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ABSTRACT

The qualitative robustness of direction of arrival estimation
using Sparse Bayesian Learning (SBL) is assessed by eval-
uating the corresponding empirical influence function (EIF).
The EIF indicates that SBL is sensitive to deviations from the
underlying joint Gaussian assumption on signal and noise.

To improve its qualitative robustness, we modify SBL by
plugging-in the sample covariance matrix of the phase-only
array data instead of the conventional sample covariance. A
qualitatively more robust DOA estimate is derived as maxi-
mum likelihood estimate based on the complex multivariate
t-distribution as the model-distribution for array data. Finally,
we discuss and compare the qualitative robustness of the de-
rived DOA estimators by evaluating the corresponding EIFs.

1. INTRODUCTION

This contribution addresses array processing in the pres-
ence of additive outliers in the data and heavy-tailed noise.
Stochastic Maximum Likelihood parameter estimation in the
context of heavy-tailed models is discussed in [1, 2].

Here, direction of arrival (DOA) estimators are devel-
oped for a plane wave observed by a sensor array based on
a complex multivariate Student t⌫-distribution data model.
A surprisingly robust DOA estimate is derived as the max-
imum likelihood estimate (MLE) based on this model. [2,
Sec. 5.4.2], [3].

2. ARRAY DATA MODEL

We observe narrowband waves on N sensors for L snap-
shots and the corresponding array data is Y 2 CN⇥L. The
unknown zero-mean complex source amplitudes are the el-
ements of X 2 CM⇥L where M is the considered number
of hypothetical DOAs on a pre-specified grid. We assume
that the complex source amplitudes are independent across
sources and snapshots, i.e. xml and xm0l0 are independent. A
linear regression model relates the array data Y to the source
amplitudes X ,

Y = AX +N . (1)

The columns of the transfer matrix A 2 CN⇥M are the steer-
ing vectors for all hypothetical DOAs. The additive noise
N 2 CN⇥L is assumed independent identically distributed
across sensors and snapshots, zero-mean, and with finite vari-
ance �2.

In the presence of few stationary sources, the lth column
of X is K-sparse and we assume that the sparsity pattern does
not vary across snapshots. We define the active set M =
{m 2 N|xml 6= 0} and AM 2 CN⇥K contains only the K
“active” columns of A. In our setting, M � N > K and (1)
is underdetermined.

3. ROBUST BAYESIAN LEARNING

SBL is derived under complex Gaussian assumptions on each
element of X and N . Direction of arrival (DOA) estimation
for plane waves using Sparse Bayesian learning (SBL) is pro-
posed in Table I in Ref. [4] and [5]. A numerically efficient
SBL implementation is available on GitHub [6]. SBL pro-
vides DOA estimates based on the array data sample Y and
the sample covariance matrix ((·)H denotes Hermitian trans-
pose)

SY = Y Y H/L (2)

3.1. SBL applied to phase-only array data

It is simple and useful to normalize the array data magnitude
(keeping only the data’s phase) for estimating well separated
DOAs in heteroscedastic Gaussian noise [7] and leads to ro-
bust DOA estimators [8, 9]. We modify SBL in an ad hoc
approach by using the phase-only array data

Ỹ = Y ↵ |Y | (3)

where ↵ denotes element-wise division and |Y | is the matrix
of element-wise magnitudes of Y . The phase-only sample
covariance matrix [9],

S̃Ỹ = Ỹ Ỹ H/L. (4)



3.2. M-estimation based on t-distribution

A qualitatively more robust DOA estimate is derived as max-
imum likelihood estimate based on the complex multivariate
t⌫-distribution as model for array data [2, Sec. 5.4.2]. Since
X and N are zero-mean, it follows that the array data Y are
zero-mean.

