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Abstract: Coupling to longitudinal modes of thin spherical shells, under Gaussian-beam
illumination, was explored with a theoretical method based on Fourier-optics analysis and vector
spherical harmonics and was scrutinized with an experimental setup. For the theory part, the
illumination frequency band was fixed between 100–600 GHz and the outer spherical shell
radius of curvature and thickness are 7.5 mm and 0.5 mm, respectively. The shell material was
either the lossless cornea or an aqueous effective media representing the cornea. Six different
beam-target strategies were introduced being potential candidates for maximum coupling. Two
dispersion-tuned beam ensembles with strongly frequency-dependent phase center location
have been created with a fixed incident beam 1/e radius and radius of curvature called forward
strategies. These computations of different alignments were continued with four beam ensembles
of frequency-invariant phase center, constructed from fits to experimental data, oriented at four
different axial locations with respect to the spherical shell center of curvature, they are called
reverse strategies. Coupling efficiency for all strategies was calculated for different targets
including perfect electrical conductor (PEC) sphere, PEC core covered by a cornea loss-free layer
and cornea. All scattering strategies contrasted to scattering from equivalent planar targets as a
reference with maximum coupling. The results show that, under an ideal calibration, forward
strategies are a closer approximation to the plane-wave condition for the cornea. An experimental
setup was assembled to explore the simulation approach in a frequency range between 220 GHz
to 330 GHz. Two different quartz samples with permittivity of 4.1 were mounted on a water core,
acting for a cornea. The first and second quartz radius and thickness were 7.5 mm and 0.5 mm
and 8 mm and 1 mm, respectively. An adequate agreement between theory and experiment was
confirmed. A particle optimisation swarm algorithm was applied to extract the thickness and
permittivity of quartz from the measured back-scattered field for reverse strategies.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The sub-millimeter wave and THz frequency sensing of the cornea leverages the layered tissue
structure for corneal water content and thickness quantification. Changes in corneal tissue water
content (CTWC) and corneal central thickness (CCT) are correlated with human eye diseases and
disorders. Existing clinical measurement approaches are not sufficiently accurate for the early
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detection of these conditions. A promising method for non-invasive, in situ tissue characterization,
is THz spectroscopy. The cornea is 0.6 mm thick and is bounded by air and an optically thick
body of water on its anterior (outer surface ) and posterior (bottom inner) surface, respectively.
At THz frequencies, this structure presents as a lossy thin-film lying atop a lossy half-space.
Resolution of the cornea’s lossy longitudinal modes via frequency-domain reflectometry in a
band sufficiently low (e.g. 220 GHz - 330 GHz) for significant penetration allows simultaneous
estimates of CTWC and CCT. However, since the cornea is spherical, an efficient coupling
to longitudinal modes nominally requires normal incidence across the interrogated area and
thus a converging spherical phase front whose curvature matches the corneal surface curvature
[1–3]. However, as the average corneal radius of curvature (RoC) is ∼ 7.5 mm and the midband
free-space wavelength at 100 GHz - 600 GHz is ∼ 1 mm, approximate phase-front matching
occurs near the beam confocal point where the distinctly non-spherical phase-front curvature is
rapidly changing and leads to low longitudinal modes coupling.

A typical, non-contact measurement system block diagram is shown in Fig. 1. A transceiver
optical co-locates a source and detector to enable normal incidence illumination and reception.
The output beam is collimated and focused onto the cornea and back-scattered reflection is
referenced to some calibration standard reflection to compute broadband, complex sample
reflectivity. Fits between the measured data and a model are used to estimate water content
or water content gradients. Additionally, spectra can be used to estimate thickness and axially
varying hydration simultaneously.

Gaussian beam 
illumination

“Spherical” phase 
front matching

THz
Tx/Rx

Plane wave 
illumination

“Planar” phase 
front matching

THz
Tx/Rx

Fig. 1. Scheme of the problem. Modelling cornea as a planar layered structure under plane
wave illumination as well as a spherical layered structure under Gaussian illumination is
shown.



Research Article Vol. 13, No. 7 / 1 Jul 2022 / Biomedical Optics Express 3701

The nominal output beam profile of a THz system is TEM00 Gaussian and different strategies
regarding the placement of focused beam waist with respect to corneal RoC have been evaluated
[4]. Restated from above, while the Gaussian beam phase front radius of curvature can match the
cornea RoC on-axis, there is no configuration that achieves perfect matching across the field of
view. Nevertheless, spectra are almost exclusively analyzed with Fresnel’s equations at normal
incidence informed by effective media permittivities to model depth-dependent water content and
stratified media theory to model the depth-dependent and thus provide an aggregate reflection
coefficient of the stack. Implicit in this analysis is a planar thin film on semi-infinite planar
half-space, with plane wave illumination. The radius of curvature mismatch at the cornea’s
air-anterior interface and posterior-aqueous humour interface and resulting walk-off losses within
the cornea itself cannot be accommodated.

In summary, THz spectroscopy of cornea is performed via focused Gaussian beam illumination
on lossy hemispherical shell enclosing a lossy homogenous aqueous core while analysis assumes
planar illumination on a planar, infinite transverse extent lossy thin film on top of a semi-infinite
aqueous half space. The above-listed constraints raise two interrelated questions about obtaining
maximum coupling: (1) where should the corneal center of curvature (CoC) be positioned
relative to beam geometry? (2) Is there a frequency dependence on Gaussian beam parameters
that further helps to maximize coupling? More succinctly, given a set of constraints on the beam,
how does one maximize coupling to the cornea’s sub-millimeter wave longitudinal modes? It’s
worthy to say maximum coupling is considered as convergence to plane-wave on planar surface
coupling due to the perfect match of plane wave’s phase-front with the planar surface.

To best address, the above questions, a method based on Fourier optics (FO) and vector
spherical harmonics (VSH) is used to computationally explore longitudinal coupling in structures
resembling cornea. The VSH is the vector solution of the wave equation in spherical coordinates.
In 1908, Gustave Mie was one of the pioneers who used VHS to address the incident and scattered
field from a sphere illuminated by a plane wave [5]. Later, Davis modified the theory for Gaussian
beam illumination [6]. The early proposed method was quite intricate and cumbersome. In 1993,
Khaled et al. [7] presented a method using Fourier analysis [8] to model Gaussian beam as the
angular spectrum of plane waves, and for computing scattering coefficients, they employed the
T-matrix method [9].

In fact, the T-matrix relates the scattering coefficients of a target illuminated by a plane wave
with the scattering coefficients of the target illuminated by a Gaussian beam. To compute the
scattering coefficients of layered sphere under the plane wave illumination many approaches were
presented [10,11,12,13], here Yang [13] algorithm was employed. This classical method will
serve as a new application in our paper allowing us to scrutinize the cornea as a multilayered
spherical structure. FO allows for a closed-form expression of the steady-state scattering solution
(multiple reflections within the corneal layer) while VSH provides a convenient representation
of the fields with respect to the target geometry. The goals of the paper are to address different
beam target strategies which are potential candidates for maximum coupling and investigate these
strategies theoretically and experimentally for spherical targets. Additionally explored was the
efficiency of using a metal sphere as a calibrator [14] in an experimental set-up.

