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Abstract—We propose a Partition-based Visibility (PV) graph
modeling to find the minimum number of Visible Light Com-
munications (VLC) nodes and their locations for reliable indoor
coverage. VLC network offers a low-cost technology on a license-
free spectrum to complement the contemporary mobile network
services offered on Radio Frequency (RF) bands. However, VLC
suffers from propagation limits: Firstly, in presence of opaque
obstacles such as walls, doors, and even curtains, strong link
blockage is experienced as the power of reflections is much
weaker than the power of the Line-of-Sight (LoS) link. Secondly,
the received optical power at users drops as the angle of
irradiance between a LED lamp and the user increases, imposing
a range constraint on the VLC nodes. So, inspired by the Art
Gallery Problem, we optimize the number and the locations of
VLC nodes by characterizing the PV graph as a dual presentation
of the floor plan and a Maximal Clique Clustering algorithm,
which is able to solve not only the art gallery problem but also
to extend the approach for the range constrained case.

Index terms— Visible Light Communications; Network
Planning; Irregular floor plan; Art gallery problem; Visibility
graph; Line-of-Sight; Indoor coverage.

I. INTRODUCTION

Following the trend initiated with 5G New Radio (NR),
the Sixth Generation (6G) of mobile networks is expected
to continue its development towards the incorporation of
new Radio Frequency (RF) bands beyond Millimeter-Wave
bands, wider communication bandwidths, and even denser
deployments of small cells [1]. VLC is a potential technology
to achieve some of these target goals, taking advantage of
the ubiquitous presence of LED lamps to enable an ultra-
dense deployment of wireless access nodes [2]. Compared
to RF [3], VLC is a strong technology candidate for secure,
private, safe, low-cost, and license-free communications within
the 6G landscape. As a distinctive characteristic, VLC signals
cannot propagate through opaque obstacles such as walls and
curtains. Although this feature restricts a good indoor service
coverage, it can also be considered as an advantage to enable
secured communications or increase the density of VLC cells
by confining the light signal into the designated service area.

VLC networks should be planned to provide seamless
coverage indoors [4]. Most of the research done so far in the
literature has considered a deployment of nodes to enable a
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regular tessellation of cells in a small [5] or (infinitely) large
room [6] environment, aiming at mitigating the inter-cell inter-
ference. However, the service floor layouts in VLC networks
are not necessarily as regular as squares or rectangles. This
problem becomes relevant when LoS link needs to be ensured
in the whole floor plan [7], since the power of the reflected
light beams from the walls, floor, and even furniture is much
weaker than the one of the LoS beam between the VLC node
and its terminal [8]. When the shape of the indoor environment
becomes irregular, the most convenient way to deploy the
minimum number of VLC nodes for reliable communication
services has not been studied in detail so far.

The art gallery problem, raised by Victor Klee in 1973,
aims at minimizing the number of omni-directional camera
guards to fully cover a given floor plan, determining as well
their locations [9], [10]. Generally, the art gallery problem
is NP-hard. However, Chvatal proposed the upper bound of⌊
n/3

⌋
guards, where n is the number of layout vertices [11].

Furthermore, placing one guard in all reflex vertices of the lay-
out is enough and sometimes necessary for full coverage [12].
Specifically, given an orthogonal layout, wherein each edge of
the layout is horizontal or vertical, only

⌊
n/4

⌋
guards suffices

[13]. To our best knowledge, the most accurate solution to
solve this problem uses an algebraic-based algorithm, wherein
the vertices of the grid are iteratively weighted [14]. However,
the literature lacks analytical methods to optimize indoor
placements that consider range constraints of guards.

Similar to camera guards in art gallery problem, LED lamps
are also obstructed by the presence of physical obstacles.
However, the effective propagation range constraint due to the
limited SNR in the VLC link has not been studied in the art
gallery problem. The main novelty of this paper initially lies
in the modeling of the art gallery problem with the problem
of maximal clique clustering in a visibility graph modeling
as a dual presentation of the floor plan. Interestingly, the
structure of the proposed visibility graph modeling enables to
take into account the range constraint, wherein all the points
in the layout are not only visible from, but also in the range
of at least one VLC node1. As a result, the placement for
the smallest set of VLC nodes is derived. Though there are
similarities between the placement of VLC nodes to provide

1In this paper, the terms guard and VLC node are used interchangeably.



