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Abstract. An important instrument for achieving smart and high-performance buildings is 

Machine Learning (ML). A lot of research was done in exploring the ML learning models for 

various applications in the built environment such as occupancy prediction. Nevertheless, this 

research focused mostly on analyzing the feasibility and performance of different supervised ML 

models but have rarely focused on practical applications and scalability of those models. In this 

study, we are proposing a transfer learning method as a solution to few typical problems with the 

practical application of ML in buildings. Such problems are scaling a model to another (different) 

building, collecting ground truth data necessary for training the supervised model and adapting 

the model when conditions change. The practical application examined in this work is a deep 

learning model used for predicting room occupancy using indoor air quality (IAQ) IoT sensors. 

The importance of occupancy prediction has risen in recent times of remote work and is 

especially important for futureproofing of the built environment. This work proves that it is 

possible to reduce significantly the need for ground truth data collection for deep learning based 

occupancy detection model. Additionally, the robustness of the transferred model was tested, 

where performance stayed on similar level if suitable normalization technique was used.   

Keywords. Occupancy prediction, environmental sensors, deep learning, transfer learning, 
scalability, practical issues 
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1. Introduction

The CO2 emissions of buildings in European Union 
are 36% and 28% on global scale [1], [2]. While 
HVAC systems in developed countries are 
responsible for 50% of building energy consumption 
alone [3]. To battle this problem, the EU has set the 
goal of developing a sustainable, competitive, secure 
and decarbonized energy system by the year 2050 
[1].  

One of the tools to achieve this goal is through the 
digitalization of energy systems and buildings and 
the EU has introduced a smart readiness indicator 
(SRI). The purpose of this indicator is to determine 
the capability of buildings in using information and 
communication technologies to adapt the building 
operation to the needs of the occupants and the grid 
while improving the overall performance of the 
buildings [1]. Recently, many research attempts 
have been made using advanced technologies in the 
field of computer science such as artificial 
intelligence (AI), machine learning (ML) and the 
internet of things (IoT) in building operations. 
Enabling use cases such as model predictive control, 
system fault detection and diagnosis, occupancy 

estimation and detection, demand response and in 
more general system integrator of different building 
subsystems and occupants [4], [5]. These 
technologies can help to significantly improve 
building performance, from higher indoor 
environment quality, lower energy consumption to 
better space efficiency.  

Office building occupancy inefficiency is a 
significant potential for improvement, as in one 
British study from 2013 has concluded that regular 
offices had an average occupancy level between 60 
and 70% [6]. The recent COVID-19 pandemic has 
fast tracked remote work making occupancy levels 
worse, where in one Israeli study more than 60% of 
interviewees expects to come to the office only two 
to three times a week after the end of pandemics [7]. 
If these claims come true, existing buildings and 
their HVAC systems can become even more 
inefficient, since the standard static occupancy 
profile, with which they were designed with, is not 
valid anymore. 

This all leads to the expectation that information on 
building occupancy is going to become more 
valuable and needed than ever before as it is 
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important for optimizing the space and building's 
system operation. Fortunately, a considerable 
amount of literature has been published on the matter 
of building occupancy estimation and detection [8]. 

To infer and analyze the information on occupancy 
in a larger scale, the commonly available sensors in 
buildings should be utilized.  Environmental sensors 
commonly available in buildings are CO2, room air 
temperature, relative humidity and in some case total 
volatile organic compound (TVOC) of which CO2 
has highest correlation with occupants in a room [9], 
[10]. 

For occupancy prediction from room environmental 
data methods range from physical, gray-box, 
statistical, machine learning to deep learning models. 
Where in this work focus was on machine and deep 
learning methods. Machine learning methods, have 
shown good accuracy with occupancy prediction, but 
require a process which is called feature engineering 
[11]–[15]. This time-consuming process was solved 
using deep learning methods such as in [16], where 
proposed method has outperformed statistical and 
machine learning methods. However, for using the 
model in a different room, the authors have needed 
to collect new ground truth data and train the model 
from scratch. The collection of occupancy ground 
truth is challenging and has been identified in 
several works as costly and time consuming [5], 
[17], [18]. 

In this work solving the problem of deep learning 
method scalability for room occupancy prediction is 
attempted. This is done using transfer learning, 
which is a technique for extracting knowledge from 
extensive and known source dataset and using it to 
improve the learning of a model on the lesser-known 
target dataset [19]. A similar work was done by 
Weber et al. [20], but using the simulated data of the 
same room as a source model. Here, a model trained 
from one room’s data is transferred to another room 
in a different building, for which much fewer 
training data is available. Additionally, transferred 
model robustness is tested with different ventilation 
setting as well.  

