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Quantum-Assisted Activation for Supervised
Learning in Healthcare-based Intrusion Detection

Systems
Nikhil Laxminarayana, Nimish Mishra, Prayag Tiwari ID , Sahil Garg, Bikash K. Behera, Ahmed Farouk

Abstract—Intrusion detection systems (IDS) are amongst the
most important automated defense mechanisms in modern in-
dustry. It is guarding against many attack vectors, especially in
healthcare, where sensitive information (patient’s medical history,
prescriptions, electronic health records, medical bills/debts, and
many other sensitive data points) is open to compromise from
adversaries. In the big data era, classical machine learning has
been applied to train IDS. However, classical IDS tend to be
complex: either using several hidden layers susceptible to over-
fitting on training data or using overly complex architectures such
as convolutional neural networks (CNNs), long-short term mem-
ory systems (LSTMs), and recurrent neural networks (RNNs).
This paper explored the combination of principles of quantum
mechanics and neural networks to train IDS. A hybrid classical-
quantum neural architecture is proposed with a quantum-assisted
activation function that successfully captures patterns in the
dataset while having less architectural memory footprint than
classical solutions. The experimental results are demonstrated
on the popular KDD99 dataset while comparing our solution to
other classical models.

Impact Statement—IDS are dynamic defenses against network
breach attacks. Lately, machine learning has been leveraged
to perform automated intrusion detection. However, classical
machine learning needs a large amount of data and overly
complex architectures to ”learn” patterns from data. In this work,
machine learning concepts are applied to derive a novel quantum
activation function that greatly simplifies neural architectural
complexity while achieving the same level of accuracy and
performance. In addition, the proposed architecture is much
simpler than state-of-the-art-based classical systems, simpler to
train, and easy to handle.

Index Terms—Quantum Machine Learning, Intrusion Detec-
tion, Activation Function, Supervised Learning

I. INTRODUCTION

Every facet of how medical institutions operate is being
radically altered and driven by the digital revolution. The sheer
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volume of medical data created, manipulated, and stored by
medical institutions is increasing, creating new horizons and
necessitating more data governance. Furthermore, computing
environments are more complex than ever: mainly covering
the private cloud storage in medical networks storing sensitive
patient data. Such addition to the attack surface makes it
more difficult to track attackers and secure medical networks.
The value of data to the medical industry in today’s data-
driven world is so immense that a data breach can result in a
significant loss in revenue not just to the medical sector but to
several interlinked industries [1] (including the pharmaceutical
industry). These losses are not just capital losses, but also
intangibles, presenting us with the daunting task of keeping
medical information secure [1].

With such an inflow of data from all domains, the volume
of data collected by various medical institutions has grown
several manifolds. However, the traditional cybersecurity mea-
sures are now proving insufficient to protect this inflow.
Monteith et al. [2] document the rise of cybercrime during
the global pandemic (and since medical institutions play a
central role in such pandemics, cyberattackers aim to target
such institutions). They present evidence that the types of
cyberattacks are now more fundamentally non-distinguishable
from actual access requests. Furthermore, existing cybersecu-
rity infrastructure lacks the foresight to warn the user from
some potential attack vectors, a vulnerability that adversaries
are increasingly capable of exploiting. Therefore, due to a
large number of avenues available to adversaries, the potential
to exploit the network and its data is much more advanced
than ever before [3]. All these statements make a compelling
case to consider the role of deep learning in cybersecurity in
a prudent way. Deep learning-assisted cybersecurity systems
are much more suited to examining patterns and learning from
them to help prevent repeated intrusions and react to changing
behaviors [4]. Furthermore, it can assist cybersecurity teams
in becoming more proactive in terms of avoiding risks and
responding to active attacks in real-time.

With the advent of quantum machine learning, the following
question should be asked: can quantum machine learning pave
new avenues in machine learning-assisted cybersecurity sys-
tems specially suited to medical networks? Quantum machine
learning is simply the application of quantum circuits and
algorithms within machine learning programs [5]. By inte-
grating quantum computing with deep learning structures, the
potential of various quantum phenomena can be leveraged to
enhance the learning capabilities of a classical neural network
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through embedding a layer of quantum perceptrons within a
classical neural network [6]. So, it will eliminate the various
shortcomings of an intrusion detection system designed by
some of the other current machine learning algorithms.

