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Abstract: A fundamental challenge in the planning and operation of modern cities is their walkability. 
Walkability is typically assessed using geo-information system (GIS) or real-time observations. These 
existing methods, however, are not suited to the task in several key aspects. GIS-based assessment is 
inherently limited in capturing the details of a space, and observation-based methods are time and re-
source consuming. To overcome these limitations, we introduce a novel machine learning (ML) based 
approach. Our main concept is to make walkability an ML problem, where sites or locations are defined 
as data points. The data points are characterised by features extracted from street images. The ultimate 
quantity of interesting aspects (or labels) of a data point determines its level of walkability. Our assess-
ment of walkability is based on the perceived accessibility of sites as measured via survey. Roughly 
speaking, our ML approach learns correlations between the presence of specific objects such as trees, 
buildings, sidewalks, and the perceived walkability of a specific location. The main methodological 
contribution of our research is a novel feature extraction method based on semantic segmentation tech-
niques. The extracted features are fed into different off-the-shelf supervised ML methods and com-
pared. The results demonstrate the usefulness of our approach to predict the walkability of an urban 
location based on an ML analysis of street image content.  

Keywords: Walkability, machine learning, sustainable urban and landscape design, urban digitization 

1 Introduction 

1.1 Objectives under Global Urban Challenge and Urban Digitization 
Most cities in the world are currently confronting increasingly complex problems (e. g., ur-
ban heat island effect (UHI), urban flooding, health challenges) caused by global warming 
and urbanization. Urban digitization is a tool that has the potential of grasping the complexity 
by converting urban information into a language that computers understand. It can provide 
enormous data to help deepen our understanding of cities and their problems. Machine learn-
ing (ML) is an application where computers predict future events based on learning algo-
rithms (JUNG 2022). It is a new approach for analyzing data effectively and accurately, which 
can be used to support design strategies to help meet the continually growing challenges cities 
face. The study supports the Sustainable Development Goals 11: “Sustainable cities and 
communities” and 9: “Good health and well-being”, because walkability can be viewed as a 
key measure in sustainable urban strategies. Furthermore, as discussed by LITMAN (2003) 
and SPECK (2012), walkable neighbourhoods deliver substantial benefits in terms of health, 
air quality, sustainability and the economy. The research is developing ML methodology to 
understand firstly how attributes (e. g., trees, roads, buildings) in street image datasets affect 
walkability and secondly how to transform subjective visual perception into quantitative data. 
This shift in understanding quantifiable attributes will support urban landscape planners’ re-
search in the qualities of the street level based less on intuition and more on evidence-based 
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practice. The long-term objective of this research is to use the advantages of ML, namely 
continuous learning new data with improved effectiveness and accuracy, to maximize the 
understanding of correlations between data so that this method can support urban and land-
scape planning with more efficiency and acuity.  

1.2 Filling a Gap Based on the Past Studies 
Since the 1960s, city planners have identified different attributes like sidewalks (JACOBS 
1961, LYNCH 1960), facades (GEHL & KOCH 2011), traffic noise (APPLEYARD & LINTELL 
1972) and road networks (JACOBS 1995) as influencing the quality of streets and public 
spaces. These studies relied on intuitive observation, contributing empirical knowledge for 
developing walkable environments. However, it is still a challenge to accurately quantify 
each attribute’s degree of influence on walkability. Furthermore, when cities grow larger and 
more complex, traditional non-digital methods are more cumbersome because of the diffi-
culty quantifying wider ranges of perceived attributes.  

Parallelly, researchers have begun to focus on a more measurable approach to a macro-level 
of walkability using GIS-based techniques or space syntax (HILLIER 1976), where numeric 
attributes (e. g., population density, land use mix) are easily calculable. Yet, these attributes 
usually do not take into account features at street level. For instance, software like Walk 
Score count the number of available amenities and Walkshed customize paths using decision 
tree algorithms to evaluate walkability. Nevertheless, they all have their limits on understand-
ing the characteristics of streets like the quality of sidewalks (D’ORSO & MIGLIORE 2020, 
AGAMPATIAN 2014). 

