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A B S T R A C T   

This paper proposes strategic biddings for a consumer demand that participates in both the day-ahead and 
balancing markets. The strategic behavior of the consumer is represented by the bilevel optimization pro
gramming with minimization of consumer costs at the upper level (UL) subject to the co-optimization of energy 
and reserve in the market clearing process at the lower level problem (LL). Using the Karush-Kuhn-Tucker (KKT) 
optimality constraints to replace the LL problem, the bilevel model is recast into a single-level mathematical 
program with equilibrium constraints (MPEC). The resulted model is finally formulated as a mixed-integer linear 
programming (MILP) problem using the exact linearization technique and Fortuny-Amat transformation to 
replace bilinear terms and the complementarity constraints, respectively. The results demonstrate a reduction in 
the electricity consumption payment for the strategic consumer and a decline in social welfare. 

© 2017 Elsevier Inc. All rights reserved.   

1. Introduction 

The ever-increasing penetration of renewable energy resources 
(RERs) into the power grid has significantly changed the operation of 
power systems. Integration of large-scale RESs such as wind and solar 
creates different challenges for power systems, hence obliging them to 
provide sufficient flexibility to accommodate uncertainties arisen from 
the unpredictable nature of RERs like wind and solar [1][2]. To this end, 
demand response management (DRM), as an economically and practi
cally efficient way for providing flexibility, has emerged as a key 
concern in practice and has become the focus of many works for inte
grating large-scale, intermittent RESs and distributed energy resources 
(DERs) [3]. Demand response (DR) can be advantageous for both the 
utility and the consumers. On the one hand, the utility side can utilize 
the RESs more efficiently, and on the other hand, the consumers can 
reduce their electricity consumption cost [4]. 

Generally, there exist two different categories through which con
sumers participate in the DR program, either as competitive (price 
takers) or strategic decision-makers. The term “competitive” here refers 
to bidding at the marginal price, while the term ‘‘strategic’’ refers to the 
capability of changing the electricity price in the market clearing 

process. Most of the works in the literature have addressed the DR by 
adopting the competitive behavior of consumers [5–14] [15]. In [5], 
demand-side resources were applied for providing reserve capacity, 
while to take care of the uncertain nature of wind power generation 
(WPG), a conditional value at risk (CVaR) based optimization was used. 
In order to alleviate the issues related to wind power integration into the 
power system, a combinations of pumped hydro storage (PH) and (DR) 
was considered in [6] to participate in energy and ancillary service 
markets. The authors in [7] introduced comprehensive modeling of the 
DR programs for the operational scheduling of electricity markets 
considering the uncertainties of wind power generation (WPG). A robust 
bidding strategy subject to market price uncertainties and resource 
variability was proposed in [8] for aggregating demand-side resources 
(DSRs). The potential of DR in both day-ahead and real-time markets 
was investigated in [9] through DR aggregators. Intending to facilitate 
the integration of WPG, the authors in [10] proposed a DR program to 
co-operate between the electric power systems and the natural gas 
transmission system. In [11], a microgrid consisting of WPG, solar en
ergy, and tidal power were considered to study stochastic energy man
agement while handling the electricity price by Monte Carlo simulation 
(MCS). Flexible ramping products (FRPs) based on a distributionally- 
robust chance-constrained multi-interval optimal power flow 
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considering the spatiotemporal correlation of wind power and demand 
uncertainties were studied in [12]. Authors in [13] developed an 
approach to study the impact of DR on generation adequacy while taking 
the uncertainties and behavior of customers into account. In [14], a list 
of price plans was provided to motivate various consumers to contribute 
to the DR program. In [15], the potential of DR was studied as a 
comprehensive set of DR programs, including tariff-based, incentive-
based, and combinational DR programs where the power network has a 
high penetration of WPG systems. A new market framework was pro
posed in [16] to investigate demand aggregators’ participation in four 
European electricity markets. In [17], a stochastic optimization model 
was proposed for a prosumer consisting of electric vehicle (EVs), ther
mostatically controlled load (TCLs), Shiftable load (SLs), PV power 
generation and inflexible load (IL) to define energy and tertiary reserve 
bids. The purpose was minimizing the cost of energy in DA and 
balancing markets, besides maximizing the revenue of selling reserve in 
the balancing stage. In [18], an optimal bidding strategy model with the 
demand response program was proposed for a load aggregator (LA) that 

helps the LA to make a more economical bidding strategy and reduce the 
risk of financial loss. In addition, independent system operators and 
regional transmission organizations benefit due to the decreased peak 
load of the system. In [19], a real-time trading framework for distribu
tion networks was proposed where demands have a contract with an 
aggregator as a broker to deal with the distribution company. Then a 
bilevel formulation has been modeled to maximize the revenue of the 
distribution company at the upper level and maximize the profit of each 
aggregator at the lower level. The authors in [20] proposed an optimal 
bidding strategy for the aggregator while the responsiveness of resi
dential customers was taken into account. Accordingly, different elec
trical appliances adjust their load through an energy management 
system, and the aggregator bids its optimal strategy in the day-ahead 
market by functional relation, which formulates the aggregator’s 
decision-making process.In contrast with the large number of works in 
the literature considering the competitive behavior of consumers, there 
are limited studies that considered the strategic behavior of consumers. 
For example, in [21], the authors presented a Stackelberg game 

Nomenclature 

Indices and Sets 
T Set of the time period, indexed by t 
N Set of buses, indexed by n 
S Set of scenarios, indexed by s 
G Set of generation units, indexed by g 
W Set of wind power units, indexed by w 
D Set of strategic demands, indexed by d 
DN Set of competitive demands, indexed by dN 
L Set of transmission lines, indexed by l 
ΨG

n Set of generation units located at bus n 
ΨW

n Set of wind power units located at bus n 
ΨDN

n Set of competitive demands located at bus n 
ΨD

n Set of strategic demands located at bus n 
r(l)/s(l) Receiving/sending -end bus of line l 

Parameters 
Pw,t,s wind power produced by the wth wind power unit at time t 

and scenario s, (MW) 
Pmax

w Maximum generated power by wind unit W 
πs Probability occurrence of scenario s 
Cg Marginal cost of unit g 
CRU

g /CRD
g Upward/downward reserve capacity cost of unit g 

CU
g /CD

g Cost of increasing/ decreasing generation of unit g at the 
balancing stage 

RU,max
g Upward reserve capacity by unit g 

RD,max
g Downward reserve capacity by unit g 

Cw Marginal cost of wind power unit w 
Ccap

d,t Price cap for the day-ahead price bid 

CU cap
d Balancing market price cap for load increase 

CD cap
d Balancing market price cap for load curtailment 

CdN,t Marginal utility of the dNth competitive demand in the day- 
ahead market at time t 

Pmax
g Maximum power output of unit g, MW 

Pmin
g Minimum power output of unit g, MW 

fmax
l Transmission capacity of line l 

Pbid− max
dN,t Maximum bid power by demand dN 

Pbid− max
d,t Maximum bid power by demand d 

Pmin
d,t Minimum cleared power for demand d 

Pmin
dN,t Minimum cleared power for demand dN 

EMin− day
d Minimum daily energy consumption for d 

EMax− day
d maximum daily energy consumption for d 

Δt Interval duration of time t, h 

Variables 
Rd,t,s Binary decision to prevent simultaneous increasing and 

curtailment of load of dth strategic demand, at time t and 
scenario s 

Pg,t Power cleared to be produced by the gth generation unit at 
time t 

RU
g,t/RD

g,t Upward/downward reserve capacity of unit g at time t 
Downward reserve capacity of unit g at time t 
PU

g,t,s/PD
g,t,s Upward/downward balancing power of unit g deploying 

from RU
g,t at time t and scenario s 

Pw,t Power cleared to be produced by the wth wind power unit 
at time t 

PCurtail
w,t,s Curtailed power of wind power unit w at time t and 

scenario s 
PdN,t Power cleared to be consumed by the dNth competitive 

demand at time t 
Pd,t Power cleared to be consumed by the dth strategic demand 

at time t 
PU

d,t,s/PD
d,t,s Load increase/curtail by dth strategic demand at time t 

and scenario s 
Pbid

d,t Power bid to be consumed by the dth strategic demand at 
time t 

RU
d,t/RD

d,t Upward/downward reserve capacity of the dth strategic 
demand at time t 

Cd,t Bid price of the dth strategic demand in the DA market at 
time t 

CU
d,t/CD

d,t Bid price of the dth strategic demand for load increase/ 
curtail in the balancing market at time t 

δ0
n,t Voltage angle in the DA at bus n, and time t 
δn,t,s Voltage angle in the balancing stage at bus n, time t, and 

scenario s 
f0
l,t Power flow through line l in the DA at time t 

fl,t,s Power flow through line l in the balancing stage at time t, 
and scenario s 

λDA
n,t Locational marginal price at bus n and time t 
γBal

n,t,s/πs Balancing price at bus n, time t, and scenario s  
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approach to activate the DR program in a residential area. In this 
approach, the consumers at the upper level (UL) were adjusting their 
load to maximize their receiving bonus, while the aggregator at the 
lower level (LL) was striving to maximize the utilization of wind power 
generation by offering a bonus to the consumers. However, the elec
tricity market has not been included in the model. In [22], an optimi
zation model was proposed for a DR aggregator, which was a strategic 
player in the real-time market to decide the optimal operation of a DR 
aggregator in the wholesale electricity market. 

