations for operation in ice

The ability of an OSVs to operate in ice is determined
as per the Polar Operational Limit Assessment Risk
Indexing System (POLARIS) (IMO 2016). Accord-
ingly, whether a ship can safely operate in a specific
area is determined based on its risk index outcome
(RIO) value determined as per Equation (2.34) consid-
ering the vessel polar class (PC) (IMO 2016) and the
prevailing ice conditions.

RIOv =
∑12
i=1

CiRIVv,i, (2.34)

where Ci is the concentration (in tenths) of an ice
type i within the ice regime; RIVv,i is the correspond-
ing risk index value (RIV) for a vessel v and an ice
type i. Ice types conform to the World Meteorological
Organization (WMO) nomenclature (World Meteor-
ological Organization 2014). For ships of PC 1-7, a
positive RIO value (RIO ≥ 0) indicates ‘normal’ oper-
ations. A negative RIO value indicates ‘elevated oper-
ational risk’ if (−10≤ RIO < 0), or that the operation is
‘subject to special consideration’ if (RIO < −10). In
this study, RIO value is calculated based on the
worst possible ice conditions.

2.8. The ABC algorithm

In this study, the optimization of the fleet composition
is performed by solving a nonlinear programming
problem in the integer form, using a stochastic ABC
algorithm based on (Karaboga and Basturk 2007).
The behaviour of the ABC algorithm is modelled
based on the foraging behaviour of a honeybee colony
(Tereshko and Loengarov 2005). Accordingly, the
model includes the following components:

(1) A passive set of potential food sources.
(2) A group of employed bees. Each employed bee

flies to an arbitrary food source and sends infor-
mation about its quality in terms of the distance
from the hive, amount of energy, taste, and the
level of energy needed to obtain the food.

(3) A group of temporary unemployed onlooker bees
that aims to find a new food source based on the
information provided by the employed bees.

(4) A group of scout bees that can independently find
completely new food sources from the passive set
of potential food sources.

If an onlooker bee, or a scout bee, finds a new food
source that is better than any of the food sources
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occupying the employed bees, the new food source will
replace the older one. Because the ABC algorithm in
this manner integrates both local and global search
methods, an efficient optimization process is obtained.

At the start of the optimizing procedure, the algor-
ithm requires both initial input and control par-
ameters. The initial input parameters describe the
goal function f(x), which assesses the quality of the sol-
ution and the dimension of the problem D. Here, the
dimension of the problem consists of a set of variables
xj ( j = 1..D) describing the solution i (i = 1..NFS). In the
present study, the dimension of the problem equals
the considered number of different types of vessels.
The control parameters consist of the colony size CS

and the criterion of the calculation stop. The value
of CS determines the number of food sources under
consideration (NFS) as determined by Equation
(2.35). The number of bees of each category
(employed, unemployed, and scouts) equals the NFS

value. The criterion of the calculation stop is deter-
mined in an arbitrary form, for example, in terms of
the maximum number of cycles, maximum calculation
time, or in terms of a specific goal function value. The
value of another important parameter, the limit value
of scout L as determined by Equation (2.36), is the
function of NFS and D. This limit value determines
the maximum number of attempts ntr to find a better
food source based on the available food source data.
To achieve an efficient optimization process, we also
limit the maximum number of vessels of a specific
vessel type.

NFS = 0.5CS. (2.35)

L = NFSD. (2.36)

The complete optimization process can be sum-
marized as follows (Karaboga and Akay 2009):

(1) Initialize the original food sources, each of which
represents a fleet configuration.

(2) Place the employed bees on the food sources.
(3) Send the onlooker bees to the most promising

food sources.
(4) Send the scouts to discover new food sources.
(5) Memorize the best-found food source.
(6) Repetition of steps 2–5 until the requirements are

met.

Initialization of the original food sources (oper-
ation 1) is performed by creating a random array of
size NFS

×D. In this study, each solution (food source)
consists of D number of non-negative integer values,
which represent the number of vessels of each type
in the current fleet configuration. Following the initi-
alization, each food source’s quality is evaluated using
both a goal function and a fitness function. The goal
function provides a value of the food source quality

fi, and the fitness function transforms this value to
the most appropriate form for the optimizing process.
In the case of minimization, the fitness function fiti is
as per Equation (2.37).

fiti =
1

1+ fi
, if fi ≥ 0

1+ abs( fi), if fi , 0

⎧⎨
⎩

⎫⎬
⎭. (2.37)

Once the initial food sources have been evaluated,
the algorithm remembers the best solution and starts
the optimization loop (operation 2). At this stage,
each employed bee produces a new solution by ran-
domly selecting the variable xi,j (the number of vessels
of type j in a solution i) from its food source (i.e. the
fleet solution) as described by Equation (2.38). In
this study, Equation (2.38) was modified from its orig-
inal form to produce a non-negative integer value.

xi,j
new = |xi,j + Round(Fi,j(xi,j − xk,j))| (2.38)

where xi,j
new is a new non-negative integer value,

Round is an operator that rounds a value to the nearest
integer value, Fi,j is a random number in the range
[−1, 1], and k is a random index.

If the fitness value of the modified solution inew is
higher than the initial one, xi,j is replaced by xi,j

new,
and ntr gets a value of zero. In the opposite case, xi,j
is not modified, and the value of ntr is increased by
one.

In the next stage (operation 3), each onlooker bee
aims to improve one of the available solutions based
on information about their quality. First, the onlooker
bee decides what solution to improve. This is carried
out based on the probability of selection as per
Equation 2.39. Accordingly, a higher fitness corre-
sponds with a higher probability of being selected.

pi = fiti∑NFS
i=1 fiti

(2.39)

Once initial data have been accumulated in terms of
the probabilities pi (whose sum equals one), each
onlooker bee selects its basic food source by drawing
a random number from a uniform distribution
between 0 and 1. The onlooker bee then modifies
the solution as per Equation (2.38) and decides
whether or not to replace the food source. This is car-
ried out in the same manner as applied by the
employed bee (described above). Following operation
3, the algorithm memorizes the best best-obtained
solution.

