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Regularized Tapered Sample Covariance Matrix

Esa Ollila

Abstract—Covariance matrix tapers have along history in signal
processing and related fields. Examples of applications include
autoregressive models (promoting a banded structure) or beam-
forming (widening the spectral null width associated with an in-
terferer). In this paper, the focus is on high-dimensional setting
where the dimension p is high, while the data aspect ratio n/p
is low. We propose an estimator called TABASCO (TApered or
BAnded Shrinkage COvariance matrix) that shrinks the tapered
sample covariance matrix towards a scaled identity matrix. We
derive optimal and estimated (data adaptive) regularization pa-
rameters that are designed to minimize the mean squared error
(MSE) between the proposed shrinkage estimator and the true
covariance matrix. These parameters are derived under the general
assumption that the data is sampled from an unspecified elliptically
symmetric distribution with finite 4th order moments (both real-
and complex-valued cases are addressed). Simulation studies show
that the proposed TABASCO outperforms all competing tapering
covariance matrix estimators in diverse setups. An application to
space-time adaptive processing (STAP) also illustrates the benefit
of the proposed estimator in a practical signal processing setup.

Index Terms—Sample covariance matrix, shrinkage, regu-
larization, elliptically symmetric distributions, tapering, banding,
sphericity.

I. INTRODUCTION

ONSIDER a set of p-dimensional (real-valued) vectors
C {x;}_, sampled from a distribution of a random vector
x with unknown mean vector p = E[x] and unknown posi-
tive definite symmetric p X p covariance matrix 3 = cov(x) =
E[(x — p)(x — ) ]. In the high-dimensional case and when
the sample size n is of the same order as p (p = O(n)) or
p > n, one is required to use regularization (shrinkage) in order
to improve the estimation accuracy of the sample covariance
matrix (SCM) and to obtain a positive definite matrix estimate.
A popular estimate of X in such a setting is the regularized SCM
(RSCM), defined by

tr(S)I

Sp=pS+(1-p) ; ey

where 3 € [0, 1] is the regularization (or shrinkage) parameter,
and where
1

S:n—l

Z(xi —%)(x; - %), )
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denotes the unbiased sample covariance matrix (SCM), i.e.,
E[S] = X. Above tr(-) denotes the matrix trace, defined as
tr(A) = ), a;; forall square matrices A = (a;;). Note also that
in (2), x = % Z?zl x; denotes the sample mean vector. Auto-
matic data-adaptive computation of optimal (oracle) parameter
B for which Sg in (1) attains the minimum mean squared error
(MMSE) in Frobenius norm has been an active area of research.
See for example [1]-[4] to name only a few.

In many applications, the estimation accuracy (or another
performance criterion) can alternatively be improved by using
a so-called tapered SCM. Such estimate is defined as W o S,
where o denotes the Hadamard (or Schur) element-wise product
(i.e., (W o) S)zg = W;jSij for (W)Z] = Wyj and (S)’Lj = sij),
and where W is a fapering matrix (also referred to as covariance
matrix taper), i.e., a template that imposes some additional
structure to the SCM.

Covariance matrix tapers have been used in many applications
in diverse fields. A first main example in statistics is related to
covariance matrices with a diagonally dominant structure (e.g.,
in autoregressive models). This means that the variables have
a natural order in the sense that | — j| large implies that the
correlation between the ith and the jth variables is close to
zero. In this settings, popular estimation approaches are to use
a banding-type tapering matrices such as thresholding [5], [6]:

1, li—jl<k
(W)ij =

3
0, li—j|>k ©)

for some integer k € [1,p] (called the bandwidth parameter),
or softer thresholding variants. Notably, the strong theoretical
merits of a linear decay of the form

(W) = 2f2|Z;]|, kj2<li—jl<k @

were studied in [7]. A second major example concerns the
signal processing literature, in which tapering matrices have
been developed in order to improve several spectral properties
of adaptive beamformers, or to compensate subspace leakage
and calibration issues [8]. Most notably, the tapering matrices
of the form

(W) = sinc((i — j)A/m) 5

where A € R, attracted interest as a null broadening technique
for fluctuating interference [9]-[13].

A first approach to combine regularization with tapering was
proposed in [14] with the shrinkage to tapering (ST) estimator,
defined as the convex combination of the SCM and the tapered
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SCM:
Sst,s = BS + (1 - B)(Wo8), (6)

where 8 € [0,1] is a shrinkage parameter. The authors then
derived the optimal oracle parameter /3, minimizing the MSE
E[||Sst,s — X||Z], and proposed a shrinkage to tapering oracle
approximating (STOA) estimator BO of 8, under the assumption
of Gaussian data. Authors in [15] also studied the ST estimator
and derived an alternative oracle estimator of the shrinkage
parameter both under Gaussian and non-Gaussian data. Data
adaptive selection of the bandwidth £ in (3) was also addressed
with cross validation [14] or oracle estimation [15]. A possible
issue with the ST estimate is that it inherently destroys the
tapering template structure (e.g., sparsity for banded matri-
ces) since it can be expressed as the modified tapered SCM
Ssts = (811" + (1 — B)W) o S. Hence, shrinkage is applied
to the tapering matrix itself rather than to the SCM. In the high
dimensional case, it should also be noted that both W o S and
Ssr, are not necessarily positive semidefinite matrices, i.e., they
can have negative or null eigenvalues. A possible solution for this
problem is to compute their eigenvalue decomposition (EVD)
and then replacing the invalid eigenvalues by small positive con-
stants. However, such a post-processing step further deteriorates
the template pattern of the covariance matrix estimator, and is
computationally restrictive when dealing with high-dimensional
data.

In this paper we provide a solution to the aforementioned
problems by jointly leveraging shrinkage to identity and taper-
ing: Let W = {W(k)}_, be a finite set of possible tapering
matrices' satisfying W (k) € W Vk € [1, K], with

W ={W e Rg? :wi; = 1,wi; >0V, 5 € [Lp]}  (7)

and with RE7Y denoting the set of all symmetric p x p matrices
and [1,p] = {1,...,p}. We propose an estimator, referred to as
TABASCO (TApered or BAnded Shrinkage COvariance matrix),

defined as
tr(S)
p

which benefits both from shrinkage (as the classic estimator
in (1)) and exploitation of structure via tapering. Note that it
also preserves the original scale of the SCM since tr(W o S) =
tr(S) YW € WT. Obviously, the success of banding and/or
tapering depends on one’s ability to choose the parameters
8 and k correctly. In this scope, we derive a fully automatic
data-adaptive evaluation of the optimal parameters that jointly
minimize the mean squared error E[||35; — X||2] under the
general assumption that the data is sampled from an unspecified
elliptically symmetric (ES) distribution with finite 4th order
moments. A main interest to consider the general ES model
is that it encompasses the standard Gaussian one while still

sk =BW(k)oS)+(1—B)—I, ®)

'In this paper, we mostly focus on k implying a notion of bandwidth (or model
order), for which W can be constructed from (3) or (4) with k € [1, p]. However,
the proposed methodology applies to the general setting where W corresponds
to any finite collection of possibly envisioned templates. Notably, we will also
consider an application where k indexes a set of possible { Ak}le used for
the template model in (5).
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accounting for possibly heavy-tailed distributions. Thus this
assumption yields robustness to a large class of possible underly-
ing data distributions. Our empirical experiments evidence that
the proposed approach offers a near-to-optimal regularization
parameter selection which outperform cross-validation schemes
(especially at low sample support). Since both the RSCM in (1)
(if W =117 € W) and the tapered SCM (/3 = 1) appear as
special cases of (8), TABASCO performs never worse than these
two estimators in terms of MSE independently of the underlying
structure of the true covariance matrix.

