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Abstract—LoRa is one of the most popular technologies for
low-power wide area networks. It offers long-range communica-
tion with a low energy consumption, which makes it ideal for
many applications in the Internet of things. The performance
of LoRa networks depends on the communication parameters
used by individual nodes. Several works have proposed different
solutions, typically running on a central network server, to
select these parameters. However, existing approaches have not
addressed the need to (re-)assign parameters when channel
conditions suddenly vary due to additional traffic, changes in
the weather or the presence of obstacles. Moreover, allocation
strategies that require a central entity to decide communication
parameters do not scale due to the large number of configuration
packets that must be sent to the nodes. To address these issues,
this work proposes NoReL, a distributed game-theoretic approach
that allows nodes to autonomously update their parameters
and maximize their packet delivery ratio. NoReL is based on a
stochastic variant of no-regret learning, which is proven to reach
an ε-coarse correlated equilibrium in LoRa networks. Extensive
simulations show that NoReL achieves a higher delivery ratio than
the state of the art in both static and dynamic environments, with
an improvement up to 12%.

Index Terms—LoRa, no-regret learning, game theory, Internet
of Things, low power wide area networks

I. INTRODUCTION

Low-Power Wide Area Networks (LPWANs) offer long-
range wireless communication with low energy consumption
at low data rates [1]. This makes them ideal in the In-
ternet of Things (IoT), especially for scenarios where sen-
sors infrequently send small packets. Long Range (LoRa) is
one of the most popular LPWAN technologies. It achieves
communication ranges of 3-5 km in urban areas and 10-
15 km in rural environments [2]. LoRa offers a scalable
network architecture [3] where nodes simply send packets to
all gateways in range, which in turn forward them to a central
network server that filters out duplicates. For these reasons,
LoRa has been used in several application scenarios, smart
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metering in particular. These applications demand low traffic
from each node, however, LoRa networks usually include
thousands of devices which makes reliable communication
very challenging [4]. Moreover, LoRa operates in the sub-GHz
Industrial, Scientific and Medical (ISM) bands; consequently,
the bandwidth is limited and sharing it becomes more difficult
as the number of devices increases.

The performance of LoRa networks can be improved by
optimizing the communication parameters of individual nodes
– in particular, the spreading factor (SF) and transmission
power (TP). The SF trades-off communication range and
data rate [4]; a high SF results in a long communication
range at a low data rate. The TP not only determines the
coverage range of the node, but also affects the probability
of collision between two nodes [5], as a higher TP achieves
a longer communication range. Furthermore, LoRa networks
are subject to the capture effect [6]: depending on its receive
power, a packet can be successfully decoded by the gateway
even in presence of collisions. Therefore, a higher TP implies
a higher probability of success for packets that overlap in time
at the receiver, at the cost of higher energy consumption.

Different works in the literature have addressed the optimal
assignment of SFs and TPs to LoRa nodes with the goal
of improving the overall network performance [7, 8]. These
approaches run at the network server and require the final
parameters to be sent by the gateway to individual nodes as
downlink packets. As such, they target scenarios where the
nodes are configured once with the appropriate SF and TP, i.e.,
it is assumed that the network conditions will remain constant,
therefore, the parameters do not need to be altered. However,
recent empirical studies have shown that channel conditions
in LoRa vary over time due to the weather, the presence
of obstacles, and in-band traffic [9, 10]. Such changes can
severely impact the reliability of LoRa networks. To maintain
an acceptable network performance under varying channel
conditions, centralized optimization problems [7, 8] need to be
re-run periodically, resulting in an increased downlink traffic
to communicate parameters, which further reduces network
performance [11]. A few adaptive and distributed approaches
have also been proposed [12–14], wherein nodes can choose
their SFs and TPs with some feedback from the gateway or
the network server. However, some of these solutions require
all uplink packets to be acknowledged, which increases the
overall traffic in the network, while others target scenarios
where network conditions do not frequently vary [14].

To address these issues, this work presents NoReL, a fully
distributed approach based on no-regret learning [15] to as-
sign SFs and TPs in LoRa networks. With NoReL, nodes
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autonomously select appropriate SFs and TPs with minimal
feedback from the gateway, thereby allowing nodes to adapt
to dynamic changes in the environment. To this end, the
problem is modeled as a stochastic game with incomplete
information where nodes act selfishly and aim at maximizing
their own packet delivery ratio [16, 17]. Here, nodes choose
the action that minimizes the regret of not having played it
previously. By following such a procedure, nodes reach an ε-
Coarse Correlated Equilibrium (ε-CCE) [18] – a generalization
of the well-known Nash equilibrium – in which no node can
improve its payoff – namely, its delivery ratio – by unilaterally
changing its own communication parameters.

The main contributions of this work are the following.
First, it formulates a distributed game-theoretic approach that
incurs limited communication overhead. Second, it proves
that no-regret learning leads to an ε-CCE in LoRa networks.
Finally, extensive simulations show that NoReL achieves a
higher delivery ratio than the state of the art in both static
and dynamic environments, with an improvement up to 12%.

The rest of the article is organized as follows. Section II
reviews the related work. Section III introduces the system
model, then presents NoReL and proves its convergence. Sec-
tion IV evaluates NoReL and compares its performance against
the state of the art. Last, Section V provides concluding
remarks as well as directions for future work.

II. RELATED WORK

This section classifies and discusses the state of the art on
configuration of LoRa networks.

Centralized assignment. Many works have proposed central-
ized solutions to configure communication parameters in LoRa
networks. One option is assigning a node the minimum SF
that allows it to reach at least one gateway; despite being very
simple, such a technique can already achieve a high delivery
ratio [19]. More sophisticated approaches have also been
proposed to further improve performance through optimization
techniques leveraging linear programming [7] and sequential
waterfilling [8]. Although these approaches obtain stable so-
lutions for SF and TP allocation, most do not define how to
inform nodes about the parameters to be used. Moreover, these
solutions provide a static allocation of parameters, thus, they
are unsuitable for dynamic environments. In fact, they would
have to run periodically and send a large number of downlink
packets with new configuration parameters. Instead, NoReL is
distributed; nodes can update their parameters at any time with
only limited feedback from the gateway.

Distributed assignment. Distributed approaches have primar-
ily leveraged game theory [14, 20] for nodes to autonomously
choose parameters, with appropriate feedback from the gate-
ways or the network server. For instance, Tolio et al. [14]
present a two-player game to allocate SFs based on complete
information. However, that work requires each node to have
complete information about the SFs used by other nodes and
assumes that all nodes transmit with the highest TP. Instead,
NoReL is modeled as an incomplete information game, wherein
nodes do not require information about the actions taken by
other nodes. The allocation problem has also been modeled

as a leader and follower game [20]. Specifically, the authors
propose to allocate SFs to the nodes for a specific time
duration. Their approach requires frequent downlink transmis-
sions, as the parameters need to be updated every time the
allocation time expires, which can occur every 20 s. Moreover,
the solutions above assume perfect orthogonality between SFs
and have not been evaluated in dynamic environments.