The final optimization step (operation 4) involves
the scout bees, each of which decides whether a poten-
tial solution should be further explored or abounded.
If the number of attempts ntr to improve a food source
quality to make it meet the criteria is equal or higher
than L, this food source should be replaced by a ran-
dom food source provided by a scout bee.
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Subsequently, the quality of the current food sources is
evaluated, and the best-found solution is memorized.
The optimization process continues until the criterion
of the calculation stop is met.

3. Case studies

3.1. General inputs

Two different case studies and a sensitivity analysis are
carried out to demonstrate the utility of the above-pre-
sented approach. The case studies differ in terms of ice
conditions and the location of an offshore installation.
Both case studies are based on real-world offshore pro-
jects with known fleet configurations, which are used
as reference fleets (Kjøl 2014), (Staalesen 2019). Gen-
eral input data and assumptions applied in the case
studies are presented in Tables 8 and 9.

As per the outlined approach, the optimization
algorithm searches for a fleet configuration that mini-
mizes the overall costs, including the expected acci-
dent-related costs. A fleet configuration is composed
based on a predefined list of candidate vessel types.
Specifically, a total of 27 different vessel types are con-
sidered, determined based on real-world vessels. In the
case studies, the maximum number of vessels of a
specific type is assumed to be five, considering their
real-world availability.

All considered candidate vessel types and their
technical characteristics are listed in the Annex
(Table A1 and Table A2). As per industry standard,
the following vessel-specific information is provided:
year launched, deadweight (DW), nominal useful
cargo deck area (S), power plant capacity (Npp), ice
class, icebreaking capability (hice), and duty capabili-
ties (i.e. tasks that can be performed by the vessel).
Most of the data originate from (Russian Maritime
Register of Shipping 2020). All candidate vessel types
are given a Fi-Fi and DP classification based on their
corresponding capabilities as per Table 3. Other vessel
capabilities, including oil recovery, towing, AH, and
safety standby, are indicated by Boolean expressions.
Specifically, as per Table A1 (see annex), the avail-
ability of a function is defined as ¨+¨ (available) or
¨-¨ (not available). It is assumed that all representa-
tives of a specific vessel type have the same character-
istics, e.g. year launched.

The optimization process is performed using
Microsoft Visual Studio Express, which is an inte-
grated development environment (IDE) application
supporting the development of new software. The
applied code is written in C# language.

As per the outlined approach, the optimization pro-
cess is divided into two stages. In the first stage, the
‘traditional support fleet’ performing supply, AH, tow-
ing, safety standby, Fi-Fi, and oil recovery, is opti-
mized. In the second stage, considering the outcome
of the first stage, optimization of the ‘ice management
fleet’ is carried out.

In both case studies, the ice conditions at the dril-
ling location are determined based on ice data for
July, which represents the period with the most
difficult ice conditions during a typical drilling season.
Three different winter scenarios are considered: mild,
average, and severe. In the optimization, the occur-
rence of the various scenarios follows the probabilities
Fic presented in Table 9. It is noted that sea ice is trea-
ted as a risk factor addressed by ice management.

Table 8. Input data for the calculation of vessel charter rates
as per Equation 2.33. (Døsen and Langeland 2015).
Parameter name Symbol Value

Number of days from the contract initiation to the
start date of the charter

DF 180 days

Production coefficient (see Equation 2.33) Kp 0
Drilling coefficient (see Equation 2.33) Kd 0
Brazil coefficient (see Equation 2.33) Kbr 1
Price per barrel of Brent crude oil Poil 60 USD
Monthly average spot charter rate Pspot 20000 USD
Worldwide monthly oil production Oprod 400000 m3

Table 9. General input data for the case studies (Døsen and
Langeland 2015), (Aas et al. 2007), (Kryzhevich 2017),
(RigZone 2020), (Liu et al. 2016), (Russian Maritime Register
of Shipping 2014), (Gibson 1999), (Viscusi and Gayer 2002),
(Alp maritime services 2020), (Dumanskaya 2014), (Sabodash
et al. 2019).
Parameter name Symbol Value

Monthly cargo consumption rate Consrate 3000 m2 per
month

Cargo deck area of the installation Sdeck 300 m2

The upper limit value of
equivalent ice thickness

hmax 0.7 m

Daily charter rate of the
installation

Rop 600000 USD

Towing speed vtow 4 knots
Beaufort number BN 4
Minimum machinery power for
towing operations

N min
pp, towing
(1,2,3,4
vessels)

9600, 5530,
4150, 3120 kW

Minimum machinery power for AH
operations

N min
pp, AH 12000 kW

Price of fuel pfuel 550 USD
Value of a human life VH USD 30 million
Time spent to support the drilling
operations

top 90 days

Anchor handling time tAH 18 days
Fuel consumption rate for AH
operation

cAH 30 t/day

Fuel consumption rate for cargo
operations at the supply port

cv,p 2 t/day

Fuel consumption rate for cargo
operations at the installation

cv,pl 10 t/day

Fuel consumption rate for safety
standby operation

cSS 8 t/day

Fuel consumption rate during ice
management

cIM 20 t/day

Default probability of different ice
conditions

Fic (mild,
average,
severe)

0.15, 0.7, 0.15

Towing and supply distances (Case
study 1)

disttow, distsup, 810

Towing and supply distances (Case
study 2)

disttow, distsup, 770

Probability of iceberg occurrence
(Case study 1)

piceberg 0.3

Probability of iceberg occurrence
(Case study 2)

piceberg 0.01
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Supply vessels operating between the base port and the
drilling location are assumed to be able to avoid ice,
meaning that they operate continuously in open
water. It is also noted that the default ice conditions
are determined based on historical data from the
period 1939–2012 (Dumanskaya 2014), which does
not represent the trend of diminishing ice conditions
in the Arctic observed in recent years.

Each case study results in an optimized support
fleet configuration. The characteristics and versatility
of each optimized fleet composition are analyzed
using spider diagrams presenting normalized values
of selected key performance indicators (KPIs). Specifi-
cally, KPIs are calculated for eight different types of
fleet performance: supply, ice management, towing,
Fi-Fi, DP class, ice class, fleet age, and environmental
friendliness. All KPIs are given a normalized value in
the range 1–100. Supply, DP class, ice class, fleet age,
and environmental friendliness are normalized as
per Table 10. Other KPIs, including ice management,
towing, and Fi-Fi, are normalized in accordance with
the corresponding applied operational strategy so
that Scenario A corresponds to a value of 3/3, Scenario
B corresponds to a value of 2/3, and Scenario C corre-
sponds to a value of 1/3. Any normalized KPI value
above 100 indicates excess redundancy that cannot
be utilized Table 11.