In [23], a bi-level optimization model was proposed for a flexible 
load aggregator, including distributed storage energy systems, EVs, and 
TLCs which were aggregated to trade in DA energy and reserve markets. 
In [24], the strategic behavior of a large consumer was presented in the 
day-ahead market without addressing the balancing market clearing. 
Reference [25] extended the work in [24] by including the balancing 
market, while still, the consumer could offer in the balancing market 
competitively. In addition, only a single-hour auction was considered in 
[25], which resulted in ignoring the load-shifting capability of the 
consumer. In [26], a bidding strategy was proposed for a PEV aggregator 
to participate in the day-ahead market. The paper considered both the 
uncertainty in electricity market bids and the constraints on the avail
able demand flexibility. 

In addition, in some literature, the strategic bidding strategy of 
battery energy storage system [27], an optimal bidding strategy for a 
strategic producer [28], and strategic bidding for wind power producers 
have been considered. However, to the best of our knowledge, strategic 
bidding of consumer demand, which participates in both day-ahead and 
balancing markets, has not been investigated so far. To address the 
existing gap, this paper which is the first of its kind proposes a 
comprehensive model to let the consumer demand take part in both 
day-ahead and balancing markets strategically. Table 1 shows the 
contribution of the proposed method compared to some of the literature 
reviews, which considered the participation of consumer demand in the 
electricity market. The last column of the table, which shows “Bidding 
only by consumer demand,” indicates that there are no other sources like 
battery energy storage that are integrated with consumer demand. This 
shows that consumer demand can participate in the electricity market 
stand alone. Overall, the main contributions of this work can be sum
marized as follows.  

• Developing a two-stage bi-level stochastic optimization model that 
derives the optimal bidding strategy for a strategic consumer in both 
the day-ahead and balancing markets under uncertainty of RERs.  

• Evaluating the actual market power of the strategic consumers by 
conducting the simulation for 24 hours of a whole day, from 1:00 a. 
m. to 24:00 p.m., which enables load-shifting for the strategic 
consumers.  

• Adopting an exact linearization method to transform the resulted 
nonlinear mathematical program with equilibrium constraints 
(MPEC) problem into a mixed-integer linear programming (MILP) 
problem. This is performed by applying the strong duality theorem 

and replacing the bilinears term with the equivalent linear terms 
obtained from complementarity conditions, see Section III-D.  

• Revealing the impact of strategic and competitive behavior of the 
consumer in the electricity market by implementing the proposed 
model on the IEEE RTS 24-Bus system and IEEE RTS 118-Bus system, 
and providing detailed discussion on the results. This shows the 
applicability of the proposed method. 

The remainder of this paper is organized as follows. Section II de
scribes the model. Section III presents the problem formulation. Section 
IV provides the simulation results and discussions. Section V concludes 
the paper. 

2. Model Description and Assumptions 

2.1. Problem Description 

We propose a bidding strategy for a consumer with market power, 
which aims at minimizing the total expected electricity cost in both the 
day-ahead and balancing markets. Therefore, the strategic consumer bid 
day-ahead price, day-ahead power, up-reserve power, down reserve 
power, balancing price for load increase and balancing price for load 
decrease. The up and down reserve power capacity of the consumer is 
similar to conventional units, which aims to mitigate the uncertainties of 
the RERs in the network. In this paper, we adopt a two-stage bi-level 
stochastic programming problem that seeks to minimize consumer 
electricity costs at the upper-level subject to co-optimizing the energy 
and reserve at the lower level. The main assumptions for developing the 
proposed model are as follows.  

• Only one large consumer is considered to bid strategically, and other 
consumers are assumed to bid competitively at their marginal price. 
In the same way, only the strategic consumer is able to consider up- 
and down-reserve power for load increase or load decrease, 
respectively.  

• All generating units are supposed to be perfectly competitive and to 
offer at their marginal costs.  

• To clear the market, a DC power flow is used.  
• The only source of uncertainty is the WPG output which is modeled 

through a finite set of scenarios.  
• A one-day period, equal to 24 hours, is considered for each consumer 

and generating unit. 

3. Problem Formulation 

This section presents the nomenclature, formulation of the bilevel 
model, equivalent MPEC by replacing Karush–Kuhn–Tucker (KKT) 
optimality conditions, and the resulted MILP (mixed-integer linear 
programming) model. 

Table 1 
Contribution of the proposed method compared to the other literature reviews.  

Approach in Strategic behaviour Participating in DA Participating in reserve and balancing Multiple hours auction Bidding only by consumer demand 
Proposed study ✓ ✓ ✓ ✓ ✓ 

[17] ⨯ ✓ ✓ ✓ ✓ 
[18] ✓ ⨯ ⨯ ✓ ✓ 
[19] ⨯ ✓ ⨯ ✓ ✓ 
[20] ⨯ ✓ ⨯ ✓ ⨯ 
[21] ✓ ⨯ ⨯ ✓ ✓ 
[22] ✓ ⨯ ✓ ✓ ✓ 
[23] ✓ ✓ ✓ ✓ ⨯ 
[24] ✓ ✓ ⨯ ⨯ ✓ 
[25] ✓ ✓ ⨯ ⨯ ✓ 
[26] ✓ ✓ ⨯ ✓ ⨯  
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3.1. Bilevel Model 

Identifying the optimal bidding strategy for a strategic consumer is 
formulated by the following bilevel model. 

Minimize
ΔUL∪ΔLL

∑

d∈j

∑T

t=1

(
λDAn(d),tPd,t + πs

∑

s∈S

(
γBaln(d),t,s

/
π
)(
PUd,t,s − P

D
d,t,s

)
) (1) 

Subject to: 

0 ≤ Pbidd,t ≤ Pbid max
d,t ; ∀d, ∀t (2)  

0 ≤ RUd,t ≤
(
Pbid max
d,t − Pd,t

)
Rd,t; ∀d, ∀t (3)  

0 ≤ RDd,t ≤
(
Pd,t − Pmin

d,t

)(
1 − Rd,t

)
; ∀d,∀t (4)  

0 ≤ Cd,t ≤ Ccapd,t ; ∀d,∀t (5)  

0 ≤ CUd,t ≤ CU cap
d ; ∀d,∀t (6)  

0 ≤ CDd,t ≤ CD cap
d ; ∀d, ∀t (7)  

Rd,t ∈ {0, 1}; ∀d,∀t (8)  

where λDA
n,t , γBal

n(d),t,s,Pd,t ,PU
d,t,s,P

D
d,t,s ∈ arg   

Subject to: 
∑

g∈ΨG
n

Pg,t +
∑

w∈ΨW
n

Pw,t −
∑

l∈L|s(l)=n

f 0
l,t +

∑

l∈L|r(l)=n

f 0
l,t =

∑

d∈ΨD
n

Pd,t +
∑

dN∈ΨDN
n

PdN,t

:
(
λDAn,t
)
; ∀n, ∀t (10)  

∑

g∈ΨG
n

(
PUg,t,s − PDg,t,s

)
+
∑

w∈ΨW
n

(
Pw,t,s − Pw,t − PCurtailw,t,s

)

+
∑

l∈L|s(l)=n

(
f 0
l,t− fl,t,s)−

∑

l∈L|r(l)=n

(
f 0
l,t − fl,t,s

)
=
∑

d∈ΨD
n

(
PUd,t,s − PDd,t,s

)

:
(
γBaln,t,s

)
; ∀n, ∀t, ∀s (11)  

f 0
l,t = B0,l

(
δ0
s(l),t − δ

0
r(l),t

)
:
(
φl,t
)
; ∀l, ∀t (12)  

fl,t,s = B0,l
(
δs(l),t,s − δr(l),t,s

)
:
(
ωl,t,s

)
; ∀l, ∀t,∀s (13)  

