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Studies of micromechanical and acoustic modes in the quantum regime have shed light on quantum
properties of massive objects. Integrating these systems into superconducting circuits shows great promise
for applications as quantum memory elements, bosonic codes, or in frequency conversion. To this end,
investigation of nonclassical properties of acoustic degrees of freedom is critical also for applications.
Here, we investigate a strongly driven system consisting of a transmon qubit interacting with a high-
overtone bulk acoustic resonator. We observe multiphonon transitions, which enable mapping the energy
landscape in the coupled system. At a high driving amplitude comparable to the qubit-oscillator coupling,
we observe a shift of the multiphonon spectral lines, reminiscent of Stark shift, which is explained using
a simple model. Our work thus also provides insight in multiquanta transitions in other qubit-oscillator
systems, not limited to acoustics or circuit quantum electrodynamics.
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I. INTRODUCTION

Studies of micromechanical and acoustic modes have
shed light on quantum properties of massive objects.
Quantum properties have been experimentally verified in
Gaussian oscillator states, showing, for example, entan-
glement between the vibrations of low-frequency drum
oscillators [1–3]. States that are manifestly nonclassi-
cal, have also been created and measured. These include
observations of the quantization of phonons [4–8], entan-
glement in the single-phonon limit [9], or entanglement
mediated by acoustics [10]. Most of this work, based
on electromechanics, relies on original work performed
with superconducting qubits coupled to electromagnetic
resonators [11], which revealed various electromagnetic
quantum states following the verification of single-photon
states in harmonic resonators [12–14], and later in magnon
excitations [15]. Similar to purely electromagnetic quan-
tum systems, micromechanical and acoustic resonators are
emerging as promising components for quantum technol-
ogy as they can exhibit low internal losses resulting in long
excitation lifetimes, they are compact in size, and they can
be coupled electromagnetically to a wide range of frequen-
cies. Therefore, a detailed understanding of their quantum
behavior is critical for future applications.

A nonlinear component, in electromechanics typically
a superconducting qubit, is needed to prepare and detect
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energy quantization in an oscillator. Piezoelectric materials
are found practical to obtain a sufficiently large resonant
coupling between electromagnetics and acoustics. Several
studies have shown the coupling of qubits to surface acous-
tic waves [16–18], where researchers were able to access
the strong coupling regime and map out a prepared quan-
tum state in the resonator [19]. Qubits have also been
coupled to bulk acoustic waves [20]. A recently emerged
system in this regard is a high-overtone bulk acoustic wave
resonator (HBAR) [6,21–25], which is particularly excit-
ing since it provides a large number of highly coherent
acoustic modes [26] strongly coupled to the qubit.

In this work, we investigate a strongly driven quan-
tum acoustic system. We address multiphonon transitions
in a transmon qubit interacting with a HBAR resonator,
which enable mapping the energy landscape in the coupled
system. With superconducting qubits [27–29], and qubit-
resonator systems [30–32], multiphoton transitions have
been experimentally investigated in earlier work, however,
they have received relatively little attention. In our work,
we find an additional shift of the multiphonon spectral
lines, reminiscent of Stark shift, which is explained using
a simple model. Our work thus also provides insight in
multiquanta transitions in generic qubit-oscillator systems.

II. THEORY

Let us study a basic system, where a qubit is trans-
versely coupled to an oscillator, at the coupling energy g.
The qubit has the ground and excited states |g〉 and |e〉,
and the transition frequency ωq. The oscillator’s frequency
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FIG. 1. Multiquanta transitions in a qubit-oscillator system.
The transitions occur at the driving frequencies ωext = ωext,n, in
the pictured resonant case � = 0 when ωext = ωq ± g/

√
n.

is ωm, and the detuning from the qubit is defined as � =
ωq − ωm. The eigenstate energies become E±,n = nωm ±
1
2

√
4ng2 + �2, for n = 1, 2, . . . . The corresponding states

|±, n〉 are hybridized from the qubit states and Fock states
|n〉 of the oscillator. Additionally, the ground state |0〉 =
|g, 0〉 has the energy E0 = −�/2. In the resonant situation
� = 0, the energies E±,n exhibit a square-root dependence
of the level repulsion on the oscillator quantum number n.