Adaptive assignment. Adaptive parameter assignment has
also been considered in the literature. The LoRaWAN speci-
fications include a built-in Adaptive Data Rate (ADR) mech-
anism to assign SFs and TPs on a link basis and improve
scalability [21]. Słabicki et al. [22] have studied the perfor-
mance of ADR; they have also proposed alternative approaches
to configure nodes and increase the delivery ratio. Moreover,
DyLoRa [12] has been designed as an adaptive mechanism that
assigns communication parameters to maximize the energy
efficiency of the network. All these solutions allow both the
nodes and the network server to run independent algorithms
that converge to a stable configuration; in both cases, nodes
can only increase their SF and TP when uplink connectivity is
lost. Instead, NoReL offers nodes more flexibility in choosing
their SFs and TPs, which allows them to quickly adapt to
highly varying channel conditions.

Machine learning-based. Machine learning techniques, such
as deep reinforcement learning [23] and multi-armed ban-
dits [13, 24], have also been employed in the literature to
allocate SF and TP in LoRa networks. These approaches
require downlink transmissions after each packet to either
acknowledge a received packet or notify nodes about updated
communication parameters. As a consequence, they lower the
overall network performance since the probability of collisions
increases with higher downlink traffic [11]. In contrast, NoReL
requires only sporadic feedback from the gateways.

No-regret learning. No-regret learning has been widely stud-
ied [15, 25] and applied to wireless networks [26]. However,
to the best of the authors’ knowledge, such a technique has
not been applied to LoRa networks. For instance, no-regret
learning has been shown to converge to an ε-CCE in cellular
networks [18]. However, LoRa is inherently different from
the cellular networks studied so far, as it uses an unslotted
ALOHA channel access model – transmissions are not aligned,
which results in asynchronous operations.

III. DISTRIBUTED ALLOCATION OF SFS AND TPS

This section describes the process of allocating transmission
parameters in LoRa with NoReL. It first introduces the system
model and formulates the problem of optimizing the delivery
ratio in distributed settings. It then presents a non-cooperative
stochastic game and the proposed no-regret learning strategy.

A. System model

The considered LoRa network comprises multiple gateways
and nodes denoted by M and N , respectively. In particular,
the reference architecture is the one in the LoRaWAN spec-
ifications [27]: nodes communicate to all gateways in range
over the LoRa physical layer; the gateways forward received
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packets to a central network server over the backhaul network
(e.g., through wired or cellular links), where received packets
are filtered and finally sent to the relevant application server.
Nodes are stationary and in the range of one or more gate-
ways, without any restrictions on their actual location. Each
node (n ∈ N ) uses a spreading factor (SF) sn and transmission
power (TP) pn from the sets Sn and Pn, respectively. Sn and
Pn depend on the geographical region where the LoRa nodes
operate [4], and on the node’s distance to the closest gateway.
Nodes are Class A devices and employ the ALOHA-based
medium access control protocol in LoRaWAN [27]. After
sending a packet, a node also remains active for two short time
windows to receive downlink packets. Such a communication
protocol has a low implementation complexity and supports
energy-efficient operations.

The goal of this article is to maximize the delivery ratio
of each node by choosing appropriate SFs and TPs. The
delivery ratio of each node is described by using the model
in [5], which is accurate enough to include the most im-
portant factors affecting real-world networks – including the
capture effect, channel variations, and duty-cycle restrictions.
The capture effect states that one out of multiple packets
simultaneously received at a destination can be successfully
decoded – specifically, the packet whose receive power is
higher than the others by the SF-dependent thresholds given
in [6, Table II]. These thresholds show that different SFs are
not fully orthogonal, namely, that packets transmitted with
different SFs have a small probability of interfering with each
other; for this reason, SFs are called quasi-orthogonal. The
packet generation of nodes follows a Poisson distribution as it
represents the discrete and random nature of transmissions in
LPWANs [3, 5]. Radio propagation follows the log-distance
path loss model. Accordingly, the delivery ratio of node n is
given by [5]:

Dn = (1− Pc)

(
1−

∏
m∈M

Pmo

)
, (1)

where Pc is the probability of interference between the packets
sent by node n and the other nodes in the network, and Pmo
is the outage probability of node n, i.e., the probability that
node n is unable to reach the gateway m. Following [5], Pc
is defined as:

Pc =

|C|∏
i=1

1−

 ∏
Rkn∈Ci

1−
∏
j∈Rkn

(
1− P(E′j)P(Cmj )

).
(2)

Here, P(E′j) is the probability of an interfering node j ∈ N
transmitting simultaneously with node n, and P(Cmj ) is the
probability that packets from node j collide with those from
node n. To estimate the probability of node n’s transmission
not being received by any gateway in range, the set of
nodes (N ) is partitioned into sets Rkn, called regions, with
respect to each node n and set of gateways k. Each region Rkn
contains the interferers of n that can reach the gateways in k.
C is the set of set covers of all regions, that is, if Ci ∈ C and
Ci = {Rk1n , Rk2n , . . . , R

kj
n }, then k1 ∪ k2 ∪ · · · ∪ kj = Mn,

where Mn is the set of gateways that node n can reach.
Finally, the outage probability Pmo is given by:

Pmo =
1

2

erfc

Pr,s − pn + PL(d0) + 10γ log
(
dn,m
d0

)
σn
√

2

 .
(3)

This probability expresses the chance that the receive power
of packets from node n at gateway m is below the sensitivity
Pr,s of the receiver for SF s. Here, pn, PL(d0), γ, σn,
and dn,m are, respectively, the TP of node n, path loss at
distance d0, path loss exponent, standard deviation of the
normal distribution for channel variations, and the distance
between node n and gateway m (see [5] for additional details).