To the best of authors’ knowledge, the following points are
explored:

• how quantum machine learning can help in cybersecurity?
• how quantum machine learning-based systems contrast

against classical machine learning-based systems?
• how quantum computers can be used to power next-

generation cybersecurity systems for the healthcare in-
dustry?

This paper proposed architectures consisting of layer(s) of
parameterized quantum circuits working in harmony with the
classical neural network. The hybrid classical and quantum
machine learning-driven system has been developed, which
can learn upon structured data to predict intrusion attempts
in connected networks. The popular KDD99 dataset used
for intrusion detection system studies has been employed
to set our system against current classical machine learning
systems. We explore how one can develop complex non-linear
activation functions to learn more complex relationships in
structured data. Unfortunately, counterparts’ architectures use
hidden layers with massive perceptron and have a high mem-
ory footprint with complex architectures like CNN, LSTM,
RNN, etc. On the other hand, our architecture achieved a
higher accuracy, capturing the input-output relationship in just
8 node quantum. The main objective of this work is to guide
more research into the hybrid of classical and quantum neural
networks for various learning tasks.

A. Classical neural networks

A classical neural network aims to mimic, to a large
extent, certain cognitive functions as performed by the human
mind. These cognitive functions include all the functions
associated with the five senses of humans and have had, so
far, applications in pattern recognition and classification [7].
Haykin et. al. [8] defined neural network that can help to
come up with a good idea of how a neural network tries
to mimic cognitive functions. A neural network, in essence,
is a parallel combination of simple processing units that can
acquire knowledge from a learning environment and store it in
its connections or synaptic weights. The theoretical basis for
a classical neural network stems from a fundamental analysis
of models capable of cognition [7]:

• Existence of parallel simple processing logical units.
• Coherence between processing units for the system to

solve problems without needing a centralized algorithm.
• The logical units and their relationships are characteristic

to the system as they define the knowledge the network
holds.

• The system is designed to be domain-independent but ac-
quires knowledge and trains itself into a domain-specific
system.

• The system is supposed to learn from the training phase
and, by design, must be able to apply the knowledge to
solving similar problems.

These theoretical ideas form a basis of what a classical neu-
ral network must be able to do in principle. The most important
question is: how are these ideas translated into a classical
neural network capable of performing a cognitive function,
having sharp resemblance with the minds of living beings?
It is indeed an elegant question, for one must keep in mind
the definiteness associated with any computing system when
a non-definite task is set to such a system. The way humans
think does not resemble how a simple computing architecture
works. Subsequently, how a system can be derived that is
definite in itself but manages to learn from its environment and
then applies learned ideas to perform the task it was designed
to perform. Any general neural network has some core ideas
associated with its design. These core ideas are defined in four
levels [7].

• State vector and Weight matrix: A classical neural
network contains a constant number of neurons organized
in layers that interact to propagate information for gener-
ating output by converging the input from the neurons in
the previous layer. Each neuron has an activation value
associated with it, and each neuron-to-neuron connection
has a weight attached to it. Moreover, for the network
to work as required, a certain bias may be applied to
each connection to reflect which connection has the most
influence on the output. The weights of all connections
may be organized into an N × N matrix.

• Activation Spreading: In each state change step, a
neuron gets its input from the neurons in the previous
layer (or the learning environment). Then an activation
function acts upon the input to give an updated activation
value to the neuron, which then serves as the output sent
to the neurons in the next layer. The state vector changes
whenever this process occurs and this process is repeated
until the state vector yields a stable value. This is the
essence of training a classical neural network.

• Setting Parameters: The weights of the connections
can be understood like a knob that affects the gener-
ated output. The learning phase of a neural network is
characterized by finding a suitable setting for all such
knobs to reach the closest to finding the ideal output.
Therefore, training cases need to be repeatedly presented
to the system to make the weight matrix values converge
to a single value.

• Derived Function: As a result of the repetition of train-
ing, until the values for input vectors converge to the
output vector, the network acts as a derived function that
maps a certain input vector to a particular output vector.