− fmax
ll ≤ f 0

l,t ≤ fmax
ll :

(
θ10
l,t , θ

up
l,t

)
;∀l, ∀t (14)  

− fmax
l ≤ fl,t,s ≤ fmax

l :
(
olol,t,s, o

up
l,t,s

)
;∀l, ∀t,∀s (15)  

− π ≤ δ0
n,t ≤ π :

(
αlon,t,αupn,t

)
;∀n\n : ref , ∀t (16)  

δ0
n,t = 0 :

(
ζn,t
)
; n : ref , ∀t (17)  

− π ≤ δn,t,s ≤ π :
(
εlon,t,s, εupn,t,s

)
; ∀n\n : ref ,∀t,∀s (18)  

δn,t,s = 0 :
(
τn,t,s

)
; n : ref ,∀t, ∀s (19)  

Pmin
g + RDg,t ≤ Pg,t ≤ Pmax

g − RUg,t :
(
βlog,t, β

up
g,t

)
; ∀g,∀t (20)  

0 ≤ RUg,t ≤ RU,max
g :

(
ηlog,t, ηupg,t

)
; ∀g,∀t (21)  

0 ≤ RDg,t ≤ RD,max
g :

(
ιlog,t, ιupg,t

)
; ∀g,∀t (22)  

0 ≤ PUg,t,s ≤ RUg,t :
(
κlog,t,s, κ

up
g,t,s

)
; ∀g,∀t,∀s (23)  

0 ≤ PDg,t,s ≤ RDg,t :
(
μlog,t,s, μupg,t,s

)
; ∀g,∀t,∀s (24)  

0 ≤ Pw,t ≤ Pmax
w :

(
νlow,t, νupw,t

)
; ∀w, ∀t (25)  

0 ≤ PCurtailw,t,s ≤ Pw,t,s :
(
ρlow,t,s, ρupw,t,s

)
; ∀w, ∀t,∀s (26)  

Pmin
dN,t ≤ PdN,t ≤ Pbid− max

dN,t :
(
υlodN,t, υ

up
dN,t

)
; ∀dN, ∀t (27)  

Pmin
d,t ≤ Pd,t ≤ Pbidd,t :

(
δlod,t, δ

up
d,t

)
; ∀d,∀t (28)  

0 ≤ PUd,t,s ≤ RUd,t :
(
σlod,t,s, σ

up
d,t,s

)
; ∀d, ∀t,∀s (29)  

0 ≤ PDd,t,s ≤ RDd,t :
(
ϕlod,t,s,ϕ

up
d,t,s

)
; ∀d,∀t,∀s (30)  

EMin− dayd ≤
∑T

t=1
Pd,t +PUd,t,s − P

D
d,t,s ≤ EMax− dayd :

(
χlod,s, χ

up
d,s

)
; ∀d, ∀s

}
. (31) 

The above bilevel model (1)-(31), includes upper-level (UL) problem 
(1)-(8) and lower-level (LL) problem (9)-(31). The dual variable corre
sponding to each constraint in (10)-(31) is indicated following a colon. The 
variables of the LL are in the set ΔLL = {Pg,t ,RU

g,t ,RD
g,t ,PU

g,t,s,PD
g,t,s,Pw,t ,PCurtail

w,t,s ,

PdN,t , Pd,t, PU
d,t,s, PD

d,t,s, λDA
n,t , γBal

n,t,s, ϕl, t, ωl, t, s,θup
l,t , θl, tlo, ol,t,s up,ol,t,s 

lo,αup
n,t,αlo

n,t ,ζn,t,ε
up
n,t,s,εlo

n,t,s, τn,t,s, βup
g,t,β

lo
g,t , η

up
g,t,ηlo

g,t, ι
up
g,t,ιlog,t, κ

up
g,t,s, κlo

g,t,s, μup
g,t,s, μlo

g,t,s, 
νup

w,t,νlo
w,t, ρ

up
w,t,s, ρlo

w,t,s,υ
up
dN,t , υlo

dN,t , δ
up
d,t, δ

lo
d,t , σlo

d,t,s, σ
up
d,t,s, ϕ

lo
d,t,s, ϕ

up
d,t,s, χup

d,s, χlo
d,s}. 

The variables of the UL include the variable in the set ΔLL, besides the 
variables in the set ΔUL = {Pbid

d,t , RU
d,t , RD

d,t , Cd,t , CU
d,t , CD

d,t}. The objective 
function of UL in (1) aims to minimize the total expected operational cost of 
the strategic consumer in both the day-ahead and balancing markets, while 
the objective function of LL in (9) represents the co-optimization of energy 
and reserve in the electricity market clearing process. The LL objective 
function includes the summation of the day-ahead energy and reserve 

Minimize
∑T

t=1

∑

g∈G

(
CgPg,t + CRUg RUg,t + CRDg RDg,t

)
+
∑T

t=1

∑

w∈W

(
CwPw,t

)
+
∑T

t=1

∑

s∈S

∑

g∈G
πs
(
CUg P

U
g,t,s − CDg P

D
g,t,s

)
+

∑T

t=1

∑

s∈S

∑

w∈W
πsCw

(
Pw,t,s − Pw,t − PCurtailw,t,s

)
−
∑T

t=1

∑

dN∈DN

(
CdN,tPdN,t

)
−

∑T

t=1

∑

d∈D

(

Cd,tPd,t +
∑

s∈S
πs
(
CUd,tP

U
d,t,s − CDd,tP

D
d,t,s

)
)

(9)   

M. Tavakkoli et al.                                                                                                                                                                                                                             



Electric Power Systems Research 210 (2022) 108132

5

dispatch cost as well as the anticipated balancing costs. Constraints (2)-(7) 
impose limits on the day-ahead power, up-reserve power, down reserve 
power, day-ahead price, balancing price for load increase, and balancing 
price for load decrease, respectively. Constraint (8) prevents simultaneous 
increase and curtailment of the load of the strategic consumer. Equations 
(10) and (11) show the power balance equations for the day-ahead and 
balancing stages, respectively. In (12) and (13), the transferred power for 
each line is indicated, and in (14) and (15), the capacity limits for each line 
is enforced in the day-ahead and balancing stages. In (16) and (18), the 
voltage angles of each bus are bounded, while in (17) and (19), the voltage 
angle of the reference bus is set to zero in the day-ahead and balancing 
stages, respectively. Constraints (20)-(24) impose limits on the cleared 
power, upward reserve, downward reserve, upward balancing power, and 
downward balancing power of each conventional generation unit, 
respectively. Constraints (25) and (26) limit the cleared and curtailed 
power of each wind power producer. In (27), the bounds for competitive 
loads are enforced. Constraints (28)-(30) impose limits on the cleared 
power, load increase, and load curtailment of each strategic load, respec
tively. It should be mentioned that the ramp rate consumption is not 
considered for the consumers in this study. The consumer is an aggregated 
load of must run loads and flexible loads. In order to study the performance 
of the presented approach, it has been applied to the IEEE RTS 24-Bus 
System [29]. Six wind farms have been added in different locations of 
the grid, including buses #3, #5, #7, #16, #21, and #23. 

2.2. MPEC Model 

The LL (9)-(31) is linear and thereby can be replaced by its KKT 
optimality constraints. Therefore, the original bilevel problem can be 
recast into a single-level MPEC as follows. 

Minimize
ΔUL∪ΔLL

∑

d∈j

∑T

t=1

(
λDAn(d),tPd,t + πs

∑

s∈S

(
γBaln(d),t,s

/
π
)(
PUd,t,s − P

D
d,t,s

)
) (32)  

(2) − (8) (33) 

Subject to: 

(A1) − (A71) (34) 

In addition, (34) correspond to the primal, dual, and Kar
ush–Kuhn–Tucker (KKT) conditions of the LL problem (9)-(31). Inter
ested readers may refer to Appendix A for detailed information on (34). 

3.3. MILP Model 

The MPEC (32)-(34) has the following nonlinearities:  

• Bilinear terms λDA
n,t Pd,t in the objective function (32).  

• Bilinear terms γBal
n(d),t,sP

U
d,t,s in the objective function (32).  

• Bilinear terms γBal
n(d),t,sP

D
d,t,s in the objective function (32).  

• The complementarity constraints in (A.40)-(A.71). 

Strong duality theorem (SDT) and some KKT constraints are adopted 
to replace the terms λDA

n,t Pd,t , γBal
n(d),t,sP

U
d,t,s, and γBal

n(d),t,sP
D
d,t,s by their exact 

equivalent linear terms. Interested readers may refer to Appendix B for 
more details of linearization and converting the MPEC model to the 
MILP model. 