To help mitigate the pressing and complex urban challenges mentioned earlier, our paper 
aims to discuss novel ways for re-thinking the evaluation methods of perceived walkability. 
When cities grow larger and denser, the quality of urban spaces becomes extremely important 
in their ability to provide healthy and long-term sustainable user-friendly environments. De-
tailed data at street-level more precisely reflects the diverse aspects determining the quality 
of the spatial environment.  

1.3 The Role of Machine Learning in Walkability Studies  
Computer vision is a field of computer science where computers are programmed to distin-
guish patterns from visual data such as images or videos. This learning process is usually 
based on deep learning algorithms. The past decade has witnessed significant progress in 
computer vision using deep learning techniques, which provides people with new ways to 
understand and analyse visual data (VOULODIMOS et al. 2018). Current deep learning meth-
ods can detect objects (e. g., sidewalk, building, trees) in an image with high accuracy 
(SALOHEIMO et al. 2021). Image classification and clustering methods are commonly applied 
to urban-related studies (YIN et al. 2017). In the past five years, a small number of studies 
focused on more complex questions, such as analyzing the relationship between sky enclo-
sure (YIN & WANG 2016) and walkability, detecting pedestrians on street images (YIN et al. 
2017) or visual beauty prediction (WANG et al. 2019, JOGLEKAR et al. 2020) in cities. Alt-
hough these studies focused only on a few aspects of walkability, the results seem promising 
for future development of the ML approach.  
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2 Methods 

In our study, ML plays various roles in the data analysis. Firstly, ML is defined as an indirect 
observer. The process of observation is similar to human perception, though it is not a direct 
perception of the real world. In the process, ML can understand images at the pixel level, 
converting semantic image information to numbers of pixels that reflect different objects in 
image data. Essentially, a survey representing opinions of walking quality is first linked to 
image data, which is then converted into measurable attributes by using a semantic segmen-
tation model. The objects in an image are considered as attributes of walkability at street level 
and quantified. Therefore, this approach transforms intuitive perception into measurable and 
quantifiable information. Following that, the ML model distils the relationship between the 
transformed data and subjective opinions about the walking environment itself. In the analy-
sis of association, ML model generates the weight of each attribute correlated to walkability 
levels. These weights can then be used as a coefficient of the same attributes derived from 
new data to predict walkability levels at a new location. The purpose of converting image 
data to numeric data is not only to anticipate walkability levels but also to help recognize the 
correlation between each selected attribute and the predicted results. The study targets the 
significance of intuitive observation at a large scale in order to analyse and understand the 
working of complex urban layers in a quantifiable way. 

2.1 Data 
The location of the survey data is used to acquire street images through Street View Static 
API which is a service to receive image data based on certain parameters. Then the images 
are processed by the semantic segmentation library to get the ratios of each attribute in indi-
vidual images. The ratios of each attribute in each location are represented as datapoints 
marked by labels representing correlating opinions in the survey data (Figure 1). 

 
Fig. 1: Data Preparation 
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2.1.1 Image Acquisition 

In the initial phase, the location of the survey data gathered by the City of Helsinki in 2018 
is used to acquire street images. The survey collected the residents’ opinions about where 
they considered a pleasant or unpleasant environment for walking. The survey location points 
are classified into two categories: walkable or non-walkable. Survey data coordinates are 
generated with GIS software. With coordinates as a single parameter, we cannot always at-
tribute street view images to the actual directions the cameras are facing, namely headings, 
as the default heading (heading=0°) in Google Street View is true north. To be more specific, 
streets in a city do not always run in the north-south direction. Without an accurate heading, 
one may encounter an unexpected image facing the wrong direction. To solve this problem, 
we calculate the closest road from our coordinates and then we can compute the initial head-
ing using Overpass-turbo, which is a map data mining tool containing road vector data. Then 
the heading and coordinates are used as parameters to acquire street images (image size, 
640 × 640 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) through Google Street View Static API. As a single image cannot repre-
sent the environment fully, four street images with different headings (heading1 = start de-
gree, heading2 = start degree+90°, heading3 = start+180°, heading 4 = 270°) are acquired 
from every location (Figure 2). 