3.2. Case study 1

Case study 1 deals with the design of a support fleet for
conditions corresponding to the 2014 drilling season
at the Universitetskaya-1 well located in the northern
Kara Sea. The assumed ice conditions at the location
in July are determined as per Table 12.

The results of the optimization of the ‘traditional
support fleet’ for Case study 1 are presented in Table
13. The optimized solution for the default ice con-
ditions consists of one vessel of Type 1 with ice class
PC 3 (for safety standby), two vessels with ice class
PC 4 (for towing, anchor handling, and supply), and
two vessels with ice class PC 5 (for supply and
firefighting). On the other hand, the reference fleet
configuration consists of one vessel with ice class PC
3 (for safety standby) and five vessels with an ice
class lower than IC (no ice class) for other duties.
The higher number of vessels in the reference fleet
can be explained by a preference for high supply
capacity redundancy (which is common in the indus-
try) and a higher than average cargo consumption
rate. The considerable difference in vessel ice class is
likely explained by our conservative assumption con-
cerning the ice conditions as well as by or conservative
RIO criterion that excludes operations with elevated
operational risk.

Due to climate change, since 2005, the Kara Sea has
experienced multiple mild winters (Dumanskaya
2014). In order to consider the effect of the trend of
diminishing ice conditions, we repeated the optimiz-
ation procedure, assuming that all winters are mild
and vessels with elevated operational risk (−10 <
RIO < 0) are feasible. Based on this assumption, the
obtained optimal fleet configuration for the ‘tra-
ditional support fleet’ consists of one vessel of Type
1 with ice class PC 3 (for safety standby), one vessel
of Type 10 with ice class PC 4 (for towing, anchor
handling, and supply), two vessels of Type 11 with
ice class PC 5 (for supply and firefighting), and one
vessel of Type 19 with ice class IC (for towing, anchor
handling, and supply). It is noted that even under the
applied assumptions, vessels with an ice class lower
than IC are not considered because of the RIO con-
straint. The reference fleet dominated by vessels with
no ice class is eligible for Case study 1 only if a reliable
ice forecast for a specific drilling season indicates no
ice in the area of operation, which in the northern

Table 10. Normalization of fleet KPIs.
KPI Explanation

Supply Equals 100Srate/Consrate. A performance of 100
means that the supply-demand is fully
satisfied.

DP class Corresponds to the average DP class of the fleet
divided by three (e.g. an average DP class value
of 2 corresponds to a DP class performance of
2/3).

Ice class Corresponds to the average ice class of the fleet
normalized as per Table 11 (e.g. a vessel
consisting of two PC 4 ships and two PC5 ships
have an ice class KPI of 68.2).

Fleet age Reflects the average vessel age (assumed to
reflect the operational reliability of the vessels,
among others). A fleet consisting of brand-new
ships would have a KPI value of 100. Each
added year of age reduces the KPI value by two
(e.g. an average age of 10 years corresponds to
a KPI value of 80).

Environmental
friendliness

Reflects the total amount of fuel used, which is
directly proportional to the amount of CO2

produced. A KPI value of 100 corresponds to a
reference fuel consumption of 4200 tons. For
each additional 165 tons of fuel consumed, the
KPI value drops by one.

Table 11. Normalized ice class values.
Ice class Normalized value Ice class Normalized value

PC1 100 PC7 100·(5/11)
PC2 100·(10/11) IA Super 100·(4/11)
PC3 100·(9/11) IA 100·(3/11)
PC4 100·(8/11) IB 100·(2/11)
PC5 100·(7/11) IC 100·(1/11)
PC 6 100·(6/11) Below IC 0

Table 12. Default ice conditions for Case study 1 (Dumanskaya
2014), (Shalina and Sandven 2018).
Scenario Mild Average Severe

Concentration, c 0.3 0.9 1
Level ice thickness, hi[m] 0.8 1.5 1.6
Amount of ice ridging, b (see Equation 3.24) 2 2 3
Snow thickness, hsn[m] 0.08 0.12 0.13
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Kara Sea is possible during a year with easy ice
conditions.

To better demonstrate the developed method’s
merits, we repeated the optimization process using
assumptions similar to those used in practice for the
real reference fleet, namely, ice is not considered,
and a specific supply redundancy is required. Some
level of supply redundancy is often considered in prac-
tice to avoid unnecessary operational downtime. The
supply redundancy of the reference fleet is estimated
at 17%, meaning that the Supply KPI of the optimized
fleet must be 117 or more (see Table 10). Based on
these assumptions, the obtained optimal fleet has no
ice class and consists of one vessel of Type 23 (for
safety standby), two vessels of Type 18 (for towing,
anchor handling, and supply), and three vessels of
Type 27 (for supply and firefighting). The obtained
fleet is identical to the reference fleet in terms of ice
class and number of vessels.

The ice management fleet optimization results for
Case study 1, assuming default ice conditions and
mild ice conditions (eligible RIO > −10), are presented
in Table 14. The reference fleet and two optimized
fleets consist of five vessels, including a lead vessel
with ice class PC 3, representing some minor deviation
from the complete ice management scenario (see
Table 7). However, the ice classes of the secondary
vessels are different: the fleet optimized for the default
ice conditions has the highest icebreaking capabilities
(secondary vessels of ice class PC 5); the fleet opti-
mized for the mild ice conditions has the lowest iceb-
reaking capabilities (secondary vessels of ice class IB);
the reference fleet is a tradeoff between the derived
optimal solutions (secondary vessels of ice class IA –
PC 4). The ice management fleet optimization cannot
be provided for the case of no ice (optimized solution
3), as ice management would require ice to be reason-
able. However, for further analysis, the ice manage-
ment fleet for optimized solution 3 is conservatively
assumed to be the same as that of optimized solution
2 (mild ice conditions) to compare the fleets
consistently.