Due to their ability to adapt to input and provide a definitive
model for non-linear processes, classical NNs find varied ap-
plications in diverse fields: medicine, quantum chemistry, 3D
reconstruction, face recognition, and data mining. In addition,
classical NNs are used in cybersecurity to classify malware for
threat identification, penetration testing, and network intrusion
detection. Unfortunately, these NNs lack processing, memory,
and accuracy, affecting performance and security. Therefore,
applying the quantum computing laws and resources will
improve the development of IDS.
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B. Quantum-assisted neural networks

Despite the ongoing advancements in conventional comput-
ing, accessible modern hardware imposes restrictions on the
practicality of certain machine learning models. Moreover,
deep learning is expensive in terms of time and resources.
The pace at which classical computers are advancing is
bound to hit huge roadblocks in years. Hence, there is a
surge in demand for various alternatives to classical neural
networks. Among all those alternatives, quantum computers
provide a new horizon of possibilities yet to be fully explored.
What quantum computing presents is a set of new principles
inherent to computing in the near future. The principles of
superposition, quantum entanglement, and interference have
been utilized in our development to achieve a portable and
robust IDS.

Quantum computations are, in essence, challenging to be
carried out on classical computers as the resource demand for
the same increases exponentially with the number of qubits.
The new and expanding regime of Noisy Intermediate-Scale
Quantum (NISQ) devices provides a precise model of the
errors that occur and gives us an excellent framework to
build quantum machine learning and deep learning models.
Qiskit Aer is used along with Qiskit Terra, forms a simulation
backend offered by Qiskit, and is a highly configurable noisy
model where computations can be done.

With the advent of NISQ devices, Parameterized quantum
circuits (PQCs) provide a practical framework for implement-
ing algorithms and leveraging those quantum phenomena [9].
PQCs are composed of the CNOT gates and qubit rotation
adjustable gates. Benedetti et al. [10] mention the various
advancements in the performance of PQCs. They have ad-
dressed one of the most critical challenges: the effects of noise.
They enumerate the various proposed learning approaches
for a quantum circuit. A layer of perceptrons has a rather
characteristic working flow: the input data received from the
previous layer is encoded into the corresponding qubits, after
which an activation function, a parameterized function of
rotation and CNOT gates, defines that qubit till it stores the
data. Afterward, the expected value of the Hamiltonian is used
to obtain the transformed qubit state vector using Pauli gates.
The outputs serve as input to the next layer of perceptrons
after decoding the data [11].

C. Contribution

Contributions of the work as follows:

• A quantum-assisted non-linear activation function is pro-
posed that cannot be efficiently simulated on classical
computers.

• A hybrid neural network is trained on the KDD99 dataset,
thereby demonstrating the ability of the quantum layers
to capture patterns in structured data with over a hundred
features of varying correlations.

• The architecture is able to capture patterns in structured
data despite having a lesser number of parameters than
its classical counterparts.

D. Organisation

The rest of the paper is organized as follows. In Sec. II, we
start with an analysis on the rival architectures presented in
existing literature. We then explain and derive the quantum-
assisted activation function using parameterized operations
in Sec. III-B, which is followed by explaining the types of
major attacks undertaken by the exploiter and explaining why
KDD99 dataset is the most suitable to train a model to stand
up to those attacks and elaborate on the findings in Sec. IV-A.
Finally, the results are briefly discussed in Sec. V and the
concluding statements are presented in Sec. VI along with the
scope of future works.

II. RELATED WORKS

Correia et al. [12] proposed an approach to implementing
unsupervised quantum machine learning for IDS. However,
a supervised learning algorithm would prove more reliable
for IDS where the system results have high stakes. The
outcome was expected to be a better and more flexible IDS
that carries training-based knowledge of a wider spectrum of
requests. Payares et al. [13] focused on the implementation
of quantum models to detect denial of service (DOS) attacks,
while the focus here is on a much wider spectrum of attack
vectors. Jeyakarthic et al. [14] use simple quantum multi-layer
perceptrons, which are known not to learn complex functions
as effectively as neural networks do. We focus on QNNs,
which capture more interesting patterns.

Yong et al. [15] use a technique that is not well suited to
learning large-scale data. The proposed model is trained on
a much larger dataset. Dong et al. [16] proposed a reliable
system capable of learning complex functions by employing
the quantum beetle swarm algorithm and quantum neural
networks. Bishop [17] has presented an exciting solution
depending on photo-detectors that is not feasible in near-
term quantum computing applications. Yin [18] worked on
quantum optimization, while an exploration of a tangent topic
is undertaken here, namely quantum hybrid neural networks.
Wang et al. [19] used quantum-behaved particle swarm op-
timization, but we explore a tangent method, QNNs. Our
proposed system is capable of learning much more complex
functions as compared to [19].