B. Problem description

A distributed approach is introduced next for choosing SFs
and TPs depending on external conditions. Specifically, every
node aims to individually maximize its own delivery ratio by
choosing an appropriate SF and TP pair based on observed
channel and traffic conditions. In this regard, a high standard
deviation of the node’s channel (σn) implies a higher outage
probability, according to Eq. (3). However, a higher SF lowers
the gateway sensitivity, resulting in a decreased probability
of outage (Pmo ). A node also has an incentive to use a high
TP such that the probability of interference with other nodes,
i.e, P(Cmj ), is minimized [5, Eq. (16)]. Moreover, a higher
average sending rate (λn) entails a higher P(E′j) in Eq. (2)
which, in turn, increases the probability of interference Pc.
Therefore, the delivery ratio Dn is maximized at all channel
and traffic conditions by using the highest SF and TP available
to the node – for instance, SF12 and TP14 in the European
region [4]. By this reasoning, all nodes will choose the same
configuration. However, the increased time-on-air due to the
higher SF [4, 8] increases the probability of interference with
other transmissions [5]. In other words, a node’s delivery ratio
is decreased if other nodes in the network simultaneously use
high SFs and TPs [8]. Since the nodes operate individually,
each node is unaware of the SFs and TPs chosen by other
nodes. Taking into account this lack of knowledge, the problem
to maximize the delivery ratio is formulated as follows.

Problem 1 (Distributed optimization of the delivery ratio).
The distributed maximization of delivery ratio is given by:

max
Pr(sn,pn|σn,λn)

∑
sn,pn

∑
σn,λn

Dn Pr(sn, pn|σn, λn) Pr(σn, λn),

subject to
∑
sn∈Sn

∑
pn∈Pn

Pr(sn, pn|σn, λn) = 1,

0 ≤ Pr(sn, pn|σn, λn) ≤ 1,∀sn ∈ Sn, pn ∈ Pn,

for each node n ∈ N . Here, Pr(sn, pn|σn, λn) is the proba-
bility that node n chooses SF sn and TP pn given a standard
deviation σn of the channel and an average sending rate λn.

Problem 1 incurs a configuration race among the nodes in
the network, as previously mentioned. To tackle the compe-
tition between nodes and the lack of information about other
nodes, a non-cooperative game [28] is leveraged to assign SFs
and TPs in a distributed manner, as described next.
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C. Non-cooperative stochastic game

The competition among nodes to selfishly maximize their
individual delivery ratio under diverse external conditions
can be modeled as a non-cooperative stochastic game played
among the set N of LoRa nodes, with |N | = N . The
game is defined as G ≡

(
N ,A,Ω, {un}n∈N

)
, where A =

A1 × A2 × · · · × AN is the network-wide action space and
An = Sn×Pn = {α1

n, α
2
n, . . . , α

Kn
n } denotes the action space

of player n with Kn = |Sn||Pn| total number of actions.
Action αn = (sn, pn) ∈ An consists of a tuple of SF and
TP of player n with values sn and pn, respectively. That
is, a node’s action is its choice of SF and TP. Moreover,
Ω = Ω1 × Ω2 × · · · × ΩN is the space of random events
that characterizes the wireless channel and the network traffic.
In particular, Ωn is the set of all tuples ωn = (σn, λn)
that identify the random state of node n, where σn is the
standard deviation of the channel between n and the closest
gateway; and, λn is the average sending rate of n. Nodes aim
to maximize their individual delivery ratio, thus, each player’s
utility un is defined as in Eq. (1), i.e., un = Dn. Note that un
depends on both its own action and random state, as well as
the actions and random states of other nodes in the network.
Thus, node n’s utility un : A ×Ω → R≥0 can be expressed
as un(αn,α−n, ωn,ω−n), in which α−n and ω−n are the
vectors of all other nodes’ actions and random states1.

The formulated non-cooperative stochastic game targets a
mixed strategy that describes a conditional probability distri-
bution over all possible actions, as follows:

π(αk,ωj) = Pr(A = αk|Ω = ωj), ∀ αk ∈ A, ωj ∈ Ω,

where αk and ωj represent a specific realization of the
network-wide action and random state. One desirable solution
in the game is a game-theoretic equilibrium where all players
are satisfied with the strategy. To quantify this, the Coarse
Correlated Equilibrium (CCE) and its more general form [18]
(ε-CCE) are considered next.

Definition 1 (ε-Coarse Correlated Equilibrium). Given a non-
negative ε ≥ 0, the mixed strategy π is an ε-CCE for some
ωj if it satisfies:∑

α−n∈A−n

un(αkn,α−n, ω
j
n,ω

j
−n)π(αkn,α−n, ω

j
n,ω

j
−n)

−
∑
α∈A

un(α, ωjn,ω
j
−n)π(α, ωjn,ω

j
−n) ≤ ε, ∀n ∈ N , αkn ∈ An

In other words, the utility enhancement of a player (over
the utility achieved by following the ε-CCE strategy) who
unilaterally deviates from the ε-CCE strategy, while other
players follow the ε-CCE strategy, is bounded by ε. Note that
a CCE is achieved if ε = 0. Moreover, the equilibrium is
achieved for each ωj independently, i.e., there is an ε-CCE
for each ωj . A straightforward way to implement the ε-CCE
strategy is with a central entity that instructs all nodes to
jointly play the action α according to the ε-CCE distribution
π(α,ω). However, the centralized approach is not feasible
in the considered scenario, as it requires to send downlink

1The −n subscript denotes the set of all players excluding the n-th one.

packets to a large number of nodes in the network whenever a
configuration change is required, e.g., every time the channel
conditions get worse. This would significantly reduce the
capacity of the LoRa network [11]. Thus, a regret-based
method [18] is introduced for each node to learn an SF and
TP allocation strategy that achieves an ε-CCE for each ωjn in
a distributed fashion.

D. Distributed no-regret learning

No-regret learning [18] is adopted to achieve an ε-CCE in
a distributed manner. Specifically, players minimize the regret
of their actions: after carrying out a certain action that has
led to some utility, they evaluate their regret for not having
chosen a different action. Then, the probability of playing
the actions with the highest regret is increased accordingly.
By doing so, nodes learn and maximize their utilities. This
learning occurs in communication rounds as follows. Each
node sends c packets by autonomously choosing a particular
action. Afterwards, the gateway calculates the observed utility
of the node as the ratio between the successfully received and
sent packets during that round. Additionally, it determines the
random state of the node (see Section IV-A) and then sends
the related information (i.e., the node’s utility and random
state) back to the node in a downlink packet. Note that the
communication rounds are asynchronous – those of individual
nodes are independent and have different duration, based on
how often they send packets – therefore, the nodes change their
actions at different times. Moreover, individual realizations of
the random state Ω in time – namely, each ω(t) ∈ Ω(t) – are
assumed to be i.i.d.