Further analysis of Case study 1 is presented for the
complete support fleet (traditional + ice manage-
ment). The four analyzed fleet configurations (see
Tables 13 and 14) differ in terms of functionality

(KPIs) and total cost. As per the spider diagrams pre-
sented in Figures 1 and 2, the first optimized solution
(default ice conditions) performs better in terms of ‘Fi-
Fi’, ‘Ice class’, and ‘Environmental friendliness’ com-
pared to the reference solution, whereas it performs
worse in terms of ‘Supply’ and ‘Fleet age’. As per the
spider diagrams presented in Figure 2 and Figure 3,
the second optimized fleet (mild ice conditions) is
close to the reference fleet in KPIs but has an advan-
tage in terms ‘Fi-Fi’, ‘Ice class’, whereas it performs
worse in terms of ‘Supply’ and ‘Fleet age’. The spider
diagram in Figure 4 is identical to the spider diagram
presented in Figure 2, indicating that the optimized
solution 3 and the reference fleet are equal in terms
of functionality.

The total cost of the reference fleet is estimated at
around USD 55.1 million per drilling season, whereas
the corresponding costs of the optimized fleet for the
default ice conditions and the mild ice conditions are
estimated at around USD 49.3 million (10% lower
costs than the reference fleet) and USD 46.0 million
per drilling season (16% lower costs than the reference
fleet), respectively. Furthermore, the total cost estimate
for the optimized fleet obtained assuming supply
redundancy and ice free conditions is estimated at
USD 48.9 million per drilling season, i.e. 11% lower
than for the reference fleet although it provides the
same functionality. This indicates that the optimized
solutions provide enhanced cost-efficiency. The pre-
sented KPIs spider diagrams, together with the cost
estimations, provide valuable information for decision
making while they help to find a tradeoff between fleet
performance and costs. Figure 5 presents the contri-
butions of different cost categories to the objective
function for optimized solution 1. The individual cost
contributions of the vessels are not presented because
the influence of individual vessels is different for differ-
ent fleet configurations. Thus, it is only motivated to
study the efficiency of the vessels as a part of a support
system.

Figure 6 shows the ABC-based optimization pro-
gress for Case study 1, traditional support fleet (default
ice conditions scenario). The starting point of the
optimization process is chosen randomly by the
ABC algorithm because, in real life, there is typically
no relevant reference fleet to consider. The fleet

Table 13. Reference and optimized fleet configurations of the ‘traditional’ support fleet (Case study 1).

Vessel type Ice class
Optimized solution 1
(default ice conditions)

Optimized solution 2
(mild ice conditions)

Optimized solution 3 (no ice,
supply redundancy) Reference

Type 1 PC 3 1 1 0 1
Type 10 PC 4 2 1 0 0
Type 11 PC 5 2 2 0 0
Type 16 No ice class 0 0 0 2
Type 17 No ice class 0 0 0 2
Type 18 No ice class 0 0 2 0
Type 19 IC 0 1 0 0
Type 23 No ice class 0 0 1
Type 27 No ice class 0 0 3 1
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composition corresponding to each iteration is pre-
sented in Table A3. The algorithm reached the optimal
solution in 21 iterations, which is efficient considering
that the total number of potential solutions is 611 =
362,797,056, as calculated based on the number of
possible combinations per vessel type (from 0 to 5)
and the number of feasible vessels that satisfy the con-
straints (11).

3.3. Case study 2

Case study 2 deals with the design of a support fleet for
conditions corresponding to the 2017 drilling season
at the Leningradskoe oil field located in the southern
Kara Sea. The assumed ice conditions at the location
in July are specified as per Table 15, which are milder
than those of Case study 1.

As per Table 16, the calculated optimal fleet
configuration of the traditional support fleet for the

default ice conditions is the same as for Case study 1
(default ice conditions), which is related to the RIO
constraint (see Equation 2.5) calculated based on the
severe ice conditions scenario. The reference fleet
configuration consists of one vessel with ice class PC
3 (for safety standby) and five vessels with an ice
class lower than IC (no ice class) for other duties,
which is justified by the ice conditions of the 2017
year at the Leningradskoe oil field (mild ice conditions
scenario).

We repeated the optimization procedure for the
mild ice condition scenario. The obtained optimal
fleet configurations for the traditional support fleet
consists of a single vessel with no ice class (for safety
standby) and four vessels with an ice class below IC:
one of Type 16 (for supply and firefighting), two of
Type 18 (for towing, anchor handling, and supply),
and one of Type 27 (for supply and firefighting).
This solution is close to the corresponding reference
solution in terms of ice class (see Table 16).

The optimization is repeated for Case 2 to provide
the same level of supply redundancy for the optimal
solution and the reference fleet, estimated at around
20% (this indicates that the Supply KPI of the opti-
mized fleet must be at least 120 as per Table 10).
The obtained fleet (Table 16) has no ice class and con-
sists of a single vessel of Type 23 (for safety standby),
three vessels of Type 18 with (for towing, anchor
handling, and supply), and two vessels of Type 27
(for supply and firefighting). The obtained fleet is
close to the reference fleet in terms of ice class and
number of vessels.

Table 14. Reference and optimized fleet configurations of the ice management support fleet (Case study 1).

Vessel type Ice class
Optimized solution

(default ice conditions)
Optimized solution 2
(mild ice conditions)

Optimized solution 3 (no ice,
supply redundancy), assumed fleet Reference

Type 1 PC 3 1 1 1 1
Type 7 PC 5 4 0 0 0
Type 10 PC 4 0 0 0 1
Type 12 IA Super 0 0 0 2
Type 13 IA 0 0 0 1
Type 15 IB 0 4 4 0

Figure 1. Spider diagram for the optimized fleet (Case study 1,
default ice conditions scenario).

Figure 2. Spider diagram for the reference fleet configuration
(Case study 1).

Figure 3. Spider diagram for the optimized fleet (Case study 1,
mild ice conditions scenario).
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Regarding the ‘ice management’ support fleet, as
per Table 17, the reference and three optimized
fleet configurations consist of 1 vessel with ice class
PC 3. This solution represents the passive ice manage-
ment strategy (see Table 7).

