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Abstract—The underwater wireless optical communication
(UWOC) technology provides a potential high data rate solution
for information sharing between multiple autonomous underwa-
ter vehicles (AUVs). In order to deploy the UWOC system on
mobile platforms, we propose to solve the optical beam alignment
problem by maintaining the relative position and orientation of
two AUVs. A reinforcement learning based alignment policy is
transferred to the real world since it outperforms other baseline
approaches and shows good performance in the simulation
environment. We randomize the simulator and introduce the dis-
turbances, aiming to cover the real distribution of the underwater
environment. Soft actor-critic (SAC) algorithm, reward shaping
based curriculum learning, and specifications of the vehicles are
utilized to achieve the successful transfer. In the Hiratsuka sea
experiments, the alignment policy was deployed on the AUV Tri-
TON and successfully aligned with autonomous surface vehicle
BUTTORI. It demonstrates a solution for combining the UWOC
technology and AUVs team in the ocean investigation.

Index Terms—underwater wireless optical communication, re-
inforcement learning, AUV, sim-to-real transfer

I. INTRODUCTION

Compared with relying on a single and expensive AUV,
the multiple AUVs deployment has many advantages in un-
derwater exploration, such as observation efficiency, spatial
scale, safety, and cost [1]. Several issues related to multiple
AUVs, like formation control algorithms [2] [3], and coop-
erative localization methods [4] [5], have become attractive.
It aims to make the operation of multiple AUVs become the
standard in the upcoming years. The communication between
multiple AUVs is a significant issue since the data rate of
acoustic transmission is limited to 1 - 100 Kilobit per second
(Kbps) [6]. During the joint investigation, it is not realistic
for AUVs to share the collected observation data by acoustic
communication.

The development of the UWOC technology provides a
potential high data rate solution for information sharing be-
tween multiple AUVs [7]. However, UWOC requires the es-
tablishment and maintenance of a line-of-sight (LOS) link for
communication. Underwater LOS link alignment is a complex
problem involving the motion of the platforms, the observation
of the target, and the control of the optical communication
devices. In involving AUVs scenarios, maintenance becomes

challenging due to the external disturbances and uncertainties
in the AUV dynamic model. Previous researches proposed the
beam pointing control system to steer the beam for scanning
and link acquisition [8] [9]. Based on the detected light
intensity, these methods rapidly adjust the beam pointing to
maintain the LOS link. It attempts to eliminate the uncertain-
ties in AUVs and the environmental disturbances with precise
control of the optical devices.

Deep reinforcement learning algorithm has recently seen
success in suppressing the impact of external disturbances
and uncertainties in robotics motion planning [10] [11]. It is
attractive to consider this complex beam alignment problem
under a model-free reinforcement learning framework. We
trained a reinforcement learning policy to keep two AUVs
in a specific relative position and orientation for alignment.
Compared with the previous researches, we manipulate the
AUVs instead of relying on sophisticated optical devices, such
as beam control servo and light intensity sensors. Besides, the
navigation and energy saving issues can also be optimized
through trial-and-error processes.

Due to the limitations of gathering data from a real en-
vironment, reinforcement learning algorithms usually use a
simulation environment to train agents. However, the gap
between the simulation and real environment degrades the
performance once the policy is implemented in the real world
[12]. In this research, we propose to deploy a learned policy
on real AUVs for optical beam alignment. We randomize the
simulation environment and introduce the disturbances, aiming
to cover the real distribution of the underwater environment
data. The curriculum learning and reward shaping techniques
are utilized to improve stability in the real environment. An
AUV and its operating system are developed to implement
this policy in the real environment. The success of the sea
experiment proves that the beam alignment policy learned
from the simulation environment can be applied to the real
environment.

The remaining of the paper is organized as follows. The
underwater optical beam alignment problem is modeled in
Section II. In Section III, the sim-to-real work is presented for
implementing the policy on real AUVs. Then, a reinforcement



learning policy is trained for alignment task and evaluated
in Section IV. In Section V, the alignment experiments are
conducted in the real environment. Concluding remarks are
given in Section VI.

II. PROBLEM FORMULATION

An alignment method is presented for two AUVs to es-
tablish the LOS link. The reinforcement learning algorithm
searches for an optimal policy to complete this alignment task.