Now consider that the qubit is subject to a trans-
verse drive with the Hamiltonian term � cos(ωextt)σx,
where � is the Rabi frequency. With the system
initialized in the ground state, multiquanta transi-
tions can occur between the levels |0〉 and |±, n〉,
when the frequency ωext of the driving photons satis-
fies the condition ωext,n = E±,n − E0/n = ωm + �/2n ±√(

g/
√

n
)2 + (�/2n)2, which is pictured in Fig. 1. These

are strongly suppressed processes of a higher order n, and
thus, a relatively high driving is essential to observe them.

Similar to Ref. [33], we now move to a rotating frame
defined by ωext. The detuning of the drive from the qubit is
δ = ωq − ωext. In this representation, the energies become
Erot

n,± = (δ − �)n ± 1
2

√
4g2n + �2. Without the driving,

� = 0, the energy levels |±, n〉 in this frame appear as the
gray lines in Fig. 2(a), with a slope dependent on n. The
frequencies at which each n level crosses the ground state
n = 0 horizontal dashed line, correspond to the multipho-
ton spectral lines, with the detunings denoted as δn = ωq −
ωext,n. These conditions are marked by circles in Fig. 2(a).
However, as we see in the following, this picture is not yet
complete, since it supposed � = 0, and transitions cannot
thus even occur.

In a qubit-oscillator system, multiquanta processes
exhibit a feature that has been largely overlooked: the
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FIG. 2. Multiquanta transitions in a rotating frame. The qubit
and the oscillator have detuning � = 0. (a) The slanted gray
lines are the energies of |−, n〉 when � = 0, and the horizontal
dashed line denotes the ground state |g, 0〉. The black lines are
for driving �/g = 0.4, and are obtained from the full numerical
solution of the driven system. The blue and red lines are from a
TLS truncation of the full matrix. The blue vertical lines denote
the multiphoton resonances δn, which are labeled for n = 2, 3.
The first levels up to n = 12 are plotted. (b) Enlargement of
(a). The dash-dotted vertical lines are the effective multiphoton
resonances as shifted by the driving.

resonant conditions become power dependent unless
�/g � 1. In order to understand the case, we continue to
work in the rotating frame, and introduce � �= 0. An anti-
crossing opens between the now-interacting levels |0〉 and
|±, 1〉, with the gap given by �/

√
2. Additionally, each

|±, n〉, n > 0 level couples to all others. The dominant cou-
pling is that between each level to |±, 1〉, which results in
clear anticrossings as seen in Fig. 2.

The driven system is only analytically solvable for
the fully resonant case (� = δ = 0) [34], however, we
can make an approximation that each n > 1 state is pre-
dominantly independently hybridized with either |−, 1〉 or
|+, 1〉, which implies restricting the full coupled system to
a suitably chosen two-state truncation (Appendix A). Now,
Fig. 2(b) allows for an intuitive explanation for how the
multiquanta resonances shift from the intrinsic positions δn
when the Rabi frequency � grows. As discussed above, the
blue circles denote each n > 1 line crossing n = 0, which
is the multiquanta resonance situation at a vanishing �.
At higher �, the resonance condition, denoted by δ�

n �= δn,
shifts because of the crossing between higher-n levels and
|−, 1〉 shifts. The shifted conditions are marked by squares
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in Fig. 2(b). Notice the choice between |−, 1〉 or |+, 1〉 is
based on the sign of �, and if � > δ or the other way
round.

The assumption that hybridization is strongly dominated
by |±, 1〉 also leads to an analytical solution for the shift.
In the resonant case � = 0, the result can be expressed in
a simple form given in Appendix A, which can be further
expanded up to a driving amplitude �/g � 1 as

εn ≡ δn − δ�
n � ± �2

8g
(
n − √

n
) , n ≥ 2, (1)

where the plus (minus) sign corresponds to the lower
(upper) branch of the regular Jaynes-Cummings splitting.
With the quadratic dependence of the shift on the Rabi fre-
quency, the shift thus carries characteristics of the Stark
shift.

In a general case � �= 0, the expressions for the shifted
multiquanta conditions δ�

n become more complicated (see
Appendix A). Equation (1) for the shift itself, how-
ever, holds reasonably well also with a modest detuning
|�| � g.