Given that all nodes in the network follow the strategies they
used over the previous T rounds, the regret of a specific action
αkn ∈ An, given a random state ωjn for node n, is defined as

rn(αkn, ω
j
n)=

1

T

T∑
t=1

[
un(αkn,α−n(t), ωjn,ω

j
−n(t))−ũn(t)

]
(5)

in which ũn(t) is the observed utility of node n at round
t. The regret is the normalized difference between the utility
that would have been obtained by playing action αkn and the
actual utility given by the current action. A positive regret
rn(αkn, ω

j
n) > 0 signifies that node n can achieve a better

utility by consistently playing action αkn, while the other nodes
follow their original strategies. Then, node n with regret vector
rn = [rn(αkn, ω

j
n) : αkn ∈ An, ωjn ∈ Ωn] selects its action

based on the Boltzmann distribution that results from solving:

βn(rn, αn, ω
j
n) = arg max

πn(αn,ω
j
n)

 ∑
αkn∈An

[
πn(αkn, ω

j
n)rn(αkn, ω

j
n)

− 1

κn(ωjn)
πn(αkn, ω

j
n) ln

(
πn(αkn, ω

j
n)
)]}

∀ωjn ∈ Ωn, (6)

where πn(αn, ω
j
n) = Pr(αn|ωjn). Such a distribution allows

to explore different actions [18]. In particular, the temperature
parameter κn(ωjn) > 0 controls the trade-off between the
optimality of the utility (i.e., exploitation) and maximizing the
entropy of the strategy (i.e., exploration). Specifically, when
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κn(ωjn) is small, the entropy of the system is high and the
node explores actions more broadly. Conversely, the entropy
lowers when κn(ωjn) increases and the node starts choosing the
actions with the highest probabilities. In contrast with [18, 26],
this work considers random states, therefore, the temperature
parameter κn(ωjn) is chosen to be dependent on ωjn to keep
the exploration and exploitation phases independent for each
random state. The solution of Eq. (6) is given by [18]:

βn(rn, α
k
n, ω

j
n) =

exp
(
κn(ωjn)r+n (αkn, ω

j
n)
)∑

αin∈An
exp

(
κn(ωjn)r+n (αin, ω

j
n)
) ,

r+n (αkn, ω
j
n) = max {0, rn(αkn, ω

j
n)},

∀αkn ∈ An, ωjn ∈ Ωn. However, calculating the utility function
un(αkn,α−n(t), ωjn,ω

j
−n(t)) in Eq. (5) requires node n to

know all the previous actions and random states of all the other
nodes in the network. That is, a perfect information game is
assumed. This is clearly impractical, as the information about
the other nodes would need to be transmitted by frequent
downlink packets. To tackle this issue, NoReL is introduced
next as an imperfect information game where nodes iteratively
estimate their utility and regret of each action αkn ∈ An
to update their strategy at the beginning of each round t,
given their current random state ωjn. The detailed steps are
the following:

ûn(αkn, ω
j
n, t) = ûn(αkn, ω

j
n, t− 1)

+νn(ωjn, t)1{αn=αkn}1{ωn=ωjn}
(
ũn(t)− ûn(αkn, ω

j
n, t−1)

)
, (7)

r̂n(αkn, ω
j
n, t) = r̂n(αkn, ω

j
n, t− 1)

+γn(ωjn, t)
(
ûn(αkn, ω

j
n, t)− ũn(t)− r̂n(αkn, ω

j
n, t−1)

)
, (8)

πn(αkn, ω
j
n, t) = πn(αkn, ω

j
n, t− 1)

+µn(ωjn, t)
(
β(r̂n(t), αkn, ω

j
n)− πn(αkn, ω

j
n, t−1)

)
, (9)

∀αkn ∈ An, ωjn ∈ Ωn, t ∈ Z+. Here, 1{x=y} is the indicator
function that is equal to 1 if x = y or to 0 otherwise.
The rationale behind these equations is the following. Let us
consider the moving-average estimator â(t) = 1

t

∑t
τ=1 a(τ)

of the expectation E[a], which can be recursively written as
â(t) = 1

t a(t)+ t−1
t â(t−1) = â(t−1)+ 1

t [a(t)−â(t−1)]. Here,
the difference between the latest realization and the previous
estimation – namely, a(t)− â(t− 1) – is used to calibrate the
estimation, and its impact decays in terms of 1/t. In contrast,
the weights of the calibration terms in Eqs. (7)–(9) are in their
general form νn(ωjn, t), γn(ωjn, t), and µn(ωjn, t), which are
round-dependent learning rates and satisfy:

lim
T→∞

T∑
t=1

[
µn(ωjn, t) + γn(ωjn, t)

]
=∞, (10a)

lim
T→∞

T∑
t=1

[
µn(ωjn, t)

2 + γn(ωjn, t)
2
]
<∞, (10b)

lim
t→∞

γn(ωjn, t)

νn(ωjn, t)
= 0, (10c)

lim
t→∞

µn(ωjn, t)

γn(ωjn, t)
= 0. (10d)

Note that the p-series
∑∞
t=1

1
tp diverges when p ≤ 1

and converges when p > 1. Hence, the learning rates
µn(ωjn, t), γn(ωjn, t) and νn(ωjn, t) can be selected as [26]:

µn(ωjn, t) = 1{ωn=ωjn} ·
1

tpµ
, (11)

γn(ωjn, t) = 1{ωn=ωjn} ·
1

tpγ
, (12)

νn(ωjn, t) = 1{ωn=ωjn} ·
1

tpν
, (13)

with 0.5 < pµ, pγ , pν ≤ 1, so that the conditions in Eq. (10a)
and Eq. (10b) are satisfied. Furthermore, pµ > pγ > pν holds
to meet the conditions in Eq. (10c) and (10d). The learning
rates µn, γn and νn are updated at every round, which in turn
affects the amount of new information adopted in updating the
utilities, regrets, and probability distributions. These rates also
depend on ωjn to update the parameter for each random state
independently. Finally, the temperature is updated as:

κn(ωjn, t) = κn(ωjn, t− 1) + 1{ωn=ωjn} · ψ(t), (14)

with a non-decreasing function ψ(t). In this work, ψ(t) = t2,
as it tends to infinity. As a consequence, the nodes explore
their actions when t is small and then exploit the best ones
as t increases. This, in turn, makes ε smaller with time, thus
asymptotically converging to a CCE [18]. Specifically, nodes
are constantly participating in the game and the convergence
of the system is defined as follows.

Definition 2 (Convergence time). The convergence time t0 for
a random state ωj =

(
ωj1, · · · , ω

j
N

)
and some small δ > 0

is such that, for all t ≥ t0 and n ∈ N ,∑
αkn∈An

∣∣πn(αkn, ω
j
n, t)− πn(αkn, ω

j
n, t− 1)

∣∣
Kn

≤ δ.

NoReL is proven to converge to an ε-CCE [18] next.

Definition 3 (Lipschitz function). An f function is said to
be Lipschitz if |f(x)−f(y)| ≤ C|x−y|, for all x and y in the
domain of f and for a real constant C independent of x and y.