Further analysis of Case study 2 is presented for the
complete support fleet (traditional + ice manage-
ment). As per the spider diagrams presented in
Figures 7 and 8, the optimized solution (default ice
conditions) performs better in terms of ‘Fi-Fi’ and
‘ice class’, whereas the reference solution performs
better in terms of ‘supply’ and ‘fleet age’. The solution
optimized for mild winters (Figure 9) has a similar spi-
der diagram shape as the reference solution indicating
similar functionality, and shows the best performance
in terms of environmental friendliness. As per Figure 8
and Figure 10, in terms of supply redundancy the per-
formance of the reference fleet and the optimized fleet
is identical.

The total cost for the reference fleet is estimated at
around USD 30.2 million. The estimated total cost of
the fleet optimized for the default ice conditions is simi-
lar at USD 29.4 million. Figure 11 demonstrates the
contribution of different costs to the objective function

for optimized solution 1. The estimated total cost of the
fleet optimized for exclusively ‘mild’ winters is around
25% lower at USD 22.1 million. The total cost for the
fleet with the same functionality as the reference fleet
(optimized solution 3) optimized for the mild ice con-
dition is estimated at USD 24.5 million, or around 19%
lower than the costs of the reference fleet.

Case study 2 shows that the application of the pro-
posed optimization approach could result in substan-
tial money savings, assuming that reliable input data,
e.g. ice condition forecasts, is provided. Figure 12
demonstrates the ABC-based optimization progress
for Case study 2, traditional support fleet (mild ice
conditions scenario). The algorithm reached the opti-
mal solution in 29 iterations, which is efficient consid-
ering that the total number of potential solutions is
616 = 282,110,9907456, as calculated based on the
number of possible combinations per one vessel type
(from 0 to 5) and the number of feasible vessels that
satisfy the constraints (16).

3.4. Sensitivity analysis

A sensitivity analysis is performed separately for the
traditional support fleet and the ice management

Figure 4. Spider diagram for the optimized fleet (Case study 1,
no ice, supply redundancy).

Figure 5. Contribution of different cost categories to the objective function, Case study 1, optimized solution 1 (default ice
conditions).

Figure 6. Progress of the ABC-based optimization for tra-
ditional support fleet (Case study 1, optimized solution 1).
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fleet. The sensitivity analysis for the traditional sup-
port fleet is carried out by varying the value of individ-
ual input parameters within a specific range
determined based on an assumedminimum andmaxi-
mum feasible value of each parameter (see Table 18).
The feasible range of each parameter variation is set
as a specific percentage of the default value. The
applied percentage range is different for different par-
ameters to reflect their real-life values. We assume that
all default values for the input parameters are the same
as applied in Case study 1–2 (see Tables 8 and 9),
except for the distances (disttow, distsup) that are both
assumed to be 200 NM, and the price of fuel (pfuel)
that is assumed to be 500 USD/ton. As the impact of
sea ice is already studied in Case study 1–2, we do
not consider sea ice in the sensitivity analysis for the
traditional support fleet. This means any of the listed
candidate vessel types (Table A1) can be considered
for the traditional support fleet.

The outcome of the sensitivity analysis is presented
in Table 18 and Table 19. Thirty optimization exper-
iments resulted in nine original fleet configurations
(solutions S1 – S9) composed of vessels of eight differ-
ent types from the complete list of 27 vessel types. The
same optimal solutions often occurred in different
parts of Table 18, meaning that some fleet configur-
ations and vessel types have robust efficiency under
varied circumstances, which may be due to the applied
constraints.

Table 20 presents relative changes in the expected
total cost for all optimization experiments as a per-
centage of that of the default optimal solution. We
find that the optimization outcomes are sensitive to
variations in the monthly cargo consumption rate
(Consrate), the price of fuel (pfuel) and
the installation’s cargo deck area (Sdeck), whereas
they are insensitive to variations in the daily charter
rate (CRv) and time spent to support the drilling

operations (top). It is noted that CRv is varied equally
(in percent) for all the vessels considered. As per
Table 20, the expected total cost of the optimal fleet
is the most sensitive to variations in CRv and top. It
noted that some parameter variations may result in
a change in the optimal fleet configuration solution
but only result in a minor change in costs, whereas
other parameter variations may not result in a change
in the fleet configuration but result in a significant
change in costs.

It is noted that both the cargo deck area of the
installation (Sdeck) and distance (disttow, distsup) appear
to have a nonlinear impact on the estimated total
costs. This means that simultaneous variations in
these parameters may significantly influence the per-
formance of a fleet, as well as the overall costs. It is
noted that the impact of Sdeck variation is highly sensi-
tive to the assumed available types of candidate
vessels: low Sdeck may significantly deteriorate the per-
formance of large vessels.

As per Table 18, we find that variations in the risk-
related parameters, the value of human life (VH), and
asset loss ( Era

d ), have a significant impact on the opti-
mal configuration of the fleet. For instance, as per
Table 18, variations in the assumed values of VH
and Era

d between 0–200% results in different optimal
fleet configurations (S2, S1, S3). As per Figure 13,
configuration S3 has a significantly higher level of
safety than S2. This indicates that investing in
additional safety might be cost-effective.

The results of the sensitivity analysis of the ice man-
agement fleet are presented in Table 21. The different
ice conditions (mild, average, severe) are determined
as the average of the corresponding ice conditions
defined for case study 1–2 in Tables 12 and 15. The
probability of iceberg occurrence (piceberg) is assumed
to be zero for better interpretability of results.

As per Table 21, the optimal configuration of the ice
management fleet (I1 – I3) depends on the assumed
scenario. The various ice management fleet configur-
ation solutions, defined as per Table 22, represent
each of the considered ice management strategies. In
scenario 1 (default scenario), the solution corresponds
to the ‘complete’ ice management strategy. In scenario
2, in which the assumed frequency of occurrence of
severe ice conditions is reduced by 5% in favour of

Table 15. Ice condition parameters for Case study 2
(Dumanskaya 2014), (Shalina and Sandven 2018).
Scenario Mild Average Severe

c 0 0.3 1
hi 0 0.9 1.3
B 0 2 2
hsn 0 0.08 0.11

Table 16. Reference and optimized fleet configurations of the ‘traditional’ support fleet (Case study 2).