The paper is structured as follows. In Section II expressions
for the oracle regularization parameters 3 and k that minimize
the MSE are derived in the general case of sampling from
an unspecified distribution with finite 4th order moments. In
Section IIT a practical closed-form expression for the optimal
regularization parameters are derived when sampling from an
unspecified ES distribution, and an adaptive fully automatic
procedure for their computation is proposed. It is shown that
the optimal parameters depend on the sphericity of the tapered
covariance matrix W o X, and we address the estimation of
this quantity in Section IV. Section V extends our results
for complex-valued observations. The special cases of known
location (@ = 0) is also briefly discussed in Appendix Al.
Section VI provides simulation studies while in Section VII
the estimator is applied to STAP on a real dataset. Finally,
Section VIII concludes. The Appendix contains more technical
proofs.

II. ORACLE TABASCO PARAMETERS 3 AND k

Recall that the TABASCO estimator 237;@ is defined by (8)
for a set W = {W (k) }X_, of envisioned tapering matrices (cf.
footnote ! for examples) and a regularization parameter 3 €
[0,1]. In this section, we derive the expression of the oracle
parameters 3 and k that minimize the MSE in the general case
of sampling from an unspecified p-variate distribution with finite
4th order moments.

A. Oracle Shrinkage Parameter (3 for Fixed k

First, let us introduce some notations and statistical param-
eters that are elemental in the proposed method. The scale is
defined as the mean of the eigenvalues, and denoted by

tr(X
p
while the sphericity of 3 [16], [17] is defined as
pu(2%)  p|=E
=v(X) = = 10
7 =7(X%) T2 u(®) (10)
where || - ||¢ denotes the Frobenius matrix norm, i.e., |A||% =

tr(A " A). The sphericity parameter measures how close X is to
a scaled identity matrix: v € [1, p], where v = 1 if and only if
3 « I and v = p if and only if ¥ has its rank equal to 1. For
any W € W as in (7), the matrix W o X, is called the tapered
covariance matrix and we denote by

_ pIWo |

w=1(WolX)=—"—0c"",

()2 an
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the sphericity parameter of the tapered covariance matrix. Note
that in (11) we utilised the fact that for any p X p matrix A and
any W € WT_ it holds that tr(W o A) = tr(A). When W =
117, we write 1,7 = «y for brevity.

We start by assuming that the index k is fixed. This allows us
to simply denote the fixed tapering matrix as W = W (k) and
TABASCO as 35 = 3 8,k- To find the oracle MMSE shrinkage
parameter 3 € [0, 1] of 3 3, the aim is thus to solve

Bo = argminE {Hf]g - EH%} . (12)
Be[0,1]
Notice that the MSE of the tapered SCM is
MSE(WoS) =E[[WoS - X|F]
=E[[WoS|E] +[SlF - 2(Ve Rl a3)
where
V = (03)pxp With v;; = \/w;; for W € W+, (14)

By normalized MSE (NMSE) we refer to the quantity
NMSE(W 0 S) = MSE(W 0 S)/||Z||%. We are now ready to
state the main result of this section.

Theorem 1: Let {x;}"_; be an i.i.d. random sample from any
p-variate distribution with finite 4th order moments. For any
fixed W € W, the oracle parameter 3, in (12) is

2
E [Hwos — il H
p(yv — 1)n?
_ 16
E[[W oS[2]— p E[(5)7] (10
(yvv—1) a7

~ Y NMSE(W 0 S) + 29y — 7 — E[7%]/1?

where vy is defined via (11) and 7} = tr(S)/p. Furthermore, the
value of the MSE at the optimum is

E [tr(S)?] — tr(%)?
p
+IZIE = 1V o S + (1= o) IV o 2 — Iz

MSE(2g,) =

(18)

Proof: The proof is postponed to Appendix A2. [ |

Notice that Theorem 1 also provides the MMSE shrinkage
parameter [3, for the RSCM Sg in (1) since ﬁ)g = Sz when
W = 11". For the RSCM the optimal parameter is

5, = =1
° v NMSE(S) + 7 — E[#*]/n*’

19)

where we used (17) and the facts that y =y and W oS =S
for W = 11T. The MMSE of the RSCM utilizing the optimal
shrinkage parameter in (19) is

E [tr(S)?] — tr(%)?
p
where we used (18) andthat Vo X = X for V =11".

MSE(Sg,) = + (1= Bo) 1=~ n1|p,
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B. Oracle Index k

Notice that MSE(35,) in (18) implicitly depends on k
through W = W (k) and V defined in (14). We further have
the relation

A Vo3 [VoX —l|p
NMSE(25,) =C — e + (1 - Bo) — g — o
’ =2 1=
—1
=c-Tr-p)X
Y ol
1 1-—
Y Y

where C' is a constant that is not dependent on k. Equation
(20) then implies that minimizing the MSE with respect to &k
is equivalent to set

ko = argmkinﬁo(k)(l —yv(k)), (21)

where 3, (k) is given by any of the expressions in (15)-(17) and
~v (k) is defined via (11). Note that we have made explicit the
dependence of 3y and ~yy on k in (21) for clarity of exposition.
We then use a brute force strategy to determine kg, i.e., compute
Bo(k)(1 — ¥y (k) for all indices &, and choose kg as the index
that resulted in minimum value of the objective.

III. DATA ADAPTIVE TABASCO UNDER ES DISTRIBUTIONS

The oracles parameters found in the previous section depend
on the true underlying data distribution and covariance matrix
through various unknown quantities. A practical implementation
of TABASCO thus requires their adaptive evaluation. Rather than
resorting to a costly (and potentially inaccurate) cross-validation
scheme, we will consider the general case where the data is
sampled from an unspecified ES distribution [18], [19] to refine
the result of Theorem 1. In this setting, we show that the
oracle parameter 3 eventually depends on only few scalar-valued
statistics that can be accurately estimated.

A. ES Distributions

Before stating the main results, we first recall some defini-
tions and key results regarding ES distribution [18], [19]. The
probability density function of an elliptically distributed random
vector, denoted by x ~ &£,(p, X, g), is given by

F(x) = Gyl B2 (x = ) 'S Hx — ),

where 3 denotes the positive definite symmetric covariance
matrix parameter, p is the mean vector, g : R>g — Ry is the
density generator, which is a fixed function that is independent
of x,u and X, and C), 4 is a normalizing constant ensuring
that f(x) integrates to 1. Note that here we define ¢ such that
“scatter matrix” parameter X coincides with the covariance
matrix. This can always be assumed (under assumption of fi-
nite 2nd order moments) without any loss of generality [18],
[19]. For example, the multivariate normal (MVN) distribution,
denoted by NV,,(p, ), is obtained when ¢(t) = exp(—t/2). The
flexibility regarding the density generator g allows for modeling
a large class of distributions, including heavy-tailed ones such

(22)
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as the multivariate ¢-distribution (MVT) with v > 2 degrees of
freedom (d.o.f.), denoted by x ~ t, (i, X), where v > 2 needs
to be assumed for finite 2nd order moments and v > 4 for
finite 4th order moments. The density generator in this case is
_vip
g(t) = (1 +t/(v—2))
The elliptical kurtosis [20] parameter « is defined as
E[r 1
K= _Er 1 = —kurt(x;),
p(p+2) 3
where the expectation is over the distribution of the random
variable = ||X71/2(x — p)|| and kurt(z;) denotes the excess
kurtosis of any (e.g., 7th) marginal variable of x, defined as

E[(zi — pi)*]
(E[(2; — ps)?])?
where p; = E[x;]. Furthermore, observe that E[r?] = p. The
elliptical kurtosis parameter vanishes (so x = 0) when x has
a MVN distribution.