Equations (5)-(6) are based on [3]. Assuming that Y fol-
lows a complex multivariate t⌫-distribution with ⌫ > 0 de-
grees of freedom, the log-likelihood for the scatter matrix ⌃
of the array data is proportional to [3]

L(⌃) = � log det(⌃)

� 2N + ⌫

2bL

LX

`=1

log

✓
1 +

2yH

`
⌃�1y`

⌫

◆
, (5)

where y` is the `th array data snapshot, b is a consistency
factor defined below, and ⌃ is proportional to the array data
covariance matrix when it exists,

E(y`y
H

`
) = E(SY ) =

⌫

⌫ � 2
b⌃ , for ⌫ > 2, (6)

where the expectation is taken over y` ⇠ Ct⌫ . Special cases
include the complex Cauchy distribution for ⌫ = 1 and the
complex Gaussian in the limit ⌫ ! 1. Consequently,

lim
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L(⌃) = � log det(⌃)� 1

b
tr
⇥
⌃�1SY

⇤
(7)

which highlights the relation to Stochastic Maximum Likeli-
hood (SML) for Gaussian array data and SBL. We conclude
that DOA estimates based on maximizing (5) for large ⌫ !
1 converge to SBL estimates.

Above, the term b in (5) is a consistency factor de-
fined as b = E[ ⌫(kyk2)]/N , where  ⌫(t) = t⇢0

⌫
(t)

and y is a random vector consisting of independent zero
mean and unit variance complex Gaussian random variables
(y ⇠ CN (0, IN )). This consistency factor b guarantees that
the underlying M-estimator that maximizes (5) is a consistent
estimator of the covariance matrix for Gaussian array data.

In the following, we assume that ⌃ = E(y`yH

`
), then we

may simply write

⌃ = A�AH + �2IN , (8)
� = diag(�) (9)

where � = [�1 . . . �M ]T is the K-sparse vector of unknown
source powers. Consequently, we have

⌃�1 = ��2IN � ��2A⌃xA
H��2, (10)

⌃x =
�
��2AHA+ ��1

��1
. (11)

3.2.1. Estimation of Source Power

Similarly to Ref. [4, Sec. III.D], we regard (5) as a function
of � and �2 and compute the first order derivative
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Note the similarity of (12) with Ref. [4, Eq.(21)]. Setting (12)
to zero gives
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m
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= aH

m
⌃�1RY ⌃�1am, (14)

where the M-estimator of the scatter matrix is [2, Sec. 4.4.1]

RY =
1

Lb

LX

`=1

u⌫(y
H

`
⌃�1y`)y`y

H

`
. (15)

and u⌫(t) =
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which agrees with u⌫(t) in [2, Sec. 4.4.1] except for the con-
sistency factor b. Note that RY can be understood as an adap-
tively weighted sample covariance matrix [2, Sec. 4.3]. RY

is Fisher consistent for the covariance matrix when Y follows
a Gaussian, i.e. E[RY ] = ⌃ thanks to the consistency factor
b [2, Sec. 4.4.1]. We multiply (14) by �m and obtain the
fixed-point equation
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which is the basis for an iteration to solve for � numerically.

3.2.2. Estimation of Noise Power

We follow [4, Sec. III.E] and rewrite (14) as

aH

m
⌃�1(⌃�RY )⌃�1am = 0 8m 2 M,

AH

M⌃�1(⌃�RY )⌃�1AM = 0. (18)

and insert
⌃ = AM�MAH

M + �2IN , (19)

giving

AH

M⌃�1(AM�MAH

M + �2IN �RY )⌃�1AM = 0.
(20)

We rearrange the terms, cf. [4, Eq. (25)],
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1: input Y 2 CN⇥L array data to be analyzed
2: constant A 2 CN⇥M dictionary matrix
3: constants ⌫,K, jmax = 1200
4: initialize (�2)new = 0.1, �new = 1, �min = 10�3, j = 0
5: repeat
6: j = j + 1, �old = �new, � = diag(�new)
7: ⌃ = A�AH + (�2)newIN (8)

8: RY = 1
Lb

LP
`=1

u⌫(y
H

` ⌃�1y`)y`y
H

` (15)

9: �new
m = �old

m

⇣
aH

m
⌃�1RY ⌃�1am

aH
m

⌃�1am

⌘
(17)

10: M = {m 2 N | K largest peaks in �new}
11: AM = [am1 , . . . ,amK

]
12: PN = IN �AM(AH

MAM)�1AH

M (24)
13: (�2)new = tr[PNRY ]