Fig. 1. Indoor VLC cell including a white LED lamp with direct illumination.
Blue (Gaussian-like) spatial distribution of the optical power determines the
coverage range (2 r) that guarantees the target data rate on the cell edge.

data and illumination services, there are also key differences
between both network planning problems. That is, for VLC
data service planning, it is usually required that a minimum
data rate is guaranteed for those terminals that lie in the cell-
edge areas of the multi-cell network. On the other hand, when
the objective is to optimize the deployment of the nodes for
illumination purposes, the aim is to guarantee a minimum
mean illumination and a target level of illumination uniformity
on the whole service area of the VLC network [6].

The rest of the paper is structured as follows. Section II
describes VLC network planning problem statement. Sec-
tion III presents the proposed methods and Section IV provides
simulation results. Finally, conclusions are drawn in Section V.

II. VLC NETWORK PLANNING PROBLEM STATEMENT

The fundamentals of VLC planning that justify the use of
the Art Gallery problem approach are presented in this section.

A. Coverage range of the VLC cell

Different channel models have been proposed in the liter-
ature to characterize the indoor propagation of VLC signals.
This paper focuses on the direct illumination case [7], where
the effect of reflections on walls, floor, and/or other obstacles
that may be present in the room are neglected (see Fig. 1).

Let us assume that the Phosphor-Converted (PC)-LED is
modeled as a source of light with a Lambertian radiation
pattern; then, the DC gain of the optical channel between the
LED transmitter and the Photodetector (PD) receiver is [15]

Hdir
led,pd(0)=

{
(m+1)Apd

2πd12 cosm(φ1) cos (ψ1), 0≤ψ1≤Ψc,

0, ψ1 > Ψc,
(1)

where m denotes the Lambert index of the PC-LED, Apd [m2]
is the physical area of the PD, φ1 [rad] and ψ1 [rad] refer to the
angle of irradiance and incidence of the LoS link, respectively.

Fig. 2. a) A given layout [9]. b) Layout triangulation and 3-coloring methods.

Also, d1 [m] is the distance between transmitter and receiver,
and Ψc [rad] is the Field of View (FOV) semi-angle of the PD.
In practice, the Lambert index of the LED can be computed
from m = −1/ log2

[
cos(θmax)

]
, where θmax [rad] defines the

source radiation semi-angle at half power of the PC-LED.
Finally, the spectral optical power of the light that reaches

the PD at wavelength λ is given by

pdiro,pd(λ) = PledH
dir
led,pd(0)S(w)

o (λ), (2)

where Pled [W] and S
(w)
o (λ) are the total radiant power and

spectral power distribution of the PC-LED, respectively.
The DC current at the output of the PD is given by

idirpd (0) =

∫ λu

λl

pdiro,pd(λ) Rpd(λ) fo(λ) dλ, (3)

where Rpd(λ) [A/W] is the responsivity of the PD and fo(λ) is
the transmitance of the optical passband filter with lower (λl)
and upper (λu) cutoff wavelengths. The ambient light that is
present in the room, as well as the instantaneous power of the
data-carrying signal that reaches the PD, generate shot noise
with Root Mean Square (RMS) value vn that is added on top
of the thermal noise that is introduced by the Transimpedance
Amplifier (TIA) with gain Gtia embedded into the PD.

Hence, the SNR at the output of the PD is given by

Γpd(0) =
∣∣(idirpd (0)Gtia

)
/vn
∣∣2. (4)

Accordingly, the cell radius of the VLC node is determined
such that the received SNR on the cell range is high enough
to guarantee the target data rate in the whole service area. In
case of overlap between the adjacent cells, Joint Coordinated
Multi-Point (CoMP) can further increase the data rate [5].
B. Art Gallery Problem

The art gallery problem aims at placing a minimum number
of stationary omni-directional camera guards to cover all the
points of an art gallery with an arbitrary layout [9], [10].
We picture the walls of the art gallery as a layout with n
vertices. For instance, one guard anywhere in a convex layout
suffices for full coverage, as every point inside or on the
convex polygon is openly visible from any other point in it.
Generally, minimizing the number of guards to cover a layout
is a NP-hard problem. However, Chvatal Theorem determines
an upper-bound to the minimum number of guards.



Fig. 3. Visibility area(s) for: a) point P ; b) point P with range constraint;
c) polygon P1; d) polygon P1 with range constraint; e) four polygons P1,...,
P4; f) four polygons P1,..., P4 with range constraint.