 

Fig. 2: 
Image acquisition based on headings in 
four directions 

2.1.2 Selection of Semantic Segmentation 

A python library called Pixellib is selected to extract objects from the pixel level of the image 
data because of its low-resource consumption, a wide range of predictability, the flexibility 
of input data and its reliability. Compared to many pre-trained semantic segmentation models 
usually comprising hundreds of codes and requiring a GPU running environment, the Pixellib 
library can process one image with a few lines of codes and a common CPU environment. 
Second, while many pre-trained models are trained on data sets like CITYSCAPES, which 
include only twenty types of objects, the pre-trained model in Pixellib library is trained on 
data sets such as ADE20K containing as many as 150 different types of objects (e. g., sky, 
road, building, water, vegetation). As the urban environment is quite complex, 150 parame-
ters can cover most of the important attributes of a street space. Thirdly, many pre-trained 
semantic segmentation models have strict input image size, whereas new data should always 
be resized accordingly for a prediction unless models are retrained. With the Pixellib, the 
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input image size is not required and comparatively flexible. Lastly, the Pixellib is among the 
top 10% on the Python Packages index, which makes it a reliable resource. 

2.1.3 Calculate Attributes  

Using the Pixellib library, the number of pixels is calculated for each attribute in a particular 
image. As each location comprises four street view images with different headings, we can 
calculate the total percentage of an individual attribute 𝑖𝑖 at one location as below: 

𝑷𝑷𝑷𝑷𝑷𝑷𝒏𝒏 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝒊𝒊 =𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏

 𝒊𝒊 +𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏
 𝒊𝒊 +𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏

 𝒊𝒊 +𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏
 𝒊𝒊

𝟒𝟒
 

where the 𝑷𝑷𝑷𝑷𝑷𝑷𝒏𝒏 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒍𝒍
 𝒊𝒊  is the total percentage of the ith attribute in four images with different 

directions at the same location n. The 𝑷𝑷𝑷𝑷𝒏𝒏 𝒊𝒊 is the pixel ratio of the ith attribute in four indi-
vidual images (n1 ,n2, n3, n4) at location n. All the attributes occurring in one location are 
represented as one datapoint (Figure 3). 

  
Fig. 3: Example of one datapoint representing a specific urban location. We use four street 

images of such a location which are then fed into an image segmentation method. 
The results of the segmentation are then used to construct the characteristic attrib-
utes (features) that characterize the datapoint (urban location). 

2.2 Predicting Walkability from Attributes  
Once the ratios of attributes on all locations are calculated, a process of attributes reduction 
is made to select the most relevant attributes as features for model training. The labels of 
training data are taken from the opinions of the survey, namely walkable or non-walkable. 
The weights of individual features are computed through the training process. Subsequently, 
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the trained logistic regression model can be used to predict the walkability on the street level 
when new data is given (Figure 4).  

 
Fig. 4: Model training processing 

2.2.1 Selecting Relevant Attributes for Logistic Regression Model 

With the earlier equation, each location as a data point returns a set of numerical values rep-
resenting the proportion of pixels that each attribute occupied on this location, which is 
demonstrated below: 

𝑋𝑋𝑛𝑛={𝑥𝑥1=𝑷𝑷𝑷𝑷𝑷𝑷𝒏𝒏 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝟏𝟏 , 𝑥𝑥2=𝑷𝑷𝑷𝑷𝑷𝑷𝒏𝒏 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕

𝟐𝟐 , 𝑥𝑥3=𝑷𝑷𝑷𝑷𝑷𝑷𝒏𝒏 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝟑𝟑 , … 𝑥𝑥𝑖𝑖=𝑷𝑷𝑷𝑷𝑷𝑷𝒏𝒏 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕

𝒊𝒊 }  

𝑦𝑦𝑛𝑛 = 0 or𝑦𝑦𝑛𝑛 = 1 

where 𝑋𝑋𝑛𝑛 is the dataset at the nth location and x is a proportion of pixels of one attribute at 
the nth location. The 𝑦𝑦𝑛𝑛 represents opinions of walkable (equal to one) / non-walkable (equal 
to zero) labels. We processed 1618 datapoints containing 6472 street images using the se-
mantic segmentation model, which predicted a total of 142 classes, or types of attributes, 
where 125 classes in the unpleasant walking environment and 141 classes in the pleasant 
walking environment respectively.When the data set included a large number of attributes as 
input features with limited data points, there was a risk of overfitting, which means the model 
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performed with minimal errors on the training set but relatively poorly on the test set.To 
prevent this during the training, we omitted the classes, which were not relevant to our tasks 
by using the feature selection method. We used the L1 regularization for the feature selection 
because it is used extensively as an approach for feature selection and can remove irrelevant 
features safely (Goodfellow et al. 2016). Subsequently, 50 classes as attributes were selected 
from the total 141 classes as the input features for the logistic regression model.  

The scikit-learn library is used for building the logistic regression model represent as𝑓𝑓(𝑋𝑋) =
𝑦𝑦, where X is the set of all selected attributes (𝑥𝑥1,𝑥𝑥2𝑥𝑥3....𝑥𝑥𝑛𝑛) including 𝑛𝑛 locations and y are 
the corresponding labels (walkable equals to one or non-walkable equals to zero). The data 
set X is split to three sets: 70% of data set is used for training and the two third of the rest 
30% data is for model validation and one third for model testing respectively. After the train-
ing and validation, each feature x contains a learned weight value w that shows the impact 
degree of feature x on the walkability as below: 

𝑓𝑓(𝑥𝑥1𝑤𝑤1,  𝑥𝑥2𝑤𝑤2, 𝑥𝑥3𝑤𝑤3, . . . 𝑥𝑥𝑛𝑛𝑤𝑤𝑛𝑛) = 𝑦𝑦𝑛𝑛  

𝑦𝑦𝑛𝑛 = 0 or𝑦𝑦𝑛𝑛 = 1 

The confusion matrix is a summary describing the competence of the classification model. 
The diagram below demonstrates the performance of our model on the test data (Figure 5). 
On non-walkable data points, the model predicted 38 times correctly and 7 times incorrectly. 
On walkable data points, the model predicted 39 times successfully and failed 14 times. To 
conclude, the accuracy of prediction of our model is approximate 80.2% on the training set 
and about 78.57% on the test set respectively. 

 

Fig. 5: 
Confusion matrix of the classifi-
cation model on test data 

2.2.2 Correlation between selected Attributes and Walkability 

After the model training, validating, and testing, the coefficients of each attribute are repre-
sented as weights related to walkable/ non-walkable environments (Figure 6). When the 
weight of a feature is greater than zero, the feature (light red to blue) represents a relatively 
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high correlation to walkable areas. In contrast, when the weight of a feature is below zero, 
the feature (dark red) possesses a relatively low correlation to walkable areas but a high cor-
relation to non-walkable areas. The weight values are log odds which are not easy to under-
stand. Thus, we can convert the weight values to normal odds with the exponential function:  

𝑒𝑒𝑤𝑤𝑤𝑤 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  

where 𝑒𝑒 is Euler's number and wi is the weight of ith feature and the odds means the likeli-
hood of the ith feature in the targeted label representing a walkable environment.From the 
graph, the sea feature with its weight value (ca. 0.21) has the highest correlation value to a 
walkable environment. With the formula above, we can calculate that the sea feature is about 
1.23 (e0.21 = 1.23) times more likely to occur in a pleasant walking environment. Other natural 
elements including water, field and vegetation (e. g., grass, plant, tree) also have a high link 
to a walkable environment. In contrast, features like signboard, bicycle, and fence have an 
insignificant correlation to pleasant walking environments. Lastly, feature like sky is neither 
related to walkable nor non-walkable environments. 

 
Fig. 6: Graph representing the weights of all selected features related to walkable or non-

walkable environments 
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Finally, with the weights trained from the model, the model can be used to predict the level 
of walkability on a street level when individual attribute 𝑥𝑥 is given, which is the proportion 
of related attributes from new image data taken from a new location. 