N�K
(28)

14: � = k�new��oldk1
k�oldk1

15: until �  �min or j > jmax

16: output M, �new, (�2)new

Table 1. Qualitatively Robust Bayesian Learning based on
t⌫M-estimation of the array data scatter matrix

We now multiply (21) from the left with AM(AH

M⌃�1AM)�1

and with its Hermitian transpose from the right. This gives

PAM�MAH

MPH = P
�
RY � �2IN

�
PH , (22)

where we have defined the projection matrix

P = AM(AH

M⌃�1AM)�1AH

M⌃�1 (23)

= AM(AH

MAM)�1AH

M = P 2 = PH . (24)

A proof for (23) indeed equalling the orthogonal projection
matrix (24) onto the signal subspace is given in the Appendix.
We use PAM = AM and simplify (22) to

AM�MAH

M = P
�
RY � �2IN

�
PH (25)

⌃� �2IN = P
�
RY � �2IN

�
PH (26)

�2(IN � PPH) =
�
⌃� PRY PH

�
(27)

which resembles [4, Eq. (26)].
Finally, we evaluate the trace,

�2 =
tr [PNRY ] + ✏

N �K
⇡ tr [PNRY ]

N �K
(28)

where PN = IN � P is the projection to the noise subspace
and ✏ = tr [⌃�RY ], cf. [4, Eq. (27)]. The error ✏ is zero
mean because E[RY ] = ⌃.

4. SIMULATION RESULTS

DOA estimation performance is assessed by DOA root mean
squared error (RMSE) versus signal to noise ratio (SNR) by
numerical simulations using synthetic array data.

For the results a single plane wave with DOA �45� with
additive noise is observed by a uniform linear antenna array
with N = 20 elements at half-wavelength spacing. The trans-
fer matrix A has M = 181 columns and the steering vectors
are computed for the angular grid {0�, 1�, . . . , 179�}. Three
types of zero-mean circularly symmetric complex-valued
noise N = [n1 . . .nL] in (1) are simulated i.i.d:

Gaussian: n` ⇠ CN (0,�2IN ). This is the nominal noise
distribution and this is the standard assumption in array
processing.

Complex Student: n` ⇠ Ct⌫-distributed. The noise co-
variance matrix is �2IN , cf. [3] and [2, Sec. 4.2.2].
The limiting distribution of Ct⌫-distributed noise for
⌫ ! 1 is Gaussian.

✏-contaminated: n` is drawn from CN (0,�2IN ) with
probability (1� ✏) and with probability ✏ from CN (0,
(��)2IN ), The resulting noise covariance matrix is
(1 � ✏ + ✏�2)�2IN . The limiting distribution of
✏-contaminated noise for ✏ ! 0 and any choice of
� = const. > 0 is Gaussian.

t⌫M-estimation for DOA using the log-likelihood (5) for
Ct⌫-distributed array data is implemented via the algorithm
documented in Table 1. For performance comparison, we
evaluate DOA estimates by the conventional beamformer
(CBF), by the SBL implementation SBL v4.m [6] and by
SBL applied to phase-only data (3) as described in Sec. 3.1
for identical synthetic data realizations Y . The Cramér-Rao
Bound (CRB) for DOA estimation for a single source in ad-
ditive white Gaussian noise (AWGN) is also evaluated [10,
Eq. (8.130)].

Figure 1 shows obtained results for Root Mean Squared
Error of DOA estimates in scenarios with L = 25 snapshots
and N = 20 sensors. RMSE is averaged over 4 · 104 i.i.d. re-
alizations of DOA estimates from array data Y . In these sce-
narios, we have more snapshots than sensors, L > N , which
ensures that SY , S̃Ỹ , and RY have full rank almost surely.