2. Background and Gaussian-beam analysis

At this point, the constraints on the illuminated beam parameters are explored, addressing
the questions in the introduction, whether there is a frequency dependence on Gaussian-beam
parameters assisting coupling enhancement. Also, to determine which beam-cornea alignment
are the most likely optimal strategies to explore.
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2.1. Cornea as a spherical scatterer and spherical cavity

Interestingly, a cornea can be considered as a scatterer in a wide frequency range. A plot of the
size parameter range for cornea in the THz band is shown in Fig. 2(a) with wavelength along
the horizontal axis and particle radius along the vertical axis. The family of oblique lines is
parameterized by a fixed size parameter, ka = 2πn0/λ, where a, k, λ/n are respectively, the
radius, the wavenumber, and the wavelength in the medium in which the particle resides (n0 = 1
for air refractive index). The fixed size parameter contours of 0.0002, 0.2, and 2000 serve as
approximate thresholds between the varying scattering regimes. The Mie scattering is a proper
candidate to describe the scattering behavior of particles with size parameters lying in the range
0.2<ka<2000.

The vacuum wavelength range 3 mm - 0.3 mm corresponding to the 100 GHz - 1 THz band
is indicated by the gray shaded vertical box. The nominal range for human cornea RoC, 7
mm - 8 mm is denoted by the thin purple horizontal shaded rectangle. Its intersection reports
the approximate corneal size parameter range subtended by the anterior segment. The size
parameter of the posterior segment was estimated by subtracting the nominal CCT range from the
anterior segment RoC and computing the wavelength in the complex aqueous corneal medium.
Bruggeman’s effective media theory [15] is used to compute the aggregate permittivity of a
mixture of 60% collagen and 40% free water.

(b)(a) (c)

(d)

Fig. 2. (a) Cornea scattering region, (b) stability analysis of the cornea as a spherical cavity,
coupling efficiency computed by ABCD matrix for beam illumination (c) on the apex, and
(d) on the center of the cornea.

These intracorneal size parameters are labeled "anterior segment" and "posterior segment" in
Fig. 2(a). The dispersion arising from the liquid water component is evident in the curvature
of the shaded region. At 100 GHz, both the anterior and posterior segments lie comfortably in
the Mie scattering regime. At 1 THz, the posterior segment is quite close to the approximate
geometric scattering limit and, depending on the illumination profile, indicating maybe GO is
sufficient to approximate the expected back-scatter.

Moreover, the cornea can be treated as a spherical cavity. It implies certain constraints on
the beam. Only particular ranges of the cavity outer radius R1, inner radius R2, and the distance
between them L, produce stable resonators. An unstable cavity will increase the beam size
without limitation, consequently, it will get larger than the cavity size and will be lost completely.

A stability analysis of the cornea for nominal RoCs and thicknesses are displayed in Fig. 2(b)
where g1 = 1 − L/R1 = 0.9333 and g2 = 1 − L/R2 = 0.9286. The unstable region g1g2>1 is
indicated by the shaded region and contours of constant g1g2 by the dotted lines. For clarity,
both RoC sign pairs are plotted; (+Rc,−Rc + t) and (−Rc,+Rc − t). In a region about the corneal
apex, the anterior and posterior surfaces are concentric and thus g1g2 = 1 for all combinations of
Rc and tc. The corneal thickness increases towards the periphery which can be described as an
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anterior segment RoC increase with respect to the posterior segment RoC and thus a divergence
from concentricity. This combination is unstable and is represented by the overlap between the
g1g2 curves and shaded unstable region.

Thus, the corneal cavity is susceptible to beam walk-off which reduces the interference between
the primary reflection at the air/cornea interface and multiple reflections from paths through the
cornea. Two examples of beam walk-off are shown in Fig. 2(c) using ABCD matrix computations
[16]. The cornea was modeled via the effective media theory described above but only the real
part of the permittivity was applied. Ray transfer matrices were used to compute the parameters
of the beam scattered from the anterior segment and then the beams scattered after one, two,
and three round trips through the cornea. The plots show the coupling coefficients (Eq. (11),
[4]) as a function of frequency between the primary reflection beam and the round trip beams.
The superior coupling of the RoC-matched beams compared to the incident waist radius beams
suggests that the phase front matching will enhance interference and thus aid in the coupling and
extraction of longitudinal modes.

2.2. Gaussian-beam analysis

The problem geometry definitions are displayed in Fig. 3. A converging beam is an incident, from
the left, on the cornea. The incident plane is labeled plane 1 and the incident beam transverse
radius and RoC are denoted ω1 and R1, respectively. The beam waist is labeled ω0 and located at
plane 0 where the parameters of plane 0 and plane 1 are related via free-space propagation in the
absence of the cornea. The physical distance between plane 0 and plane 1 is labeled d01 and the
distance between the corneal CoC and plane 0 is z0.

Two beam ensemble definitions were considered where the incident beam RoC was fixed such
that R1 = Rc∀ frequencies. The first was termed "forward" (shown in Fig. 3) where ω1 was set at
some constant value and then ray transfer matrices and complex beam parameters were used to
compute d01 and ω0 as a function of frequency:

d01(λ) =
−Rc(πω

2
1)

2

(πω2
1)

2 + (λRc)2
, (1)

ω0(λ, d01) =

√︄
((Rc + d01)πω

2
1)

2 + (λd01Rc)2

(πω1Rc)2
. (2)

The second approach was termed "reverse" or "varied confocal distance" (shown in Fig. 3)
where ω0 as a function of wavelength is defined and the standard Gaussian beam equation for
axially dependent RoC was used to find d01 and then ω1. Note that d01 is the solution to a second
order polynomial thus two solutions are possible. These are labeled d01,NF and d01,FF in Eq. (3)
and (4), respectively where the d01,FF>d01,NF for zc<Rc/2. The iF subscript stands for i = N, F
indicating FF far-field and NF near-field, respectively:

d01,iF(λ) =
−Rc ±

√︁
R2

c − 4z2
c

2
, (3)

ω1,iF(λ, d01,iF) = ω0

√︂
1 + d2

01,iF/z
2
c . (4)

The d01 and ω0 in the forward direction over a range of ω1 are reported in Fig. 4(a,b) for 100
GHz - 1 THz. In both plots, the (f , ω1) pairs that produce waist radii that violate the paraxial
limit ω0<λ/2 are eliminated. Further (f, ω1) pairs that produce d01<Zc are denoted. Input beam
radii ω1 = 2.1 mm and 3.1 mm are denoted by the white dotted lines and are considered in the
next section.
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Fig. 3. Geometry of the problem, cornea modelled as a layered sphere under Gaussian
beam illumination by two different beam ensemble definitions including forward and reverse
strategies.