3 Discussion 

3.1 Advantages of the ML Method Compared to Traditional Methods 
As global warming becomes inevitable and climate change worsens, cities need effective and 
precise reactions to mitigate the complex impacts in order to maintain livable, high-quality 
neighbourhoods. Due to the size and complexity of data set, traditional tools need to be ex-
panded to AI-enhanced workflows. Our study has at least three advantages compared to tra-
ditional methods. First, our approach quantifies the attributes in the perceived built environ-
ment effectively, which, due to their complexity, cannot be achieved through an intuitive-
based observation. Second, semantic segmentation is considered as a tool not to replace hu-
man observation, but to enhance the effectiveness of observation and expand towards envi-
ronmental datasets. As street images are widely available, it is possible to apply our method 
to evaluate street space quality at a large scale. Meanwhile, we can easily reapply the trained 
walkability evaluation model to other urban locations by adjusting the desired parameters. 
This is called transfer learning, which is a common method used in the ML field when the 
model solves similar kinds of tasks with limited resources. On the contrary, traditional studies 
on the street level can rarely cover a large area and it is occasionally difficult to reproduce in 
other locations because of limited time and resources. Last, when intuitive data becomes 
measurable, the urban design at the street level can be adjusted through street views, which 
are generated by 3D modelling. With the same approach in our study, the street views can be 
evaluated to check if walkability improved based on the new design. 

3.2 Challenges and Limitations 
This study encountered a few challenges that will need to be addressed in subsequent trials. 
First, segmentation prediction is not one hundred percent accurate. For instance, one of the 
most recent models called Qualcomm AI Research (BORSE et al. 2021) received the third 
rank in the CITYSCAPE dataset with a mean intersection over Union (mIoU) with a score 
equal to 85.6%. Factors like input image quality or the data used to train the pre-trained model 
can affect the accuracy of the results. These should therefore always be considered when 
applying this method. In our study, the prediction of sidewalk pixels from the road is rather 
challenging, as the sidewalk is often similar in colour to vehicle roads, which decrease the 
ratios of the sidewalk on the image. This reduced the importance of the sidewalk feature 
related to the walkable environment (Figure 6). Similarly, streetlights are generally consid-
ered as important features in walkable areas (ZHANG 2019). However, when an image shows 
a walkable area with trees, it is more difficult for a computer to detect the streetlight from 
this image than from an image representing a non-walkable area like a motorway with clear 
background.Second, this paper only focused on the visual aspect of walkability; attributes 
related to other senses like auditory or haptic perception are not evaluated due to relatively 
limited data resources available. Although features like the number of available amenities 
and destinations are not considered in this paper, we will integrate them into our model in the 
future to gain a more comprehensive prediction for walkability. Finally, finding the right pre-
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trained model for the specific tasks related to urban planning remains challenging. Moreover, 
retraining a new model which fits all the attributes of walkability requires not only expertise 
in the ML field but well-annotated data of high quality, which is still currently limited.  

However, the study provides an example and foundation of utilizing ML for walkability eval-
uation. If data is collected with the required attributes, retraining the model based on existing 
environments with transfer learning, many urban challenges can be mitigated through data 
analysis and making informed predictions using ML. 

4 Outlook 

As urban digitization grows rapidly, novel ML methods may become a crucial tool in the 
field of urban and landscape planning (FRICKER et al. 2020). In order to extend the use of ML 
in city planning and design, new ML models designed for specific place-based applications 
need to be developed and critically evaluated (SALOHEIMO et al. 2021). Using our study as a 
foundation, a similar approach can be applied to areas like urban landscape quality evaluation 
or UHI effect evaluation (YAO & FRICKER 2021) at street level. In the near future, we will 
study additional attributes affecting walkability to refine the model and test the common at-
tributes of UHI effects and walkability to understand their interrelationship. Lastly, the ML 
model can be also used in the urban design process to help predict walkability in 3D models. 
When 3D models generate street views as input to semantic segmentation models, the ratios 
of the individual attributes can be computed, and the trained retrogression model can predict 
to what extent and why the new design increases walkability. As a result, walkability will be 
able to become a key parameter in the computational design workflow of sustainable urban 
and landscape environments. 
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