We also recall from [4, Lemma 2] that

(23)

kurt(z;) = -3,

E[ISI] =1+ +7) DR+ ne(®)2, @4

E [tr(S)*] = 27|25 + (1 + 72) u(X)?, (25)
where the scalars

ﬁzni1+% and 7= = (26)

are dependent on the elliptical distribution (and hence on the
density generator g) only via its kurtosis parameter.

B. Oracle Shrinkage Parameter 3 Under ES Distributions

As in the previous derivations, we assume that the index
k is fixed and we simply denote the fixed tapering matrix
as W = W (k). This section refines the result of Theorem 1
when assuming that the data is sampled from an unspecified ES
distribution. We first remark that the optimal 3, in (16) involves
the quantity E[||W o S||Z], which can be specified thanks to
derivation of the following lemma.

Lemma 1: Let {x;}!'_, be an iid. random sample from
Ep(p, X, g) with finite 4th order moments. Then for any W €
W, it holds that

E[IW oS3

= (1 + 71+ TQ)HW o EH% + Tltr((DEW)Q)
and
E [tr(DsW)?)] =271 [|[W o Z[} + (1 + m2)tr(DsW)?),

where Dyx; = diag(X) and Dg = diag(S). 2
Proof: The proof is postponed to Appendix A3. |
Note thatif W = 117, then tr((DsW)?) = tr(X)2and W o
S = S so the expectations in Lemma 1 coincide with those of [4,
Lemma 2] (i.e., (24) and (25)).

2We denote diag(A) = diag(a11,. . ., app) when the operator is applied to
any matrix A = (a;;)pxp. Conversely diag(a) denotes a diagonal matrix with
the entries of vector a on the main diagonal.
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Using Lemma 1 we may now derive a simpler closed form
expression of the optimal shrinkage parameter [, given in
Theorem 1 that depends only on few summary (scalar-valued)
statistics. Let us denote

_ d;(WOW)dE . tl‘((DgW)2)

Ow = 27)
p? o
where ds; = (07, ...,02)" contains the variances of the vari-

ables, i.e., the diagonal elements of 3. Obviously, if W = 117,
then fw = n%. The 2nd equality in (27) follows from [21,
Lemma 7.5.2].

Theorem 2: Let {x;}!"_, be an i.i.d. random sample from an
ES distribution &, (p, 3, g) with finite 4th order moments. For
any W € W, the oracle parameter 3, in (12) is

t
B = Tl (= D) obw /72w —20/0) T - A
(28)
where t = n(yy — 1) and
A =pbw /0’ — 1+ 2yw — 2v/p. (29)

Proof: Follows from Theorem 1 after substituting the values
of E[||[W o S||Z] given in Lemma 1 and of E[tr(S)?] given in
(25) into the denominator of 3, in (16) and simplifying the
expression. |

C. Data Adaptive TABASCO Implementation

Following from Theorem 2, the proposed data-adaptive im-
plementation of TABASCO consists in applying the oracle proce-
dure of Section II by replacing each of the unknown parameters
{n, 0w, K,v,yw,yv } in the optimal 3 from (28) by carefully
chosen estimates:

e For n and 6w, we use the empirical estimates:

i = tr(S)/p and By = tr(DsW)?)/p>  (30)

e The elliptical kurtosis « can be estimated using an estima-
tor & detailed in [4, Section I'V] as (bias-corrected) average
sample excess kurtosis of the marginal variables scaled by
1/3. Also note thatif the data is assumed to follow the MVN
distribution, we can set £ = 0, and the last term ~ - A can
be ignored in the denominator.

e The estimation of the three sphericity statistics: v, yw,
and v is more intricate. It will be addressed in detail in
Section IV, which will propose two estimation methods
(denoted Elll and ElI2) for these quantities. Also notice
that V = (\/wTj)po, so if W is a selection matrix (i.e.,
that has only O-s or 1-s as its off-diagonal elements), as
for example in (3), then W = V so only vy needs to be
estimated.

Using these plug-in values yields an estimate Bo(k) for each
template in the set W = {W (k)}_, . Similarly, the index & is
estimated based on (21) by replacing the unknown [, (k) and
~v (k) by their estimates and solving

ko = argkmin Bo(k)(1 = Av (k)), (31)
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Algorithm 1: TABASCO.

Input : Data {x;},, templates set {W(k)}1<,
1 Compute SCM S in (2).
2 Compute 7 from (30)
3 Compute ~ from [4, Sect. IV]
4 Compute 4 (options in Section IV)

sfor ke [[1,K] do

6 | Set W=W(k)and V =V (k) = (\Jwi;(k))pxp

7 | Compute éw from (30)

8 | Compute Yy (k) and 4~/(k) (options in Section TV)
9 | Compute 3,(k) from (28) using plug-in estimates
10 Select optimal k,, as in (31) with {B,(k), v (k) ey

11 Set W = W(k ) and 8 = 8, (k,)
Output : X =3-(WoS)+ (1-3)il

which allows then to compute a fully data-adaptive TABASCO
estimator 3 Gy 35 in (8). The pseudocode of the proposed
estimation algorithm is summarized in Algorithm 1.

IV. ESTIMATORS OF SPHERICITY

In this section, we detail two new alternative estimators of
the sphericity of the tapered covariance matrix W o ¥ in order
to compute the parameters {+,yw,yv} in TABASCO. These
estimators are nontrivial extensions of the (non-tapered) Ell1-
and Ell2-sphericity estimators in [4]. Notation “Ell” simply
refers to the fact that both estimators assume that the data is
drawn from an unspecified elliptically symmetric distribution.

A. Elll-Estimator of Sphericity

The Ell1-estimator is based on the spatial sign covariance ma-
trix (SSCM) [22], [23], which has been popular for constructing
robust estimates of sphericity [24], [25]. The robust properties of
SSCM comes from the fact that it is distribution-free under ellip-
tical models and has the highest possible breakdown point [26],
[27]. The Ell1-estimator was theoretically studied in [28] and we
propose here its generalization to the sphericity of the tapered
covariance matrix W o X.

First, define the shape matrix (or normalized covariance ma-
trix) as A = p% and note that tr(A) = p. The sphericity
measures 7 and yw for any W € W can then be expressed
simply in terms of A via the formulas:

W o Al
p

AR
= an YW =

The (scaled) SSCM is defined by

A p Z XL Xi ,u’)T

||X —u||2

(32)

where f1 = argmin,, > i, [|x; — | is the sample spatial me-
dian [29]. The sample mean could also be used, but [30] con-
cludes that the use of spatial median as the location estimator
for SSCM is clearly preferable. When p is known (and without

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

loss of generality assuming g = 0), the SSCM is defined as

A=23r, i3.
Recently, it was shown in [28] that the following estimate of
sphericity based on the SSCM (when g is known),

. n (nAn% _p)
Py_ )
n—1 p n

is asymptotically (as p — oo) unbiased when sampling from
elliptical distributions under the following assumption

A) The sequence of covariance matrix structures being con-

sidered with increasing p satisfies v = o(p) as p — oc.

In other words, E[§] — v as p — oo when (A) holds. We note
that Assumption (A) is sufficiently general and holds for many
covariance matrix models as shown in [28, Prop. 3]. The follow-
ing Theorem presents a modification of the Ell 1 -estimator [4] for
the sphericity of W o 3 with equivalent asymptotic guarantees.

Theorem 3: Let {x;}7_; be an i.i.d. random sample from an
ES distribution &£,(p, 3, g) with known p = 0. Then, for any
W € W and under Assumption (A), the following statistic

OA 2 A 2
" (nw A||F_tr((DAW>>>’ G
n—1 p np

(33)

where D4 = diag(f&), is asymptotically, as p — oo, unbiased
estimator of yw = v(W o X) in (11), ie., E[yw] = yw as
p — o0, for any fixed n.