Fig. 4. (a) Forward d01 and (b) forward ω0 over a range of ω1 is plotted. (c) Reverse d01,NF
and (d) reverse ω1,NF over a range of ω0 is plotted.
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Parameters spaces for d01,NF and ω1,NF computed in the reverse direction are displayed in
Fig. 4(c,d) with the (f , ω0) pairs in violation of the indicated paraxial approximation. The large
area in the upper right-hand corner of the plot correspond to (f , ω0) pairs where Zc>Rc/2 and
thus complex valued d01 has been set aside. Inspection of Eq. (4) shows that the contour lines in
the d01,NF plot of Fig. 4 correspond to contours of constant zc. In other words, if one defines ω0
such that Zc is invariant to frequency then, as evidenced by Eq. (3), d01,NF and d01,FF are invariant
to frequency and thus the beam RoC evolves equally along the axis for all spectral components.

2.3. Gaussian-beam strategies

According to previous discussions, the final candidate strategies are displayed in Fig. 5 where the
left column shows the evolution of the beam radius and beam waist location with respect to the
corneal geometry and the middle column shows the evolution of the beam RoC superimposed
on the corneal anterior and poster surface locations. The right column reports the spectral
dependence of beam waist ω0, incident beam radius ω1, and beam waist location Z0.

Strategy 1 (S1) fixes the input beam radius toω1 = 2.1 mm yielding a diameter similar to that of
modern ultrasound pachymeter probes [17]. Additionally, S1 allows analysis of illumination where
the low-frequency incidence occurs in the near-field region of the beam and the high-frequency
incidence in the far-field. This is evident by the black trace denoting the confocal point location
(Fig. 5) and requires significant dispersion visible by the beam waist locations reported in the left
and right columns.

The beams in strategy 2 (S2) were also defined in the forward direction with ω1 = 3.1 mm
fixed for all frequency. This ensemble locates the incidence location in the far-field region for all
beams but is still sufficiently small to avoid ω0<λ/2. The S2 beam waists are slightly smaller
than S1 but the dispersion (variation in Z0) is significantly reduced.

The reverse analysis was utilized for strategies 3 - 6 (S3 - S6) with the confocal distance fixed
at zc = 2.62 mm. This confocal distance is below the Rc/2 threshold and yields physically
realizable, paraxial approximation compatible, providing a set of beams for the frequency range
100 GHz - 1 THz.

The S4 places the phase front match in the super confocal (far-field) region of the beam as
evidence by the beam overlapping beam RoC plots in Fig. 5. The beam waists are collocated and
the waist radii are all larger than λ/2 although they approach the limit at 100 GHz. The S3 is
the same beam ensemble as S4 but places the phase front match in the subconfocal (near field)
region of the beam. The beam radius on the cornea is significantly smaller (ω1 ∼ ω0) which
should reduce phase front mismatch error in the beam periphery but the beam RoC magnitude is
rapidly increasing for increasing z instead of decreasing suggesting a substantial mismatch at the
posterior surface.

Strategies 5 and 6 (S5, S6) were evaluated for comparison to two strategies commonly reported
in the literature. The S5 places the beam waists at the corneal CoC. This is the typical arrangement
for imaging via a Gaussian beam telescope optical train and produces phase fronts that are
slightly larger in RoC than the corneal RoC. The S6 places the beam waist at the corneal apex thus
mimicking the common approach reported by many groups using THz time-domain spectroscopy.
The beam radius on target is minimized at the cost of a significant RoC mismatch. These strategies
are labeled "reference" throughout this work and are iterations of the reverse strategies.
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Fig. 5. Definition and orientation of Gaussian beams and their relationship to corneal
geometry for (a-c) S1, (d-f) S2, (g-i) S3, (j-l) S4, (m-o) S5 and (p-r) S6 strategies.
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3. Angular spectrum based analysis

An approach based on Angular Spectrum, for calculating the coupling efficiency of sub-millimeter
wave illumination on the cornea, was presented in [18] which utilized the methodology described
in [7]. This method is applicable for any Gaussian beam incident on a spherical surface and is
valid for spheres with RoC in order, or larger than the illumination wavelength. The advantage
of this method compared to PO and full-wave approaches are the ability to solve directly the
steady state scattering of both homogeneous and coated spheres. This ability significantly
reduces computation time as many issues such as "ray splitting" at dielectric interfaces and
finely discretized surface current densities can be avoided. Thus, it is possible to explore several
illumination strategies on the scattering profile of the cornea when it is modeled as a spherical
shell encasing a lossy dielectric sphere.

The applied approach first decomposes the Gaussian beam to its plane-wave spectrum
representation and then expresses these components as VSH [7]. The incident Gaussian beam is
represented as:

Ei =
∑︂
m

∑︂
n

D[aeM1
e + aoM1

o + beN1
e + boN1

o], (5)

where ae, ao, be, and bo are the incident field coefficients (addressed in appendix A) and the VSH
of the first kind M1 and N1 are the vector solution of the wave equation [10]. The parameter
D = ϵm(2n+1)(n−m)!

4n(n+1)(n+m)! is a normalization factor and ϵm = 1 for m = 0 and ϵm = 2 for m>0. The radial
mode number and azimuthal modes are represented by n and m, respectively, and vary over the
range m = 0 : Nstop, also n = m : Nstop + 1 (Nstop is addressed in Appendix B). For any arbitrary
beam-target alignment, the scattered field from the spherical targets can be written [7] as:

Es =
∑︂
m

∑︂
n

D[f eM3
e + f oM3

o + geN3
e + goN3

o], (6)

where f e, f o, ge, and go are scattered field expansion coefficients and M3 and N3 [11] are the
VSH of the third kind. The scattered fields expansion coefficients are functions of the incident
beam coefficients and are calculated by the T-matrix method as [19]:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f e

f o

ge

go

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T11 0 0 0

0 T22 0 0

0 0 T33 0

0 0 0 T44

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ae

ao

be

bo

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (7)

where, T is a diagonal matrix and for the case of a coated sphere, its elements are obtained from
the scattering coefficients of a coated sphere under plane-wave illumination (ac

n and bc
n) [19]:

T11 = T22 = −ac
n,

T33 = T44 = −bc
n.

(8)

For the calculation of coefficients ac
n and bc

n, Khaled in [7] and [19] utilized the algorithm
introduced by Toon and Ackerman [10]. In this work, the algorithm employed by Yang [12,13]
was applied to the coefficients calculations. The equations for the algorithm is addressed in
Appendix B. Electromagnetic analysis for a layered sphere with more than one layer is the
advantage of the Yang algorithm.