A. Beam Alignment

Optical signal has limited propagation distance and strong
directivity. The wireless optical communication requires an
AUV with a transmitter to emit a light signal to the receiver of
another AUV. It is assumed that the receiver is omnidirectional
in this research. We propose to solve the alignment problem by
maintaining the relative position and orientation. The acoustic
navigation is used for observing the states of the alignment
target. As long as the position error between two AUVs is
still within the coverage area of the optical beam, the LOS
link can be successfully established.

As shown in Fig. 1, the alignment task is considered at
a horizontal plane with a horizontal position [x, y], surge
velocity u, sway velocity v, yaw orientation ψ, and yaw
angular velocity r because the pressure sensor can provide
an accurate determination of absolute depth [8]. The AUV
that transmits optical signals is regarded as the transmitting
AUV. The AUV that receives optical signals is defined as the
receiving AUV. The motion in roll and pitch orientation is
ignored. The transmitting AUV is the agent we discussed in
the reinforcement learning algorithm. In the alignment task,
the receiving AUV is expected to be close to the optimal point
of beam coverage area, where it can detect the high intensity
optical signals. The optimal point can be determined by the
light field distribution of the optical beam [13]. The alignment
distance d∆ is defined as the distance between the optimal
point and the center of the receiving AUV.

The acoustic navigation, including the bearing only rang-
ing [14] and the two-way travel time (TWTT) ranging
[15], is used by the transmitting AUV to observe and
track the receiving AUV. The states of the receiving AUV
[xR, yR, ψR, uR, vR, rR] can be shared to the transmitting
AUV through acoustic signals. The bearing only ranging is
a scalable method. The receiving AUV can broadcast the
acoustic signal, and all the platforms can measure the relative
bearing angle αTR. Both relative bearing angle and relative
distance lTR can be measured if the transmitting AUV requests
the TWTT ranging. The scalability of the TWTT ranging is
weak, and it is better to reduce the usage of this method in
multiple AUVs operations. For saving energy, we also hope
the optical transmitter can be turned off when it is impossible
to establish the LOS link.

B. Alignment Policy

The goal of the alignment policy is to control the transmit-
ting AUV to shorten the alignment distance d∆ for maintaining

Transmitting AUV
("! , $! , %! , &! , '! , (!)

Receiving AUV
("" , $" , %" , &" , '" , (")

o y

x

!!""!

*!"

""

* #

Optimal Point

!"!

+ ∆
,+
,-

+∆

Fig. 1. Relative relationship for underwater optical beam alignment. The blue
sector is the coverage area of the optical beam emitted by the transmitting
AUV. The receiving AUV needs to be located in this blue sector and detect
the optical signals for communication.

the LOS link while also reducing the use of acoustic channel
resources and optical devices.

The state space of the agent is defined as:

s = [x̂∆, ŷ∆, cosψ
R, sinψR, uR, vR, rR, cos ψ̂T , sin ψ̂T ]

(1)
where [x∆, y∆] is the alignment distance. The variables with
hat symbols are updated by a particle filter estimator. All vari-
ables in the state space are one-dimensional and continuous.

The action space of the agent is as follows:

a = [uT , rT , itwtt, iop] (2)

where the boolean variables itwtt and iop represent whether the
transmitting AUV requests for TWTT ranging, and whether
to turn on the optical transmitter in the current timestep,
respectively.

We propose the reward function of the form:

r(s, a) =− ρ1(1 + ρ2itwtt)(1 + ρ3iop)d
1
2

∆

− ρ4u∆ − ρ5r∆ + ρ6idone
(3)

where ρ1 to ρ6 are coefficients. The u∆ and r∆ represent the
relative velocities in surge and yaw. A boolean variable idone
is used to indicate if the alignment task is completed.

III. SIM-TO-REAL

A policy learned from the simulation environment needs
to be deployed on the real AUVs. It is unrealistic to design
a simulator that perfectly matches the real environment. The
gap between the simulation and the real world may degrade
the adaptability of the policy in the real environment. The
following technologies are used to transfer the knowledge
learned in the simulation to the real world.