III. PROPOSED METHODOLOGY

A. IDS design for healthcare

The proposed intrusion detection architecture fits in with
the problem of securing medical networks. As shown in Fig.
1, a typical medical network comprises several interconnected
subsidiary systems. These involve:

• client endpoints with clients/patients, which contain their
private medical data

• doctors’ systems, which contain their own private data
along with the allotted patients’ data

• EHR database, which contains electronic health records
of all patients registered in the network

• hospital’s SCADA systems, which include systems like
fire-control and a power supply that keeps the building
power.
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Fig. 1: A schematic diagram of the hybrid quantum-classical neural network-assisted intrusion detection system fitting in with the rest of
the system in a private healthcare system. The quantum IDS protects all incoming traffic to the network and logs its prediction to an event
logger database to let the incident response team focus on them in case of any malicious activity.

• hospital’s administration systems, which include data
as well as systems related to the smooth functioning of
the hospital (for example, financial control systems)

A breach of any of these systems can ultimately com-
promise the stored data and security of personnel on the
hospital premises. For example, an attacker who compromises
a hospital’s SCADA systems can disrupt the power supply to
sensitive infrastructure like intensive care units. As depicted in
Fig. 1, the proposed intrusion detection architecture validates
all incoming traffic. The outgoing traffic does not need to be
validated as they are assumed to be exchanged over a trusted
connection. The proposed IDS captures potentially harmful
traffic, blocks its entry to the network, logs the incident in
a private incident response database, and blacklists the IP
address of the attacker to prevent further attacks. In parallel,
the medical institution’s incident response teams review the
incident response database and may take further legal action
against the malicious actors.

B. Quantum-assisted activation function for IDS
The proposed model of a quantum layer is in the form of

parameterized quantum circuits (PQCs) [10]. Formally, PQCs
receive a classical input vector x ∈ Rn×1 and begin with
an initial quantum state |ψ⟩ of at least n qubits with an
optional set of additional trainable parameters W of suitable
dimension. Parameterized unitary operations Ux and UW are
defined that act on |ψ⟩ in the order UxUW |ψ⟩ or UWUx|ψ⟩.
Finally, the expectation value of a set of observables is
estimated from measurement. The optional classical post-
processing can be applied to map the expectations to the

Algorithm 1: QuantumLayer(): Algorithm for oper-
ation of quantum layer

Require QUBITS = 8; input parameters[8]
1 quantumRegister = qiskit.QuantumRegister(QUBITS)
2 quantumCircuit = qiskit.QuantumCircuit(QUBITS)
3 classicalCircuit = qiskit.ClassicalCircuit(QUBITS)
4 for qi ∈ quantumRegister and ci ∈ classicalRegister do
5 -Apply hadamard gate H to qi
6 -Apply controlled-Y gate with input parameters[i]

between qi and qi+1

7 -Apply controlled-Y gate with input parameters[i]
between qi and qi−1

8 -Measurement: Map qi to ci

9 Compute Z expectation on the returned measurements
10 Send the output to the next layer in the neural network

Algorithm 2: Algorithm to construct hybrid classical-
quantum neural network ARCH1

inputLayer = tensorflow.keras.layers.Input(120)
layer1 = tensorflow.keras.layers.Dense(8) (inputLayer)
layer2 = QuantumLayer (layer1)
layer3 = tensorflow.keras.layers.Dense(10) (layer2)
outputLayer = tensorflow.keras.layers.Dense(23) (layer3)

desired output vector with elements from R. In the proposal,
trainable parameters W ∈ Rk×n are defined where k denotes
the desired dimension of the output from the quantum layer
and n denotes the number of qubits in the current layer. Here
let k equal the batch size in the training step. The initial
quantum state |ψ⟩ is the uniform superposition state of all
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Fig. 2: The schematic diagram of the quantum circuit, in which all
parameters are fixed to 20. In reality, as the reader will explore in
algorithm 1, these parameters are more complex and varying over
time. Moreover, the original gates are controlled Ry gates, which are
optimized to U1 by Qiskit.