Proof: Proof is postponed to the Appendix A4. |

Also observe that when W = 117, then 4w reduces to 4 in
(33).

When the mean is unknown and estimated by spatial median
[1, then the results in [24] derived in the case of W = 117 show
that when p = O(n?), the estimator of sphericity 4 needs to be
corrected for bias. Thus the reader should bear in mind that 4
(and 4w ) may have a non-negligible bias when p is estimated
by £t and p is orders of magnitude larger than n.

B. ElI2-Estimator of Sphericity

The Ell2-estimator of sphericity was proposed in [4] and
we derive here its adaptation to the sphericity of the tapered
covariance matrix W o 3.

The derivation starts by noticing that the obvious plug-in
estimate ||W o S||Z /p for the parameter

2
oy = WO S

(35)
is biased by resorting to E[|| W o S||#] in Lemma 1. As a remedy,
the following theorem derives a proper unbiased estimator of
Yw which extends [4, Theorem 4] (provided that the elliptical
kurtosis parameter ~ is known).

Theorem 4: Let {x;}"_; be an i.i.d. random sample from a
p-variate elliptical distribution &, (u, 3, ¢g) with finite 4th order
moments. Then, an unbiased estimator of Jy = |[W o 3|2 /p
for any finite n and p and any W € W is

dw =b (uvvosn%_ tr((DSW>2>>
n p n p b
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where

1 n
n = 36
“ n+f£<n—1+ﬂ) (36)

(k+mn)(n—1)>2
(n—2)Bk(n—1)+n(n+1))
Proof: Note that a,, in (36) can be written as a,, = 71 /(1 +
T9), where definitions of 71 and 75 are given by (26) while b,, in
(37) can be expressed as b, = (71 + 7o — 271a,,) . Then using
Lemma 1, we notice that

b, ' PE[Iw] = (11 — an(1 + 72)) tr((DxW)?)
+ (147 +7—2710a,) [WoZ|2 =0 [WoZ|2

by =

(37)

The expressions (36) and (37) are obtained when replacing the
values of 71 and 75 given in (26) into a,, = a,, (71, 72) and b, =
b, (11, T2) and simplifying the obtained expressions. |

Then note that the sphericity of the tapered covariance matrix
can also be written as

Yw = dw/n%,

where Jw and 7 are defined in (35) and (10) respectively. Using
this expression, we consider the estimate where 7§W is computed
from Theorem 4, and 7?2 is obtained from (30). This yields the
estimator

- (nvvosn%

_ tr (DsW)?)
w(S)2 T u(S)e ) (38)

where @, = a, (&) and b, = b, (#) are obtained by replacing
the unknown « in (36) and (37) by its estimate & [4, Sect. IV].
We refer to (38) as Ell2-estimator of sphericity yyw . Also note
that, if n is reasonably large, then b, ~ 1 and n/(n+ k)~ 1,
its expression can be simplified to

. _pIWoS|; .\ p tr((DsW)?)
~ e AL T ey

In the non-tapered case (W = 117), the estimator in (38) re-
duces to the Ell2-estimator of sphericity in [4].

C. Remarks

Although Ell2-estimator of sphericity does not require knowl-
edge of the underlying elliptically symmetric distribution of
the data, it is not a robust estimator. Thus we overall favour
Elll-estimator due to robustness of SSCM, and recommend
usage of Ell2-estimator when dealing with data that is not
heavy-tailed, i.e., which can be approximated by a Gaussian
distribution. The non-robustness of Ell2-estimator is due to its
usage of 4th-order moments. Namely, tr(S?) = 37, D7, s,
where s;; = (S);; = % > U1 TeiTej — T;Tj, can be written as
a sum of mixed 4th order sample moments. By central limit
theorem, any 4th order sample moment has a limiting normal
distribution if the moments of x exists up to 8th order. Without
this condition, the estimator tr(S?)/p can be highly-variable.

Ell1-estimator is highly robust and performs well for heavier-
tailed data. Yet, the assumption v = o(p) needed by Elll-
estimator means that v < p when dimension is large. Implicitly,
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this often means that the eigenvalues of X tend to be similar as p
grows. In [28, Theorem 2] it was shown that the bias of the SSCM
A is of the order of the sphericity, 7 = tr(A?)/p, and becomes
negligible when v = o(p). Thus for distinctively non-spherical
covariance matrices, Ell1-estimator has a visible bias, but the
bias vanishes for large p (since the estimator is asymptoti-
cally unbiased as shown in Theorem 3 when v = o(p)). Thus
ElI2-estimator can be favoured when the data is approximately
Gaussian, e.g., when the estimated kurtosis is smaller than 1. For
example, for MVT distribution with v = 10, kurt(z;) = 1.0.

Finally, we mention that in practice, we also always use the
thresholding

4 = min(p, max(1, ) (39)

for any option in order to guarantee that the final estimator
remains in the valid interval, 1 <~ < p.

V. EXTENSION TO THE COMPLEX-VALUED CASE
A. Complex Elliptically Symmetric (CES) Distribution

First we recall some definitions and notations specific to
complex-valued case. By |x||?> = x"x we denote the usual
Euclidean norm in complex vector spaces, while |B|r =
/tr(BHB) denotes the Frobenius norm of a matrix B € C"™*",
where ()" = [(:)*]" denotes the conjugate transpose (or Her-
mitian transpose). For any x € C, the notation |- | refers to
modulus, so |z|? = xz*

We now assume that the data {x;}?_; is a random sample
from a circular complex elliptically symmetric (CES) distribu-
tion, denoted x ~ CE&,(u, X, g) (cf- [19] for a detailed review).
Similarly to the real-valued case, the probability density function
of a CES distributed random vector x € CP? is given by

F(x) = Cp g2 M g((x = "B (x — ),

where ¥ denotes the positive definite Hermitian covariance
matrix, g = E[x] is the mean vector, g : R>g — R~ is the
density generator, and C), 4 is a normalizing constant. Again,
we also normalize g so that ¥ = E[(x — p)(x — p)"]. The
definitions of the scale and sphericity parameters in (10) and (11)
remain unchanged. The elliptical kurtosis is however re-defined
as
4
K= _Er 1= 1kurt(yci).
p(p+1) 2

where the expectationis overr = ||£7/?(x — p)|| and kurt(z; )
denotes the excess kurtosis of any (e.g., ¢th) marginal variable
of x, defined by

Ell2; — pl*]

kurt(x;) = 1

g

_2’

where j1; = E[z;] and 0? = E[|z; — p;|?] denote the mean and
variance of x;. The theoretical lower bound of the kurtosis in the
complex-valued case is £ = —1/(p + 1) [19]. Again k = 0 if
x has a circular complex multivariate normal distribution (x ~
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B. Oracle 3 and k Under CES Distributions
The SCM of complex-valued observations is defined by

n

> (xi = %) (x; — %)

i=1

1
n—1

S =

(40)

and the complex-valued counterpart TABASCO 3 8,k 1s still de-
fined as in (8). Extending the previous results to this estimator
will require some minor adaptations.

We start by noticing that Theorem 1 still holds for complex-
valued observations. Then, the next result provides the complex-
valued extension of Lemma 1.

Lemma 2: Let {x;}!_; be an i.i.d. random sample from
C&p(p, X, g) with finite 4th order moments. Then for any
W € W, and for the SCM as in (40), it holds that

E[IW o S|2] = (1 + )W o B[ + ntr(DsW)?)
and
E [ir(DsW)?)] = 2r1[W o B[} + (14 m)u((Ds W)?),

where Dy, = diag(X¥), Dg = diag(S) and 7y and 7, are defined
in (26).
Proof: The proof is postponed to Appendix AS. |
This result allows us to derive the complex-valued counterpart
of Theorem 2 for the optimal shrinkage parameter [3,,.
Theorem 5: Let {x;}; be an i.i.d. random sample from a
complex elliptical distribution CE, (p, 33, ¢) with finite 4th order
moments. Then the oracle parameter (3, in (12) is

t
T+ (n/(n—0)(pOw/n® - 29/p) + k- A’

where t = n(yy — 1), and

A =pow/n® —1+yw — 2v/p.