Chvatal’s Theorem. To fully cover any layout with n vertices,⌊
n/3

⌋
guards are sufficient and occasionally necessary.

Fisk proof. The theorem is proven by Fisk proof showing the
vertices of every layout are 3-colorable [16]. A layout can be
partitioned into a set of triangles in a polynomial time, known
as triangulation algorithm [9]. Then, we can start coloring
vertices of a triangle in the layout by three different colors, let
us say red, blue, and green. Then, we continue coloring single
uncolored vertices of adjacent triangles iteratively, such that
no adjacent vertices have the same color. As a result, all the
triangles have all three colors on their vertices. Since placing a
set of guards at any specific color vertices sees all the triangles,
deploying guards on the vertices with the minimum number of
colors, i.e.

⌊
n/3

⌋
, suffices to cover the layout. On the other

hand, exactly
⌊
n/3

⌋
guards are necessary to cover a comb

shape layout [9], [10]. Thus, Chvatal’s theorem follows.

Fisk proof is visualized in Fig. 2 for a given layout with
n = 19 vertices. First, the layout is partitioned into n− 2 = 17
triangles via the triangulation method. Then, 3-coloring the
vertices results in different colors at each vertex. So, deploying⌊
n/3

⌋
= 6 guards on red vertices covers the whole layout.

Generally, Chvatal theorem fails to minimize the number of
guards to cover a layout. For instance, a convex layout needs

Fig. 4. Convex partitioning methods. a) MCP or equivalently 0-order
triangulation. b) Triangulation or equivalently 1-order triangulation. c) 2-order
triangulation. d) 3-order triangulation.

only one guard for full visibility, even with large n. Also,
the minimum number of guards does not necessarily locate
on the vertices, such as in star-shaped layouts, wherein only
one guard in the middle may suffice. Moreover, the theorem
does not take into account range constraints, such as the ones
imposed by VLC nodes.

III. PROPOSED METHOD

In this section, we revisit the art gallery problem by propos-
ing a PV graph modeling to not only minimize the number of
guards and to find their locations in any layout, but also to add
compatibility to range requirements in VLC networks. To this
end, we express several definitions to support the PV graph
modeling. Assuming that X and P denote two points inside or
on the layout, we characterize the following two definitions.

Definition 1. Visibility Area of a Point. X is inside the
visibility area of P , indicated by X ∈ V(P ), if and only if:
• The line segment XP is entirely inside the layout, and
• ‖XP‖ ≤ r, wherein r denotes the maximum range.

In other words, X ∈ V(P ) if there is no layout edge to
block the LoS between P and X , and simultaneously, X is
within the range of P 2. Furthermore, we extend Definition 1
to a polygon P with l vertices inside or on the layout.

Definition 2. Visibility Area of a Polygon. X is inside
the visibility area of P , indicated by X ∈ V(P), if and only
if X is visible from all its vertices P1, P2, ..., Pl.

From Definitions 1 and 2, we can immediately conclude that
V(P) = V(P1)∩V(P2)...∩V(Pl). Figure 3 visualizes visibility

2The unconstrained V(P ) is equivalent to the V(P ) with range constraint
r =∞. So hereafter, we remove the term unconstrained.



areas in Definitions 1 and 2. In Fig. 3a), the yellow area
displays V(P ), while in Fig. 3b), the yellow area represents
the V(P ) with maximum r = 3.2 units. On the other hand, the
yellow area in Fig. 3c) represents V(P1), the visibility area for
the irregular pentagon P1 and Fig. 3d) illustrates V(P1) with
maximum r = 3.2 units. Also the red, blue, and green areas
in Fig. 3e) display V(P2), V(P3), and V(P4), respectively.
For example, it can be observed that V(P1)∩V(P2) 6= Ø and
V(P2) ∩ V(P3) = Ø. In Fig. 3f), the same colors are used to
indicate V(P1), ... , V(P4), respectively, with r = 3.2 units. It
is observed here that the range constrained visibility areas are
all disjoint, V(Pi) ∩ V(Pj) = Ø for i, j = 1, ..., 4 and i 6= j.

Now, to systematically partition the layout to convex poly-
gons, we express Definitions 3 and 4.

Definition 3. Maximal Convex Partitioning (MCP)
refers to adding a minimum number of diagonals to a layout
such that all the resulting polygons are convex.