Proposition 1. The learning in Eqs. (7)–(9) converge to an
ε-CCE strategy π∗(ωj) = {π∗1(ωj1), · · · , π∗N (ωjN )} of G for
all ωj if and only if the conditions in Eq. (10) are met, where
lim
t→∞

πn(ωjn, t) = π∗n(ωjn).

Proof. For simplicity, the following considers a fixed ωj as the
derivation is the same for all ωj ∈ Ω. The learning in NoReL is
a discrete-time process that can be expressed as the asymptotic
trajectory of a flow [18], therefore, its convergence can be
proven on the basis of [25, Proposition 4.1]. Accordingly, it
is enough to show that un and βn(rn, αn, ω

j
n) are Lipschitz

functions, since the conditions in Eq. (10) hold by hypothesis.
From Eq. (1), the observed utility of node n at a certain

round t can be expressed as un = 1−x, wherein x = Pc+P∗o−
PcP∗o, with P∗o =

∏
m∈M Pmo , is a function of the network-

wide action and random state, i.e., x = x(αn,α−n, ω
j
n,ω

j).
Letting 1 ≥ x ≥ y ≥ 0 yields:

|un(x)− un(y)|
|x− y|

=
|(1− x)− (1− y)|

|x− y|
=
|y − x|
|x− y|

= 1.
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TABLE I: Simulation parameters.

Parameter Value
Sending rate (λn) 0.001 s−1 [5, 7]
Duty cycle 0.01 [4]
Path loss L(d0) = 128.95 dBm, d0 = 1 km,

η = 2.32, σ = {3.54, 7.08} [2]
Packet length 20 bytes [29]
Preamble length 8 bytes [4]
Frequency 868 MHz
Bandwidth 125 kHz
Coding rate 4/8
SFs {7, 8, 9, 10, 11, 12}
TPs {2, 5, 8, 11, 14} dBm
Receiver
sensitivity per SF

{7: -124, 8: -127, 9: -130, 10: -133,
11: -135, 12: -137} dBm [30]

Supply current
per TP

{2: 24, 5: 25, 8: 25, 11: 32,
14: 44} mA [30]

Time on air per SF {7: 0.0780, 8: 0.1397, 9: 0.2467,
10: 0.4935, 11: 0.8560, 12: 1.7121} s

Hence, un is a Lipschitz function. Consider now the
regret vectors x and y of node n; trivially, it is
0 < |βn(x, αn, ω

j
n) − βn(y, αn, ω

j
n)| < 1, therefore,

|βn(x, αn, ω
j
n) − βn(y, αn, ω

j
n)| < C|x − y| ∀x,y and for

some scalar C. Consequently, both un and βn(rn, αn, ω
j
n)

are Lipschitz functions, which completes the proof.

IV. PERFORMANCE EVALUATION

This section evaluates NoReL against the state of the art by
simulation. It first introduces the related setup and methodol-
ogy, it then discusses how to estimate the path loss parameters
based on observed channel conditions. It finally presents
the results obtained for both static and dynamic scenarios,
comprising networks with different layouts and characteristics.

A. Setup and methodology

A custom discrete-time Python simulator2 was developed
to determine the SF and TP assignments of nodes over time.
The simulator incorporates – for all uplink and downlink
packets – the capture effect, quasi-orthogonal SFs, duty-cycle
restrictions for both LoRa nodes and gateways, and a collision
model that requires the last five preamble symbols to be
correctly received to decode the whole packet [4]. Moreover,
gateways are considered half-duplex, i.e., no packets are re-
ceived while they are transmitting and vice versa. As discussed
in Section III-D, nodes update their SF and TP at the beginning
of each round with NoReL. Accordingly, the utility and random
state of each node are computed and Eqs. (7)–(9) are applied
to determine its SF and TP at each round.

The performance is primarily evaluated in terms of con-
vergence time with δ = 0.01 (according to Definition 2) and
the average delivery ratio in the network as the probability
(expressed as a percentage) that its packets are correctly
received, obtained with Eq. (1), i.e., by evaluating the model3

2Available at: https://github.com/VeronicaToro/NoReL/
3Available at: https://github.com/VeronicaToro/LoRa-model/

in [5]. For comparison purposes, we also report the energy
consumption E calculated as:

E =

N∑
n=1

V (Itx(pn)Tair(sn) + 2IrxTrx)

Dn
,

where V is the input voltage of the LoRa devices; Itx(pn) is
the current consumed for a transmission with TP pn; Tair(sn)
is the time on air of a packet transmitted with SF sn; Irx is the
current consumed during the two receive windows, of duration
Trx, that follow an uplink transmission; and Dn is as in Eq. (1).
In this work, V = 3.3 V, Irx = 11 mA, Trx = 164 ms [31],
while Itx(pn) and Tair(sn) are taken from [30]. Therefore, E
is the energy needed by all nodes to transmit a packet that is
successfully received.

For all the results presented next, each individual simulation
run lasts for 15 days of simulated time, unless otherwise
stated; all experiments are repeated 30 times and the average
value is reported in the figures together with the corresponding
standard deviation. Table I shows the simulation parameters;
those for the path loss parameters were derived in [2] through
extensive measurements on a real LoRa network deployed in
a sub-urban environment. The packet length is set to 20 B,
a typical value in LoRa networks as shown in [29]. The
rest of the parameters were chosen according to those widely
employed in the state of the art [5, 7].

As explained in Section III-D, NoReL requires the gateways
to calculate, at every round, the random state of the nodes
– namely, the observed standard deviation of the wireless
channel (σn) and the average sending rate (λn). To simplify the
implementation, the channel conditions and sending rates are
computed across the whole network rather than for individual
nodes. Therefore, the gateway only sends the network-wide
parameters (σ, λ) to all the nodes in range, instead of sending
individual values (σn, λn) to each node. The ordinary least
squares method [32] is adopted to estimate the value of σ
over a window of 80 packets as detailed in Section IV-B;
λ is calculated with the packets received over one-hour in-
tervals as λ = λN . Moreover, the random state space is
discretized as follows: σ can belong to one of the inter-
vals [0, 5), [5, 10), [10, 15), [15, 20]; λ to one of the intervals
[0, 0.003), [0.003, 0.006]. Consequently, eight random states
are considered in total.

Another critical step in the implementation of NoReL is the
selection of the learning parameters and the duration of a
round, as they affect the convergence time and the performance
of the network. After extensive simulations (not included here
due to lack of space), the following parameters were chosen
as a trade-off between convergence time and delivery ratio:
pν = 0.8, pγ = 0.9, pµ = 1 and the round size c = 10. That
is, downlink packets are sent every 10 packets to each node
similar to the protocol used in ADR [21], which is widely
implemented in real-world LoRa networks.