Figure 6 shows the field distribution of incident Gaussian beam and back-scattered field from
cornea computed with 5 and 6, in a plane perpendicular to the optical axis. The plane dimension
is 20 mm by 20 mm. The source beam was polarized in the x-z direction. The cornea was
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modeled as a single-layered spherical shell encapsulating a homogeneous, pure-water sphere.
The water permittivity was obtained by the double-Debye model [20], and the shell (cornea)
modeled with the effective medium theory via the Bruggeman mixing model [15]. The corneal
shell consisted of 60 % water and 40 % collagen with dispersion-free and real permittivity 2.9.
Core radius was 7.5 mm and shell thickness was 0.5 mm.

mV
m

V
m

mV
m

Ex

Source Back-scattered

mV
m

V
m

mV
m

(a)

(b)

(c)

(d)

(e)
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(h)

(i)

(j)

(k)

(l)
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Fig. 6. Field distribution of source and back-scattered field of the cornea is simulated with
Eqs. (5) and (6) at 220 GHz. Source amplitude and phase (rad) in x, y, and z direction is
shown in (a,d), (b,e), and (c,f), respectively. Amplitude and phase (rad) of the back-scattered
field from the cornea in x, y, and z direction is shown in (g,j), (h,k), and (i,l), respectively.
Field distribution is calculated on a plane perpendicular to the optical axis with dimension
20 mm × 20 mm. The source beam is assumed to be polarized in the x and z direction.

Source fields distribution plots based on Eqs. (5) and (6) are almost consistent with the
analytical field plot of the Gaussian beam. Since the source beam is polarized in x and y
directions, the Ey field amplitude (Fig. 6(b)) is in micro order, much smaller than the Ex and Ez
amplitude (Fig. 6(a,c)). The back-scattered field amplitude diminishes about 40 % in x and Z
directions. Likewise, if the cornea is considered as a planar structure illuminated by a plane wave,
the reflection amplitude would be also around 40 % at 220 GHz. The back-scattered field phase
is shifted 180◦ as expected.
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Fig. 7. PEC sphere coupling efficiency magnitude comparison is presented for (a) Forward
strategies, S1, and S2, (b) reverse strategies, S3, and S4, and (c) reference strategies, S5, and
S6. Plane wave reflection from equivalent PEC planar is indicated by black-dotted line and
radius of sphere equals Rc = 7.5 mm.

4. Physical-optics analysis

The six different strategies were simulated with an in-house developed physical-optics (PO) script
to verify the results of the presented Fourier-optics method. The two-way propagation from an
emitting screen to the homogenized PEC sphere and back was simulated with the Gaussian-beam
parameters introduced in section 2. In PO, the field outside the radiating aperture was calculated
as in [21], [22]:

E(r) =
∮

S
∇G(r − r′) × Jms(r′)dA, (9)

where r and r′ are the locations at the radiating aperture and at the observation point respectively,
G is the scalar Green’s function, Jms is the magnetic surface current density, and dA is the
differential area element. The integral was applied first from the virtual Gaussian-beam waist
(rw0 → rscreen) to the screen to define the initial distribution. The two pass propagation from
screen to sphere and back to the screen was computed (rsphere → rscreen, rscreen → rsphere).

The PO simulated electric field was oriented to ensure no shadowing between the surfaces
occurred with an edge taper sufficient to limit the spill-over loss. The coupling coefficient
from the PO simulation is overlaid with that from the Fourier-optics method, validate it for
homogeneous targets such as PEC sphere. For all strategies, the coupling coefficient with FO
method and PO differ by less than 1% across the 220 GHz to 330 GHz. The coupling coefficient
from the physical-optics simulation is consistently less than that from the Fourier method and is
likely due to the remaining spill-over loss necessary to avoid shadowing in this geometry.

5. Results and discussion

The coupling efficiency of the six different strategies addressed in section 3 was compared
for different targets and compared with the plane wave reflection from a multilayered planar
surface as the maximum coupling efficiency case. It was computed with Fresnel equations
and superimposed on the Gaussian-beam equations to evaluate divergence from the plane-wave
condition. The cornea was modeled as described in section 3 and Fig. 6.

To compare different strategies for various objects, coupling efficiency was defined as Eq. (11).
It calculated the coupling between the back-reflected field and the incident field in a reference
plane located at z = −40 mm. This distance is chosen according to experimental setup. The
integration range for x and y starts from −4ω1 to 4ω1 and ∗ denotes the complex conjugate. For
accurate calculations of coupling efficiency, the field at the edge of the reference plane should be
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vanishingly small, thus the reference plane was increased until this criteria was met.

CE =

∫ ∫
Ei.Esdxdy∫ ∫
Ei.Ei∗dxdy

, (10)

where Ei and Es are computed by Eq. (5) and Eq. (6). The coupling efficiency is defined as the
absolute value of coupling coefficient |CE | and phase of CE is defined as arctan( image(CE)

real(CE) )
180◦
π .

Normally, the number of modes (Nstop) used in CE calculations were determined by the
introduced equation in appendix B. To achieve a more robust result, each simulation accuracy
was checked in terms of convergence of coefficients to a specific value. For each target, Nstop
were reported in a table. Simulation time increases exponentially by increasing the number of
modes. The frequency band 100-600 GHz was chosen regarding the simulation time and stability
of the algorithms as well as constraints introduced in section 2.

5.1. Homogeneous PEC sphere coupling efficiency magnitude

In this subsection, the coupling efficiency of the previously described designs in section 2. for the
PEC sphere was calculated using the proposed methodology in section 3. The Gaussian-beam
illuminating PEC was assumed to scatter more energy back at the screen than any other material
of equal RoC and thus served as a reference/calibration target for the further exploration of PEC
coated with the lossless cornea, and cornea simulations.To compute the scattering coefficients
of a PEC sphere illuminated by a Gaussian beam Eq. (8) was used. For applying the T-matrix
method it was first necessary to compute the scattering coefficients of the PEC sphere when
illuminated by a plane wave. Here, the approach in [23] and presented in appendix C was
applied. The PEC sphere radius was set to Rc = 7.5 mm and the beam waist radii locations were
distributed to match strategies S1 to S6 as described in section 2. The number of modes to reach
enough accuracy for the PEC sphere is reported in Table 1. The simulation time for each strategy
was about 17 hours on UPC computational cluster.

Table 1. Number of modes for PEC
sphere and coated PEC sphere

simulations

Frequency (GHz) 100-445 445-600

Nstop 75 95

According to Fig. 7, the forward strategies S1 and S2, with dispersion set to achieve frequency
wavefront matching, behave similarly and increase from 97.84% to 99.92% and from 97.83%
to 99.89%. Both reverse strategies S3 and S4 coupling efficiencies behave almost in the same
way and range from 96.46% to 100% and 96.77% to 99.94% across the band. The reference
strategies S5 and S6 behave likewise and unlike the other strategies decrease over the frequency
band from 95.71% to 94.59% and 96.08% to 94.59%, respectively.