Simulation results for Gaussian noise are shown in Fig.
1(a). In this scenario, the CBF implements the maximum-
likelihood DOA estimator and the CBF approaches the CRB
for SNR greater 5 dB. All three SBL-type DOA estimators
perform very similarly and slightly worse than the CBF. SBL-
type algorithms for DOA are biased and their RMSE may be
lower than the CRB. The DOA bias for SBL-type algorithms
depends on the dictionary size (here: M = 181 which corre-
sponds 1� angular resolution). We note that SBL4 and SBL4
t⌫M-estimator with parameter ⌫ = 2.1 perform identically.
This is due to the consistency factor b introduced in (5).

Figure 1(b) shows simulation results when the noise fol-
lows a Ct⌫-distribution with ⌫ = 2.1 being small. We ob-
serve that the t⌫M-estimator for DOA (Table 1) performs best,
closely followed by phase-only processing with SBL4. Here,
the ⌫ parameter of the t⌫M-estimator is chosen identical to



the ⌫ of the noise model. The assumption that the value of ⌫
is perfectly known is somewhat unrealistic. We note that the
original SBL4 algorithm and the CBF exhibit a large gap in
SNR compared to the previous two DOA estimators.

The results for ✏-contaminated noise are shown in Fig.
1(c) for ✏ = 0.05 and � = 10 and the noise variance evaluates
to 5.95�2. In this scenario, the phase-only processing with
SBL4 shows lowest RMSE in its DOA estimates, followed
by the t⌫M-estimator. Poorest RMSE performance have CBF
and SBL4 which shows that outliers in the array data severely
impact CBF and SBL4.

5. QUALITATIVE ROBUSTNESS

Qualitative robustness of a DOA estimator T is measured with
the influence function (IF), cf. [9, 2, 11, 12]. The IF measures
the sensitivity of T to a small change in the array data distri-
bution in the neighborhood of the assumed array data distri-
bution F0,

IF(z; T, F0) = lim
"!0

1

"

⇣
T(F")

a
� T(F0)

⌘
(29)

where F" = (1� ")F0 + "G is the "-contaminated array data
distribution and ✓1

a
� ✓2 denotes the angular difference

✓1
a
� ✓2 = min

�
|✓1 � ✓2| , 360�� |✓1 � ✓2|

�
(30)

which is valid for |✓1 � ✓2|  360�. The "-contaminated dis-
tribution F" is the nominal distribution F0 with an additive
outlier z 2 CN in the array data. Thus, (29) measures the
DOA error due to an infinitesimal additive contamination z
on the DOA estimator T, standardized by the mass of the con-
tamination. A qualitatively robust estimator is characterized
by an IF that is continuous and bounded.

Let �z be the complex point-mass distribution function at
z 2 CN . Hence �z is chosen as a random point on the N -
dimensional real-valued unit-hypersphere scaled by a com-
plex weight rej�, where � is uniformly distributed in [0, 2⇡].
The magnitude r is denoted as outlier radius in the sequel. All
elements of the outlier z have the same phase angle which is
similar to a plane wave arriving from broadside at a uniform
linear array. Instead of evaluating the IF analytically, we use
a consistent estimator for IF, namely the empirical influence
function (EIF) [12].

The EIF for DOA estimates is here defined as1

EIF(z; ✓̂(·),Y ) = E�z

8
<

:
✓̂
�
Y1:L

� a
� ✓̂

�
Y1:L�1

�

1
L

9
=

; (31)

= L E�z

n
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�
Y1:L

� a
� ✓̂

�
Y1:L�1

�o
,

1Notation: Yk:l = [yk . . .yl].

where ✓̂(·) is a DOA estimator of interest. Multiple measure-
ment vectors are gathered in the matrix Y , where the last col-
umn of Y , i.e., the Lth array data snapshot yL, contains a
contaminated observation. For the numerical evaluation of
(31), we have modelled the contamination as a noise outlier
affecting the Lth array data snapshot. The array data model
(1) is augmented for the additive outlier which is generated as
w ⇠ CN (0, (��)2) for a selected outlier strength �,

Y1:L�1 = AX1:L�1 +N1:L�1 (32)
yL = AxL + nL + wz, (33)

for some choice of outlier vector z explained below. The
EIF according to (31) is the expected angular difference be-
tween the DOA estimate for the contaminated sample Y1:L

and the DOA estimate for the sample from the nominal dis-
tribution Y1:L�1. We have evaluated four different models
for the outliers in Figure 2a–d which show the computed EIF
versus outlier strength �. The 2-norm of the outlier vector
z equals those of the steering vectors in the dictionary A.
Figure 2a shows the EIF when the outlier vector is constant.
The outlier appears in the data of sensor 1, i.e. z =

p
Ne1.