Fig. 1. Power and cost for consumer located at bus #18, (a) Bid and cleared day-ahead power while bidding strategically, solid red line: bid power, dotted black line: 
cleared powe. (b) bid reserve and cleared power for load increase while bidding strategically, light blue bars: bid reserve for load increase, stars with different colors: 
cleared load increase for different scenariosr. (c) bid reserve and cleared power for load decrease while bidding strategically, orange bars: bidding reserve for load 
decrease, stars with different colors: cleared load decrease for different scenarios. (d) Electricity consumption cost while bidding strategically and competitively; 
strategic bidding (dashed blue line: day-ahead cost, dashed green line: balancing cost, dot dashed red line: total cost), competitive bidding (grey line: total cost) 
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4. Simulation results 

The performance of the proposed approach is thoroughly analyzed 
through two case studies, including IEEE RTS 24-Bus System [29] and 
IEEE RTS 118-Bus System. The simulations are conducted for 24 hours of 
a single day, from 1 a.m. to 24 p.m. The proposed model is implemented 
on an HP Z240 Tower Workstation with eight Intel Xeon E3-1230 v5 
processors at 3.4 GHz and 16 GB of RAM using CPLEX 12.8 [30] under 
GAMS 25.1.2 [31]. 

4.1. IEEE RTS 24-Bus 

In this case study, it is assumed that the consumer located at bus # 
18, which has the biggest load in the network and constitutes 11.2 % of 
the total load, behaves strategically. The maximum load of the system is 
2544.48 MW. Six wind farms, with 200 MW capacity for each of them, 
have been considered as RERs in different locations of the network, 
including 3, 5, 7, 16, 21, and 23 buses. The uncertainty of WPG is 
considered through 10 scenarios [32]. 

Fig. 1(a) illustrates the bid power and cleared day-ahead power of 
the consumer located at bus #18. Fig. 1(b) and Fig. 1(c) show the 
amount of reserve power for load increase and load curtailment as well 
as cleared balancing power of this consumer for different scenarios in 
the balancing market. Fig. 1(d) indicates the electricity consumption 
cost for this consumer when acting strategically and competitively. 
Adopting a strategic manner, this consumer can participate in the 
balancing market as well as the day-ahead market. 

The total electricity consumption over 24 hours is shown for the 
consumer at bus #18 and the rest of the consumers altogether in Table 2 
and Table 3, respectively. As it can be seen from these tables, adopting 
strategic bidding compared to competitive bidding, the total cost of the 
consumer at bus #18, which is acting strategically, has been reduced by 
€2873 (see Table 2), whereas the total cost of all other consumers 
(except load at bus #18), which are bidding competitively, shows a rise 
of about €4450 (see Table 3). According to Table 3, the total electricity 
cost has been reduced for some consumers who are geographically closer 
to bus #18, especially consumers # 13 and 14, while it shows a cost 
increase for the other consumers. Table 4 shows the total power 
curtailment of all WPG units. As it can be observed from this table, the 
total wind power curtailment of all WPG units has substantially 
decreased in each scenario. This can be due to the strategic behavior of 
the consumer in bus #18, which is shifting its load from hours with low 
WPG to hours with higher WPG. 

Table 5 displays overall revenue in both the day-ahead and balancing 
markets for each wind generation unit. As it can be observed from 
Table 5, some WPG units, including # 1, 2, 3, and 4, have shown revenue 
increase, while the others, including #5, and 6, faced revenue decline. In 
addition, the total revenue for all WPG units shows an increase in rev
enue by €9095.05. 

Table 6 shows the total revenue for conventional generators (in both 
the day-ahead and balancing markets), using strategic and competitive 
bidding of the consumer in bus #18. In both cases, it is assumed that 
other consumers are bidding competitively. In contrast with WPG units, 
the total benefit for conventional generators has decreased largely by 
about €11928. Finally, Table 7 indicates the impact of the strategic 

behavior of the consumer on social welfare. As can be seen from Table 7, 
the social welfare of the whole system shows an increase of 11984.6 
while the consumer at bus #18 is a strategic player rather than a price 
taker. 

4.2. Sensitivity analysis 

In this section, we will analyze how the market outcomes will 
change, given the amount of capacity that the strategic consumer con
siders to provide flexibility to the system. Accordingly, three minimum 

Table 2 
Electricity consumption cost for consumer at bus #18.  

Consumer At bus #18 Competitive Bidding 
(€) 

Strategic Bidding 
(€) 

Change 
(€) 

Day-ahead 29094 25132 -3962 
Balancing for load 

increase 
0 4463.6 4463.6 

Balancing for Load 
decrease 

0 -3374.6 -3374,6 

Total Cost 29094 26221 -2873  

Table 3 
Electricity consumption cost for price taker consumers.  

Consumer # Competitive Bidding (€) Strategic Bidding (€) Change (€) 
1 14093 13947 -146 
2 12695 12497 -198 
3 20740 22048 1308 
4 8632 9599 967 
5 7951 9264 1313 
6 15265 17886 2621 
7 15262 16384 1122 
8 21936 22342 406 
9 21571 22600 1029 
10 13133 13843 710 
11 2772 2426 -346 
12 6087 6535 448 
13 6328 5392 -936 
14 12909 10995 -1914 
15 22197 20902 -1295 
16 15826 15183 -643 

Total Cost 217393 221843 +4450  

Table 4 
Total power curtailment of wind generation units.  

Scenario # Competitive Bidding (MW) Strategic Bidding (MW) Change (%) 
1 3429.8 3055.5 -10.91 
2 4386 4011.8 -8.53 
3 3760.6 3386.4 -9.95 
4 5554.7 5180.5 -6.74 
5 4859.5 4485.2 -7.7 
6 4896.3 4522 -7.64 
7 3599.4 3225.1 -10.4 
8 4063.2 3688.9 -9.21 
9 4733.9 4359.6 -7.91 
10 3449.2 3074.9 -10.85  

Table 5 
Total revenue for wind power generation units.  

WPG unit # Competitive Bidding (€) Strategic Bidding (€) Change (€) 
1 19011 19179.91 1687.64 
2 15111 20310.77 6908.93 
3 21682 21136.77 907.13 
4 15587 19381.81 3633.47 
5 2177.2 842.167 -2658.31 
6 19893 20777.62 -1383.82 

Total 92534.0 101629.1 9095.05  

Table 6 
Total revenue for all conventional generation units.   

Competitive Bidding (€) Strategic Bidding (€) Change (€) 
Total revenue 138234.9 118732.2 -19052.7  

Table 7 
Social welfare of the system.  

Bidding Competitive Bidding Strategic Bidding Change 
Social Welfare 15718.1 27702.7 11984.6  
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consumption levels of 50, 100, and 150 MW per hour have been 
considered for the strategic demand which is located at bus #18. Fig. 2 
shows how the cleared demand will change for the strategic consumer 
over 24 hours when the minimum consumption levels have changed. 

As it is shown in Fig. 2, the strategic consumer has the highest 
amount of flexibility when there is no limit for minimum consumption 
demand per hour for the strategic consumer. Accordingly, this consumer 
can adjust its load demand in a way that minimizes the electricity cost 
over 24 hours. In this case, the consumption demand is zero in some 
hours like 5 a.m. and 10 a.m. but is at the maximum load at some hours 
like 4 a.m. and 12 p.m. However, in real situations, this might not be 
possible, and the consumer needs to consume some demand at each 
hour. For this reason, three minimum consumption levels as 50, 100, 
and 150 MW have been considered here to analyze the behavior of the 
consumer when it is bidding strategically. 

According to Fig. 2, where the minimum level of consumption is 
higher, the strategic consumer has less flexibility to change its load over 
the 24 hours because the amount of energy consumed over this period is 
constrained between two values which means the consumer should have 
a minimum and maximum amount of energy over the 24h hours period. 
This implies the consumers have less ability to manipulate the electricity 
price and probably have to pay more for its consumption. In the other 
way, when the minimum level of consumption is less, it means the 
consumer has more flexibility to provide and is able to adjust its load in a 
way to manipulate the electricity price more, and thereby is probable to 
pay less for the electricity cost over the period. 

Table 8 provides the electricity consumption cost for the consumer at 
bus #18 in two conditions, i.e., when it is bidding strategically and when 
it is bidding as a price taker. The minimum and maximum amount of 
energy over 24 hours has been constrained between a minimum and 
maximum values. According to Table 8, when the consumption level is 
equal for both price taker and strategic condition, the electricity cost is 
noticeably lower (in all three minimum demand level including 50, 100, 
and 150 MW) when the consumer bids strategically compared to the 
price taker bid. For example, when the minimum demand consumption 
for the consumer is 50 MW per hour, the electricity cost is €3031.6 with 
strategic bidding. 