2. Methodology

2.1 Overview of CDLSTM model 

Deep learning model used for predicting occupancy 
from environmental variables in this work is 
Convolutional Deep Long Short-Term Memory 
(CDLSTM), inspired by Chen et al. [16]. The 
CDLSTM model uses combination of different 
layer’s specific properties to classify occupancy state 
from raw data. Mainly convolutional operation (CD) 
is used for extracting features from raw data, while a 
DLSTM is used to understand the temporal 
dependence of the data.  

The CDLSTM model functions in the following 
way. Windows of raw time-series data enter first the 
convolutional layer, which slides a filter window to 
extract the characteristics. Extracted features are 
then passed through the pooling operation, which 
compresses the features by removing less important 
local features. A Long Short-Term Memory (LSTM) 
belongs to Recurrent Neural Network (RNN), 
commonly used with sequential data processing, 
since RNNs are good in finding dependence of 
features over time sequence. LSTM are an 
improvement over regular RNN because of their 
ability to learn long-term dependencies. Chen et al. 
in their work used a Bidirectional LSTM (BLSTM), 
where the data flows from the past but also from the 
future through the model. In this work, 
unidirectional LSTM showed better performance 
than the proposed BLSTM. A Deep LSTM 
(DLSTM) model, consisting of more than one 
LSTM layer is used. After each LSTM layer, there is 
a dropout layer used for regularization.  

Regularization is the name for a technique used to 
solve the overfitting problem. The problem of 
overfitting results in a model showing significantly 
better performance on training dataset then on 
testing, which is common with deep learning 
models. A dropout layer randomly drops out hidden 
nodes from the neural layer during the training time. 
In each loop, different nodes are dropped, making 
model to learn representations which are more robust 
to the noise in the data. While during the testing 
time, nodes are not dropped. 

The following DLSTM layers in the framework of 
the neural model used in this research are fully 
connected dense layers, with their dropout layers as 
well. The fully connected part of the model is used 
to learn more abstract features in the data such as 
learning non-linear combinations of input features 
and preparing the features to their final 
representation. The final representation of the 
learned features from raw time-series data is then fed 
finally to the softmax classification layer. The 
softmax classification layer, translates given features 
into classes, which are in the case of this work 
occupancy states. 

2.2 Proposed transfer method 

Training a deep learning model such as the proposed 
CDLSTM requires significant amount of training 
data. Labelled training data is difficult to collect 
when it comes to room occupancy, especially the 
occupancy count or level. Therefore, in this work the 
transfer method of CDLSTM model is studied.  

The principle behind transfer learning is that a model 
is trained on a labelled and extensive dataset, called 
source dataset. The acquired knowledge from 
training the source model can then be transferred to 
solve a similar problem on a target dataset. The 
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weights of the trained CDLSTM model have then 
been transferred to a target CDLSTM model which 
was fine-tuned on a target dataset.  

2.3 Data acquisition 

Source dataset for the initial training of the 
CDLSTM model was collected using temperature 
and CO2 IoT sensor in a meeting room in one office 
building located in Helsinki, Finland. This room is 
named Source Room. The measurements were done 
in period from February and March 2020. 
The source room is rather small with seats for four 
persons and with approximate size of 6 m2. It is 
located in the middle of the floor and surrounded by 
an open office area. Ventilation is with constant 
airflow of 15 l/s consisting of 100% fresh outdoor 
air. The environmental IoT sensor was placed on the 
desk in the room. Camera for collecting ground truth 
occupancy was installed on the ceiling, just above 
the door. 

Ground truth for the source model was acquired 
using video camera recording (the image was 
blurred for privacy purposes), which was used for 
manual counting of people in the source room. 
Target for the transfer of occupancy prediction 
model in this work is a large meeting room located 
in a hospital building in Finland. The Target Room 
has a capacity for 12 people with area of 21 m2 and 
by the design, its ventilation system is designed to 
be of variable airflow. Temperature and CO2 were 
collected with IoT sensor. The sensor was placed on 
the conference desk. Ground truth for transfer 
dataset has been acquired using infrared time of 
flight based people counting sensors. Automatic 
counting using IR-based sensors has a known 
problem with missing counts [21] and therefore this 
count was manually corrected using the presence 
and noise sensor in the room.  