Form this result, the optimal index k can be obtained as in
Section II-B.

Bo

C. Data Adaptive Adaptations for the Complex-Valued Case

In the complex-valued case, the TABASCO procedure of Al-
gorithm 1 is kept identical. However, the expression of j3, is
changed in accordance with Theorem 5. The plug in estimates for
the side parameters {7, Ow, %, v, Yw, yv | are then as follows:

e For 7 and vy, we keep the empirical estimates as in (30).

® An estimate of elliptical kurtosis « is calculated as in [31]
as average sample excess kurtosis of the marginal variables
scaled by 1/2.

e The three sphericity statistics v, yw, and 7y can still
be estimated with the Ell1 and Ell2 estimators detailed in
Section IV. The Ell1 estimator is identical, except that the
definition of the SSCM in (32) now involves the Hermitian
transpose. The Ell2 estimator is defined as earlier, with
changes only in expression of a,, and b,,. Indeed, Theorem
4 holds with a,, as in (36) and b,, given by

. n(n — 15+ n)
" 2kn(n? — 4n+3) — K2(n — 1)24n2(n2-2n — 1)
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Fig. 1. (33);; as a function of |i — j|. Left: Model 1 in (41) with various

correlation parameters p. Right: Model 2 in (42) with various decay parameters
« and p = 0.6. The dimension is p = 100.

VI. SIMULATION STUDIES

We generate samples from (real-valued) ES distributions with
a scatter matrix 3 having a diagonally dominant structure
(model 1 and model 2 detailed below). The mean g is generated
randomly as N,(10 - 1,T) and kept fixed for all trials, and the
number of Monte-Carlo trials is 5000.

The estimators included in the study are: 7) The Ledoit-Wolf
estimator (LWE) [2] defined by (1) where ( is an estimate
of an (oracle) MMSE parameter [3,. i) The shrinkage to ta-
pering oracle approximate (STOA) estimator [14] defined by
(6) where 3 is an estimate of the oracle parameter computed
using an iterative procedure. The bandwidth £ is selected using a
cross-validation scheme with 60%-t0-40% split for training and
testing. ¢¢7) The shrinkage to tapering (ST-)estimators in [15]
defined by (6) where both § and k are estimates of the oracle
MMSE parameters. The estimator ST-gaus assumes Gaussian
data, while ST-nong assumes non-Gaussian data. iv) TABASCO
(computed via Algorithm 1) using the Ell1-estimator of spheric-

ity.

A. Model 1

In Model 1, 3 possesses an auto-regressive AR(1) structure:
(2)ij = e,

where |o| € [0,1). When g | 0, then X is close to an identity
matrix scaled by 7, and when o171, ¥ tends to a singular
matrix of rank 1. As illustrated in Fig. 1, banding matrices allow
for a good approximation, so all tapering-type estimators are
computed with W (k) as (3) in this subsection. The optimal
bandwidth k, is chosen by considering the set of tapering matri-
cesW = {W (k) : k € [1,30] U [p — 30, p] } (this restriction is
made to lower the computational cost, but identical results were
obtained with k € [1, p]).

Fig. 2 provides a validation of the theoretical results:
it displays the theoretical NMSE curves, L(j3) = E[||25 —
3||2]/|I%|/2 as a function of shrinkage parameter 3 for TABASCO
estimators using a fixed bandwidths k& € [1,5] and k& = p (i.e.,
W = 117). In this setup, the data is generated from a MVN
distribution NV, (g, X) with p = 100 and n = 50 (similar results
were obtained for other ES distributions and dimension setups).
The black bullet (o) displays the theoretical minimum NMSE in

(41)
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- k=1

k=2—k=3—Fk=4—k=5——Fk=p

Fig. 2. Solid line display NMSE of TABASCO estimator using fixed W (k) as
in (3) when samples are drawn from a MVN distribution, 3 as in Model lin
(41) with o = 0.2 (top left), o = 0.4 (top right), o = 0.6 (bottom left), o = 0.8
(bottom right); » = 50, p = 100. The horizontal dashed line correspond to the
empirical NMSE obtained by TABASCO of Algorithm 1.

(18) attained for 8, = 3, (k) for each bandwidth k. The empir-
ical average NMSE for TABASCO using estimated BQ for each
fixed k is displayed using red triangle (a), where the location
on [ axis correspond to empirical average BO. As can be noted
from Fig. 2, TABASCO estimates the oracle shrinkage parameter
B, very accurately since the black bullets and red triangles are
mostly overlapping for each bandwidth. The dashed horizontal
line shows the average NMSE obtained by TABASCO when also
using an estimated optimal bandwidth I%O. One can notice that
the optimal bandwidth selection using (31) is also accurate. For
example, in the case of o = 0.4, the optimal bandwidthis k = 3
and TABASCO estimator attains an average NMSE that is very
close to the theoretical minimum NMSE.

Fig. 3 displays the NMSE as a function of bandwidth k. As
can be noted, the empirical average NMSE of TABASCO using
fixed bandwidth displayed using triangle (e.g., o) coincides very
accurately with the theoretical NMSE. The NMSE of TABASCO
with estimated bandwidth is shown using colored star (e.g., y%)
wherein the location on k-axis correspond to empirical average
l%o. As can be noted, the optimal bandwidth k, is also very
accurately estimated since l;:o ~ k, for each p.

Fig. 4 compares the performance of TABASCO with the state
of the art in various setups. The upper panel displays the NMSE
curves as a function of the sample size n for four choices of
correlation parameter ¢ when the data follows a MVN distri-
bution. The lower panel displays the same results when the
data follows a MVT distribution with v = 5, which is heavy-
tailed with marginal kurtosis kurt(z;) = 6 and elliptical kurtosis
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Fig.3. Oracle NMSE of TABASCO estimator with fixed bandwidth k (&) when
3> has an AR(1) structure and p € {0.2,0.4,0.6,0.8}. The average NMSE
of estimated TABASCO using fixed k& and estimated k over 5000 MC trials is
superimposed to the curves using symbols A and Yy, respectively. Samples are
drawn from a MVN distribution, n = 50 and p = 100. Banding matrices W (k)
as in (3) are used.

k = kurt(z;)/3 = 2. In the Gaussian case, all banding-type
estimators outperform LWE thanks to the exploitation of the
diagonally dominant structure of the covariance matrix. In the
heavy-tailed case, this is no longer true for STOA and ST-gaus,
while ST-nong and TABASCO remain robust. In all scenarios,
TABASCO offers the lowest NMSE, and especially improves the
performance when n < p.

Fig. 5 displays the obtained (average) estimated shrinkage
parameter BO of TABASCO and LWE as a function of n. The
average shrinkage parameter of TABASCO is generally much
larger than that of LWE. This means that it assign overall more
weight on the banded SCM W o S compared to LWE, which
uses W (p) = 117. This behavior is expected since banding
the SCM should naturally improve the MSE when the true
covariance matrix has a diagonally dominant structure.