In addition, Table 9 shows the electricity bill for the consumers with 
competitive bidding where they also experienced reduction of their 
electricity cost over the 24 hours period. Another result which seems 

Fig. 2. Cleared Power for consumer located at bus #18; green line: cleared 
power when the minimum consumption per hour is 0; dashed yellow line: 
cleared power when the minimum consumption per hour is 50; dotted dashed 
blue line: cleared power when the minimum consumption per hour is 100; 
dotted dashed red line: cleared power when the minimum consumption per 
hour is 150 

Table 8 
Electricity consumption cost for consumer at bus #18.  

Minimum consumption per hour by 
the consumer at bus #18 (MW) 

Total consumption by competitive 
bidding over 24 hours (MW) 

Total consumption by strategic 
bidding over 24 hours (MW) 

Electricity consumption cost for 
competitive bidding (€) 

Electricity consumption 
cost for strategic  

bidding (€) 
50 1832.7 3829.7 11689.1 25954.6 
100 2732.7 4428.2 17180.5 25990.6 
150 3632.7 4073.3 22925.1 26036.0  

Table 9 
Electricity consumption cost for consumer at bus #59.  

Consumer At bus #18 Competitive Bidding 
(€) 

Strategic Bidding 
(€) 

Change 
(€) 

Day-ahead 81695.83 67720 -35466.7 
Balancing for load 

increase 
0 9082.9 9082.9 

Balancing for Load 
decrease 

0 826.7 826.7 

Total Cost 81695.83 75976.2 -5719.63  

Table 10 
Electricity consumption cost for all price taker consumers.   

Competitive Bidding (€) Strategic Bidding (€) Change (€) 
Electricity cost 372067.72 196079.39 -175988.33  

Table 11 
Total power curtailment of wind generation units.  

Scenario # Competitive Bidding 
(MW) 

Strategic Bidding 
(MW) 

Change 
(MW) 

1 22846.36 22773.43 -72.934 
2 22676.27 22604.73 -71.544 
3 22614.84 22543.63 -71.207 
4 24601.29 24530.5 -70.785 
5 23305.29 23234.36 -70.929  

Table 12 
Total revenue for wind power generation units.  

WPG unit # Competitive Bidding (€) Strategic Bidding (€) Change (€) 
1 11179.97 -11,897.6 -23077.57 
2 3871.30 4,910.9 1039.60 
3 39868.12 47,733.2 7865.08 
4 23918.46 47,421.9 23503.44 
5 -167.12 6,689.7 6856.82 
6 23019.87 17,280.2 -5739.67 
7 164.07 -1,146.7 -1310.77 
8 -13474.96 3,667.1 17142.06 
9 21331.41 27,783.2 6451.79 
10 127.31 -2,810.8 -2938.11 

Total 109838.43 139631.10 29792.67  

Table 13 
Total revenue for conventional generation units.   

Competitive Bidding (€) Strategic Bidding (€) Change (€) 
Total revenue (€) 97799.68 38115.11 -59684.56  

Table 14 
Social welfare of the system.  

Bidding Competitive Bidding Strategic Bidding Change 
Social Welfare 246125.44 94309.38 -151816.06  
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very important in wind side, is significant reduction of curtailed energy 
by wind farm when the consumer is bidding strategically compared to 
the price taker bidding. Table 10, 11, and 12 show the amount of wind 
power curtailment for minimum demand of 50, 100, and 150 MW per 
hour for the consumer. In all three minimum demand levels, the 
curtailment energy has dropped substantially with the strategic bidding. 
However, the total revenue for the wind power units which is demon
strated in Table 13, has reduced which shows the electricity price de
creases when the consumer is bidding strategically. Table 14 provides 
revenue for the conventional generation units which shows that they 
also experienced a big reduction in their revenue due to the producing 
less power (more wind power has been utilized) and also decreased 
electricity price. 

Finally, the social welfare of the system is presented in Table 15 
which implies considerable rise in the social welfare by €7955.3 
(€20700.5 in competitive bidding and in €28655.8 in strategic bidding). 
Overall, having the flexibility to change its load over time and also the 
ability to bid strategically in the market gives the consumer the possi
bility to minimize their consumption cost and reduce the peak load in 
the network as well as reducing the wind power curtailment. 

4.3. IEEE RTS 118-Bus 

With the aim of further investigation of the proposed approach, it has 

been applied to the IEEE RTS 118-Bus system. In this case study, it is 
assumed that the consumer located at bus # 59, which has the biggest 
load in the network and constitutes around 6.5% of the total load, be
haves strategically. The maximum load of the system is 6331.343 MW. 
Ten wind farms, with 200 MW capacity for each of them, have been 
considered as RERs in different locations of the network (the wind farms 
are located at the weak buses), including buses number 72, 103, 104, 
105, 106, 107, 108, 109, 110, and 112. The uncertainty of WPG is 
considered through 5 scenarios [32]. 

Fig. 3(a) shows the bid power and cleared day-ahead power of the 
consumer located at bus #59. Fig. 3(b) illustrates the amount of reserve 
power considered for load increase as well as cleared balancing power of 
this consumer for different scenarios in the balancing market. In 

Table 15 
Social welfare of the system.  

Bidding Competitive Bidding Strategic Bidding Change 
Social Welfare 20700.5 28655.8 +7955.3  

Fig. 3. Power and cost for consumer located at bus #59. (a) Bid and cleared day-ahead power while bidding strategically, solid yellow line: bid power, dashed black 
line: cleared power. (b) Bid reserve and cleared power for load increase while bidding strategically, light blue bars: bid reserve for load increase, stars with different 
colors: cleared load increase for different scenarios. (c) Bid reserve and cleared power for load decrease while bidding strategically, purple bars: bidding reserve for 
load decrease, stars with different colors: cleared load decrease for different scenarios. (d) Electricity consumption cost while bidding strategically and competitively; 
strategic bidding (dashed blue line: day-ahead cost, dotted dashed green line: balancing cost, dot dashed red line: total cost), competitive bidding (yellow line: 
total cost) 

Table 16 
Electricity consumption cost for consumer at bus #59.  

Consumer At bus #18 Competitive Bidding 
(€) 

Strategic Bidding 
(€) 

Change 
(€) 

Day-ahead 81695.83 67720 -35466.7 
Balancing for load 

increase 
0 9082.9 9082.9 

Balancing for Load 
decrease 

0 826.7 826.7 

Total Cost 81695.83 75976.2 -5719.63  

Table 17 
Electricity consumption cost for all price taker consumers.   

Competitive Bidding (€) Strategic Bidding (€) Change (€) 
Electricity cost 372067.72 196079.39 -175988.33  
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addition, Fig. 3(c) demonstrates the reserve power and cleared 
balancing power for load decrease and load curtailment. The electricity 
consumption cost for the consumer located at bus #59 for both strategic 
and competitive bidding is depicted in Fig. 3(d). 

In Table 16 and Table 17, the total electricity consumption cost over 
24 hours is given for the consumer capable of strategic bidding located 
at bus #59 and the rest of the consumers altogether, respectively. These 
tables indicate that the total cost of the consumer at bus #59, which is 
acting strategically, has been reduced by €5719.63 (see Table 9), 
compared to the competitive bidding condition. Furthermore, the total 
cost of all other consumers (except load at bus #59), which are bidding 
competitively, has decreased significantly by €175988.33 (see 
Table 10). Due to strategic bidding of the consumer at bus#59, the 
electricity cost has decreased for some consumers who are geographi
cally closer to bus #59, which is because of the reduction of the day- 
ahead electricity price. 

Table 18 gives the total power curtailment of all WPG units in the 
network. According to this table, the total wind power curtailment of all 
WPG units has noticeably reduced in each scenario, which is due to the 
strategic behavior of the consumer in bus #59 seeking to minimize its 
operational cost by shifting its load from hours with low WPG to hours 
with higher WPG. The total profit for each wind generation unit is 
revealed in Table 19, which shows revenue increase for some WPG units, 
including # 2, 3, 4, 5, 8, and 9 and revenue decrease for the other WPG 
units, e.g., #1, 6, 7, and 10. However, the overall revenue for all WPG 
units increased by €29792.67. 

The total profit for conventional generators (in both the day-ahead 
and balancing markets), using strategic and competitive bidding of the 
consumer in bus #59, is given in Table 20. In contrast with WPG units, 
the total benefit for conventional generators has decreased dramatically 
by €59684.56, which shows some power from conventional generators 
is replaced by WPG units to supply the demands. Finally, Table 14 shows 
how the strategic behavior of a consumer affects social welfare. As can 
be seen from Table 21, the social welfare of the whole system decreased 
by 151816.06 when the consumer at bus #18 is a strategic player rather 
than a price taker consumer. 