III. EXPERIMENT

Our device layout is shown in Fig. 3(a). The qubit is
of an “Xmon” [35] shape where one of the arms has a
round pad to define an area of coupling with the HBAR
chip. The HBAR resonator consists of a sapphire substrate
of 250 μm thickness, on top of which there is a supercon-
ducting metallization layer made of molybdenum, which is
finally covered by a piezo layer of 900-nm AlN. The sam-
ple design and fabrication are similar to those in Ref. [25].
The qubit-HBAR coupling energy is defined by the over-
lap of the qubit’s electric field and of the strain profile
of a given HBAR mode [22]. The intermediate metalliza-
tion layer confines the electric field inside the piezo layer.
This strongly enhances the qubit-HBAR coupling over that
obtained without the metallization layer [6,22–24].

The HBAR chip is separate and mounted on top of the
qubit circuit using a flip-chip technique. It is placed so that
it only covers the round pad of the Xmon and no other cir-
cuit elements. The air gap between the piezo of the HBAR
and the Xmon is estimated to be 1 μm. The qubit is excited
through the measurement line.

The qubit state is measured dispersively using a read-
out resonator with frequency ωr/2π = 6.014 GHz. The
qubit frequency is tunable via the flux bias and has a max-
imum frequency of ωq/2π = 4.661 GHz with a T1 limited
linewidth of γ /2π � 0.2 MHz. We apply a coherent drive
that drives the qubit transversely as discussed above. This
excitation rf signal is applied to the qubit via the read-
out resonator. The Rabi frequency is calibrated by fitting
power-dependent spectra using a model of a qubit coupled
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FIG. 3. Schematics of the experiment. (a) Sample layout. The
device includes two coupled qubits, each separately coupled to a
HBAR resonator defined by either qubit’s electrode. In the exper-
iment, only one of the qubit-HBAR systems is studied, which is
achieved by detuning the other qubit. Location of the HBAR flip
chip is sketched on top of the micrograph. (b) Two-tone spec-
troscopy of the qubit. The avoided crossing with several HBAR
modes, whose frequencies are shown by dashed lines, are visible.
Mode number 207 is shown for reference.

to a harmonic mode. A discussion of the calibration can be
found in Appendix B.

Figure 3(b) shows a sweep of the qubit frequency
through HBAR modes between 4.54 and 4.66 GHz. A
fit using a multimodal model gives a free spectral range
(FSR) of 22.15 MHz, which agrees with the sapphire
thickness of 250 μm and sound velocity 11100 m/s. The
coupling between the qubit and a single mode is g/2π =
1.45 ± 0.2 MHz, also being subject to little variation with
frequency.

We now increase the excitation amplitude � to dis-
close the multiphonon transitions between the ground state
and |±, n〉. The transitions involve hybridized levels of
the qubit and acoustics, and thus we use the label multi-
phonon to highlight the role of phonons. Figures 4(a) and
4(b) demonstrate the appearance of multiphonon transition
lines at two drive powers � � 0.7g and 2.1g. The multi-
modal model is plotted on top of the 2D data (solid black)
and its fit gives the mode frequencies and coupling. These
values are used to calculate the power-dependent shifts in
the second (dashed dark blue) and the third (dashed light
blue) manifolds with no fitting using our model described
above. In Fig. 4(b), the faint diagonal features in the
top right and bottom left are the 0 → 2± transitions of
neighboring acoustic overtone modes.

Figure 4(c) displays individual resonance curves from
line cuts of (a) and (b) as well as from a third sweep at
higher driving power. The dashed horizontal lines indicate
the intrinsic multiphonon resonant frequencies n = 2, 3, 4,
with the expected driving-induced shifts indicated by the
colored arrows. The black arrows indicate the dressed
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FIG. 4. Multiphonon transitions. (a) Two-tone spectroscopy
at a modest Rabi frequency � � 0.68g. The first n = 2 mul-
tiphonon resonance line (blue) is visible. (b) Higher driving
� � 2.1g. The lines n = 2, 3 are visible. (c) Line cuts from the
two-dimensional (2D) data at the detuning �/2π � 8.8 MHz,
indicated by the arrow at the top, for three drive powers � �
0.7g, 2.1g, 3.8g. The intrinsic multiphonon resonance conditions
for n = 2, 3, 4 (blue, cyan, green) are marked with dashed hori-
zontal lines. The expected driving-induced shifts are indicated by
the arrows. The black lines show the frequencies of the dressed
states of a multimode system with the labeled black arrows
denoting the bare qubit ωq and mode frequency ω207 values.

qubit and harmonic mode frequencies, which at a detuning
of � = 6g are close to their bare values.