MCP methods are not unique and they can be performed via
different algorithms, such as adding non-intersecting diagonals
to the reflex vertices of the layout until there is no polygon
with reflex vertices left. Another algorithm is via layout
triangulation and removing the diagonals randomly as long
as all the polygons remain convex. However, we occasionally
need smaller polygons to guarantee the coverage or to find a
smaller set of nodes to cover the whole layout. Since a triangle
is always a convex polygon, we make the following definition.

Definition 4. m− order Triangulation is a m-step trian-
gle partitioning method for m ≥ 1, connecting the mid-point
of the largest side of all triangles to the opposite vertex.

Fig. 4 exhibits the convex partitioning and triangularization
methods. Fig. 4a) presents an MCP3 example with 8 convex
polygons and Fig. 4b) displays the triangulation. Then, con-
necting the midpoint of the largest side at each triangle to the
opposite vertex in Fig. 4b), we derive the 2-order triangulation
shown in Fig. 4c). Performing the same procedure on 2-order
triangulation, we derive the 3-order triangulation in Fig. 4d).

Remark 1. A m-order triangulated layout with m ≥ 1 is
consisted of M = (n− 2)× 2m−1 triangles.

Now, we define R(0) as the maximum distance between
polygon vertices in MCP method and R(m), for m ≥ 1, as the
maximum triangle side length in m-order triangulation through
all the polygons.

Remark 2. In any partitioned layout, the maximum triangle
side length R(m) is decreasing with m.

Then, we characterize the visibility to a triangle area.

3To preserve the consistency of the symbols, MCP method is interpreted
as 0-order triangulation.

Fig. 5. Visibility between point X and triangle P with a point Q inside. a)
No obstacle. b) Layout edge intersects the XQ and one of the triangle sides.
c) Layout edge intersects XQ and XPi for some i.

Lemma 1. Assume P denotes a triangle from m-order trian-
gulated layout with no holes4 and with vertices P1, P2, and
P3 as in Fig. 5a). If the point X ∈ V(P), then for any point
Q inside P or on its sides, X ∈ V(Q).

Proof. From Definition 4 and since X ∈ V(P) and Q
is inside or on P , both X and Q are inside or on the
layout. Firstly, the farthermost point of a triangle to any
point on the plane is one of the vertices and thus, ‖XQ‖ ≤
max(‖XP1‖, ‖XP2‖, ‖XP3‖) ≤ r. Secondly, we prove that
no layout edge intersects the segment XQ. To show the
contradiction, we assume that an edge intersects XQ. Since
the whole XQ lies inside the convex hull of the union of
P and X , the blocking edge also intersects at least one of
the convex hull boundaries, i.e., a side of P as in Fig. 5b),
or the segment XPi for some i as in Fig. 5c). Intersecting a
triangle side contradicts the definition of m-order triangulation
and intersecting one of the segments XP1, XP2, or XP3

contradicts X ∈ V(P). Hence, Lemma 1 follows.

Lemma 1 implies that placing a set of guards inside the
convex partitioned layout, such that there is at least one guard
in the visibility area of each polygon, covers the whole layout.

So, Remark 2 and Lemma 1 yield the following remark.

Remark 3. To guarantee full coverage of all triangles from
their visibility areas, we increase the order of triangulation to
satisfy R(m) < r. On the other hand, increasing m increases
the probability to find the smallest set of guards to cover the
whole layout in the cost of higher complexity.

Denoting M as the number of polygons in the layout, we
define a visibility graph modeling as follows.

Definition 5. Partition−based Visibility (PV) Graph
refers to an indirect unweighted graph consisting of M nodes,
representing the polygons (triangles) of the layout P1, ...., PM .

4Layouts with holes are beyond the scope of this paper.



Fig. 6. PV graph and a non-optimal clique partitioning. a) The layout
partitioned by MCP method. b) PV graph associated to the partitioned layout.
c) A non-optimal clique partitioning for the PV graph. d) Visibility sub-areas
for the cliques in the non-optimal clique partitioning.

Fig. 7. Optimal guard placement via maximal clique clustering steps. a) The
PV graph shown in Fig. 6b) marked with a largest clique. b) The remaining
graph marked with next largest clique. c) A single node as a largest clique in
the remaining graph. d) Visibility sub-areas for the three cliques in Fig. 7c).

Two nodes Pi and Pj in the graph are connected with an edge
if and only if V(Pi)∩V(Pj) 6= Ø for 1 ≤ i, j ≤M and i 6= j.