5. Conclusion 

This paper presented optimal strategic bidding of a consumer in both 
the day-ahead and balancing markets. The IEEE RTS 24-Bus and IEEE 
RTS 118-Bus systems have been considered for verifying and revealing 

the potential of the proposed approach. The most important contribu
tions of the proposed work were developing a two-stage bi-level sto
chastic optimization model that derives the optimal bidding strategy for 
a strategic consumer and also proposing an exact linearization method 
to transform the resulted nonlinear MPEC problem into a MILP problem. 
The impact of strategic and competitive bidding of one large consumer 
on the electricity consumption cost for demands, revenue for WPG units 
and conventional generators, wind power curtailment, and social wel
fare of the system has been investigated. Simulation results showed that 
when a consumer bids strategically in the network, it can affect the price 
in its favor. According to Tables 2 and 16, the electricity consumption 
cost of strategic bidding related to consumers located at bus# 18 and 
bus# 59 in 24- and 118-bus systems, respectively, has reduced signifi
cantly. This shows the consumer with strategic bidding can minimize the 
electricity cost in the market. However, the other consumers, who were 
bidding competitively, may incur an increase or decrease in total 
operational cost, depending on their bid price and power (see Table 3 
and Table 17). In addition, the total power curtailment of WPG units in 
all possible scenarios has significantly decreased when there is a con
sumer demand who is bidding strategically instead of being price taker, 
which has resulted in higher total revenue for the WPG units (for 
example, total revenue for the WPG units was €101629.1 by strategic 
bidding versus € 92534 by competitive bidding of consumer located at 
bus#18 in 24-bus system). In contrast, the total revenue for all con
ventional generation units experienced a remarkable reduction, which 
was, for example, €118732.2 by strategic bidding versus €138234.9 by 
competitive bidding of consumer located at bus#18 in the 24-bus sys
tem. Finally, the social welfare of the system can increase or decrease 
depending on the cost for demands and revenue for WPG units and 
conventional generators. For example, social welfare has increased for 
the 24-bus system by 61.70 % but decreased for the 118-bus system by 
76.25 %. 

Future work will study the influence of higher penetration of RERs in 
the network while considering more than one strategic consumer. This 
will result in a highly complicated model, i.e., an equilibrium problem 
with equilibrium constraints (EPEC) instead of MPEC (for just one 
strategic consumer). The primary motivation is to find out new infor
mation for the most probable near-future scenario and its effects on the 
benefits of different players as well as the social welfare. 
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Table 18 
Total energy curtailment of wind generation units.  

Scenario 
# 

Competitive Bidding 
(MWh) 

Strategic Bidding 
(MWh) 

Change 
(MWh) 

1 22846.36 22773.43 -72.934 
2 22676.27 22604.73 -71.544 
3 22614.84 22543.63 -71.207 
4 24601.29 24530.5 -70.785 
5 23305.29 23234.36 -70.929  

Table 19 
Total revenue for wind power generation units.  

WPG unit # Competitive Bidding (€) Strategic Bidding (€) Change (€) 
1 11179.97 -11,897.6 -23077.57 
2 3871.30 4,910.9 1039.60 
3 39868.12 47,733.2 7865.08 
4 23918.46 47,421.9 23503.44 
5 -167.12 6,689.7 6856.82 
6 23019.87 17,280.2 -5739.67 
7 164.07 -1,146.7 -1310.77 
8 -13474.96 3,667.1 17142.06 
9 21331.41 27,783.2 6451.79 
10 127.31 -2,810.8 -2938.11 

Total 109838.43 139631.10 29792.67  

Table 20 
Total revenue for conventional generation units.   

Competitive Bidding (€) Strategic Bidding (€) Change (€) 
Total revenue (€) 97799.68 38115.11 -59684.56  

Table 21 
Social welfare of the system.  

Bidding Competitive Bidding Strategic Bidding Change 
Social Welfare 246125.44 94309.38 -151816.06  
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Appendix 

Appendix A. Equation (34) comprises primal, dual, and KKT conditions of the LL problem (8)-(30), which are as follows. 
∑

g∈ΨG
n

Pg,t +
∑

w∈ΨW
n

Pw,t −
∑

l∈L|s(l)=n

f 0
l,t +

∑

l∈L|r(l)=n

f 0
l,t =

∑

d∈ΨD
n

Pd,t +
∑

dN∈ΨDN
n

PdN,t :
(
λDAn,t
)
;∀n, ∀t (A.1)  

∑

g∈ΨG
n

(
PUg,t,s − PDg,t,s

)
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∑
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(
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)
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(
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)
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l ≤ fl,t,s ≤ fmax

l :
(
olol,t,s, o

up
l,t,s

)
;∀l, ∀t,∀s (A.6)  

− π ≤ δ0
n,t ≤ π :

(
αlon,t,αupn,t

)
;∀n\n : ref , ∀t (A.7)  

δ0
n,t = 0 :

(
ζn,t
)
; n : ref , ∀t (A.8)  

− π ≤ δn,t,s ≤ π :
(
εlon,t,s, εupn,t,s

)
; ∀n\n : ref ,∀t, ∀s (A.9)  

δn,t,s = 0 :
(
τn,t,s

)
; n : ref ,∀t, ∀s (A.10)  

Pmin
g + RDg,t ≤ Pg,t ≤ Pmax

g − RUg,t :
(
βlog,t, β

up
g,t

)
; ∀g,∀t (A.11)  

0 ≤ RUg,t ≤ RU,max
g :

(
ηlog,t, ηupg,t

)
;∀g,∀t (A.12)  

0 ≤ RDg,t ≤ RD,max
g :

(
ιlog,t, ιupg,t

)
;∀g,∀t (A.13)  

0 ≤ PUg,t,s ≤ RUg,t :
(
κlog,t,s, κ

up
g,t,s

)
; ∀g,∀t,∀s (A.14)  

0 ≤ PDg,t,s ≤ RDg,t :
(
μlog,t,s, μupg,t,s

)
;∀g,∀t,∀s (A.15)  

0 ≤ Pw,t ≤ Pmax
w :

(
νlow,t, νupw,t

)
; ∀w,∀t (A.16)  

0 ≤ PCurtailw,t,s ≤ Pw,t,s :
(
ρlow,t,s, ρupw,t,s

)
; ∀w,∀t, ∀s (A.17)  

Pmin
dN,t ≤ PdN,t ≤ Pbid− max

dN,t :
(
υlodN,t, υ

up
dN,t

)
; ∀dN, ∀t (A.18)  

Pmin
d,t ≤ Pd,t ≤ Pbidd,t :

(
δlod,t, δ

up
d,t

)
;∀d, ∀t (A.19)  

0 ≤ PUd,t,s ≤ RUd,t :
(
σlod,t,s, σ

up
d,t,s

)
; ∀d,∀t,∀s (A.20)  

0 ≤ PDd,t,s ≤ RDd,t :
(
ϕlod,t,s,ϕ

up
d,t,s

)
; ∀d,∀t, ∀s (A.21)  

EMin− dayd ≤
∑T

t=1
Pd,t +PUd,t,s − P

D
d,t,s ≤ EMax− dayd :

(
χlod,s, χ

up
d,s

)
; ∀d, ∀s

}
. (A.22)  

λDAn(g),t + βlog,t − βupg,t = Cg ; ∀g, ∀t (A.23)  

λDAn(w),t −
∑

s
γBaln(w),t,s + νlow,t − νupw,t = 0 ;∀w, ∀t (A.24)  

− λDAn(dN),t + υlodN,t − υupdN,t = − CdN,t ; ∀dN, ∀t (A.25)  
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− λDAn(d),t + δlod,t − δupd,t +
∑

s
χlod,s −

∑

s
χupd,s = − Cd,t ;∀d, ∀t (A.26)  

− βupg,t + ηlog,t − ηupg,t +
∑

s
κupg,t,s = CRUg ;∀g, ∀t (A.27)  

− βlog,t + ιlog,t − ιupg,t +
∑

s
μupg,t,s = CRDg ;∀g, ∀t (A.28)  

γBaln(g),t,s + κlog,t,s − κupg,t,s = πsCUg ; ∀g, ∀t, ∀s (A.29)  

− γBaln(g),t,s + μlog,t,s − μupg,t,s = − πsCDg ; ∀g, ∀t, ∀s (A.30)  