Fig. 6 presents a comparison similar to Fig. 4 when the
variables are permuted at random for each Monte Carlo trial,
thus destroying the diagonally dominant structure of the AR(1)
covariance matrix>. The hypothesis is that any banding estimator
with optimal bandwidth selection should be able to select the
bandwidth k& = p accordingly. Note that LWE is invariant to
variable permutations, and hence its results stays the same for
both of these scenarios. In this setup, TABASCO performs better
that LWE for n < p and equally well as LWE for n large
enough. This result implies that bandwidth selection of TABASCO
is consistent: it chooses k = p since the true covariance matrix
does not have a diagonally dominant structure. The improvement
brought at low sample support can be explained by the fact that
an ES distribution is assumed by TABASCO, which allows for a
better estimation of the oracle parameter (LWE only assumes
finite 4th order moments). This example confirms that TABASCO
always benefits from banding and bandwidth selection: it offers
significantly improved NMSE compared to RSCM when band-
ing structure is present in the covariance matrix, while it does

3Prominent algorithms for recovering hidden ordering-structure in the vari-
ables are the Best Permutation Analysis (BPA) [32] or Isoband [33]. The
perspective of their joint use with TABASCO is left for further studies.
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Fig. 4.

Average NMSE curves when samples are from a MVN distribution (upper panel) and MVT distribution with v = 5 d.o.f. (lower panel), 3 has an AR(1)

structure with p € {0.2,0.4, 0.6, 0.8} from left to right. Dimension is p = 100 and banding matrices are used in STOA, ST-gaus, ST-nong and TABASCO.
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Fig. 5. Average estimated shrinkage parameter S for LWE and TABASCO
when samples are from a MVN distribution, 3 has an AR(1) structure (p €
{0.2,0.4,0.6,0.8}) and p = 100. Banding matrices are used in TABASCO.

not perform worse when such structure does not exist, thanks to
its robust and efficient bandwidth selection.

B. Model 2
In Model 2 [7], 3 is defined by

1 =]

42
pli — g7t i g, @

(X)i; =

‘_V_ ‘WE‘ ~ 0.51]
—— STOA
—=—ST-gaus | 0.4 | i
—<— ST-nong
—o— Tabasco |

0.3 |- -

0.1 —
® 0.2 | | | t

60 80 100 20 40 60 80 100

20 40

Fig. 6. Average NMSE curves when samples are from a MVN distribution
(top row) and MVT distribution (bottom row) with v =5 d.o.f.,, 3 has a
permuted AR(1) structure with o = 0.2 (left panel) and o = 0.4 (right panel),
and dimension is p = 100.

where « is a decay parameter and p is a correlation parameter.
As in the study of [7], we set p = 0.6, and Fig. 1 illustrates the
effect of decay parameter « in the case of p = 100.

Fig. 7 presents a comparison similar to Fig. 4 where we also
included the minimax risk tapering (MnMx-Taper) estimator
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Fig. 7. Average NMSE curves when samples are from a MVN distribution

(upper panel) and MVT distribution with v = 5 d.o.f. (lower panel), 3 follows
model 2 with o« = 0.1 (left panel) and o« = 0.3 (right panel), p = 250.

W(k*) oS, where k* = [n!/(2(@+1) | is the optimal (oracle)
bandwidth [7, Section 6]. The dimension is p = 250. It should be
noted that MnMx-Taper has advantage over the other estimators
since it uses the true decay parameter «, which is unknown
in practice. TABASCO also uses tapering matrices W (k) as in
(4), but ST-gaus and ST-nong are restricted to tapering matrices
whose off-diagonal elements are 0-s or 1-s. Hence, these are
still computed with banding matrices W (k) as in (3). In either
case, the optimal bandwidth k, is chosen by considering the set
of tapering matrices W = {W (k) : k € [1,30] U [p — 30, p] }.
As can be noted, TABASCO again outperforms other estimators
for all values of n and a and for both sampling distributions. In
the MVN case (top panel), TABASCO outperforms MnMx-Taper
with a clear margin when n is very small. This can be attributed
to its ability to optimally shrink the tapered SCM towards
a scaled identity matrix when n/p < 1. However for n > p,
TABASCO and MnMx-Taper estimator have similar performance,
especially when o = 0.3.

In the MVT case (lower panel of Fig. 7), the performance
differences are more clear. TABASCO outperforms MnMx-taper
by a large margin. ST-gaus estimator completely fails due to
the impulsive nature of the underlying sampling distributions.
The results also illustrate that the performance of tapered SCM
estimator is dependent on the underlying sampling distribution
more heavily than for TABASCO. This is illustrated further in
Fig. 8 where we compare the true theoretical NMSE curves of
tapered SCM W o S and TABASCO estimator 3| 5, asa function
of bandwidth % in the case where n = 100 and when sampling
from a MVN distribution (left panel) and MVT distribution
(right panel) with v = 5 d.o.f. following model 2 with oo = 0.1.
Fig. 8 shows two important points. First, the performance differ-
ences between the tapered SCM and TABASCO are larger when
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Fig. 8. The true (theoretical) NMSE curves as a function of bandwidth k

for the tapered SCM W o S and TABASCO b)) o when sampling from a MVN
distribution (left panel) and MVT distribution (right panel) with v = 5d.o.f., 2
follows model 2 with &« = 0.1, n = 100 and p = 250.

the distribution is heavier tailed, which was already evident in
Fig. 7. Second, TABASCO with optimal bandwidth selection is
able to estimate the optimal bandwidth rather accurately since
the average (empirical) NMSE value seen in Fig. 7 at n = 100
is close to the minimum true (theoretical) NMSE value.

VII. APPLICATION TO SPACE-TIME ADAPTIVE PROCESSING

Space time adaptive processing (STAP) is a technique used
in airborne phased array radar to detect moving target embed-
ded in an interference background such as jamming or strong
clutter [34]. The radar receiver consists in an array of () antenna
elements processing P pulses in a coherent processing interval.
Within the tested sample xy € C? with p = P - @, the received
signal is composed of ) possible unknown targets responses; 7)
unknown interferences (ground clutter) plus thermal noise. A
detection problem for a given steering vector p is classically
formalized as a binary hypothesis test: under Hy, xo only
contains the interference plus noise, or under H1, xo additionally
contains a scaled observation of p, i.e.:

Hy: x0=np ;X =ny, Vi€ [1,n]
Hy: xo=ap+np; x; =1n;, Vi€ [1,n]
where x; € CP, i =1,...,n is a secondary data set, assumed

to contain i.i.d. and target-free realizations of the interference
plus noise. Usually, this disturbance n; is modeled as centered
complex Gaussian (or elliptically) distributed with covariance
matrix 3. In this context, efficient adaptive detection statistics
can be built from the expression of the adaptive coherence
estimator (ACE) detector [35]:

.1
S ‘pHE X0|2 H,y
A(Z) = -1 Dol 2 5$:a
IPHY pllxgX xo| Ho

(43)

where 3 is a plug-in estimate of 3 computed from {x;}7_|.
More specifically in STAP, the target p follows the steering
vector model of [34], which is function of the target angle of
arrival (AoA) 6 and velocity v. The statistic (43) can thus be
computed for a dictionary of steering vectors covering a 2D-grid
on ¢ and v, yielding an adaptive detection map.
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Using the SCM as estimate in (43) yields a generalized
likelihood ratio test (GLRT) [36]. However, plug-in detectors
can benefit from refined estimation processes in order to improve
robustness, or to deal with limited sample support issues. For
example shrinkage to identity (also referred to as diagonal
loading or robust beamforming [37]) is a common procedure
to improve several properties of the detector’s output. In the
context of interference cancellation, tapering templates have
been considered as a spectrum notch-widening technique [11],
or to deal with modulation effects [8].