B. Estimation of path loss parameters

The gateways estimate the channel conditions and report
them to the nodes in downlink packets. To this end, the
ordinary least squares (OLS) [32] method is adopted, as it

https://github.com/VeronicaToro/NoReL/
https://github.com/VeronicaToro/LoRa-model/
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Fig. 1: Path loss parameters (a) PL(d0), (b) γ and (c) σ for random changes occurring every 5 hours in a day.

is easy to implement and it has been also used in real LoRa
networks [33]. Here, the gateway estimates PL(d0), γ and σ
based on the receive and transmission power of packets as well
as on its distance from the source node over a window of L
packets. For this purpose, the following matrix representation
is introduced. First, χ = [1 10 log(d/d0)] is an L by 2
matrix with 1 and d the column vectors of ones and distances,
respectively. That is, d contains the distances between the
gateway and the source node for each of the L packets.
Moreover, C =

[
PL(d0) γ

]T
is a 2 by 1 matrix and

Σ = [Xσ] a column vector of size L containing the standard
deviation of the channel for each of the L received packets,
modeled by a normal distribution, i.e., Xσ ∼ N (0, σ). Then,
the vector of receive powers is given by:

y = χC + Σ.

This allows to estimate PL(d0) and γ, respectively, as the first
and second entry of the following vector:

Ĉ =
(
χTχ

)−1
χTy.

Finally, the variance σ2 of Xσ is estimated as:

σ2 =
1

L− 1

(
y − χĈ

)T (
y − χĈ

)
.

To keep the estimated parameters smooth, a learning rate ζ is
used to satisfy:

P̂L(d0)t = ζP̂L(d0)t−1 + (1− ζ)P̂L(d0)t,

γ̂t = ζγ̂t−1 + (1− ζ)γ̂t,

σ̂t = ζσ̂t−1 + (1− ζ)σ̂t,

where x̂t is the estimation of parameter x at time t. The value
ζ = 0.3 was empirically found to achieve the best trade-off
between the variance in the estimated data and the response
delay after changes in the channel conditions.

Figure 1 characterizes the accuracy of path loss parameters
estimation for a case where PL(d0), γ and σ vary randomly
every 5 hours during one day; the shaded areas in the plots
indicate the 95% confidence intervals. The figure clearly shows
how the OLS-based estimation quickly obtains4 the correct
value upon changes, with only a small variation over time –
namely, less than 5% in all cases.

4The convergence to the correct value could be shortened by decreasing ζ
at the cost of a higher variance.

C. Comparison against state of the art

The performance of NoReL is compared against the schemes
discussed next. MinSF is a simple baseline that assigns each
node the lowest SF required to achieve connectivity to the
nearest gateway at the highest TP. This scheme requires infor-
mation on the distance of each node to the nearest gateway and
the path loss parameters. Thus, it runs at the central network
server [19]. Tolio is the two-player game proposed in [14]
to assign SFs to LoRa nodes, played between each node and
the rest of the network. Each node is aware of the aggregate
distribution of SFs in the network and chooses between
keeping the current SF or increasing it by one. All nodes
use the highest TP. Adaptive Data Rate (ADR) assigns SFs
and TPs to each node such that the overall network capacity
is increased and energy consumption is minimized [22]. It
comprises two algorithms that run independently at the node
and the network server. The algorithm running at the node is
defined by the LoRaWAN specifications [27]: it increases the
SF and TP of a node whenever it cannot reach a gateway.
On the other hand, the algorithm running at the network
server depends on the operator of the LoRa network. The
implementation here follows the one presented in [22]: the
network server adjusts the SF and TP depending on the quality
of a link estimated by observing the average signal-to-noise
ratio (SNR) of the last 20 packets received from the node.
Unless otherwise stated, the device margin is set to 15 dB [21]
and the remaining parameters are set to the default values
reported in [22, 27]. DyLoRa is the mechanism proposed in [12]
to assign SFs and TPs to nodes. Similar to ADR, there are
two components that run at the node and the network server.
The algorithm at the node simply resets the SF and TP to
the highest values whenever uplink connectivity is lost (i.e.,
12 consecutive packets are dropped). On the other hand, the
network server predicts the delivery ratio for each node for
all combinations of SFs and TPs based on the SNR of the 6
previously received packets. It then chooses the configuration
that maximizes the energy efficiency of the node, i.e., the one
that achieves a high predicted delivery ratio with a low energy.

1) Static scenarios: First, the network performance is eval-
uated in a static scenario wherein nodes are deployed uni-
formly located within a radius of 2 km from a single gateway.
Different densities of the network are evaluated by varying
the number of nodes. Figure 2a presents the average delivery
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(a) (b)

Fig. 2: (a) Average delivery ratio and (b) energy consumption as a function of the number of nodes in static scenarios.

ratio, showing similar values for MinSF, Tolio and NoReL in
networks with fewer than 800 nodes. Still, NoReL outperforms
other approaches in all network densities. Most nodes can use
the smallest available SF (i.e., SF7) to reach the gateway with a
deployment radius of 2 km. Thus, MinSF assigns SF7 to around
75% of the nodes and SF8 to the rest of the nodes. On the other
hand, Tolio adds more SF diversity, with approximately 50%
of the nodes using SF8. This results in a high delivery ratio
for networks with few nodes, e.g., with 200 nodes. However,
as the density of nodes increases, using only SF7 and SF8
increases the probability of collisions, even though the time-
on-air of the packets is short. In such scenarios, NoReL assigns
higher SFs to a few nodes (around 22% of the nodes use
SFs higher than 8) resulting in a better SF diversity, thereby
reducing the probability of collisions between packets. For this
reason, NoReL achieves the highest average delivery ratio in
all considered densities. ADR achieves a slightly lower average
delivery ratio than MinSF because, while MinSF assigns TP14
to all the nodes and NoReL does the same for approximately
81% of the nodes, ADR assigns TPs lower than TP14 to 30%
of the nodes. As discussed before, a high TP minimizes
the probability of outage and collisions with other nodes.
Finally, DyLoRa achieves the lowest average delivery ratio,
as it is designed to achieve a high energy efficiency through
lower SFs and TPs [12]. Specifically, DyLoRa assigns TP14 to
only 5% of the nodes. Finally, additional simulations showed
that in larger networks (with a 6 km deployment radius) the
average delivery ratio achieved by all approaches is similar
even with a high density of nodes (not included due to space
constraints). Indeed, the nodes are more constrained in their
communication parameters, under larger deployment areas.
For instance, the nodes farthest from the gateway must use
SF12 and TP14. Then, other nodes will avoid using SF12 to
minimize collisions. Accordingly, the possibilities of changing
SFs and TPs are limited, thus ADR, Tolio and NoReL converge
to an assignment similar to that of MinSF.