n qubits:

|ψ⟩ =
1√
N

N−1∑
i=0

|i⟩, (1)

where N = 2n. Now, some standard matrices used else-
where in the paper, are given below:

Ry(θ) =

[
cos ( θ2 ) − sin ( θ2 )
sin ( θ2 ) cos ( θ2 )

]
,

Z =

[
1 0
0 −1

]
,

U1(θ) =

[
1 0
0 eiθ

]
, (2)

In a training loop working with k batches, the quantum
layer receives inputs as X ∈ Rk×n. k PQCs with each having
inputs x ∈ R1×n and w ∈ R1×n are created. Ux as R⊗n

y

are defined with parameters from x. Concretely,

Ux|ψ⟩ = Ry(x1.π)⊗ ...Ry(xi.π)...⊗Ry(xn.π)|ψ⟩, (3)

where the subscript i denotes the i-th element of the vector
x as well as the application of the unitary Ry(xi.π) on the
i-th qubit. Next, Uw parameterized by input w is defined in a
way to generate entanglement between qubits:

Uw = ... CRy(wi.2π, i, i+ 1).CRy(wi+1.2π, i+ 1, i) ... , (4)

where CRy denotes the controlled-Ry operation parameter-
ized by the first argument, with the second argument acting as
the control, and the third argument acting the target. Pairs of
qubits can be made and are entangled to create connections
between parameters, which no classical system can make. It is
worth noting why non-linearity arises from Ux and Uw. These
are unitary operations which may be denoted as exponential

TABLE I: A comparison of trainable and non-trainable parameters
in the proposed architectures. T. implies trainable parameters while
NP. implies non-trainable parameters. Non-trainable parameters arise
because their values are updated from algorithms other than back-
propagation (in this case, these belong to the quantum layers).

Arch. Layers T. parameters NP. parameters
ARCH1 1 1823 510
ARCH2 2 2529 930

TABLE II: Comparison of results and architectures from other related
works. It should be noted that the architectures are chosen with
minimum memory footprint and considerably high accuracies from
Figs. 3 for this comparison. RNN: recurrent neural network, LSTM:
long short term memory network, CNN: convolutional neural network

Source Arch. Loss Acc.
ARCH1 120 - 8 - 8q - 10 - 23 0.0240 0.9956
ARCH2 120 - 10 - 8 - 8q - 8q - 23 0.0874 0.9825

[23] decision trees - 0.9292
[24] 41 - 21 - 21 - 5 - 0.8023
[25] RNN and variations - 0.9924
[26] LSTM - 0.9899
[27] 41 - 100 - 100 - 100 - 100 - 5 - 5 - 0.999
[28] LSTM - 0.9912
[29] CNN - 0.9984
[30] hidden layers with 17 nodes - 0.9850

of Hermitians. [20], thereby introducing non-linearity. Finally,
the expectation of the observable Z on all qubits is calculated.
Precisely, an operator is created,

Z⊗n : Z⊗n = Z1 ⊗ Z2 ⊗ ...⊗ Zn , (5)

where the subscripts denote the qubit on which Z acts. For
the quantum state |ϕ⟩ = UwUx|ψ⟩, the expectation is given
as,

Ei = f(Re(⟨ϕ | Z⊗n | ϕ⟩)) , (6)

Where the subscript i denotes the i-th vector of the k-
sized batch under consideration, Re denotes taking the real
part of the expectation to be used by simulator, and f is a
classical function that converts the expectation to a vector of
suitable dimension as required by the output of the current
layer (alternatively by the input of the next layer in the neural
network). In this implementation, f is a linear function that
creates a vector ∈ R1⊗n from Re(⟨ϕ|Z⊗n|ϕ⟩) to a vector
in R1⊗n by multiplying with different scaling factors. The
linear nature of f ensures all the non-linearity arises from the
quantum portion of the computation. When considered over
the entire batch of inputs X ∈ Rk×n, the quantum layer
outputs Rk×n which is fed to further layers. The main advan-
tage of a quantum computer over a classical computer when
considering such activation functions is the inefficiency of
estimating ⟨ϕ|Z⊗n|ϕ⟩ on classical computers. Several works
[21], [22] point out the problems of efficiently simulating
quantum measurements and estimating the expectation value
of Hamiltonians on a given quantum system.
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(a) ARCH1: input:120 nodes - dense:8 nodes -quantum:8 nodes
- dense:10 nodes - softmax: 23 nodes.