Finally, we investigate in detail the shifts of the mul-
tiphonon resonance conditions. In Fig. 5 we display the
power dependence of the spectrum, demonstrating agree-
ment with the model at low powers. In (a), the data
illustrates the multitude of transitions, as well as the
power-dependent shifts, due to several HBAR modes and
their individual manifolds n.

Using our simple model restricting to a single harmonic
mode, we can cover most of the apparent multiphonon
transitions including the power dependence, while not
being limited to the nearest-mode interactions. In Fig. 5(a),
other transitions that have not been labeled can also be
seen. We find that these are explained by multimode mul-
tiphonon interactions, which we leave outside the scope of
this paper.

The (b) and (c) in Fig. 5 analyze in detail the valid-
ity of our simple model (dashed line) in explaining the
multiphonon transition frequency data and their power-
dependent shifts in the near resonant and detuned cases.

(a)

(b)

(c)

(transition no., overtone no.)
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FIG. 5. Dressing of the multiphonon transitions. (a) The
power dependence of the multiphonon transitions when the
qubit is detuned a distance � � 3.9g from the mode ω210 at
4.651 GHz. The dashed lines are the analytical result based on
TLS approximation of the driving-induced hybridization (see
Appendix A) and are labeled (n, m) according to the multiphonon
number n and mechanical mode number m. Panels (b) and (c)
focus on the transitions marked by solid lines. (b) The extracted
frequencies of the multiphonon peaks for mode m = 210 and
multiphonon numbers n = 2, 3, 4 (blue, cyan, and green points)
are shown versus the calibrated Rabi frequency normalized by
coupling. The analytical result is represented by the solid lines.
(c) Frequencies of the multiphonon peak n = 2 for modes m =
208, 209, 210 are shown with the analytical result in a similar
manner to (b). The qubit frequency is ωq/2π = 4.657 GHz.

Panel (b) shows the second (blue), third (cyan), and fourth
(green) excitation manifolds, when treating the nearest
acoustic mode below, while (c) shows the second exci-
tation manifold when treating the three modes below the
qubit. The vertical axis have been scaled by δn which
are the intrinsic resonance conditions. The data points in
(b) and (c) are extracted by locating the peak positions
from (a).

Instead of the
√

n scaling in the upper manifolds,
in our off-resonant situation the scaling is modified to√

n + (�′/2)2 where �′ gives the detuning in units of g
(� = �′g). This is illustrated in Fig. 5(b) where the peak
position data has been scaled by δn. The intrinsic resonance
conditions are given by δ�

n /δn = 1, and it can be seen that
the data converges towards this point.

IV. DISCUSSION

We now discuss the limitations of the simple two-level
system (TLS) model. We assume in the model derivation
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that the different multiquanta transitions are independent.
However, the different transitions exhibit coupling with
each other. The consequences of the coupling can be pic-
tured based on Fig. 2, where the anticrossings are seen
to exhibit overlap, which becomes more pronounced with
increased �. The couplings induce level repulsion, thus
pushing the multiquanta anticrossings towards the qubit
and oscillator branches.

One can see from this picture that the initial spacing
of the anticrossings (based on the detuning �) affects the
range of driving powers where the model makes a good
prediction. The anticrossing size depends strongly on the
drive power and the detuning only affects this weakly. So in
the case of large detuning, the qubitlike states are initially
spread out in frequency and so the anticrossing overlap
becomes more relevant at a higher power as compared to
the resonant case. The oscillatorlike states for large detun-
ing are however bunched together and therefore the model
does not predict their behavior as well in this case, and so
these branches are not plotted on Fig. 5. This means that
the TLS model better predicts the multiquanta transitions
in the detuned case. This is clearly seen in Figs. 5(b) and
5(c), where the more detuned case (c) shows a better match
to the TLS model.

The resolution of individual multiphonon transitions is
dependent on the quality factor of the acoustic mode as
well as the decay and dephasing times of the transmon
and the detuning �. At our parameters, we can optimally
observe the transitions up to n = 4. On resonance, � = 0,
the multiphonon transitions cannot be distinguished due to
the acoustic mode quality factor and so for a more detailed
observation of the power dependence, we have to look at
the off-resonant case.