Possible guard placements for a full coverage of the layout
are characterized through the following theorem.

Theorem 1. Any partitioning of the PV graph into g cliques,
say C1,..., Cg , results in a set of sub-areas V(C1),..., V(Cg) in
the layout. Then, deploying one guard anywhere inside each
sub-area fully covers the layout.

Proof. Upon the definition, the nodes of each clique do not
overlap with other cliques and the union of the nodes in
the cliques forms all the nodes of the PV graph P1,..., PM .

TABLE I
MAXIMAL CLIQUE CLUSTERING ALGORITHM

Initialization
r: maximum range
P1, ...,PM : polygons in the layout % Remark 3

1 G ← PVgraph
(
V(P1), ...,V(PM )

)
% Definition 5

2 While G 6= Ø

3 [Pq1 , ...,PqM ]← Nodes of G in ascending degrees order
4 C ← Pq1 % Choose the node with minimum degree
5 For i = 2 : M

6 If C ∪ Pqi forms a clique & V(C ∪ Pqi ) 6= Ø

7 C ← C ∪ Pqi

8 End If
9 End For
10 Deploy a guard anywhere inside V(C)
11 G ← G − C
12 M ← |G|
13 End While

Assume Ck with 1 ≤ k ≤ g, contains a set of nodes P ′k1, P ′k2,
...., and P ′k|Ck|. Noting that each node P ′ku, 1 ≤ k ≤ g and
1 ≤ u ≤ |Ck|, correspondingly represents a node in the PV
graph and consequently a polygon in the layout, we define
a visibility sub-area for the clique as V(Ck) = V(P ′k1) ∩
V(P ′k2)∩ ...,∩V(P ′k|Ck|). So, from Lemma 1, any point inside
V(Ck) is visible altogether from any point inside or on the
polygons P ′k1, P ′k2, ..., and P ′k|Ck|. Therefore, deploying g
guards, each one anywhere inside V(Ck) 6= Ø with 1 ≤ k ≤ g,
fully covers the layout.

Fig. 6 illustrates a PV graph in an unconstrained case and a
clique partitioning. Fig. 6a) shows the layout partitioned to 8
polygons using MCP method and Fig. 6b) depicts its PV graph
with 8 nodes. For example, since V(P5) ∩ V(P7) 6= Ø and
V(P4)∩V(P6) = Ø, the nodes P5 and P7 are connected and
the nodes P4 and P6 are disconnected. Since a single node
is also a clique, we may partition the PV graph into as high
as g = 8 single node cliques C1,..., C8, resulting in highly
overlapped sub-areas V(Ck) = V(Pk) for 1 ≤ k ≤ 8. Cer-
tainly, deploying 8 guards anywhere inside each of V(C1),...,
V(C8) covers the whole layout. To partition the PV graph
more efficiently, Fig. 6c) displays a partitioning into g = 4
cliques C1,..., C4, shown by 4 different colors and the corre-
sponding visibility sub-areas V(C1), ..., V(C4) in Fig. 6d). For
instance here, V(C1) = V(P2) ∩ V(P3) ∩ V(P6) ∩ V(P7) and
V(C3) = V(P8). So, deploying g = 4 guards anywhere inside
each sub-area V(C1),..., V(C4) covers the whole layout.

From Theorem 1, art gallery problem can be interpreted as
minimizing g in a PV graph. In literature, graph partitioning to
the minimum number of cliques refers to a well-known NP-
complete problem called minimum clique cover [17]. How-



Fig. 8. Optimal guard placement with maximum range r = 4.7. a) Layout triangulation. b) PV graph for the triangulated layout, c-f) Maximal clique
clustering of the PV graph, g) Visibility sub-areas of the 4 cliques in Fig. 8e).

ever to minimize g, we propose maximal clique clustering
algorithm in Table I as follows: I) choose the node Pq1 with
minimum degree d(Pq1) in the graph; II) find the largest clique
C that is connected to Pq1 and V(C) 6= Ø; III) deploy a guard
in V(C) and remove all the edges connected to C; IV) start
over the algorithm for the remaining graph.