Algorithm 1 Soft Actor-Critic [16]
Input:

Initial parameters of critic and actor networks θ1, θ2, ϕ
Initial weights of target networks θ1 ← θ1, θ2 ← θ2
Empty replay buffer D ← ∅
for each iteration do

for each environment step do
Sample action by at ∼ πϕ(at|st)
Sample transition state by st+1 ∼ p(st+1|st, at)
Store samples by D ← D ∪ {(st, at, r(st, at), st+1)}

end for
for each gradient step do

Update critic by θi ← θi−λQ∇̂θiJQ(θi) for i ∈ {1, 2}
Update policy by ϕ← ϕ− λπ∇̂ϕJπ(ϕ)
Adjust temperature by α← α− λ∇̂αJ(α)
Update target by θi ← τθi + (1− τ)θi for i ∈ {1, 2}

end for
end for

Output: θ1, θ2, ϕ

A. Reinforcement Learning Algorithm

As listed in Algorithm 1, the SAC algorithm presented by
Haarnoja et al. [16] is selected to search for an optimal policy
that can collect not only the maximum cumulative reward,
but also the maximum entropy. The objective function is as
follows:

π∗ = argmax
π

∞∑
t=0

E(st,at)∼ρπ
[

∞∑
l=t

γl−tEsl∼p,al∼πM(st, at)]

(4)
and

M(st, at) = r(st, at) + αH(π(·|st))|st, at (5)

where E is the expectation operation and H is the entropy
term.

The entropy term is a measure of randomness, which en-
courages the policy to explore more widely. It also provides a
robust framework that minimizes the need for hyperparameter
tuning when transferring to a real environment [17].

In the alignment task, the policy needs to generate the surge
and yaw angular velocity commands for AUV thrusters. The
thrusters cannot accurately perform actions when the high
frequency jitter occurs in the velocity command. One of the
advantages of the SAC algorithm is that it correlates the
exploration temporally and can output smoothing actions for
thrusters [17].

B. Domain Randomization and Disturbances

Domain randomization is an approach to bridge the reality
gap for reinforcement learning. When it is impossible to make
the simulation environment match the real environment, we
can highly randomize the simulator. We design the episode
based alignment experiments that can be efficiently repeated
by the simulator. The domain randomization is implemented

in the simulator. The initial position and orientation of the
AUVs are randomized in each episode. The velocity of the
transmitting AUV is determined by the policy, while the
velocity of the receiving AUV is randomly generated. With
enough variability in the simulator, the real world may appear
to the model as just another variation [18].

The perturbations are introduced into each timestep. These
perturbations can be caused by external disturbances and the
uncertainties of vehicles. On the sensing part, the measured
velocities in surge, sway, and yaw are the mixing results of
real velocities and Gaussian noises, whose standard deviations
are 0.1, 0.1, and 1, respectively. On the manipulation part, the
real surge, sway, and yaw angular velocities are derived from
the policy actions mixed with the same Gaussian noises.

C. Reward Shaping Based Curriculum Learning

Curriculum learning is an extension of transfer learning,
where the goal is to gradually changes the task from simple
to complex [19]. We consider the task in a simulation en-
vironment as a simple task, while the alignment in the real
environment is a complex task. Through curriculum learning,
the agent finally obtains the ability to complete the alignment
task in the real environment. In the alignment task, the
transmitting AUV first learns to track the target, and then
reduces the use of acoustic channel resources and optical
devices. In the future, the experimental data collected in the
real world can be used to train the policy again.

The coefficients in (3) need to be tuned according to the
importance of different controlling objectives. The reward
function with coefficients are proposed as follows:

r1(s, a) = −0.01d
1
2

∆ − 0.01u∆ − 0.002r∆ (6)

and

r2(s, a) =− 0.01d
1
2

∆(1 + 9itwtt)(1 + iop)

− 0.01u∆ − 0.002r∆ + 10idone
(7)

IV. IMPLEMENTATION

The sample data collected from the simulator is used for
the alignment policy. The learned policy is compared with the
heuristic baseline approach before deploying on real AUVs.

A. Policy Training

The SAC algorithm is implemented with the OpenAI Stable
Baselines toolkit [20]. The neural networks use Multilayer
Perceptron (MLP) structure. The parameters used in the re-
inforcement learning algorithm are given in Table I. The
simulation environment is developed through the OpenAI Gym
interface [21].