The measurement was done in two periods. First 
period, or period with constant airflow ventilation 
was from March and April 2021. Second period with 
variable airflow was from May to July 2021. During 
the measurement, the problem with the ventilation 
setting was noticed, the room did not operate with 
the expected variable airflow, because the settings 
were overridden to constant maximum design 
airflow of 90 l/s (first measurement period). When 
this was noticed, the setting has been changed to a 
predefined variable airflow (second measurement 
period).  

Variable airflow in the room is controlled by the 
signal from three BMS sensors; PIR, CO2 and 
temperature. The airflow rate is possible to control 
between 30 and 90 l/s. With variable airflow 
operation, it was also noticed that it is not performed 
as expected. In reality, the airflow almost never 
dropped under ~50 l/s, even though the room was 
empty for days at times. The source of the problem 
was too high room temperature compared to the 

setpoint (user adjusted between 18.5 and 23.5°C) 
which BMS tried to decrease by increasing the 
airflow. On the other hand, the air supply 
temperature was too high (about 21°C), making it 
impossible to cool down the room and therefore 
keeping the airflow at least on the medium level. 
Therefore, there is no clear connection between 
airflow and occupancy as such, making it more 
difficult to use the occupancy prediction model, 
which is addressed later in this paper, where the 
robustness of the transferred model is tested.  

Therefore, in this work we have two periods with 
different ventilation strategies in same room, during 
March and April there was constant airflow, while 
from May onwards the work is performed with 
variable airflow data. 

2.4 Experimental setup 

Data was gathered from IoT temperature and CO2 
sensors with a sampling rate of one minute, while 
ground truth for the source dataset was acquired in 
three-minute intervals. Therefore, all other 
measurements were resampled to three minutes. 

Before it was used for the deep learning model, the 
raw sensor data was preprocessed. Missing values, 
caused by connection problems or other IoT sensor 
problems, were interpolated using polynomial 
interpolation of second order. Raw sensor data was 
noisy and through the experimentation we have 
noticed that using data as such, accuracy of model 
was lower and with longer computational time. 
Therefore, we decided to smooth the data before the 
model input. For this purpose, smoothing based on 
Kalman filtering with Python package tsmoothie [22] 
was used. Kalman smoothing was performed on 
time-series level components.

During the initial experimentation, it was noticed that 
partly balancing the classes in the dataset also 
improved the results. Imbalanced classes in the 
dataset means that certain class classes are 
overrepresented then the other classes. In this case, 
the occupancy class of zero or empty room makes 
large majority of the dataset, while occupied state 
makes smaller portion of the dataset. Training the 
deep learning model on the imbalanced dataset can 
lead to a model with lower sensitivity to classes 
which are underrepresented. In this study, this issue 
was reduced by removing the periods when 
occupancy is expected to be zero, such as during the 
nighttime or the weekend.  

The last thing to do before using the data with neural 
model is to normalize it. Z-score normalization was 
used, where the values are normalized according to 
their mean and standard deviation. Data was 
normalized using the mean and standard deviation 
from the training data, while for the later use of the 
model with variable airflow, a sliding method was 
used as described in section 3.3.  
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Normalized and preprocessed data was then ready to 
be used with CDLSTM model. The model was 
created using the deep learning Python package 
Tensorflow/Keras [23] and was designed as follows. 
The convolutional layer was created with 100 output 
filters, a kernel size of three which specifies the 1D 
convolutional window and pooling size of two, with 
ReLU activation function. Following is deep LSTM 
model, consisting of three LSTM layers, with hidden 
sizes of 100, 150 and 200 respectively. After each 
layer there is a dropout layer served for 
regularization with masking probability of 0.5. 
Following LSTM layers, there are two fully 
connected dense layers with hidden size 200 and 300. 
Another dropout layer is placed between the fully 
connected layers with a probability of 0.3. At the 
end, there is a softmax layer classifying the model 
outputs to classes, in our cases occupancy classes.

Another important setting for the CDLSTM model is 
the batch size and window sequence length and this 
varies depending on the sampling rate of the data on 
which the model was trained. For example, when 
using the dataset with three-minute sampling rate, a 
batch size of 16 and a sequence length of four were 
used. This means that one window was a size of four 
timesteps or twelve minutes which were fed to the 
model in batches of 16 windows at a time. The exact 
size of batches and sequences were found with the 
trial-and-error method. 