(b) ARCH2: input:120 nodes - dense:10 nodes - dense:8 nodes - quantum:8
nodes - quantum:8 nodes - softmax: 23 node

Fig. 3: A schematic diagram of the entire architecture. From the schematic, it is clear how the architectures capture input information as
large as the KDD99 dataset (120 input features after initial pre-processing), pass them on to a relatively smaller quantum layer (8 nodes),
and still succeed in capturing the dataset patterns with high accuracy.

Fig. 4: The plot of test accuracy against the number of hidden
quantum layers. The vertical axis is presented in log-scale. When the
number of hidden quantum layers starts increasing, an improvement
in accuracy can be seen. However, too many layers cause a sharp
decline in test accuracy as the model begins over-fitting on train
data.

IV. EXPERIMENTAL RESULTS

The KDD99 dataset [31] presents an interesting dilemma:
a large dataset that requires a sufficient amount of time and
resources for further use of model training. The most com-
pelling reason to use this dataset is the lack of availability to
train an intrusion detection system (IDS), and KDD99 comes
the closest to resembling such an ideal dataset. Most machine
learning and data mining algorithms assume the static nature
of the data. However, with IDS design, as more resources are
now available to exploiters, the data used to train an intrusion
detection system is undoubtedly dynamic. Hence, the training
and testing data must constantly change to represent the most
prevalent attack types at the model training time. This is
also why many machine learning algorithms approaches are
successful in various other domains but decreased performance
in IDS studies [31].

In general, attacks can majorly be categorised into 4 major
types [32]:

(1) Denial of Service (DOS) Attacks: Such types of attacks

attempt to overload the server’s resources to force the
server into ignoring legitimate requests and denying ac-
cess to legitimate users. Various DOS attacks exist; some
attempt to abuse a legitimate feature, others try to create
malicious packets to disrupt the TCP/IP stack of the
recovery machine and even take advantage of bugs in
the network daemon.

(2) User to Root (U2R) Attacks: These attacks are char-
acterized by an exploiter, starting as a non-root user
managing to exploit some vulnerability and hence gaining
root access to the system. The infamous buffer overflow
and load module attacks are among the most prominent
U2R exploits.

(3) Remote to Local (R2L) Attacks: This involves an attacker
having no association with a machine but having access
to a network and gaining access as a local user on that
machine.

(4) Probe Attacks: They are, by design, aimed at collating
information about a network from an external source, not
necessarily belonging to the network in a general sense.

Table III shows a sample of the KDD99 dataset, and the
various features and their sources are also listed. Hence, for
a detection system to have real-world applications, it must
achieve high accuracy for intrusion prevention against all
attacks. The factors that make KDD99 a suitable dataset to
train such a model are :

(1) It has 24 attack types in training and 14 more attacks in
testing for 38 attacks. The 14 new attacks are theoretically
challenging for machine learning-based IDS to detect.

(2) It is a dataset with a particular bias towards attack
instances. Although approximately 80% of the dataset
is attack traffic, typical networks have normal samples
accounting for 99.99% of the traffic flow.

(3) Certain duplicate records exist in both training and testing
datasets, resulting in a bias on results for DOS attacks and
normal instances, which constitute almost all the traffic
on a network.
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A. Results