Overall, for homogeneous PEC sphere being a target, S1 comes closest to the plane-wave
condition although it behaves closely to S2. Forward strategies reveal higher coupling compared
to reverse strategies (∼ 1.1%) and reverse strategies display more coupling compared to reference
strategies (∼ 0.4 − 5.5% across frequency band).

5.2. Lossless cornea sitting on a PEC core coupling efficiency

Lossless dielectric spherical shells backed by PEC were simulated to explore the effect of spectral
phase-front variation and mismatch. A target was constructed of 0.5-mm thick lossless cornea
spherical shell encapsulating a PEC sphere of 7 mm RoC. The layer refractive index was set as
the real part permittivity of the cornea computed by effective media theory [15]. The coupling
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efficiency was computed with Eq. (11). Then, the calibrated coupling efficiency was computed
by normalizing the PEC-backed lossless cornea shell coupling efficiency with the coupling
efficiency from a 7.5 mm PEC sphere (Fig. 8). The scattering coefficients of a coated PEC were
addressed in appendix C. The number of modes considered to reach stability for coated PEC was
similar to PEC sphere modes in Table 1 and simulation time was the same.
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Fig. 8. Calibrated lossless cornea sitting on a PEC core coupling efficiency magnitude
and phase comparison are presented for (a,d) Forward strategies, S1, and S2, (b,e) reverse
strategies, S3, and S4, and (c,f) reference strategies, S5, and S6. Plane wave reflection from
equivalent layered planar is indicated by black-dotted line. The shell permittivity is set
according to real part of cornea permittivity and its thickness is 0.5 mm sitting on 7 mm
RoC PEC sphere.

This operation mimics experimental calibration routines [4] and enables analysis of the absolute
phase following deconvolution of the free space path influence on complex coupling angle.
The PEC sphere calibrated lossless cornea shell coupling efficiency magnitude and phase are
displayed in Fig. 8 where magnitude and phase of forward strategies S1 and S2, reverse strategies
S4 and S5, and reference strategies S5 and S6 are plotted in panels (a), (b) and (c), respectively.
All trends are referenced to the equivalent plane-wave condition.

Interestingly, as illustrated in Fig. 8, with calibrating all strategies, phase behaviors were almost
consistent with plane wave condition, implying a proper phase matching. In fact, they matched
perfectly if plane wave phase figure shifts about 10 GHz toward low frequencies. These results
suggest that good results can be obtained with any most of the strategies provided the target
reflection is calibrated with reflections from an appropriately sized, metallic sphere. Moreover,
from the magnitude aspect, forward strategies provided better coupling between the incident and
back-scattered fields than reverse ones, however, S4 featured closer to S1 and S2 (less than 1%
difference). It could be said S3 and S5 were also close enough to plane wave condition (less than
∼ 2.2% difference) and certainly, S6 was far from proper coupling (1.5 − 8.8% deviation).

The simulation results suggest that the lossless cornea shell is acting as a lens and improving
the wavefront match to the 7 mm RoC inner PEC surface relative to the reference 7.5 mm RoC
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PEC sphere. Non-sequential ray-tracing simulations of a Gaussian beam in Zemax OpticStudio
also suggest that the presence of a lossless dielectric layer on top of the PEC (hemisphere) sphere
might slightly improve the coupling. In Fig. 9, the power distribution on the detector is reported
for S1 at two different frequencies, 200 GHz and 600 GHz. At 200 GHz the root mean square
(RMS) spot radius is 3.40 mm for the coated sphere and 3.33 mm for the PEC sphere. At 600
GHz the RMS spot radius variation is much more constrained: 3.13 mm for the coated sphere
and 3.12 mm for the PEC sphere. This trend agrees with Fig. 8(a) where the coupling shows a
peak at 200 GHz.

Fig. 9. Incoherent irradiance for S1 strategy in 200 GHz for (a) PEC sphere and (c) coated
PEC sphere and in 600 GHz for (b) PEC sphere and (d) coated PEC sphere, indicating higher
RMS of coated sample compare to calibration sphere, resulting above 1 values of coupling
efficiency amplitude in Fig. 8. Panel (e) supports the idea by a histogram of normalized
frequency of rays in each angle, emphasizing on loss-free shell assists the incoming beam to
come closer to the optical axis (lower angles).

In a quasi-optical, mono-static (S11) measurement, the maximum signal is obtained when the
beam is retro-directive, i.e. the scattered beam mirrors the illumination beam. In the case of a
spherical target, this can be visualized by discretizing the wavefront as a spatial collection of
converging rays. The maximum signal is achieved when all converging rays are normal to the
spherical surface. However, in this case, the converging beam is Gaussian with a non-spherical
phase front thus normal incidence is achieved only on-axis. The loss-free shell assists the
incoming beam to come closer to the optical axis (as shown in Fig. 9(e)), that’s why the above
one values for coupling efficiency appeared in Fig. 8.

5.3. Calibrated cornea coupling efficiency

The approach described in [18], and outlined in Appendix B, yielded the magnitude and phase
coupling between the incidence and back-scattered electric fields for cornea structure. The
number of modes used for simulation is reported in Table 2 and simulation time was 25 hours on
UPC computational cluster. As mentioned earlier, the best strategy for performing an experiment
that matches with the theory developed in previous works [4] is the one that Gaussian-beam
illumination on a spherical surface acts such as a plane-wave illumination on a plane resembling
a maximum coupling. Magnitude and phase of relative calibrated coupling efficiency for cornea
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is plotted in the Fig. 10. In this context, relative calibrated means subtract calibrated cornea
coupling efficiency from equivalent plane wave condition coupling efficiency.

Calibration with PEC sphere mirrors current experimental methodology where the reflectivity of
a phantom or the ex-vivo cornea is normalized by a spherical reference reflector of approximately
equal RoC. The reflectivity is obtained on an absolute scale when the optical path is deconvolved
from the reflection by the normalization. These results support the previous hypothesis in the
literature that, under the right alignment conditions, Gaussian-beam illumination on cornea
approximates plane-wave illumination on planar stratified media.
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Fig. 10. Relative calibrated cornea coupling efficiency magnitude and phase comparison
are shown for (a,d) Forward strategies, S1, and S2, (b,e) reverse strategies, S3, and S4, and
(c,f) reference strategies, S5, and S6.