− γBaln(w),t,s + ρlow,t,s − ρupw,t,s = − πsCw;∀w, ∀t, ∀s (A.31)  

−
∑

l|s(l)=n

B0,lφl,t +
∑

l|r(l)=n

B0,lφl,t + αlon,t − αupn,t = 0 ;∀n\n : ref ,∀t (A.32)  

−
∑

l|s(l)=n

B0,l lφl,t +
∑

l|r(l)=n

B0,lφl,t + ζn,t = 0 ; n : ref ,∀t (A.33)  

−
∑

l|s(l)=n

B0,lωl,t,s +
∑

l|r(l)=n

B0,lωl,t,s + εlon,t,s − εupn,t,s = 0 ;∀n\n : ref , ∀t,∀s (A.34)  

−
∑

l|s(l)=n

B0,lωl,t,s +
∑

l|r(l)=n

B0,lωl,t,s + τn,t,s = 0 ; n : ref , ∀t,∀s (A.35)  

− λDAs(l),t + λDAr(l),t +
∑

s
γBals(l),t,s −

∑

s
γBalr(l),t,s + φl,t + θlol,t − θupl,t = 0 ;∀l, ∀t (A.36)  

− γBals(l),t,s + γBalr(l),t,s + ωl,t,s + olol,t,s − oupl,t,s = 0 ;∀l, ∀t, ∀s (A.37)  

− γBaln(d),t,s + σlod,t,s − σupd,t,s + χlod,s − χupd,s = − πsCUd,t;∀d, ∀t, ∀s (A.38)  

γBaln(d),t,s + ϕlod,t,s − ϕupd,t,s − χlod,s + χupd,s = πsCDd,t; ∀d, ∀t, ∀s (A.39)  

0 ≤ θlol,t⊥f
max
l + f 0

l,t ≥ 0 ; ∀l ,∀t (A.40)  

0 ≤ θupl,t ⊥f
max
l − f 0

l,t ≥ 0; ∀l ,∀t (A.41)  

0 ≤ olol,t,s⊥f
max
l + fl,t,s ≥ 0; ∀l ,∀t, ∀s (A.42)  

0 ≤ oupl,t,s⊥f
max
l − fl,t,s ≥ 0; ∀l ,∀t, ∀s (A.43)  

0 ≤ αlon,t⊥ π + δ0
n,t ≥ 0 ; ∀n\n : ref , ∀t (A.44)  

0 ≤ αlupn,t⊥ π − δ0
n,t ≥ 0 ; ∀n\n : ref ,∀t (A.45)  

0 ≤ εlon,t,s⊥π + δn,t,s ≥ 0 ; ∀n\n : ref ,∀t,∀s (A.46)  

0 ≤ εupn,t,s⊥π − δn,t,s ≥ 0 ; ∀n\n : ref ,∀t,∀s (A.47)  

0 ≤ βlog,t⊥Pg,t − Pmin
g − RDg,t ≥ 0 ; ∀g ,∀t (A.48)  

0 ≤ βupg,t⊥P
max
g − RUg,t − Pg,t ≥ 0 ; ∀g , ∀t (A.49)  

0 ≤ ηlog,t⊥RUg,t ≥ 0 ; ∀g , ∀t (A.50)  

0 ≤ ηupg,t⊥ RU,max
g − RUg,t ≥ 0 ; ∀g ,∀t (A.51)  

0 ≤ ιlog,t⊥RDg,t ≥ 0 ; ∀g,∀t (A.52)  

0 ≤ ιupg,t⊥RD,max
g − RDg,t ≥ 0 ; ∀g,∀t (A.53)  

0 ≤ κlog,t,s⊥P
U
g,t,s ≥ 0 ; ∀g,∀t,∀s (A.54)  

0 ≤ κupg,t,s⊥R
U
g,t − PUg,t,s ≥ 0 ; ∀g,∀t, ∀s (A.55)  

0 ≤ μlog,t,s⊥PDg,t,s ≥ 0 ;∀g,∀t,∀s (A.56) 
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0 ≤ μupg,t,s⊥RDg,t − PDg,t,s ≥ 0 ; ∀g,∀t,∀s (A.57)  

0 ≤ νlow,t⊥Pw,t ≥ 0 ; ∀w , ∀t (A.58)  

0 ≤ νupw,t⊥Pmax
w − Pw,t ≥ 0 ; ∀w ,∀t (A.59)  

0 ≤ ρlow,t,s⊥PCurtailw,t,s ≥ 0 ; ∀w ,∀t, ∀s (A.60)  

0 ≤ ρupw,t,s⊥Pw,t,s − PCurtailw,t,s ≥ 0 ; ∀w ,∀t, ∀s (A.61)  

0 ≤ υlodN,t⊥PdN,t − Pmin
dN,t ≥ 0 ; ∀dN ,∀t (A.62)  

0 ≤ υupdN,t⊥Pbid− max
dN,t − PdN,t ≥ 0 ; ∀dN ,∀t (A.63)  

0 ≤ δlod,t⊥Pd,t − Pmin
d,t ≥ 0 ; ∀dN, ∀t (A.64)  

0 ≤ δupd,t⊥P
bid
d,t − Pd,t ≥ 0 ; ∀d ,∀t (A.65)  

0 ≤ σlod,t,s⊥PUd,t,s ≥ 0 ; ∀d , ∀t,∀s (A.66)  

0 ≤ σupd,t,s⊥RUd,t − PUd,t,s ≥ 0 ; ∀d , ∀t,∀s (A.67)  

0 ≤ ϕlod,t,s⊥P
D
d,t,s ≥ 0 ; ∀d ,∀t,∀s (A.68)  

0 ≤ ϕupd,t,s⊥R
D
d,t − PDd,t,s ≥ 0 ; ∀d ,∀t,∀s (A.69)  

0 ≤ χlod,s⊥ − EMin− dayd +

(
∑T

t=1
Pd,t +PUd,t,s − P

D
d,t,s

)

≥ 0 ; ∀d ,∀s (A.70)  

0 ≤ χupd,s⊥E
Max− day
d −

(
∑T

t=1
Pd,t +PUd,t,s − P

D
d,t,s

)

≥ 0 ; ∀d , ∀s (A.71)   

Appendix B. Converting MPEC model to the MILP model 

First, strong duality equality is obtained. 

∑T

t=1

∑

g∈G

(
CgPg,t + CRUg RUg,t + CRDg RDg,t

)
+
∑T

t=1

∑

w∈W

(
CwPw,t

)
+
∑T

t=1

∑

s∈S

∑

g∈G
πs
(
CUg P

U
g,t,s − CDg P

D
g,t,s

)
+

∑T

t=1

∑

s∈S

∑

w∈W
πsCw

(
Pw,t,s − Pw,t − PCurtailw,t,s

)
−
∑T

t=1

∑

d∈DN

(
CdN,tPdN,t

)
−

∑T

t=1

∑

d∈D

(

Cd,tPd,t +
∑

s∈S
πs
(
CUd,tP

U
d,t,s − CDd,tP

D
d,t,s

)
)

= −
∑

w∈W

∑T

t=1

∑

s∈S
Pw,t,sγn(w),t,s

−
∑

l∈L

∑T

t=1
fmax
l

(
θupl,t + θlol,t

)
−
∑

l∈L

∑T

t=1
fmax
l

(
θupl,t + θlol,t

)
−
∑

l∈L

∑T

t=1

∑

s∈S
fmax
l

(
oupl,t,s + olol,t,s

)
−

∑

n∈N\n: ref

∑T

t=1
π
(
αupn,t + αlon,t

)
−

∑

n∈N\n: ref

∑T

t=1

∑

s∈S
π
(
εupn,t,s + εlon,t,s

)
−
∑

g∈G

∑T

t=1
Pmax
g βupg,t+

∑

g∈G

∑T

t=1
Pmin
g βlog,t −

∑

g∈G

∑T

t=1
RU,max
g ηupg,t −

∑

g∈G

∑T

t=1
RD,max
g ιupg,t −

∑

w∈W

∑T

t=1
Pmax
w νupw,t −

∑

w∈W

∑T

t=1

∑

s∈S
Pw,t,sρupw,t,s +

∑

dN∈DN

∑T

t=1
Pmin
dN,tυlodN,t −

∑

dN∈DN

∑T

t=1
Pbid− max
dN,t υupdN,t +

∑

d∈D

∑T

t=1
Pmin
d,t δ

lo
d,t −

∑

d∈D

∑T

t=1
Pbidd,t δ

up
d,t −

∑

d∈D

∑T

t=1

∑

s=1
RUd,tσ

up
d,t,s −

∑

d∈D

∑T

t=1

∑

s=1
RDd,tϕ

up
d,t,s +

∑

d∈D

∑

s=1
χlod,sE

Min− day
d −

∑

d∈D

∑

s=1
χupd,sE

Max− day
d

(B.1) 

From constraint (A.26), we obtain: 

Cd,t = λDAn(d),t − δlod,t + δupd,t −
∑

s
χlod,s+

∑

s
χupd,s ;∀d, ∀t (B.2) 
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Thus, 

∑

d∈D

∑T

t=1
Cd,tPd,t =

∑

d∈D

∑T

t=1

(

λDAn(d),t − δ
lo
d,t + δ

up
d,t −

∑

s
χlod,s+

∑

s
χupd,s

)

Pd,t (B.3) 

In the same way, from (A.64) and (A.65), we obtain: 

∑T

t=1

∑

d∈D
δlod,tPd,t =

∑T

t=1

∑

d∈D
δlod,tP

min
d,t (B.4)  

∑T

t=1

∑

d∈D
δupd,tPd,t =

∑T

t=1

∑

d∈D
δupd,tP

bid
d,t (B.5) 

Using (B.4) and (B.5), (B3) is simplified to (B.6). 