Since the anharmonicity of the transmon qubit is rela-
tively small as compared to the level spacing, it is worth
looking at the influence of the higher transmon levels on
the two-quanta transitions. We diagonalize a more accu-
rate system consisting of many transmon levels, and find
that two-phonon transitions at zero power would be shifted
down in frequency compared to the TLS model by around
10 kHz when � > 0, and shifted up in frequency by around
20 kHz when � < 0. These shifts are negligible within the
experimental resolution, and thus the TLS approximation
is expected to give a proper description of the system.

The understanding of multiquanta transition frequencies
in qubit-oscillator systems in general can be of use in rec-
ognizing possible outcomes in quantum technology, e.g.,
in avoiding accidental resonant excitations, or in design-
ing a measurement scheme that utilizes specific (multi-
mode) transitions. Our model provides a computationally
effective means of estimating the transition frequencies
with a possibility to account for multiple modes.

To conclude, we investigate multiphonon transitions
in an acoustic resonator coupled to a superconducting
qubit. Besides providing further, strong evidence of energy

quantization of phonons, we address a power-induced shift
of the multiphonon resonances, associated to hybridization
of the individual multiquanta processes.
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APPENDIX A: STARK SHIFT OF THE
MULTIPHOTON SPECTRAL LINES

The qubit-oscillator system, where the qubit is driven by
a strong transverse field, is described by

H = −ωq

2
σz + ωm(a†a + 1/2) + g(a† + a)σx

+ � cos(ωextt)σx. (A1)

Here, � is the Rabi frequency, and ωext ≈ ωq is the
frequency of the drive.

In the rotating frame defined by ωext, Eq. (A1) becomes

H = (δ − �)

(
a†a + 1

2

)
− δ

2
σz

+ g(a†σ− + aσ+) + �

2
σx. (A2)

Here, the qubit-drive detuning is δ = ωq − ωext, and qubit-
oscillator detuning � = ωq − ωm.

Without driving, i.e., � = 0, the energies in this frame
are those of the Jaynes-Cummings system:

E±,n = n(δ − �) ± 1
2

√
4ng2 + �2 , n ≥ 1, (A3)

and the ground-state energy is E0 = − 1
2�. The corre-

sponding states, again without driving, are

|0〉 = |g, 0〉,
|+, n〉 = C|e, n〉 + S|g, n + 1〉,
|−, n〉 = −S|e, n〉 + C|g, n + 1〉. (A4)

In Eq. (A4) and below, we are using a shorthand notation
S = sin 
n, C = cos 
n, and tan 2
n = 2g

√
n + 1/�.
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The multiquanta transitions based on Eq. (A3) occur
if the ground-state energy equals those of higher n, i.e.,
E±,n = E0. This occurs at the drive detuning

δn = ∓ 1
2

√
4g2n + �2 − 1

2�

n
+ �, (A5)

or equivalently, when the driving frequency satisfies the
condition

ωext = ± 1
2

√
4g2n + �2 + 1

2�

n
+ ωm. (A6)

At � = 0, Eq. (A5) reduces to

δn = ∓ g√
n

. (A7)

We now include the driving, � �= 0. Equation (A2) in this
case is not analytically solvable any more. We can, how-
ever, find approximate results. We work in the bare state
basis,

� =
∑

k,l

cgk|g, k〉 + cel|e, l〉. (A8)

Inserting Eq. (A8) into Eq. (A2) results in an infinite
matrix, in which we now restrict to the three lowest basis
states:

⎡

⎢
⎣

− 1
2� 0 1

2�

0 δ − 3
2� g

1
2� g δ − 1

2�

⎤

⎥
⎦

⎡

⎣
cg0
cg1
ce0

⎤

⎦ = E

⎡

⎣
cg0
cg1
ce0

⎤

⎦ .

(A9)

The driving creates excitations from the ground state to
|e1〉, or, equivalently, to the second Jaynes-Cummings
doublet. This renders the system nonblockdiagonal.