Table 2. Number of modes for cornea simulations

Frequency (GHz) 100-200 200-380 380-510 510-600

Nstop 65 75 100 125

Surprisingly, these strategies behave almost the same as a plane-wave illumination on the
planar surface and show a maximum of 2.3% magnitude deviation in low frequency for strategy
S6. Similarly, for calibrated phase coupling efficiency (indicated in Fig. 10(d-f)) of preceding
strategies attributes almost the same as plane-wave illumination on the plane, with limited
deviation at low frequency for strategy S3 (a maximum of 1.2◦ deviation).

These results suggest that, under ideal alignment and calibration conditions, the efficiency
of coupling to corneal longitudinal modes is nearly indistinguishable amongst the six different
strategies. This behavior is almost similar to the loss-free shell results, although the lossless cornea
shell deviates from plane wave condition more than cornea case, indicating that lossy cornea
steady state reflectivity minimizes walk-off losses and any illumination condition, regardless of
wavefront match/mismatch is sufficient for proper coupling as far as equal surface geometry is
feasible for calibration.
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6. Experimental exploration

In order to explore the theory was introduced in section 3. and was used for investigation in
previous sections, a setup (as shown in Fig. 11(a)) is implemented. Gaussian beam telescope
introduced in [4] and shown in Fig. 11(b) is applied to illuminate quartz dome sitting on a water
core (resembling a cornea). It is shown previously that a back-scattered measured field from a 0.5
mm quartz sitting on an air core acts as a plane wave illumination on plane [24]. Here, two sizes
of quartz are considered in this experiment, quartz size 1, Q1 with diameter 15 mm and thickness
0.5 mm, and quartz size 2, Q2 with diameter 16 mm and thickness 1 mm. These dimensions are
chosen according to real cornea size and their permittivity is around the real part permittivity
of the human cornea (around 4.1). The quartz dome is set on a holder which is mounted on
mechanical arms which move in x, y, and z-direction, illustrated in 11(a). The back-scattered
field is measured in a frequency range from 220 GHz to 330 GHz. As shown in Fig. 11(c), a
metal ring is used to hold the quartz dome on the water core and an absorber ring (Fig. 11(d))
covers it to prevent unwanted scattered fields from metal. Figure 11(e) presents the confocal
distance of the output Gaussian beam in the quasioptical system. The output beam waist radius
of the quasioptical system is measured and fitted with the fundamental Gaussian-beam model.
The fit waist radii in E- and H-planes are used to calculate the confocal distance:zc,E = πω

2
0,H/λ,

zc,H = πω
2
0,H/λ. Due to the slightly different E- and H-plane beam width of the feed horn and

polarization effects in the quasioptics, the output beam is astigmatic and the confocal distance is
determined separately for the two planes.

Fig. 11. (a) Measurement setup, (b) Gaussian beam telescope illuminate sample, (c) holding
quartz dome on a water half-space by a metal ring, (d) use ring absorber to eliminate
unwanted back-scattering from metal holder, (e) confocal distance of the output Gaussian
beam, (f) OCT image of Q1, and (g) Q2.

Alignment was initiated with a course 2D transverse (x-y) sweep of the sample about the
approximate focal axis of the Gaussian beam telescope. The location corresponding to peak
collected back-scattered intensity was identified and then a finer 2D scan was performed about the
peak to further refine the peak location. Next, the sample was fixed on the peak location, and the
target was swept 20 mm in the vertical (z-axis) direction over a distance of 20 mm. Complex S11
were acquired in steps of 0.1 mm for a total of 201 axial points. For data analysis, the reflection
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from the sample at each point was Fourier transformed to the time/space domain, time-gated and
transformed back to the frequency domain. This procedure performed repeated for PEC spheres
of radius 8 mm and radius 7.5 mm and for the water backed quartz dome phantoms.

Examples of range the Fourier transformed data are shown in the Fig. 12(a) and 12(b) for the
7.5 mm RoC PEC sphere and 7.5 mm, 0.5 mm thick water backed dome respectively. The vertical
axes corresponds to the approximate physical distance of the target with respect to a reference
plane located in the beam path and shows the axial range traversed by the z-axis during scanning.
The horizontal axes show the calculated range from the extender output flange to the target as
computed with the Fourier transform of the complex S11 data. In Fig. 12(a) the (r,z) location of
the peak corresponds to the subconfocal point as reported in [4] and the superconfocal point and
waist location can be found by traversing the (r,z) space by the known separation distances. The
same analysis was applied to the phantom data in Fig. 12(b). Once the locations corresponding
to strategies 3, 4, 5, and 6 are identified in these data, the quartz domes back-scatter can be
calibrated with the PEC sphere data. An example of this is shown in Fig. 12(c).

Fig. 12. Examples of range of the Fourier transformed data for (a) the 7.5 mm RoC PEC
sphere, and (b) 7.5 mm, 0.5 mm thick water backed dome and, (c) Normalized S11(t) as
function of r. Purple line shows the spherical mirror calibration data from where the strongest
return came (arguably close to the subconfocal distance indicated by green line), sample
location which results in best fit to the theoretical is shown with blue line and its pick is in
yellow.

In Fig. 13, the measured back-scattered field of the sample is depicted (dashed lines) and
compared with VSH simulation results (solid lines). All the plots are calibrated by the same
size PEC sphere, both for simulation and measurement. Figure 13(a) and (b) displays the
amplitude and phase of quartz size 1 (Diameter 15 mm and thickness 0.5 mm) and Fig. 13(c)
and (d) demonstrates the amplitude and phase of quartz size 2 (Diameter 16 mm and thickness
1 mm). There is an adequate agreement between simulation and measurement in different
reverse illumination strategies, representing realistic strategies S3, S4, S5, and S6), in order to
illuminate a sample as S1 and S2 a custom lens with engineered spectral dispersion is required.
Resonances and peak locations in the measured spectrum are consistent with the theory. Also,
as the Gaussian beam focus moves from the center of the sample (|Z0 | = 0 mm) to the apex of
the sample (|Z0 | = 7.5 mm), a slight shift toward the higher frequency is observed both in the
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measurement and simulation. The shift is more detectable in thick quartz and may be due to the
Gouy phase shift and corresponding superluminal velocity which have not been corrected for in
this analysis. This result confirms that, with correct calibration, all six illumination strategies
produce similar results. Note that the thicker, fabricated quartz dome was 0.96 mm thick and
the thinner one was 0.5 mm. Both had an estimated ϵ ∼ 4.0. These values were used in the
VSH simulation. The extraction of quartz dome permittivity and thickness were performed
with particle swarm optimization (PSO). The PSO algorithm searches for the best fit to a plane
wave model by minimizing a merit function. Strategies S3, S4, S5, and S6 were investigated
representing realistic strategies. The merit function combined two terms: the phase error and
amplitude error. The used merit function for each scenario is:

MF = 0.33
1
N
∑︁N

i=i
∥︁∥︁∥ΓMeas∥ − ∥Γ∥

∥︁∥︁2

1
N
∑︁N

i=i
∥︁∥︁ΓMeas

∥︁∥︁2 + 0.66
1
N
∑︁N

i=1
∥︁∥︁∠ΓMeas − ∠Γ

∥︁∥︁2

1
N
∑︁N

i=1
∥︁∥︁∠ΓMeas

∥︁∥︁2 , (11)

where ΓMeas are the measured reflection coefficients reported in Fig. 13, Γ is the plane wave
model reflection coefficient, and N is the number of frequency points. The merit function is a sum
of the mean squared error normalized with the average power of the merit function metric. The
extracted thicknesses and permittivities, reported in Fig. 14 (a,b,c,d), are ordered by the distance
from the beam waist and CoC. For the 0.5 mm thick dome there is a monotonic increasing
permittivity and decreasing distance as the waist is brought closer to the apex. The opposite is
observed for the 1 mm dome. The complementary behaviour of permittivity and thickness suggest
a conservation of optical path length. The superluminal velocity is axial location dependent and
monotonically decreases from the beam waist which is coincides with the monotonic behaviour
seen here. Further corrections may help address non-unique behaviour of the merit function
space where an ensemble of permittivity/thickness pairs produces a range of optical path lengths
with equal goodness of fit.
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Fig. 13. Measurement data are compared with VSH simulation for reverse strategies for
(a,b) quartz size 1 amplitude and phase, and (c,d) quartz size 2 amplitude and phase. As the
beam focuses closer to apex a slight shift toward higher frequency is detected. The shift is
more evident in thicker quartz. This is in agreement with simulation results.
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Fig. 14. (a) Extracted thickness and (b) extracted permittivity for Q1 are obtained by PSO
fitting method considering strategies S3, S4, S5, and S6. (c) Extracted thickness and (d)
extracted permittivity for Q2 are obtained by PSO fitting method considering strategies S3,
S4, S5, and S6.
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7. Conclusion

A theory based on Fourier-optics analysis and VSH was employed to explore the coupling
efficiency between the incident and back-scattered fields from homogeneous and coated spherical
targets at different beam-target alignments. In this method, Gaussian beam approximated by an
ensemble of plane waves and scattering coefficients were calculated via the T-matrix method.

PEC spheres are targets for calibration in different simulations. PEC coupling efficiency
magnitude in six different strategies was explored. The S2 alignment shows the highest matching
with plane-wave illumination on a planar surface. Also, the influence of+0.2-mm RoC change was
investigated. The S6 strategy shows the highest sensitivity (close to 3.3%) to RoC discrepancies.

To explore the effect of spectral phase front variation and mismatch, coated PEC structure was
studied. Due to the lossless layer in this assembly, walk-off loss takes part in the coupling, and
beam profile influences the calibrated coupling efficiency magnitude, although phase behavior
remains insensitive to the illumination profile and only shows 10 GHz shift with respect to low
frequencies than the plane wave condition. The S2 design revealed the highest consistency with
plane wave on plane illumination.

Surprisingly, the calibrated coupling efficiency magnitude for S1 - S4 strategies (in coated
PEC) is above one. The reason is the refraction of the Gaussian beam while passing through
the loss-free layer, as an incident beam propagates closer to the optical axis, the beam reflection
enhances for certain kinds of Gaussian beams. This is in striking contrast to the stratified medium
theory and theories considering plane waves - the specifics of the Gaussian beam and target RoC
need to be considered carefully before applying the stratified medium model.

Angular spectra and vector spherical harmonic analyses were used to investigate the corneal
coupling efficiency. The cornea was modeled as a layered media on top of the aqueous core
and illuminated by a Gaussian beam. It was shown that engineering the sub-millimeter wave
beam such that incident beam 1/e radius fixed to ω1 = 3.1 mm and radius of the Gaussian beam
matches with 7.5 mm cornea radius at each frequency (strategy S2) leads to the highest coupling
among other strategies.

Illumination profiles defines the coupling efficiency behavior unless the corneal coupling
efficiency is calibrated the coupling efficiency of PEC sphere of equal size. In all strategies,
coupling efficiency magnitude and phase behave according to the plane-wave illumination on the
planar half-space. It implies that the cornea is lossy enough that walk-off loss does not influence
coupling efficiency.

An experimental setup is assembled to validate the VSH theory. The experimental back-
scattered spectrum is compatible with theory, peak and resonance location are the same for
different size of domes and a shift toward higher frequency observed both in experiment and
simulation. A PSO analysis is applied to extract the thickness and permittivity of quartz from
measured back-scattered field for different realistic strategies.

Appendix A. Gaussian beam coefficients derived by Fourier analysis

For a polarized Gaussian beam in x and z direction, after a cumbersome calculation, the incident
beam coefficients in Eq. (5) are obtained as:

ae = F
∑︂
θx

∑︂
θy

4inae
θxy, ao = F

∑︂
θx

∑︂
θy

4inao
θxy,

be = F
∑︂
θx

∑︂
θy

−4in+1bo
eθxy, bo = F

∑︂
θx

∑︂
θy

−4in+1bo
θxy,

(12)
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where F = (kω0p)2/4π in which p = π/180. The θx and θy are angles respect to x and y axis.
Also,

ae
θxy
= Aθxy (sin ϕ cos mϕτ − m cos ϕ sin mϕΠ/cos θ),

ao
θxy
= Aθxy (m cos ϕ cos mϕΠ/cos θ + sin ϕ sin mϕτ),

be
θxy
= Aθxy (m sin ϕ sin mϕΠ + cos ϕ cos mϕτ/cos θ),

bo
θxy
= Aθxy (cos ϕ sin mϕτ/cos θ − m sin ϕ cos mϕΠ).

(13)

In the above equations, the Π = Πmn =
Pm

n (cos θ)
sin θ and τ = τmn =

d
dθPm

n (cos θ) are auxiliary
functions which can be obtained by recursion relation [9]:

Πmn =
(2n − 1) cos θΠmn−1 − (n + m − 1)Πmn−2

n − m
,

τmn = n cos θΠmn − (n + m)Πmn−1.
(14)

The first two starting values of Πmn are generated by the closed-form expressions when m ≠ 0:

Πmn = 0 n<m,

Πmn =
(2m)! sinm−1(θ)

2mm!
n = m,

(15)

and while m = 0:
Π0,0 =

1
sin θ

, Π0,1 =
cos θ
sin θ

. (16)

On the other hand, the Aθxy = TG sin θx sin θy where T = e−ik(s.v) = e−i(kxx0+kyy0+kzz0) indicates

the relocation of waist radius location relative to center of sphere and G = e−(
ksω0

2 )2 = e−
ω2

0
4 (k2

x+k2
y ).