The action itwtt and iop are used for saving the acoustic
resource and energy, which are not considered in this sea
experiment. The agent learns 3×106 timesteps of sample data
with reward r1.



TABLE I
THE PARAMETERS CONFIGURED BY THE REINFORCEMENT LEARNING

ALGORITHM

Parameter Symbol Value

Layer of MLP 2

Neuron of MLP 64

Discount factor γ 0.99

Learning rate λ 0.0003

Buffer size 50000

Batch size 64

B. Policy Evaluation

To evaluate the significance of the reinforcement learning
based method, we compared learned policy with a heuristic
baseline approach. The heuristic approach is derived from the
motion planning method used in previous experiments by Maki
et al. [22]. The performance of this heuristic method is verified
by the sea experiments.

The details of the comparison with the heuristic approach
are presented in the previous research [23]. The reinforcement
learning approach proposed in this research outperforms the
heuristic approach in alignment efficiency and energy saving.

V. EXPERIMENTS

In order to evaluate whether the alignment policy can be
deployed on real AUVs, we implemented the policy in the
water tank and sea experiments.

A. Preparation

The learned policy is deployed on the hovering AUV Tri-
TON, and the specifications of the vehicle are given in Table
II. In the real experiments, the AUV Tri-TON is considered
as the transmitting AUV, and the autonomous surface vehicle
BUTTORI is used as the receiving AUV. According to the
specifications of the AUV Tri-TON, the maximum surge and
yaw angular velocities are set to 0.2 m/s and 0.2 rad/s,
respectively. The TWTT ranging between AUV Tri-TON and
BUTTORI is performed every 6 seconds. No global navigation
satellite system (GNSS) or radio communications are used in
the experiments.

B. Water Tank Testing

The alignment experiments are tested in the water tank. The
size of the water tank is 8 meters long, 8 meters wide, and
8 meters deep. As shown in Fig. 2, the AUV Tri-TON and
the autonomous surface vehicle BUTTORI are deployed for
experiments.

The BUTTORI keeps stationary in the alignment experi-
ment. The AUV Tri-TON performs the actions generated by
the learned policy, including the commands of surge and yaw
angular velocities. The AUV Tri-TON is required to align
with the BUTTORI and maintain the relative position and
orientation.

TABLE II
AUV TRI-TON SPECIFICATIONS

Parameter Value (Device)

Size 1.40 m (L) × 1.33 m (H) × 0.76 m (W)

Mass 230 kg

Max. speed 0.5 m/s

Max. depth 800 m

Duration 8 hours

Thruster 100 W thruster × 5

Battery LiIon 26.6 V 25 Ah × 4

Ground velocity Teledyne RDI Navigator 1200 kHz (DVL)

USBL SeaTrac X150

FOG JAE JG-35FD

Depth Mensor DPT6000

Main computer UP Core

Operation system Ubuntu 20.04

Middleware suite Robot Operating System

CPU Intel Atom x5-z8350

The alignment distance d∆ of one episode is plotted in Fig.
3. When the policy is activated, it controls the AUV to ap-
proach the target, and the alignment distance keeps decreasing.
At the 50 second of the experiment, the alignment distance
is close to 0, which indicates that the vehicle can establish
a LOS link with the target. The AUV Tri-TON successfully
maintained the required relative position and orientation with
BUTTORI for more than 250 seconds.

C. Sea Experiments

As shown in Fig. 4, we conducted the sea experiments at
Hiratsuka Port, Japan. Compared with the water tank, the
disturbance and uncertainty in the marine environment are
significant. In addition, we will move the target BUTTORI in
the experiments to test whether the AUV Tri-TON can track
and maintain alignment with the target.

D. Results

One of the sea experiments is presented in Figs. 5 and 6.
The AUV Tri-TON is represented by the blue triangle, and the
red star marker is the autonomous surface vehicle BUTTORI.
The particle filter estimation results of the AUV Tri-TON are
depicted by blue dots. The orange point is the optimal point
defined in Fig. 3 for optical communication. The yellow circle
represents the result of acoustic ranging.