Figure 2b shows the EIF when the outlier vector is random.
Here z is uniformly distributed on a sphere in CN with ra-
dius

p
N . Figure 2c shows the EIF when the outlier vector is

constant equalling the steering vector for a broadside source,
i.e. z = (1 1 . . . 1)T . Figure 2d shows the EIF when the
outlier vector is a randomly selected steering vector from the
dictionary A. All steering vectors being equally probable. It
is seen that the t⌫M -estimator and phase-only SBL estimates
are qualitatively robust because the EIF is much smaller than
0.1� for all �, in contrast to the EIF of CBF and SBL.

6. CONCLUSION

The EIF indicates that SBL and CBF are sensitive to devia-
tions from the Gaussian distribution of the noise. A qualita-
tively robust DOA estimate is derived as MLE for complex
multivariate t⌫-distributed array data which performs well for
Gaussian and ✏-contaminated noise. We also modify SBL by
plugging-in the phase-only sample covariance. Finally, we
discuss the DOA performance and qualitative robustness of
these DOA estimators by evaluating the corresponding EIFs.

7. APPENDIX

Here, we prove that P defined in (23) is the orthogonal pro-
jection matrix (24) onto the signal subspace, span(AM).

Note that the N �K smallest eigenvalues of the N ⇥N
array covariance matrix E(SY ) are �2 and the corresponding
eigenvectors are orthogonal to the columns of AM. These
eigenvectors span the noise subspace and the eigenvectors
corresponding to the K largest eigenvalues span the signal
subspace (reference here). Let E =

⇥
ES EN

⇤
2 CN⇥N



denote the matrix of eigenvectors of E(SY ). Thus ES 2
CN⇥K is the matrix of the signal subspace eigenvectors and
EN 2 CN⇥(N�K is the matrix of the noise subspace eigen-
vectors. The orthogonal projection matrix to the signal sub-
space is ⇧S = ESEH

S
and the orthogonal projection matrix

to the noise subspace is ⇧N = IN �⇧S .
The eigenvalues of E(SY ) are denoted by �1 � · · · �

�K > �K+1 = · · · = �N = �2. The diagonal ma-
trix of eigenvalues ⇤ = diag(�1, . . . ,�N ) is expressed as
a block diagonal matrix ⇤ = blkdiag(⇤S ,⇤N ), where
⇤S = diag(�1, . . . ,�K) consists of signal subspace eigen-
values and ⇤N = �2IN�K consists of noise subspace eigen-
values. Then using the eigenvalue decomposition

E(SY ) =
⇥
ES EN

⇤
blkdiag(⇤S ,⇤N )

⇥
ES EN

⇤H (34)

and the fact that AH

MEN = 0 and ⌃ = ⌧�1E(SY ) for ⌧ =
⌫/(⌫ � 2), we obtain AH

M⌃�1 = ⌧(AH

MES)⇤
�1
S

EH

S
and

AH

M⌃�1AM = ⌧(AH

MES)⇤
�1
S

(EH

S
AM), (35)

Thus (AH

M⌃�1AM)�1 = ⌧�1(EH

S
AM)�1⇤S(AH

MES)�1,
and

P = AM(AH

M⌃�1AM)�1AH

M⌃�1

= AM(EH

S
AM)�1EH

S
. (36)

Since AM spans the same subspace as ES , then AM =
ESL for some non-singular matrix L 2 CK⇥K . This implies
that

P = AM(EH

S
AM)�1EH

S

= ESL(EH

S
ESL)�1EH

S
= ESE

H

S
= ⇧S , (37)

where we used that EH

S
ES = IK and that L is non-singular.

Since P equals the orthogonal projection matrix ⇧S , it veri-
fies P = P 2 = PH .
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