Besides, PW = eik(s.r) = ei(kxx+kyy+kzz) illustrates a plane wave. The vectors s, v, and r are
s = cos θxix + cos θyiy + cos θiz , v = x0ix + y0iy + z0iz, and r = xix + yiy + ziz. The wave vector
defines as k = kxix + kyiy + kziz and k = |k| = [k2

x + k2
y + k2

z ]
1/2 = 2π/λ is the wave number in the

wavelength λ. For any arbitrary k, θx, θy, θ, and ϕ are defined the way that the components of k
are:

kx = k cos θx = k sin θ cos ϕ,
ky = k cos θy = k sin θ sin ϕ,

kz = k cos θ.
(17)

Appendix B. Coated sphere illuminated by a plane wave

The scattering coefficients of a coated sphere illuminated by a plane wave is presented by [13]
and summarized in [12]. The method starts with solving the Helmholtz equation in spherical
coordinate and fulfillment of the boundary condition at each layer. The scattering coefficients are
derived as below:

ac
n =

[Ha
n(mlxl)/ml + n/xl]ψn(xl) − ψn−1(xl)

[Ha
n(mlxl)/ml + n/xl]ζn(xl) − ζn−1(xl)

,

bc
n =

[Hb
n(mlxl)/ml + n/xl]ψn(xl) − ψn−1(xl)

[Hb
n(mlxl)/ml + n/xl]ζn(xl) − ζn−1(xl)

,
(18)
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where ψn and ζn are Riccati-Bessel functions. The ml and xl are refractive index and size
parameter of the lth layer. The Ha

n and Ha
n are given by following expressions:

Ha
n(m1x1) = D1

n(m1x1),

Ha
n(mlxl) =

G2D1
n(mlxl) − Ql

nG1D3
n(mlxl)

G2 − Ql
nG1

,

Hb
n(m1x1) = D1

n(m1x1),

Ha
n(mlxl) =

Ĝ2D1
n(mlxl) − Ql

nĜ1D3
n(mlxl)

Ĝ2 − Ql
nĜ1

,

G1 = mlHa
n(ml−1xl−1) − ml−1D1

n(mlxl−1),

G2 = mlHa
n(ml−1xl−1) − ml−1D3

n(mlxl−1),

Ĝ1 = ml−1Hb
n(ml−1xl−1) − mlD1

n(mlxl−1),

Ĝ1 = ml−1Hb
n(ml−1xl−1) − mlD3

n(mlxl−1).

(19)

Next equations determine the logarithmic derivatives of the Riccati–Bessel functions, D1
n(z)

and D3
n(z), the ratio Ql

n, ψn and ζn. A thorough explanation can find in [13] and [12].

D1
Nmax

(z) = 0 + 0i, D1
n−1(z) =

n
z
−

1
D1

n(z) + n
z

,

D3
0(z) = i, D3

n(z) = D1
n(z) +

i
ψn(z)ζn(z)

,

ψ0(xl)ζ0(xl) =
1
2
[1 − (cos 2a + i sin 2a) exp(−2b)],

ψn(xl)ζn(xl) = ψn−1(xl)ζn−1(xl)[
n
z
− D1

n−1(z)][
n
z
− D3

n−1(z)],

ψ0(xl) = sin(xl), ψn(xl) = ψn−1(xl)[
n
xl

− D1
n−1(xl)],

ζ0(xl) = sin(xl) − i cos(xl), ζn(xl) = ζn−1(xl)[
n
xl

− D3
n−1(xl)],

Ql
0 =

exp(−2ia1) − exp(−2b1)

exp(−2ia2) − exp(−2b2)
exp(−2[b2 − b1]),

Ql
n = Ql

n−1(
xl−1
xl

)2
[z2D1

n(z2) + n]
[z1D1

n(z1) + n]
[n − z2D3

n−1(z2)]

[n − z1D3
n−1(z1)]

,

(20)

where z = a + ib, z1 = mlxl−1 = a1 + ib1 and z2 = mlxl = a2 + ib2. For all recurrence relation
n = 1, .., Nmax except D1

n which is a downward recurrence. The maximum number of the modes
Nmax play an crucial rule to stability of the problem. It is a function of the size parameter and
Nmax = max(Nstop, |mlxl |, |mlxl−1 |) + 15 when l = 1, 2, .., L and

Nstop =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xl + 4x1/3

l + 1 0.02 ≤ xl<8
xl + 4.05x1/3

l + 2 8 ≤ xl<4200
xl + 4x1/3

l + 2 4200 ≤ xl<20, 000.
(21)

As mentioned in section 3, to compute the scattering coefficients of a coated sphere while
illuminated by a plane wave, a method different from [7] and [19] was utilized. Khaled et al.
used Toon and Ackerman [10] algorithm while in here the algorithm described by Yang [13] is
applied. The advantage of the Yang method is providing the possibility of analysis of a coated
sphere with more than one shell.
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Appendix C. PEC and coated PEC sphere illuminated by a plane wave

The scattering coefficients of a sphere illuminated by a plane wave are computed by solving the
vector-wave equation in spherical coordinates and evoking the boundary condition (Mie theory
[11]). In the case of a PEC sphere, the electric field at the PEC boundary was forced to zero and
the simplified form of scattering coefficients for a PEC sphere are obtained as:

an =
ψn(x)′
ζn(x)′

bn =
ψn(x)
ζn(x) ,

(22)

where the size parameter x = kr and r is the radius of the PEC sphere.
With the mutual approach, solving a vector-wave equation, applying boundary condition and

forcing the electric field to be zero inside the PEC core, the simplified scattering coefficients for
a coated PEC sphere are obtained as:

an =
ψn(x1)[ψ

′
n(m2x1)−Anχ

′
n(m2x1)]−m2ψ

′
n(x1)[ψn(m2x1)−Anχn(m2x1)]

ζn(x1)[ψ
′
n(m2x1)−Anχ

′
n(m2x1)]−m2ζ

′
n(x1)[ψn(m2x1)−Anχn(m2x1)]

,

bn =
m2ψn(x1)[ψ

′
n(m2x1)−Bnχ

′
n(m2x1)]−ψ

′
n(x1)[ψn(m2x1)−Bnχn(m2x1)]

m2ζn(x1)[ψ
′
n(m2x1)−Bnχ

′
n(m2x1)]−ζ

′
n(x1)[ψn(m2x1)−Bnχn(m2x1)]

,
(23)

where
An =

ψn(m2x)′
χn(m2x)′,

Bn =
ψn(m2x)
χn(m2x) .

(24)

The PEC core radius r1 is coated with a layer with outer radius of r2 and refractive index of m2.
The Riccati-Bessel functions are χn(z) = −zyn(z), ψn(z) = zjn(z), and ζn(z) = zh(1)n (z) in which
jn(z), yn(z), and h(1)n (z) are Bessel function of the first, Bessel function of the second kind and
Hankel function of the first kind, respectively. The primes denote the differentiation with respect
z.
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