The parameters listed in the bottom left corner are the
time in the experiment (second), the position of the AUV
Tri-TON (meter), the standard deviation of particle filter
estimation results in the position, the yaw orientation of the
AUV Tri-TON ψT (degree), the standard deviation of particle
filter estimation results in yaw, the surge velocity command
generated by reinforcement learning policy (meter per second),
the surge velocity measured by DVL (meter per second), the



Fig. 2. Water tank experiments. The AUV Tri-TON (yellow) and the
autonomous surface vehicle BUTTORI (orange) are deployed in the water
tank.
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Fig. 3. The alignment distance d∆ in one episode.

Fig. 4. Sea experiments at Hiratsuka Port. The AUV Tri-TON (yellow) and
the autonomous surface vehicle BUTTORI (orange) are deployed in the sea
environment.

yaw angular velocity command generated by reinforcement
learning policy (radian per second), the yaw angular velocity
measured by FOG (radian per second), and the alignment
distance d∆ (meter). The parameters listed in the top left
corner are the number of TWTT ranging in the experiment, the
time when the latest ranging results are received (second), the
position of the BUTTORI (meter), the relative bearing angle
measured by the USBL device in the AUV Tri-TON (degree),
the relative bearing angle measured by USBL device in the
BUTTORI (degree), and the relative distance (meter).

In the alignment task, AUV Tri-TON starts to approach
BUTTORI with the guidance of acoustic navigation. At the
17.0 second of the experiment, the alignment distance d∆
shown in Fig. 5(b) is 0.34 meters. The relative relationship
between Tri-TON and BUTTORI is available for establishing
the LOS link. The AUV can keep the alignment distance
at about 1 meter. The yaw angle of AUV Tri-TON is not
well controlled by policy, which is the reason for the large
alignment distance. As shown in Fig. 5(c), the largest deviation
occurs at 97.0 second. The vehicle inertia and the thrusters
delay are the main reasons.

At the 123.0 second of the experiment, we move the BUT-
TORI to test if the Tri-TON can track the target. The alignment
distance increases during the tracking process. Due to the
delay of acoustic transmission, the yellow circle represented by
acoustic ranging cannot coincide with the Tri-TON. At 199.0
second of the experiment, we stop controlling BUTTORI, and
it is only affected by the currents. As shown in Fig. 6(c), the
AUV can align with the target, and the alignment distance is
0.20 meters.

E. Discussion

The alignment policy learned from the simlation environ-
ment is deployed on the real AUVs. In the Hiratsuka Port
experiments, this policy can manipulate the AUV Tri-TON to
align with the target BUTTORI.

The results of sea experiments show that the policy does not
handle the delay from the thrusters and acoustic ranging well.
In the future, we plan to repeat the alignment experiments
in the water tank to obtain the statistics of the thrusters and
acoustic ranging delay, which can be used to improve the
policy. The thrusters delay will be taken into account in the
simulation environment. The particle filter will consider the
delay from acoustic ranging in state estimation. In addition,
the data collected in the sea experiments can also be utilized
to retrain the alignment policy.

In order to implement the UWOC in actual scenarios, it is
necessary to pay attention to the adaptability of the policy in
different marine environments. The alignment policy needs to
be evaluated under more complex sea conditions.

VI. CONCLUSION

We trained a reinforcement learning policy for establishing
the LOS link between two AUVs in a simulation environment
and planned to deploy it on real AUVs. The sim-to-real
methods we discussed in this research reduce the gap between
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Fig. 5. The states of AUV in the sea experiment (a) 1.0 s, (b) 17.0 s, and (c)
97.0 s. The AUV Tri-TON is represented by the blue triangle, and the sharp
corner of the triangle is the head of the vehicle. The red star marker is the
autonomous surface vehicle BUTTORI.
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Fig. 6. The states of AUV in the sea experiment (a) 123.0 s, (b) 161.0 s and
(c) 199.0 s. The AUV Tri-TON is represented by the blue triangle, and the
sharp corner of the triangle is the head of the vehicle. The red star marker is
the autonomous surface vehicle BUTTORI.



the simulation and the real environment, allowing us to transfer
the learned policy to the real world. In sea experiments,
the alignment policy successfully manipulates the AUV Tri-
TON to align with the target BUTTORI. It demonstrates that
conveniently training the alignment policy in a simulation
environment and deploying it on a real AUV is suitable for
underwater optical communication research.
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