Vessel type Ice class
Optimized solution 1
(default ice conditions)

Optimized solution 2
(mild ice conditions)

Optimized solution 3 (mild ice
conditions, supply redundancy) Reference

Type 1 PC 3 1 0 0 1
Type 10 PC4 2 0 0 0
Type 11 PC5 2 0 0 0
Type 16 No ice class 0 1 0 2
Type 18 No ice class 0 2 3 0
Type 23 No ice class 0 1 1
Type 26 No ice class 0 0 0 3
Type 27 No ice class 0 1 2 0
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average ice conditions, the optimal solution corre-
sponds to the ‘active’ ice management scenario. In
scenario 3, where the assumed ice conditions are
further decreased, the obtained fleet configuration
corresponds to the ‘passive’ ice management strategy.
In scenarios 4-5, the reduced operational cost of the
drilling installation Eopinst resulted in the optimal sol-
ution I2, which corresponds to the ‘active’ ice manage-
ment scenario.

4. Discussion and conclusions

This article presents an optimization-based approach
for sizing and composition of an Arctic offshore dril-
ling support fleet considering cost-efficiency. The
approach supports a quantitative assessment of a
fleet’s functionality, considering the combined effect
of: (a) the expected costs of accidental events, (b) the
versatility of individual support vessels, and (c) ice
management. The considered expected costs include
equivalent costs related to human injuries and loss
of life, as well as direct economic losses due to pro-
duction downtime and asset damages.

The proposed optimization process demonstrated a
systematic and objective search for a support fleet
configuration that minimizes the overall expected
costs while meeting set system criteria. Two case
studies and a sensitivity analysis were carried out to
demonstrate the utility of the approach. The obtained
solutions were found to be similar to corresponding
real-life support fleet solutions, indicating that the
approach works in principle. Conducted case studies
demonstrated a significant potential of the approach
in reducing fleet operation cost. Specifically, in
relation to the reference solutions, the obtained sav-
ings were up to 25%.

A performance overview is provided for each opti-
mized fleet composition in terms of a spider diagram
presenting different key performance indicators
(KPIs). If the approach is used to produce a set of can-
didate solutions optimized for different assumptions
concerning the operating conditions, the spider dia-
grams may facilitate the final choice of a solution.

The studied optimization problem is highly con-
strained to ensure the minimum acceptable fleet func-
tionality and safety in specific circumstances. Case

Table 17. Reference and optimized fleet configurations of the ‘ice management’ support fleet (Case study 2).
Vessel
type

Ice
class Reference

Optimized solution 1 (default ice
conditions)

Optimized solution 2 (mild ice
conditions)

Optimized solution 3 (mild ice conditions,
supply redundancy)

Type 1 PC3 1 1 1 1

Figure 7. Spider diagram for the optimized fleet (Case study 2,
default ice conditions scenario).

Figure 8. Spider diagram for the reference fleet (Case study 2).
Figure 10. Spider diagram for the optimized fleet (Case study
2, mild ice conditions scenario, supply redundancy).

Figure 9. Spider diagram for the optimized fleet (Case study 2,
mild ice conditions scenario).
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studies 1–2 demonstrate that the size of the feasible
design space, or the number of possible solutions, sig-
nificantly depends on the assumed ice conditions.
Although the applied constraints affect the optimiz-
ation process much, they are not the only ones
defining the optimal solution: the optimization results
are obtained through the actual minimization of the
objective (the estimated total cost). That conclusion
is based on the sensitivity analysis and data provided
in Table A3 for one of the most constrained case
study considered (case study 1, default ice conditions).
As per Table A3, the optimal fleet is obtained using
step-by-step objective improvement considering
different combinations of vessels.

Conducted sensitivity analyses indicate the follow-
ing. First, the consideration of risk-related costs has
a significant impact on the obtained optimal solution.
Specifically, we find that it is economically motivated
to invest in a fleet with good safety performance in
terms of towing, firefighting, dynamic positioning,
and ice class. Second, the optimal fleet configuration
and the related cost level are sensitive to the assumed
ice conditions. Therefore, the prediction and model-
ling of ice conditions are essential.

Third, some parameter variations (e.g. the daily
charter rate, time spent to support the drilling oper-
ations) may have a significant effect on the total
costs but a limited effect on the optimal fleet configur-
ation. As per Figures 5 and 11, for the default input,
charter costs is the most significant cost category.
Therefore, a further increase in charter costs affects
the optimization results insignificantly. A significant
decrease in charter rates, on the other hand, would
make other factors more important, resulting in a
different optimal solution. The time spent to support
the drilling operations equally affects the most impor-
tant components of the total cost – the fleet charter
and fuel costs. As a result, time increasing up to
150% does not change the optimal fleet. Further
increasing the time on supporting the operations
improves the importance of other factors (e.g. the
role of risk-related components), resulting in a differ-
ent optimal solution.

Fourth, some parameters (e.g. the cargo deck area
of the installation and voyage distance) appear to
have a nonlinear effect on the estimated total costs.
For the cargo deck area of the installation, this effect
is related to Equation 2.17 as follows: if the cargo
deck area of the installation is higher than the

Figure 11. Contribution of different cost categories to the objective function (case study 2, optimized solution 1, default ice
conditions).

Figure 12. Progress of the ABC-based optimization (Case
study 2, traditional support fleet, mild ice conditions scenario).

Table 18. Optimal fleet configuration solutions (S) for various
input parameters. The table determines the impact of
variations in individual parameter values on the optimization
results (marked from green to grey – from the most
sensitive to the least sensitive parameter).
Value, % 0 50 100 150 200 400

VH and Erad S2 S1 S1 S3 S3 –
pfuel – S3 S1 S1 S4 –
CRv – S4 S1 S1 S1 –
Consrate – S5 S1 S6 S7 –
top – S1 S1 S1 S4 –
disttow, distsup – S5 S1 S1 S1 S8
Sdeck – S9 S1 S5 S5 –
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maximum cargo deck area of the candidate vessels, the
impact on the estimated total costs is constant. For the
voyage distance, the nonlinear effect may be associated
with the complex interaction of the applied constraints
and algorithms.