Next, we rotate Eq. (A9) to the eigenbasis:

H ′ = UHU−1 (A10)

with

U =
⎡

⎣
1 0 0
0 S C
0 C −S

⎤

⎦ . (A11)

The result is

H ′ =

⎡

⎢
⎣

−�
2

1
2 C� − 1

2 S�

1
2 C� C2

(
δ − �

2

) + 2CSg + S2
(
δ − 3�

2

)
C2g − CS� − gS2

− 1
2 S� C2g − CS� − gS2 C2

(
δ − 3�

2

) − 2CgS + 1
2 S2(2δ − �)

⎤

⎥
⎦ , (A12)

expressed in the basis [|0〉, |−, 1〉, |+, 1〉]T. From Eq.
(A12), we can now make an approximation that we select
a 2 × 2 subspace that couples the ground state to either
|−, 1〉 or |+, 1〉.

The subspace is determined by if δ ≥ �, or the other
way round. First we discuss the situation δ ≥ �, where the
relevant block is that coupling |0〉 ⇐⇒ |−, 1〉:

H2 =
[ −�

2 − 1
2 S�

− 1
2 S� C2

(
δ − 3�

2

) − 2CSg + 1
2 S2(2δ − �)

]
.

(A13)

We now treat the resonant condition � = 0. Equation
(A13) diagonalizes with the energies

E2,± = ±1
4

√
(2δ − 2g)2 + 2�2 + 1

2
(δ − g) . (A14)

Equation (A14) illustrates how the lowest Jaynes-
Cummings doublet is split by the driving. Further, when
δ = g a gap equal to �/

√
2 opens, which means the

system undergoes oscillations between the ground state
and the first Jaynes-Cummings doublet.

Although Eq. (A2) describes a coupled infinite-level
system, we can approximate that the dominant coupling
due to the driving is the hybridization of the levels of n > 2
with the energy levels in Eq. (A14). This is illustrated in
Fig. 2 in the main text, which also shows how the shift of
the multiphoton transitions can be simply pictured as aris-
ing from dressing with Eq. (A14). The levels E2 cross the
undriven energies E±,n as given by Eq. (A3), at a driving
frequency that satisfies

E−,n = E2,+ , n ≥ 2, (A15)

which provides n dependence for the shift.

1. Resonant case � = 0

If � = 0, Eq. (A15) reads

δn − g
√

n = 1
4

√
4(δ + g)2 + 2�2 + 1

2
(δ + g) , (A16)
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and yields the positions of the multiphoton resonances:

δ�
n =

√
4g2n

(√
n − 1

)2 + 2(n − 1)n�2 + 2g
√

n
(
2n − √

n − 1
)

4(n − 1)n
. (A17)

The corresponding shift of the multiphonon resonance due to the driving, up to fourth order in �, becomes

ε� ≡ δn − δ�
n � �2

8g
(
n − √

n
) −

(√
n + 1

)
�4

64g3
(√

n − 1
)2 √

n
, n ≥ 2. (A18)

If δ < �, we consider the block that couples |0〉 ⇐⇒ |+, 1〉. We obtain, similar to Eq. (A13):

H2 =
[−�

2
C�
2

C�
2 C2

(
δ − �

2

) + 2CgS + S2
(
δ − 3�

2

)

]

. (A19)

In the resonant situation � = 0, we obtain from Eq. (A19) the energies

E2,± = ±1
4

√
(2δ + 2g)2 + 2�2 + 1

2
(δ + g) , (A20)

and the multiphoton resonances become, by symmetry, those in Eq. (A17) but with a minus sign in front.

2. Analytical solutions, � �= 0

Next we collect analytical solutions for arbitrary � in four different situations depending on the signs of δ and �. There
are two sets of energy levels from the TLS approximation, Eqs. (A13) and (A19), given as

E−
2,± = 1

4

(
2δ − � cos 2
 − 3� − 2g sin 2
 ±

√
(−2δ + � cos 2
 + � + 2g sin 2
)2 + 4�2 sin2 


)
, (A21)

E+
2,± = 1

4

(
2δ + � cos 2
 − 3� + 2g sin 2
 ±

√
(2δ + � cos 2
 − � + 2g sin 2
)2 + 4�2 cos2 


)
. (A22)

Let us use a shorthand notation:

�gn =
√

4g2n + �2,

�g1 =
√

4g2 + �2. (A23)

a. � ≥ 0, δ ≥ �

TLS energies are given by E−
2,+ in Eq. (A21), and the positions of the multiquanta resonances satisfy