2.5 Performance metric 

To evaluate the performance of the model, the main 
metric used was the Matthews correlation coefficient 
(MCC). Similar work on occupancy estimation used 
a more traditional accuracy score or an F1 score, 
which happens to show dangerously optimistic 
results on overly imbalanced datasets. Since the 
rooms in question are majority of the time vacant, the 
number of times a vacant class (zero) is present in the 
data set is much higher compared to the number of 
times the room is occupied. Which means that if a 
model would always predict the room is vacant, it 
would be awarded with a high accuracy score. The 
MCC score, on the other hand, gives more 
understandable accuracy metrics for those cases: to 
achieve a high quality score, the classifier (such as 
the occupancy prediction model) has to make a 
prediction in majority of positive and negative cases 
independently of their ratios in the overall dataset 
[24].  

On the other hand, MCC score gives a very general 
metric, which is not straightforward for the potential 
use cases of this work. To make the results more 
understandable additional performance metrics were 
developed. Aside from the room occupancy in each 
timestep, from the perspective of optimizing HVAC 
system and space utilization, it is useful to know the 
following about the meeting room occupancy; the 

time of the first and last occupancy in the day and 
the duration of room occupancy. Therefore, the 
corresponding metrics were developed. The 
difference in the first or last occupancy of the day 
between the measured and predicted occupancy is 
shown as averaged throughout the period and in 
minutes. Duration of room occupancy is shown as a 
percentage of the average day being occupied. 

3. Results

3.1 Source model training 

The source model for occupancy estimation was 
trained with data from source room. Training of the 
model was done using 22 days (14 days occupied) 
and validation of the training was done with the 
following three days. The model was first trained 
using the raw sensor data in 30 epochs and then in 
the second iteration smoothed data was used. Using 
raw and smoothed version of the same data showed 
better performance during training and it served as 
an additional regularization technique, making 
model less prone to overfitting. Trained source 
model has shown MCC score of 0.85. 

3.2 Transfer to the target room 

Transfer learning of the source model for successful 
occupancy detection is analyzed from the point of 
minimum training data needed from the target room. 

Process for re-training of CDLSTM model considers 
which layers of the model are frozen and which are 
retrained with the new data and in which way. If a 
particular layer is not frozen, it can be trained from 
scratch (weights are reinitialized) or the layer 
weights can be transferred and then retrained. 

Models compared in this work are Model which was 
trained using training data from only target dataset is 
called Baseline model, while model which was not 
retrained at all is Pure source model. The Transfer 
model is a model with pre-trained weights for all 
layers, which were retrained. 

Goodness of the models is first assessed with MCC 
score and then the best cases are further analyzed 
using the additional performance metrics. In Tab. 1 
MCC score of different models with different 
training data length is presented. Analyzing the 
results from the training length perspective, it can be 
seen that with already two days of ground-truth data 
with transfer learning it is possible to get high MCC 
score, as with longer training period and nearly as 
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high as with source model. Without transfer method 
for two days training the best score would be 0.73, 
while for 5 days 0.80. 

Tab. 1 – Comparison of different occupancy 
detection models performance with regards to the 
length of training data shown with MCC score  

Model 1 day 2 day 3 day 5 day 
Baseline 
model 0.67 0.73 0.79 0.80 

Pure 
source 
model 

0.71 0.71 0.71 0.71 

Transfer 
model 0.77 0.82 0.82 0.82 

Tab. 2 – Additional performance metrics for 
selected models of different training length and 
method, as daily average occupied time and average 
difference of first and last occupancy in a day  

Model MCC 

Daily 
avg. 
occupied 
time [%] 

First occ. 
avg. 
difference 
[min] 

Last occ. 
avg. 
difference 
[min] 

Ground 
truth - 7.5 - - 

2 day - 
Baseline 
model 

0.73 11 5 28 

2 day - 
Transfer 
model 

0.82 8.9 7 7 

5 day – 
Baseline 
model 

0.80 9.4 5 15 

For further analysis, three interesting cases were 
chosen, which are made bold in Tab. 1. Selected 
cases are then further examined with additional 
performance metrics in order to understand what 
MCC score might mean for practical use and to 
select a final occupancy detection transfer model. 
This analysis can be seen in Tab. 2. Where the best 
result shows the case using two-day Transfer model. 

Having closest daily average occupied time to the 
ground truth of the shown cases and having only 
seven minutes average difference between the first 
and the last occupancy of the day. This case will be 
called the transferred occupancy detection model in 
the next sections. Transferred occupancy detection 
model's performance is visualized in Fig. 1 where it 
is compared to the measured ground truth 
occupancy. 