Figure 2b depicts the energy consumption achieved by the
different approaches in the considered static scenarios. The
figure shows that MinSF, Tolio and ADR result in a similar
energy consumption at all network densities. This happens be-
cause they assign low SFs, even though they also assign TP14
to most of the nodes. On the other hand, DyLoRa and NoReL
consume higher energy as they assign higher SFs. In fact, it

is the time on air of the packets determined by the SF that
primarily affects the energy consumption. This can be clearly
seen from the parameters Itx(pn) and Tair(sn) in Table I: while
Itx(2) and Itx(14) differ by 45.4%, Tair(7) and Tair(12) differ
by 95.4%. Therefore, keeping a low SFs is the best option
to save energy but not to achieve a high delivery ratio, as
previously discussed. DyLoRa actually incurs in the highest
energy consumption despite being designed to optimize energy
efficiency because the related characterization [12, Eq. (3)]
penalizes high TPs instead of high SFs.

Different network layouts are evaluated next, including sce-
narios with multiple gateways and a non-uniform distribution
of nodes around a gateway. In both cases, the networks
comprise 1,000 nodes. Figures 3a and 3b show these layouts
where the gateways are represented by black triangles and the
nodes by colored points whose colors show the SFs assigned
by NoReL; Figures 3c and 3d, instead, show the SFs assignment
of MinSF for comparison5 purposes. Figure 3a clearly shows
that NoReL mainly assigns SF7 to the nodes that are the
closest to the gateway and SF8 to the nodes in the outer
ring, similar to MinSF. However, there is some SF diversity
among all nodes. In contrast, Figure 3c highlights how SFs are
assigned in rings by MinSF. ADR produces the same assignment
as the one obtained by MinSF, whereas Tolio and DyLoRa
exhibit a greater SF diversity, with SF8 and SF10 as the
most used, respectively. For the non-uniform scenario, the
difference between NoReL (Figure 3b) and MinSF (Figure 3d) is
less visible, as both approaches primarily assign SFs in rings.
This happens for NoReL because nodes are located far away
from the gateway, resulting in a few actions to choose from.
Nevertheless, NoReL still assigns a high SF to a few nodes. The
assignments of Tolio and DyLoRa, instead, mostly rely on SF8
and SF10, respectively, similar to the previous scenario.

Figures 3e and 3f show the delivery ratio of the different
schemes for the two considered static scenarios. These results
clearly depend on the diversity of the assigned SFs. In fact,
NoReL and Tolio achieve the highest delivery ratio for the
scenario with multiple gateways (Figure 3e) – in detail, NoReL
achieves a delivery ratio 2.3% higher than ADR – as they exhibit
the highest TP and SF diversity. For the non-uniform scenario,
the difference between the average delivery ratios achieved

5The rest of the discussion also refers to the assignments obtained by ADR,
Tolio and DyLoRa even though they are not reported in figures for brevity.
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Fig. 3: Spreading factor assignment of: NoReL for the (a) 2-gateway and (b) non-uniform scenarios; MinSF for the (c) 2-gateway
and (d) non-uniform scenarios. Gateways are denoted as black triangles and nodes as colored circles in the figures. Average
delivery ratio of the considered approaches for the (e) 2-gateway and (f) non-uniform scenarios.

by MinSF, Tolio, ADR and NoReL is below 1% (Figure 3f).
The slightly better performance of NoReL is due to the few
nodes that are assigned a high SF, as previously discussed.
DyLoRa achieves a significantly lower delivery ratio than the
other schemes in both scenarios due to the low TPs assigned
to the nodes while aiming to maximize energy efficiency.

2) Dynamic scenarios: The following three scenarios are
considered to evaluate how the different schemes adapt to
changes in network conditions, when: (i) new nodes are added
to an existing network with a stable configuration; (ii) the
average sending rate changes after a certain time, for instance,
an application may temporarily require more data during
certain time periods; (iii) the channel conditions vary due to
changes in weather conditions [9], in-band traffic from other
networks or even the presence of obstacles (e.g., people) near
end devices [10]. All scenarios are evaluated in a network
with one gateway and 500 nodes uniformly deployed within
a radius of 4 km. MinSF and Tolio are no longer considered,
as they are designed for static scenarios and do not define
means to identify when nodes are reconfigured or notified
about the new configuration. In addition to the delivery ratio,
the results reported next provide the SF and TP assignment
obtained by the considered schemes in the different scenarios.
In all cases, values are shown as a function of the simulation
time, expressed in terms of the number of packets sent in the
network, to abstract from the actual sending rate. The time at
which a change takes place is marked with a dotted vertical
line in all figures. In addition, Figure 4 shows the standard
deviations of the obtained values as a shaded area and the
convergence time for NoReL, marked as t0.

Additional nodes. In the first scenario (Figure 4a), the
network is initially configured with a stable configuration
achieved by the specific approach being evaluated (ADR,
DyLoRa or NoReL). After two days of simulated time (around
86,700 sent packets), 100 new nodes are added at random
locations within the deployment area. The newly-added nodes
initially use the minimum SFs that allow them to reach the

gateway and TP14. Figure 4a shows that NoReL achieves
the highest delivery ratio. In fact, NoReL achieves a delivery
ratio 1.4% higher than ADR and 12% higher than DyLoRa, on
average. Moreover, the convergence time of NoReL is low, as
it takes around 14,000 packets (approximately 7 hours) to
converge after the new nodes are added. This is due to the
learning rates that the other nodes had beforehand. That is, all
the pre-existing nodes had already reached the steady state and
only the new ones had to learn the best strategy. It is worth
observing that DyLoRa sets the new communication parameters
more quickly for the recently-added nodes (they all reach their
final parameters in around 4 hours), even though its delivery
ratio (around 76.4%) is lower than that of both ADR and NoReL.

Figure 5 shows the SF and TP assignment over time of
the different methods for the considered scenario. It is clear
how NoReL tries different strategies before converging to the
final assignment, which is almost a uniform distribution of SFs
and mainly high TPs (Figure 5a). The SF and TP assignment
of ADR (Figure 5b) and DyLoRa (Figure 5c), instead, remains
basically the same after the new nodes are added.

Additional traffic. In the second scenario, the initial network
configuration is obtained with MinSF. Then, the average send-
ing rate per node is increased from λ = 0.001 to λ = 0.005
after five days. The sending rate then goes back to its initial
value (λ = 0.001) after five more days. Figure 4b clearly
shows that the delivery ratio is affected by the increase of
network traffic for all considered schemes (i.e., NoReL, ADR
and DyLoRa). Specifically, the average delivery ratio of NoReL
goes down and then up again while the network converges
to the ε-CCE. This happens when the nodes change their
configuration from MinSF to NoReL (at the very beginning) and
when λ is changed (after about 210,000 packets). Moreover,
the nodes rapidly adopt the configuration they had already
learned at the very beginning after 10 days, when the initial
sending rate is used again. NoReL requires longer time than
ADR and DyLoRa to converge to a stable configuration. This is
because of its completely distributed nature. In particular, the
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Fig. 4: Delivery ratio for scenarios where (a) 100 new nodes are added to the network, (b) the average sending rate is increased
by a factor of 5, and (c) the channel conditions alternate between two settings every 12 hours.