This section presents an experimental validation of
TABASCO to illustrate the interest of both approach on real
data. The STAP data is provided by the French agency
DGA/MLI: the clutter is real but the targets were synthetically
added in the dataset conception. The number of sensorsis ) = 4
and the number of coherent pulses is P = 64, the dimension
of the data is then p = QP = 256. The center frequency and
the bandwidth are respectively equal to fo = 10GHz and the
bandwidth B = 5MHz. The radar celerity is V' = 100m/s. The
inter-element spacing is d = 1.5cm and the pulse repetition
frequency is f. = 1kHz. The clutter to noise ratio is evaluated
around 20dB. We consider two different scenarios: one where the
tested cell is under H with a single target at (¢ = 0, v = 4m/s),
and one where the tested cell is under H; with 10 targets at
various speed/angle. The signal to clutter ratio of each target
was estimated to be around —5dB. In both scenarios, n = 397
(all available) target-free secondary data are used to estimate the
interference covariance matrix.

The tapering matrix is constructed as proposed in [11]%, i.e

W(k)=T;® Ty
[Tyl = (1+sinc((i — j)k/m))/2 € RPT (44)
[Tgl;; = (14 sinc((i — j)k/m))/2 € RO

Note that index k is here a “null-spectrum width” parameter in
R™ and not a bandwidth parameter in [1, p] as in (3) or (4). We
also point out that the banding-type tapering matrices (even in-
volving a Kronecker-product structure) were tested but appeared
not well suited to the data, nor beneficial to the detection process.
Thus they will not be discussed in the following.

Fig. 9 presents the detection map of A(3) constructed with:
i) the SCM,; i7) the tapered SCM W (k) o S using bandwidth
k = 0.05 (selected manually to obtain the best visual results);
11%) TABASCO with the proposed adaptive selection of (3 for
k = 0 (equivalentto RSCM, yielding 8 = 0.9324); 7v) TABASCO
with the proposed adaptive estimation of 5 and k allowing k €
[1073,1071] (yielding k = 0.0143 and 8 = 0.9929). ST-type es-
timators presented results visually identical to the tapered-SCM
so they are omitted. This result can be explained because the
oracle shrinkage coefficient from ST tends, in practice, to push
the estimate towards the tapered matrix only: for example, the

“The tapering in [11] actually uses [Tf];; = sinc((i —j)k/m) and
[T]s; = sinc((¢ — j)k/m), which performs a sliding window average on
the estimated signal spectrum. The one considered here performs a linear
combination of the original spectrum with such average. This modification was
made so that the tapering matrix always conforms to the theoretical requirements
wi; = Land w;; > 0, but did not significantly impacted the output of the tested
detectors.
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Fig.9. Outputof various STAP detectors for the first (top) and second (bottom)

scenarios.

oracle coefficient (1 — f3) in [14] is always greater than 0.9 and
is most likely close to 1.

First we can notice that the SCM provides unreliable detection
maps in both scenarios, which is due to insufficient sample
support in this configuration (n < 2p). As observed in [11] on
another dataset, the covariance matrix tapering can widen the
clutter notch, i.e., properly cancel the response of the detector
on the anti-diagonal of the detection map. This permits to clearly
distinguish several targets when compared to the detection map
of the SCM. However, this improvement is at the cost of cancel-
ing the response of slower targets in the second scenario. This
was to be expected since slow targets are hard to distinguish
from the ground response in practice. Within the considered
framework, hard cancellation of the ground clutter generally
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implies to also cancel these targets, which implies a trade-off
when selecting the null-spectrum width of the tapering matrix.
The shrinkage to identity of RSCM also greatly improves the
detection process, as it allows us to detect all the 10 targets in the
second scenario. However, it still presents some high false alarms
on the clutter ridge. Finally, TABASCO appears as an interesting
trade-off by combining the two effects, and illustrates that the
proposed NMSE-driven method still allows for a reasonable reg-
ularization parameters (both 5 and k) selection in this detection
application. More precisely, TABASCO yields the best detection
map in the first scenario (no null-spectrum pattern and no false
alarms around the clutter ridge). In the second scenario, slower
targets are still canceled but TABASCO allows for recovering
some targets that were initially canceled by a “tapering only”
approach.

VIII. CONCLUSIONS AND PERSPECTIVES

We proposed TABASCO: a new covariance matrix estima-
tor that jointly benefits from shrinkage to a scaled identity
matrix and tapering of the SCM. By assuming the samples
to be generated from an unspecified ES distribution, we also
derived an efficient and robust estimation method for the oracle
regularization parameters that minimize the MSE. Simulations
studies illustrated that TABASCO outperforms existing regular-
ized and tapered estimators in numerous setups. Interestingly, if
W = 11" belongs to the set of tapering matrices W considered,
the estimator can avoid applying tapering if this option does not
provide reduction to the MSE. Thus TABASCO performs similarly
to the regularized SCM proposed in [4] in this case, while
significantly outperforming it when the tapering templates are
valid. We also proposed two new novel estimators that measure
the sphericity of the tapered covariance matrix.

APPENDIX

A. Known Location p

In some applications, the mean vector p = E[x] is known and
assumed to be o = 0 without loss of generality. This is the case
in STAP application for example. In this case, the covariance
matrix ¥ = E[xx '] is estimated by the SCM, defined by

1 n
S=-— E XX, .
n-
i=1

which is also unbiased estimator of X, i.e., E[S] = X. The
known location case implies only small changes in our esti-
mation procedure since Theorem 1 holds for both known and
unknown location cases.

When the location is known, the expectation E[[|S||] and
E[tr(S)?] are of the form (24) and (25) with 71 and 75 given by

(45)

1+ k
T1 =

and 7=~ (46)
n

This result follows as a special case of [31, Lemma 1] for a
Gaussian weight function. Similarly Lemma 1 holds when using
71 and 75 in (46). The change to the optimal 3y parameter is also
minimal: one may ignore the term (n/(n — 1)) that appears as
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the multiplier of the 2nd last term pw /n? + yw — 2v/p in the
denominator of 3y in Theorem 2. Theorem 4 also holds with
1+ k& n(n+ k)
ay = .
" n+k (n—1)(n+ 2+ 3k)

and b, =

B. Proof of Theorem 1
Write L(3) = MSE(25) = E[||35 — 2|/2]. Then note that

L(8) =E [|BW 08) + (1 - B)p 'u(S)I - =]

—E[[B(WoS - %)+ (1-8) (b u(S)I- Z)||;]

= fa1 + (1= B)%az + 2B(1 — B)as 47
where the constants a;-s are defined by
a1 = MSE(W 0 8S),
az =B [l "w(S)1 - 37 .
a3 =E[w(WoS—3)(p 'u(S)I-%))].
Then define
iz =p 'E[tr(WoS —X)tr(S)]
=p 'E[u(S)*] —n’p (48)

where we used that E[S] =3, tr(WoS)=tr(S) and
E[tr(S)] = tr(E[S]) = np with = tr(X) /p denoting the scale.
We may write ag in the form
a3 =as+ E [tr((W oS — 2)2)]
= a3 + | Z[F — [V o3| (49)
by using E[S] = X and E[tr((W 0 S)X)] = tr((W 0o 2)X) =
tr((V o X)?) while a, can be expressed as

ay = as + ||z — pn”. (50)

Note that L(3) is a convex quadratic function in 8 with a unique
minimum given by

az — as

L, = . 51)
P (a1 —a3) + (az — as) (
Using (49) and (50), the numerator is
az —az = |[Vo 2| —pn’
=[[VoZ —nI|§ =p(ywv — D, (52)

where we used that tr(V o 3) = tr(X). Using the expression for
a1 = MSE(W o S) given in (13) together with equations (49)
and (48), the first term in the denominator of 3, is

a1 —az3=E[[WoS|}] - [VoX|f
—p 'E [e(S)*] + n’p.