Figure 7 shows the steps of the maximal clique clustering
algorithm. Fig. 7a) represents the PV graph in Fig. 6b). Here,
P1 is selected as the node with the minimum degree, and
the largest clique connected to P1 is marked. Removing the
clique from the graph, Fig. 7b) shows P8 as the minimum
degree node and the connected largest clique. Subtracting
the clique, the remaining graph consists of only one node
that is solely clustered as the last clique in Fig. 7c). Finally,
Fig. 7d) visualizes the visibility sub-areas for the three cliques
in Fig. 7c). So, deploying one guard inside each visibility sub-
area results in totally g = 3 guards covering the whole layout.

Remark 4. Finding h points S1, S2,..., Sh inside or on the
layout yields a lower bound to the minimum number of guards,
i.e. h ≤ g, if their visibility areas are pairwise disjoints sets,
i.e. V(Si) ∩ V(Sj) = Ø for 1 ≤ i, j ≤ h and i 6= j.

Inspecting Fig. 7d), we find three points S1, S2, and S3

whose visibility areas are pairwise disjoint. Thus from Re-
mark 4, the maximal clique clustering algorithm over the PV
graph resulted in the optimal number of guards as h = g = 3.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the PV graph
modeling to optimize the number and the locations of the
range constrained VLC nodes. Setting the maximum range
r = 4.7, Fig. 8 describes the PV graph and the maximal

clique clustering steps. Since R(m = 1) ≤ r in the convex
partitioned layout in Fig. 8a), 1-order triangulation guarantees
the coverage for every 17 triangles. Fig. 8b) indicates the PV
graph taking into account the visibility areas of the triangles
with the maximum range r. Here, the node P17 has the
minimum degree and the set of the nodes P14, P15, P16, and
P17 form the largest clique connected to P17. So, by cutting
off this clique in Fig. 8c), Fig. 8d) finds P1 as the minimum
degree in the remaining graph. Continuing the steps, we end up
with 4 cliques in Fig. 8f). Finally, Fig. 8g) illustrates visibility
sub-areas for the g = 4 cliques, wherein totally 4 guards can be
deployed. Additionally, we find h = 4 points S1, S2, S3, and
S4 as in Fig. 8g), at which V(Si) ∩ V(Sj) = Ø with r = 4.7
for 1 ≤ i, j ≤ 4 and i 6= j. As a result from Remark 4, the
h ≤ g = 4 number of guards found in Fig. 8, is optimal.

Fig. 9a) shows the minimum number of VLC nodes that are
to cover the layout as a function of the maximum range. It is
observed that similar to unconstrained case, setting r ≥ 6.2 m
results in only 3 nodes, whereas setting r = 4.8, 3.6 and
2.8 m results in 4, 5, and 7 VLC nodes, respectively. On
the other hand, assuming that the VLC users are randomly
distributed in the layout, Fig. 8b) shows the CDF for user
distances for the four VLC node layouts with the representative
maximum ranges distinguished by colors. It is observed that
the deployment of 4 nodes (green curves) outperforms the 3
nodes deployment (red curves) by reducing the 90-th percentile
as much as 2 m. Moreover, when deploying 5 nodes (blue
curves) and 7 nodes (magenta curves), there is still a decrease
in the 90-th percentile, but this gain is much modest than
before. Finally, Fig. 10 exhibits the optimal node placements
for the representative range constraints. It is seen that setting
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Fig. 9. Effect of maximum range of a VLC node to carry out the network
planning: a) Minimum number of VLC nodes to cover the layout for different
ranges. b) CDF of user distances to the nearest VLC nodes for 4 representative
maximum ranges r (red: 6.2 m; green: 4.8 m; blue: 3.6 m; magenta: 2.6 m).

r = 6.2 m results in 3 nodes that are deployed far away.
On the other hand, setting r = 2.6 m gives 7 closer nodes.
Note that these obtained cell radius values are aligned with
the ones reported in the literature for optical wireless cellular
networks implemented with the cells of the same shape and
size, deployed to provide service in large-sized areas [6], [18].

V. CONCLUSIONS

We studied indoor VLC network planning in case of an
arbitrary floor plan. Starting from the unconstrained art gallery
problem, an algorithm was derived to find the minimum
number of VLC nodes as well as their locations in order to
serve the target area. Apart from the exact locations of the
VLC nodes, which are not easy to determine in such a setting,
we showed that increasing notably the number of VLC nodes
does not provide much more gain in the 90-th percentile of
the VLC link distance, which is inversely proportional to the
achievable data rate. This gain is even more modest when we
focus on the median distance to the nearest VLC node.
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