As shown in the case studies, the metaheuristic ABC
algorithm demonstrated high performance and
efficiency in the optimization of an Arctic offshore dril-
ling support fleet with a significant number of candidate
vessel types. Despite the metaheuristic and stochastic
nature of the applied ABC optimization algorithm, sep-
arate optimization rounds resulted in the same solution,
indicating that the approach is robust.

Future studies are recommended to address the
limitations of the present approach include the follow-
ing. First, the provided scenario-based models for the
quantitative assessment of a fleet functionality are dis-
crete, meaning that an integer value determines each
state. These models could be independently evolved
into continuous algorithms that would significantly
improve the validity and utility of the method. Second,
stochastic factors (e.g. stochastic weather factors) are

not included in the model. Some stochastic entities
(e.g. the weather influence on voyage times) are rel-
evant to assess the robustness of supply routing and
scheduling but assumed to have a limited impact on
the optimal support fleet configuration (Ehlers et al.
2019). However, weather-related factors might influ-
ence, e.g. the operating windows for specific cargo
operations. Also, the combined impact of different
stochastic factors might be significant. Third, the
approach could be expanded and applied to year-
round offshore production. This would require the
incorporation of methodologies for the calculation of
a vessel’s fuel consumption and speed in the ice of var-
ious thicknesses, as well as the consideration of hull ice
loading. The consequences of potential ice damages to
ships and installations are not considered. The impact
of this limitation is assumed insignificant for the case
of exploration drilling, both because the considered
operations occur in summer when the occurrence of
sea ice is rare, and because ice management is pro-
vided. Fourth, an additional investigation of the role
of logistics factors (e.g. using a floating storage) on
the efficiency and safety of an Arctic offshore support
fleet could be carried out. Finally, additional cases,
such as the use of supply hovercrafts in shallow
water conditions with thick ice, could be investigated.
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Table 19. Optimal fleet configuration solutions (S) for the
‘traditional’ support fleet.
Vessel type S1 S2 S3 S4 S5 S6 S7 S8 S9

Type 1 1 1 1 1 1 1 1 1 1
Type 11 0 0 0 2 0 0 2 1 0
Type 15 0 0 0 0 0 0 0 0 1
Type 16 1 0 2 0 2 1 0 1 2
Type 18 1 1 0 0 0 1 2 2 0
Type 20 0 1 1 0 0 1 0 0 1
Type 23 0 1 0 0 0 0 0 0 0
Type 27 1 0 0 0 0 1 0 0 0

Table 20. Percentual (%) change in the expected total cost
due to a variation in a single parameter.
Value, % 0 50 100 150 200 400

VH and Erad −14 −2 0 +1 +3 –
pfuel – −9 0 +9 +18 –
CRv – −40 0 +39 +78 –
Consrate – −12 0 +13 +25 –
top – −41 0 +41 +81 –
disttow, distsup – −15 0 +2 +5 +32
Sdeck – +16 0 −12 −12 –

Figure 13. Safety-related KPIs for fleet configuration S1 – S3.

Table 21. Optimization results for ice management sensitivity
analysis.

Nr Scenario Solution
Total cost
change

1 Default Fic, E
op
inst 100% I1 0.00

2 Fic (mild 0.15, average 0.75, severe 0.1) I2 −10%
3 Fic (mild 0.875, average 0.025, severe 0.1) I3 −15%
4 Eopinst 50% I2 −11%
5 Eopinst 0% I2 −23%

Table 22. Calculated optimal configurations of the ‘ice
management’ fleet.
Vessel type Ice class I1 I2 I3

Type 1 PC 3 1 1 1
Type 7 PC 5 4 1 0
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Table A1. General characteristics of different support vessel types.

Name Year of delivery DW [ton] S [m2] Npp[MW] Ice class hice [m] Fi-Fi class DP class Oil recovery Towing Anchor handling Standby

Type 1 (Vladimir Ignatiuk) 1982 2110 470 17 PC 3 1.8 0 0 – + + +
Type 2 (Toboy) 2008 1930 490 13.55 PC 4 1.5 0 0 – – – –
Type 3 (SCF Sakhalin) 2005 4300 700 17.4 PC 4 1.5 3 1 + – – +
Type 4 (Yury Topchev) 2005 3860 750 20 PC 4 1.7 1 1 + + – +
Type 5 (Vitus Bering) 2012 4160 710 18 PC 4 1.5 3 2 + – – +
Type 6 (SCF Endurance) 2006 4370 780 14 PC 5 1.3 0 2 + – – +
Type 7 (Polar Pevek) 2006 1300 300 8.2 PC 5 1.2 3 0 + + – –
Type 8 (Gennadiy Nevelskoy) 2017 3260 500 20 PC 4 1.5 3 2 + – – +
Type 9 (Stepan Makarov) 2017 3670 500 20 PC 4 1.5 3 2 + – – +
Type 10 (CCGS Vincent Massey) 2000 3000 600 13.4 PC4 1.2 0 2 – + + +
Type 11 (Aleut) 2015 2600 600 14 PC 5 1.2 3 2 + + + –
Type 12 (Brage Viking) 2012 4500 750 14 IA Super 1 2 2 + + + +
Type 13 (Magne Viking) 2011 4500 750 14 IA 0.9 2 2 + + + +
Type 14 (Kigoriak) 1979 1690 520 12.3 IA Super 0.91 0 0 – + + –
Type 15 (Svetlyy) 2009 890 250 5.3 IB 0.7 0 1 – + – –
Type 16 (Siem Amethyst) 2009 4250 810 20 0 0.15 2 2 + + + +
Type 17 (Normand Supporter) 2010 5300 1075 7.5 0 0.15 0 2 + – – –
Type 18 (Maersk Handler) 2002 2620 520 12.9 0 0.15 0 1 + + + –
Type 19 (Maersk Dispatcher) 2005 4050 755 13.4 IC 0.4 1 2 – + + –
Type 20 (Bourbon Liberty 151) 2013 1700 400 3.7 0 0 1 2 + – – –
Type 21 (Havila Foresight) 2008 4780 1050 8.8 0 0 0 2 + – – –
Type 22 (Normand Skipper) 2005 6400 1220 8.4 0 0 0 2 + – – +
Type 23 (VOS Triton) 2006 1740 340 3.8 0 0 1 0 – + + +
Type 24 (Energy Scout) 2007 3300 690 4 0 0 1 2 + – – –
Type 25 (Normand Prosper) 2010 5000 760 24.7 0 0 0 2 – + + –
Type 26 (Sea Spear) 2014 4450 1000 6.5 0 0 1 2 + – – –
Type 27 (Siem Pilot) 2010 5000 930 8.4 0 0 2 2 + + – +
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Table A2. Estimated daily time charter rates, cruising fuel consumption rates, and cruising speeds.