Summing this with term as — ag from (52) shows that the de-
nominator of 3, is E[|W o S||Z] — p~'E[tr(S)?]. These results
thus yield expression given in (15) and (16) for 3,. The final
expression (17) for 3, can be deduced from (16) by using (13)
and then simplifying the expression.
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The expression for MSE of ﬁlﬁa follows by substituting
B, into expression for L(3) in (47) and using the relation,
(1= B,)(az — as) = Bo(ar — as), which follows from (51).
This gives

L(B,) = a2 — Bo(az — az) = az + (1 — B,)(az — a3).

This gives the stated MSE expression since as — ag =
3 — nI||% and using (49) together with (48) for as.

Vo

C. Proof of Lemma 1

Before proceeding with the proof we introduce some defini-
tions and results that are used in the sequel. First, we let K, de-
note the p? x p? commutation matrix defined as a block matrix
whose ijth block is equal to ap x p matrix thathas a I atelement
jiand zeros elsewhere, i.e., K, = Zz}j eZ-eJT ® e; eiT. Italso has
the following important properties [38]: K,vec(A) = vec(A ")
and K,(A ® B)K, = (B® A) for any p x p matrices A and
B, where vec(A) vectorizes matrix A by stacking the columns
of the matrix on top of each other. We then have the following
identities.

Lemma 3: The following holds:

a) |AoB|% = tr(vec(A)vec(A)" o vec(B)vec(B)") for

all A, B € R™*™,
b) ||A oBJ|% = tr(vec(A)vec(A)" 0 K,(B® B))VA €
R™*"™ and VB € Rg/ ™.

¢) dg(A o A)dp = tr(vec(A)vec(A)"
VA,B € R™*™,

d) w((DA)?) =ds(AoA)dg for all A € Rgym™ and
B e R™*™.

Proof: Let A =

°c(B®B))

(ai;) and B = (b;;). a) First note that

|A oB||7 = tr (vec(A o B)vec(A o B)")
= tr (vec(A)vec(A)" o vec(B)vec(B)').

b) It is a simple matter to verify that for all B € Rg’;ﬁlm it holds

that diag(vec(B)vec(B) ") = diag(K,(B ® B)). Thus
tr (vec(A)vec(A)" 0 K,(B ® B))
= tr (vec(A)vec(A) " o vec(B)vec(B)")
which gives the stated result due to a)-part. ¢) It is a simple task to

verify that the trace of the Hadamard product of vec(A)vec(A) "
with B® B equals >, ;  biza3;bj; which is equivalent with

dg(AoA)dg.d) Follows from [21, Lemma 7.5.2]. [ |
Write w = vec(W). Using Lemma 3a we first notice that
E[|[WoS|§] = tr (ww' oE[vec(S)vec(S)"]).  (53)

We then recall that the (variance-)covariance matrix of S when
sampling from an elliptical population &,(u,3,g) is given
by [4, Theorem 2]:

cov (vec(S)) = E[vec(S)vec(S) '] — vec(Z)vec(X)"  (54)

=n(I+K,)(Z® )+ nvec(Z)vec(X) ', (55)
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where 7 and 7o are constants defined in (26). Equations (54)
and (55) then imply that

E[vec(S)vec(S) "] = cov(vec(S)) + vec(Z)vec(X) "
=n(I+K)(Z@ )+ (1 +7m)vec(Z)vec(T)". (56)
Inserting (56) into (53) yields
E [[IW o S||E]
= (1471 +m)|[|[Wo X[ + nitr (DsW)?).

simply by invoking identities in Lemma 3. This proves the first
identity.
Next we note that

D
E [tr((DsW)? Z [sii855]w (57)
Then (56) implies that
Elsiisj;] = 2mi05; + (1 + 12)0707. (58)
Thus inserting (58) into (57) yields
E [tr(DsW)?)]
=27 Z wwa + (14 m7) Z wma
i,j=1 i,j=1
=27 |[Wo Z[f + (1 + ) tr((DsW)?)
which proves the latter claim.
D. Proof of Theorem 3
Let us express the SSCM as
. 1 n x
A=— viviT7 where v; = \/p—.
> VPl
Hence
WoAlz 1
w = —ur ((W OV1VI +...+Wo VnVI)2)
p pn
g Wl g (o)) (Wovi])
— pn? pn? :

i+
Then since v;-s are i.i.d., and E[A] = E[v;
expectation of the 2nd term is
y Erlere
i)
_n- 1|Wo Asgﬁ”%
n P '

v]] for all 4, the

D(Wov;v]))]
pn?

where Agg, = E[A]. The expectation of the Ist terms is
S EIWo v/ 2] _E[IWe v |E]

- pn?2 n

E[d"(WoW)d]
pn
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where d = (vf,...,v2)" contains the diagonal elements of
vv ', where v =, v; and =, reads “has the same distribution

as”. Furthermore, write D = diag(vv"). Thus we have that

n  E[IWoAl3]
n—1 P
_ IWoAw|E | E[d'(WoW)d|
- n . (59)
p p(n —1)
Next note that D = diag(A) can be written as
1
DA:;#D1+“.+D@,
where D; = diag(v,v, ). Furthermore, letd; = (v, ..., v;,)"

denote a random vector containing the diagonal elements of
v;v; . Then we get

tr ((DAW)2> = %tr ((D1W +...+ an)2>

_li

n

%Z (WoW)d; +

(DW )+—Zu ((D;W)D,;W)
i#j

12 > ((D;W)D;W).
i#j

Thus

p(nl— 1)E [tr <(DAW)2)}

~ E[d(W o W)d] L. ((E[D}W)Q)

~ pn(n—1) pn
_ E[d(W o W)d] 1 T .
= —pn(n ) + an[d] (W o W)E[d]. (60)
Using (59) and (60) we then obtain that
o A |12
E[’AYW] — M + lg’ (61)
P n
where
€= % (E[d(W o W)d] — E[d]" (W o W)E[d])

P P
Zvar(vf) + Z w;j cov(vv;) | =0 asp— oo.
i=1 i#j

(62)

Next note that Ay, = E[A] = A + o(||A||r) when (A) holds
by [28, Theorem 2]. This fact together with (61) and (62) imply
that
. W o Al
E['YW] - H 5 ”F —

as p — oo under assumption (A). Thus we have proven the
claim.
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E. Proof of Lemma 2: Complex Case

In our proof we will use the following identities.

Lemma 4: The following holds:

a) ||A o B|2 = tr(vec(A)vec(A)H o vec(B)vec(B)") for
allA,B € C™*™.

b) dg(A o A)dg = tr(vec(A)vec(A)" o (B* @ B))
VA € C™™ and B € Cg™.
¢) tr((DpA)?) =dg(AoA)dg for all A € Rgjn™ and
B e Cmxm,
Proof. a,b): proofs of the identities are as proofs of Lemma
3 a),b). ¢) follows directly from [21, Lemma 7.5.2]. [ |

Write w = vec(W). Using Lemma 4a we first notice that

E[[WoS|}] =tr (ww' oE[vec(S)vec(S)"]).  (63)

We then recall that the (variance-)covariance matrix of S when
sampling from a complex elliptically symmetric distribution
CE&p(p, %, g) is [39, Theorem 3]:

cov (vec(S)) = E[vec(S)vec(S)] — vec(T)vec(T)™  (64)

=7 (2" @) + mvec(Z)vec(X)H, (65)

where 7 and 75 are constants defined in (26). Equations (64)
and (65) then imply that

E[vec(S)vec(S)] = cov(vec(S)) + vec(Z)vec(T)M

=7 (T ® ) + (14 m)vec(Z)vec()H. (66)

Inserting (66) into (63) yields

E[[WoS|z] =1+ m)|WoX|+ntr(DsW)?).

simply by invoking identities in Lemma 4. This proves the first
identity. The proof of latter part E[tr((DsW)?)] is as earlier in
the real-valued case in Appendix A3.
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