∑

d∈D

∑T

t=1
Cd,tPd,t =

∑

d∈D

∑T

t=1
λDAn(d),tPd,t −

∑T

t=1

∑

d∈D
δlod,tP

min
d,t +

∑

d∈D

∑T

t=1
δupd,tP

bid
d,t

−
∑

d∈D

∑T

t=1

∑

s∈S
χlod,sPd,t +

∑

d∈D

∑T

t=1

∑

s∈S
χupd,sPd,t

(B.6) 

From constraint (A.38), (B.7) is obtained. 

πsCUd,t = γBaln(d),t,s − σlod,t,s + σupd,t,s − χlod,s + χupd,s;∀d, ∀t, ∀s (B.7) 

Thus, 

∑

d∈D

∑T

t=1

∑

s∈S
πsCUd,tPUd,t,s =

∑

d∈D

∑T

t=1

∑

s∈S
γBaln(d),t,sP

U
d,t,s −

∑

d∈D

∑T

t=1

∑

s∈S
σlod,t,sPUd,t,s +

∑

d∈D

∑T

t=1

∑

s∈S
σupd,t,sPUd,t,s

−
∑

d∈D

∑T

t=1

∑

s∈S
χlod,sPUd,t,s +

∑

d∈D

∑T

t=1

∑

s∈S
χupd,sPUd,t,s

(B.8) 

In the same way, from (A.66) and (A.67), we obtain: 

∑

d∈D

∑T

t=1

∑

s∈S
σlod,t,sPUd,t,s = 0 (B.9)  

∑

d∈D

∑T

t=1

∑

s∈S
σupd,t,sPUd,t,s =

∑

d∈D

∑T

t=1

∑

s∈S
σupd,t,sRUd,t (B.10) 

Using (B.9) and (B.10), (B8) is simplified as (B11). 

∑

d∈D

∑T

t=1

∑

s∈S
πsCUd,tPUd,t,s =

∑

d∈D

∑T

t=1

∑

s∈S
γBaln(d),t,sP

U
d,t,s +

∑

d∈D

∑T

t=1

∑

s∈S
σupd,t,sRUd,t −

∑

d∈D

∑T

t=1

∑

s∈S
χlod,sPUd,t,s

+
∑

d∈D

∑T

t=1

∑

s∈S
χupd,sPUd,t,s

(B.11) 

From constraint (A.39), we obtain: 

πsCDd,t = γBaln(d),t,s + ϕlod,t,s − ϕupd,t,s − χlod,s + χupd,s; ∀d, ∀t, ∀s (B.12) 

Thus, 

∑

d∈D

∑T

t=1

∑

s∈S
πsCDd,tPDd,t,s =

∑

d∈D

∑T

t=1

∑

s∈S
γBaln(d),t,sP

D
d,t,s +

∑

d∈D

∑T

t=1

∑

s∈S
ϕlod,t,sP

D
d,t,s −

∑

d∈D

∑T

t=1

∑

s∈S
ϕupd,t,sP

D
d,t,s

−
∑

d∈D

∑T

t=1

∑

s∈S
χlod,sPDd,t,s +

∑

d∈D

∑T

t=1

∑

s∈S
χupd,sPDd,t,s

(B.13) 

In the same way, from (A.68) and (A.69), we obtain: 

∑

d∈D

∑T

t=1

∑

s∈S
ϕlod,t,sP

D
d,t,s = 0 (B.14)  

∑

d∈D

∑T

t=1

∑

s∈S
ϕupd,t,sP

D
d,t,s =

∑

d∈D

∑T

t=1

∑

s∈S
ϕupd,t,sR

D
d,t (B.15) 
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Constraint (B.14) and (B.15) are used to simplify (B.13) as follows. 

∑

d∈D

∑T

t=1

∑

s∈S
πsCDd,tPDd,t,s =

∑

d∈D

∑T

t=1

∑

s∈S
γBaln(d),t,sP

D
d,t,s −

∑

d∈D

∑T

t=1

∑

s∈S
ϕupd,t,sR

D
d,t −

∑

d∈D

∑T

t=1

∑

s∈S
χlod,sPDd,t,s

+
∑

d∈D

∑T

t=1

∑

s∈S
χupd,sPDd,t,s

(B.16) 

From constraints (A.70) and (A.71), we obtain (B.17) and (B.18), respectively: 

∑

d∈D

∑T

t=1

∑

s∈S
χlod,s
(
Pd,t +PUd,t,s − P

D
d,t,s

)
=
∑

d∈D

∑

s∈S
χlod,sE

Min− day
d (B.17)  

∑

d∈D

∑T

t=1

∑

s∈S
χupd,s
(
Pd,t +PUd,t,s − P

D
d,t,s

)
=
∑

d∈D

∑

s∈S
χupd,sE

Max− day
d (B.18) 

Finally, by replacing the bilinear terms in (B.6), (B.11), and (B.16), with their equivalents in (B.1), and using (B.17) and (B.18) for simplification, 
we obtain: 

∑

d∈D

∑T

t=1
λDAn(d),tPd,t +

∑

d∈D

∑T

t=1

∑

s∈S
γBaln(d),t,s

(
PUd,t,s − PDd,t,s

)
=
∑T

t=1

∑

g∈G

(
CgPg,t + CRUg RUg,t + CRDg RDg,t

)
+

∑T

t=1

∑

w∈W

(
CwPw,t

)
+
∑T

t=1

∑

s∈S

∑

g∈G
πs
(
CUg P

U
g,t,s − CDg P

D
g,t,s

)
+
∑T

t=1

∑

s∈S

∑

w∈W
πsCw

(
Pw,t,s − Pw,t − PCurtailw,t,s

)

−
∑T

t=1

∑

d∈DN

(
CdN,tPdN,t

)
+
∑

w∈W

∑T

t=1

∑

s∈S
Pw,t,sγn(w),t,s +

∑

l∈L

∑T

t=1
fmax
l

(
θupl,t + θlol,t

)
+

∑

l∈L

∑T

t=1

∑

s∈S
fmax
l

(
oupl,t,s + olol,t,s

)
+

∑

n∈N\n: ref

∑T

t=1
π
(
αupn,t + αlon,t

)
+

∑

n∈N\n: ref

∑T

t=1

∑

s∈S
π
(
εupn,t,s + εlon,t,s

)

+
∑

g∈G

∑T

t=1
Pmax
g βupg,t −

∑

g∈G

∑T

t=1
Pmin
g βlog,t +

∑

g∈G

∑T

t=1
RU,max
g ηupg,t +

∑

g∈G

∑T

t=1
RD,max
g ιupg,t+

∑

w∈W

∑T

t=1
Pmax
w νupw,t +

∑

w∈W

∑T

t=1

∑

s∈S
Pw,t,sρupw,t,s +

∑

dN∈DN

∑T

t=1
Pbid− max
dN,t υupdN,t −

∑

dN∈DN

∑T

t=1
Pmin
dN,tυlodN,t

(B.19) 

The above equation (B.19) allows calculating the objective function of the UL problem as a combination of linear terms only. It should be remarked 
that the − δup

d,tPbid
d,t ,ϕ

up
d,t,sRD

d,t , σ
up
d,t,sRU

d,t , which are nonlinear terms in the strong duality constraints (B.1), are canceled with the same terms in (B.6), (B.11), 
and (B.16). In addition, Fortuny-Amat transformation [33] is used to recast the nonlinear complementarity constraints (A.40)-(A.71) into exact linear 
constraints. 
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