3.3 Robustness check - change in 
ventilation system operation 
Robustness of ML models for predicting the room 
occupancy using environmental variables is 
important for using them commercially, as certain 
changes might happen in a building system 
operation. In this section the performance of the 
Transfer model is checked after a change in 
ventilation system operation occurs. In the target 
room, during the model transfer, ventilation operated 
with a constant airflow of about 90 l/s. Change in the 
operation was the demand-controlled variable air 
flow operation activation, where airflow was 
modulated between about 55 to 90 l/s, depending on 
the control logic described in section 2.3.  

Robustness check on data from VAV operation was 
done using data measured during May 2021. During 
the process, it became clear that the way how z-score 
normalization is performed is important. In many 
time-series ML work the z-score normalization 
statistics derived from the training dataset is used 
also for the test data. This is suitable only for 
stationary time series, but not for non-stationary time 
series [25]. In this case introducing the variable 
airflow makes mean and standard deviation of CO2 
and temperature time series more susceptible to 
change over time. Therefore, a sliding window 
approach was used, where a normalization statistics 
was calculated on an arbitrarily chosen 14 days 
window prior to the day being predicted. More 
advanced approaches exist such as adaptive 
normalization [25], [26], but are out of the scope of 
this work. 

Fig. 1 - Three-day showcase of the selected target model performance and comparison with measured 
occupancy.  

5 of 7



Tab. 3 – Performance of previously transferred 
model after the room ventilation changed from CAV 
to VAV operation 

Model MCC 

Daily 
avg. 
occupied 
time [%] 

First occ. 
avg. 
difference 
[min] 

Last occ. 
avg. 
difference 
[min] 

Ground 
truth - 5.7 - - 

Trans. 
model, 
norm. 
on 
training 

0.71 8.4 -74 21 

Trans. 
model, 
Sliding 
norm. 

0.78 6.9 -27 2 

Tab. 3 presents results from the robustness check of 
the transferred detection model with two 
normalization approaches. Results are presented 
using MCC for model accuracy and the additional 
performance metrics. The sliding window 
normalization produced significantly better results 
than using the normalization from the training phase. 
Using the sliding window normalization, detection 
performance of the model is close to the original 
performance of the detection model during 
ventilation operation in the CAV mode. Where 
largest difference in performance is in detection of 
the first daily occupancy.  

4. Discussion

As mentioned in the literature review, plenty of 
studies were done exploring the accuracy of 
occupancy inferring methods from environmental 
variables. On the other hand, very little was done on 
scalability of those methods and therefore they have 
not found their way in the industry.  

In this work, main obstacle was tried to be avoided 
or at least minimized by using transfer learning 
method. Having a previously trained model on large 
dataset and having a small amount of ground truth 
data (two days) from a different room, it is possible 
to get good occupancy detection accuracy.  

Second obstacle, is what happens after certain 
conditions in the room change, how will the model 
perform? In this work, transferred model with the 
small amount of data from constant airflow 
conditions was tested after the conditions in room 
have changed to variable airflow. The test has shown 
that it is possible to keep the performance on same 
level, if normalization technique is improved.  

For wider usage of similar models, probably even 
with this method, the problem is not solved. 
However, a further work should continue with 

removing the need for ground truth collection 
completely, if possible. Additionally, methods for 
monitoring drift of such models should be explored. 
Where the biggest issue is not having ground truth at 
all.  

In this work, as a tool to increase robustness, a 
sliding version of z-score normalization was used. 
However, there are other state-of-the-art 
normalization methods for non-stationary time 
series, which should be explored. 

Finally, occupancy detection is good, but much more 
valuable is knowing the number of people or at least 
the level of room occupancy. Minimizing the 
training data needed for this purpose is difficult, 
since machine learning models need to see enough 
examples of every class. This is an important issue 
for future research in this field. 

5. Conclusion

The main goal of the presented study was to explore 
the scalability of deep learning-based method for 
inferring room occupancy information using 
environmental IoT sensor. Previous research has 
focused on testing different ML based methods in 
order to get as high accuracy as possible, but since it 
is difficult to collect labelled training data the 
methods were not used widely. In this study, a 
transfer learning method has been applied and it 
showed that it is possible to create occupancy 
detection model of good accuracy with only two 
days of ground truth data, instead of several weeks.  

Furthermore, a robustness of the transferred model 
was tested in different airflow conditions and 
accuracy did not drop significantly when sliding 
normalization was used.  
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