(a) (b) (c)

Fig. 5: SF and TP assignment over time for (a) NoReL, (b) ADR and (c) DyLoRa in the scenario with added nodes.

convergence time of NoReL at normal network traffic is around
82,800 packets and 115,000 packets at high traffic, as shown
by the black circles in Figure 4b. The convergence time is
higher for the increased traffic as there is a higher probability
of packets being dropped, which results in longer time for the
nodes to complete their rounds. However, the transient only
takes place the first time a random state is met, after which
the nodes learn the best configuration and use it every time
they return to such a state. This explains why NoReL returns
almost instantaneously to the highest delivery ratio after the
traffic goes back to the initial conditions.

NoReL achieves the highest delivery ratio; compared to
ADR, 3.6% higher with high network traffic and around 1%
higher at normal traffic. Surprisingly, NoReL presents a peak
shortly after the sending rate is increased, before converging
to a slightly lower delivery ratio. This happens because the
overall performance of the configuration used at that peak
does not correspond to the equilibrium achieved by NoReL.
In fact, converging to an ε-CCE does not imply that the
network reaches its optimum configuration then. Instead, the
convergence is in the ε-neighborhood of a CCE [15], i.e., the
overall performance can deviate from the CCE by ε.

Figure 6 shows the SF and TP assignment over time in this
case. With NoReL, nodes again converge to their strategies in
each random state and then quickly adopt the configuration
they previously had when a certain state is met again (Fig-
ure 6a). Instead, ADR is mainly unaffected by the increased

network traffic, except for small changes in the TP distribution
(Figure 6b). On the other hand, DyLoRa quickly converges to a
SF and TP assignment at each network traffic level (Figure 6c).

Changes in channel conditions. In the third scenario, the
channel conditions vary following the empirical results pre-
sented in [9], i.e., the variance and mean of the received
power change periodically by approximately 10 dBm in the
worst case [9, Figure 5]. Accordingly, the path loss parameters
(γ, σ) were varied between the two settings of (2.32, 3.54) and
(3.32, 7.08). The device margin for ADR was set to σ + 8 dB
in the experiments, following a preliminary analysis showing
that such a margin had to be σ-dependent to avoid instability.

Figure 4c shows that NoReL achieves the highest delivery
ratio throughout, about 7% higher than ADR and DyLoRa
under the worst channel conditions. Note that the two channel
settings starting at 0 and 12 hours (every 21,500 packets)
represent distinct random conditions that involve two indepen-
dent convergence periods. The figure shows that 12 hours are
not enough for NoReL to converge in either random condition
within a single time window. However, the nodes resume
learning when similar channel conditions occur again, starting
from the best configuration learned until then. Thus, the nodes
do not encounter a drop in delivery ratio, for instance, towards
the end of the simulated time. Nevertheless, there is some
transient for NoReL after each change is implemented, where
the delivery ratio starts from a slightly lower value and quickly
sets to the converged value. This is simply the time it takes
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(a) (b) (c)

Fig. 6: SF and TP assignment over time for (a) NoReL, (b) ADR and (c) DyLoRa in the scenario with increased traffic.

(a) (b) (c)

Fig. 7: SF and TP assignment over time for (a) NoReL, (b) ADR and (c) DyLoRa in the scenario with varying channel settings.

for all the nodes to receive information from the gateway
about the random condition. In contrast, nodes do not leverage
previously-known best configurations with ADR or DyLoRa.

Finally, Figure 7 shows the SF and TP assignment over time
in the considered scenario. Interestingly, NoReL converges to
a stable assignment in two different random conditions (Fig-
ure 7a). It is also worth noting that lower SFs and higher TPs
are used in the state corresponding to (γ, σ) = (2.32, 3.54),
while the opposite happens when the channel conditions
deteriorate. The assignment of ADR is again mostly the same
across all simulation time, except for small changes in the TPs
(Figure 7b). Finally, DyLoRa converges to a solution every
time the channel conditions change; however, DyLoRa tends
to assign higher SFs and TPs when the channel conditions
deteriorate (Figure 7c), in contrast to NoReL.

D. Summary

Table II summarizes the obtained results. Clearly, NoReL
outperforms all other schemes for all considered scenarios.
This happens as it takes into consideration the delivery ratio of
individual nodes to make decisions. Unsurprisingly, MinSF and
Tolio perform well in static conditions, as they are specifically
designed for such use cases; they are not suitable for the
dynamic environments of real-world deployments though. In
contrast, ADR and DyLoRa are adaptive, therefore, they allow
nodes to set their parameters according to the actual envi-
ronmental conditions. However, they mostly rely on the SNR
of packets sent by nodes, which does not account for all the
factors that may arise in dynamic scenarios. In conclusion, the

TABLE II: Summary of results.

Scenario Average delivery ratio (%)
MinSF Tolio ADR DyLoRa NoReL

200 nodes 94.2 95.1 92.4 87.6 95.6
2,000 nodes 84.7 84.3 84.4 69.3 85.9
2 gateways 94.6 95.2 93.1 82.9 95.2
Non-uniform 88.3 88.2 88.5 73.3 88.7
100 more nodes - - 86.8 76.4 88.2
λ = 0.001 - - 87.7 78.2 89.2
λ = 0.005 - - 75.8 68.5 79.2
γ=2.32, σ=3.54 - - 89.6 80.5 91.5
γ=3.32, σ=7.08 - - 62.1 60.6 68.8

obtained results establish that NoReL is flexible and suitable for
diverse, highly-dynamic environments.

V. CONCLUSION

This article has proposed NoReL, a game-theoretic approach
for setting SFs and TPs to improve communication reliability
in LoRa networks. Specifically, a no-regret learning procedure
was devised for nodes to independently learn the utilities of
their actions and maximize their delivery ratio by choosing the
appropriate SF and TP. This procedure is shown to converge
to an equilibrium where nodes are satisfied with their utilities.
Extensive simulations have shown that NoReL achieves a higher
average delivery ratio than the state of the art. Moreover, it
quickly obtains a new equilibrium in dynamic scenarios where
the channel and network conditions suddenly change. The
flexibility of the proposed solution makes it ideal for any type
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of LoRa network. The implementation of NoReL in real-world
LoRa deployments is left as a promising future work.
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