The implementation details are as such: the experiments
were performed on Google Colab CPU using TensorFlow
Keras and Qiskit. Two different architectures are considered
here: ARCH1 (Fig. 3a, where one quantum layer is sand-
wiched between classical layers) and ARCH2 (Fig. 3b, where
two quantum layers are sandwiched between classical layers).
Both architectures receive input from R120. In ARCH1, a
dense layer of 8 nodes serves to set up the input for the
quantum layer. The quantum layer is connected to a dense
layer of 10 nodes connected to a softmax layer of 23 nodes.
A total of 1823 trainable parameters are present in ARCH1.
ARCH2, on the other hand, has two quantum layers and a total
of 2529 trainable parameters. As training hyper-parameters,
the number of epochs (the number of iterations to train the
model for) is set to 1000, the batch size (the number of
training examples to use in one iteration) to 64, the learning
rate (the step size for the learning algorithm) is set to 0.01, the
Adam optimizer is used with a decay (the change in learning
rate over time) of 0.001, and the categorical cross-entropy is
used as a loss function. The results are summarised in Table
II.Algorithms 1 and 2 are designed to reproduce ARCH1.
The algorithm 2 details how the different layers are connected
to form one end-to-end architecture. On the other hand, the
algorithm 1 details the operations of the quantum layer (with
a sample circuit given in Fig. 2). It is shown that Hadamard
gates are applied on all qubits to enable uniform superposition,
after which pairwise controlled Ry are performed to introduce
entanglement (where Ry is a parameterized rotational gate
along the y axis). Note that Qiskit optimizes the Ry gates to
U1 gates, where U1 is a phase gate). Other architectures can be
replicated precisely in the same manner. The parameter sizes
for ARCH1 and ARCH2 are summarized in Table I. Suppose
the number of quantum layers increases. In that case, the
number of non-trainable parameters also increases (trainable
parameters are the parameters that can be trained by back-
propagation, and non-trainable parameters cannot be trained
by back-propagation and need other algorithms to adapt). All
the nodes in a certain hidden layer are connected through
weight vectors to all the nodes in the next hidden layer. The
trainable and non-trainable parameters define weight vectors.
For ARCH1, the variation of train accuracy and loss over time
can be seen as in Fig. 5. Here train accuracy implies learning
what the model is doing over time, whereas the loss implies
the prediction inaccuracies. A steady increase in train accuracy
and decline in loss implies the model is learning fast on the
training dataset.

V. DISCUSSION

From Table II and Fig. 3, it is apparent that quantum layers
enable us to design smaller architectures that can still capture
the input-output relationship in a large dataset as KDD99.
When compared to classical solutions, it is observed that
they either use complex learning architectures such as RNNs
(recurrent neural networks) [25], CNNs (convolutional neural
networks) [29], and LSTMs (long-short term memories) [26].
The architectures that used only feed-forward neural networks

TABLE III: A listing of set of features defined for connection records.
These features help in classifying normal connection requests and
attacks

Feature Source of feature data Type of feature
duration TCP connection feature continuous

protocol type TCP connection feature discrete
source bytes TCP connection feature continuous

destination bytes TCP connection feature continuous
number root system logs continuous

number shells system logs continuous
number access files system logs continuous
number failed logins system logs continuous

syn error rate capturing traffic metrics continuous
rej error rate capturing traffic metrics continuous
service count capturing traffic metrics continuous

different service rate capturing traffic metrics continuous
same service rate capturing traffic metrics continuous

Fig. 5: Plot of train accuracy and loss over epochs/iterations while
training ARCH1.

had linearly more hidden layers and nodes than the other
architectures (thus exponentially more hidden parameters to
train and validate). Moreover, with such a sharp rise in the
number of hidden parameters, doubts arise about the results
of such dense architecture, the more susceptible to over-fitting,
and most work does not provide safeguards against over-fitting
in their solutions.

VI. CONCLUSION

Recently, the healthcare industry has benefited from IoT,
blockchain, and artificial intelligence technologies. However,
various sensor devices collect and share sensitive data with
a remote server. Therefore, a considerable challenge poses
to healthcare network security as the attack surface widens,
so the patients’ lives stand at an increased risk in case of
such a breach. The fact that quantum systems, being non-
deterministic by nature, provide an excellent structure to build
upon, especially in dynamic fields like healthcare, where the
attack types change every single second, and the intention of
every user may be doubtful. So, we have proposed a robust,
portable, and efficient quantum-assisted hybrid neural network
function as an intrusion detection system for healthcare net-
works. The proposed architectures tend to be more efficient
(similar accuracy with lesser memory footprints) than classical
counterparts for intrusion detection. We have successfully
realized an architecture consisting of 8 nodes in the quantum
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layer, which achieves an equivalence performance compared
to more complex classical counterparts. This improvement
can open further investigation for applying the principles of
hybrid quantum-classical neural networks to solve complex
use cases in the future. As the number of qubits available
for deployment increases, more complex quantum activation
might seem possible in the near future which may be able to
capture significantly more features in the dataset and fit more
accurately on the given data.
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