Name
Displacement

[t] Cb Lpp[m] B [m] D [m] d [m]
Charter rate,
USD/day

cv,mov[ton/
day]

Cruising speed
[knot]

Type 1 (Vladimir Ignatiuk) 7080 0.60 79.2 17.5 10 8.3 32,750 15.1 8.80
Type 2 (Toboy) 6530 0.55 73.3 18 11.2 8.8 35,450 16.8 8.98
Type 3 (SCF Sakhalin) 9980 0.66 93.4 21.2 11 7.5 40,020 18.8 8.79
Type 4 (Yury Topchev) 9670 0.74 84.4 19 10.5 8 43,425 17.9 8.72
Type 5 (Vitus Bering) 10,710 0.68 91.4 21.2 11 7.9 44,670 19.6 8.79
Type 6 (SCF Endurance) 8910 0.71 77.6 19 10 8.25 42,160 18.4 8.73
Type 7 (Polar Pevek) 4570 0.67 64.5 17 8 6.1 28,510 10.7 8.50
Type 8 (Gennadiy Nevelskoy) 10,710 0.68 91.4 21.2 11 7.9 40,650 19.6 8.79
Type 9 (Stepan Makarov) 10,960 0.68 93.91 21.2 11 7.9 40,820 19.8 8.79
Type 10 (CCGS Vincent
Massey)

6870 0.69 75.2 18 8.5 7.2 35,160 15.0 8.61

Type 11 (Aleut) 7970 0.72 76.8 19.5 8.5 7.25 38,340 15.8 8.66
Type 12 (Brage Viking) 9450 0.724 76.2 22 9 7.6 38,910 15.6 8.77
Type 13 (Magne Viking) 9400 0.720 76.2 22 9 7.6 37,305 15.6 8.77
Type 14 (Kigoriak) 6850 0.60 78.9 17 10 8.3 24,820 17.0 8.79
Type 15 (Svetlyy) 2700 0.65 62.4 15 6.2 4.3 23,470 7.4 8.11
Type 16 (Siem Amethyst) 10,800 0.754 79.35 22 9.6 8 27,520 17.6 8.82
Type 17 (Normand
Supporter)

8640 0.73 84.9 20 8.3 6.8 32,355 14.3 8.64

Type 18 (Maersk Handler) 5910 0.68 69.3 18 8 6.8 20,760 11.8 8.54
Type 19 (Maersk Dispatcher) 9420 0.73 76.2 21.9 9 7.5 29,310 15.5 8.77
Type 20 (Bourbon Liberty
151)

3010 0.73 58.5 14 5.8 4.9 20,250 11.6 8.14

Type 21 (Havila Foresight) 8040 0.73 86.6 19.7 7.85 6.3 28,980 14.9 8.58
Type 22 (Normand Skipper) 10,050 0.74 84.3 22 8.6 7.1 31,760 17.6 8.74
Type 23 (VOS Triton) 2770 0.69 52.2 15 6.1 5 17,630 15.8 8.27
Type 24 (Energy Scout) 4880 0.768 66.8 16 7 5.8 23,280 11.4 8.42
Type 25 (Normand Prosper) 11,410 0.70 84.8 24 9.8 7.8 25,070 18.3 8.81
Type 26 (Sea Spear) 7700 0.73 82 19 8 6.6 29,130 14.2 8.59
Type 27 (Siem Pilot) 8460 0.745 77.2 20 8.6 7.15 27,520 15.5 8.70

Table A3. Fleet configurations corresponding to each step of the optimization (case study 1, traditional support fleet, default ice
conditions scenario).
Step Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type 8 Type 9 Type 10 Type 11 Objective
1 2 1 2 4 2 0 4 1 5 4 4 123.5
2 4 4 3 3 0 0 1 5 1 3 2 112.7
3 4 4 3 3 0 0 0 2 1 3 2 96.9
4 2 4 3 3 0 0 0 2 1 3 2 89.1
5 2 4 3 3 0 0 0 2 0 3 2 84.9
6 2 4 3 3 0 0 0 1 0 3 2 80.8
7 4 3 1 0 1 0 2 1 2 3 1 78.9
8 4 2 1 0 1 0 2 1 2 3 1 74.7
9 4 2 1 0 1 0 2 1 1 3 1 70.7
10 4 2 1 0 1 0 2 1 1 2 1 67.3
11 4 1 1 0 1 0 2 1 1 2 1 63.1
12 3 0 1 0 1 0 2 1 1 2 1 54.6
13 3 2 2 0 0 0 2 0 1 0 1 52.7
14 2 2 2 0 0 0 2 0 1 0 1 48.8
15 2 1 2 0 0 0 2 0 1 0 1 44.4
16 2 1 2 0 0 0 2 0 0 0 1 40.8
17 2 1 1 0 0 0 2 0 0 0 1 37.6
18 2 1 0 0 0 0 2 0 0 0 1 34.8
19 1 0 0 0 2 0 0 0 0 1 3 33.9
20 1 1 0 0 0 0 1 0 1 1 1 31.9
21 1 1 0 0 0 0 0 0 0 1 2 27.1
22 1 0 0 0 1 0 0 0 0 0 3 25.6
23 1 0 0 0 0 0 0 0 0 0 4 25.0
24 1 0 0 0 0 0 0 0 1 2 1 24.5
25 1 0 0 0 0 0 0 1 0 2 1 24.4
26 1 0 0 0 0 0 0 0 0 2 2 24.1
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