4(n − 1)nδ�
n =

√

2�2

(
1 − (n − 1)n

(
�g1

�
− 1

))
+ 2

(
−n

�g1

�
+ n − 1

)
��gn + 4(n − 1)n�2 sin2 


2
+ 4g2n(n + 1)

− �n
(

�g1

�
+ 5

)
+ �gn(2n − 1) + �(4n2 + 1). (A24)

b. � ≥ 0, δ < �

TLS energies are given by E+
2,− Eq. (A22), while the positions of the multiquanta resonances satisfy

4(n − 1)nδ�
n = −

√

2�2

(
(n − 1)n

(
�g1

�
+ 1

)
+ 1

)
− 2

(
n
�g1

�
+ n − 1

)
��gn + 4(n − 1)n�2 cos2 


2
+ 4g2n(n + 1)

+ �n
(

�g1

�
+ 4n − 5

)
+ �gn(1 − 2n) + �. (A25)
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c. � < 0, δ > �

TLS energies are given by E+
2,+ Eq. (A22), while the positions of the multiquanta resonances satisfy

4(n − 1)nδ�
n =

√

2�2

(
(n − 1)n

(
�g1

�
+ 1

)
+ 1

)
+ 2

(
n
�g1

�
+ n − 1

)
��gn + 4(n − 1)n�2 cos2 


2
+ 4g2n(n + 1)

+ �n
(

�g1

�
+ 4n − 5

)
+ �gn(2n − 1) + �. (A26)

d. � < 0, δ < �

TLS energies given by E−
2,− Eq. (A21), while the positions of the multiquanta resonances satisfy

4(n − 1)nδ�
n = −

√

2�2

(
1 − (n − 1)n

(
�g1

�
− 1

))
+ 2

(
n
�g1

�
− n + 1

)
��gn + 4(n − 1)n�2 sin2 


2
+ 4g2n(n + 1)

− �n
(

�g1

�
+ 5

)
+ �gn(1 − 2n) + �(4n2 + 1). (A27)

APPENDIX B: RABI POWER CALIBRATION

The calibration of the qubit drive can usually be per-
formed by considering the broadening of its linewidth with
power according to δω = 2

√
γtot/γ�2 + γ 2

tot where γtot =
γ /2 + γφ and γ and γφ are related to the usual qubit decay
and dephasing. There is a linear correspondence between
the applied driving P and Rabi frequency: P = η� where
the calibration parameter η is found by fitting the total
linewidth to the applied driving. In this scheme, a reli-
able determination of η requires consideration of the higher
driving, where � � γtot.

In our case, we cannot well reach this limit, since we are
limited to low powers where � � FSR. Otherwise, cou-
pling to the acoustic modes has a complicated effect on the
qubit spectrum. The Rabi frequency is therefore calibrated
by fitting the spectra using Qutip simulations with a sys-
tem of a qubit coupled to two modes for a dedicated set of
calibration data, where the qubit lies between two modes.

Pictured in Fig. 6(b) is a Qutip simulation showing the
multiquanta resonances for a qubit coupled to one mode.
This can be compared with the measurement data in (a),
which is the same as Fig. 5 to confirm the Rabi frequency
calibration. In the figure, the solid lines are those predicted
by the TLS model. Additionally, we show the results of
including a phenomenological scaling factor for the driv-
ing in order to improve the TLS model. This is showed
by the dashed lines, which closely follow the data. Panels
(c) and (d) show the improvement in more detail. We find
that a scaling factor (approximately 1.4 × �) improves the
accuracy of the model, which underestimates the shift. The
rationale for a possible scaling factor, which is larger than
one, is that the TLS model does not take into account
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FIG. 6. Rabi frequency calibration. (a) The data in Fig. 5
replotted. Solid lines represent the TLS model based on calibra-
tion, while the dashed lines include a scaling factor to account
for coupling between different multiphoton transitions. (b) Corre-
sponding numerical simulation of the qubit population with one
harmonic mode, showing the shaded rectangle in (a). The data
points from Figs. 5(b) and 5(c) are plotted in (c),(d), respectively,
against the TLS model using the scaling factor (dashed).
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the drive-induced coupling of the higher excitation man-
ifolds, which repel the multiquanta anticrossings towards
the qubit and oscillator branches. At small �, the indi-
vidual anticrossings overlap, and thus the TLS model is
expected to be more valid at large �.
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