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Brown rot fungi cause a type of wood decay characterized by carbohydrate degradation

and lignin modification. The chemical and physical changes caused by brown rot are

usually studied using bulk analytical methods, but these methods fail to consider local

variations within the wood material. In this study we applied hyperspectral near infrared

imaging to Scots pine sapwood samples exposed to the brown rot fungi Coniophora

puteana and Rhodonia placenta to obtain position-resolved chemical information on

the fungal degradative process. A stacked-sample decay test was used to create

a succession of decay stages within the samples. The results showed that the key

chemical changes associated with decay were the degradation of amorphous and

crystalline carbohydrates and an increase in aromatic and carbonyl functionality in

lignin. The position-resolved spectral data revealed that the fungi initiated degradation

in earlywood, and that earlywood remained more extensively degraded than latewood

even in advanced decay stages. Apart from differences in mass losses, the two fungi

produced similar spectral changes in a similar spatial pattern. The results show that near

infrared imaging is a useful tool for analyzing brown rot decayed wood and may be used

to advance our understanding of fungal degradative processes.

Keywords: cellulose degradation, Coniophora puteana, earlywood, imaging, latewood, lignin modification, near

infrared spectroscopy, Rhodonia placenta

INTRODUCTION

Wood is a renewable biocomposite with many attractive properties, but as a natural material it is
susceptible to degradation by many abiotic and biotic factors. One of the most serious forms of
wood degradation is wood decay, caused by wood decaying fungi. These fungi have specialized in
degrading the structural polymers that make up the wood cell walls, resulting in a loss of material
and structural integrity.

Wood decaying fungi are typically classified as brown rot, white rot or soft rot fungi depending
on the type of decay they cause. Although brown rot fungi make up <10% of all wood decaying
fungal species (Arantes et al., 2012 and references therein), they are common degraders of structural
timber (Gabriel and Švec, 2017). Brown rot fungi utilize highly destructive hydroxyl radicals derived
from a biological Fenton reaction in the initial stages of decay (Arantes et al., 2012; Arantes and
Goodell, 2014), causing the depolymerization of cellulose (Kleman-Leyer et al., 1992) and the
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depolymerization and rapid repolymerization of lignin (Yelle
et al., 2008, 2011). The mechanical properties of wood deteriorate
at a rate exceeding mass loss (Winandy and Morrell, 1993;
Curling et al., 2002). In the following stages of decay the
brown rot fungi digest the wood cell wall carbohydrates, with
preferential degradation of the hemicellulose fraction (Winandy
andMorrell, 1993; Curling et al., 2002). Extensively brown rotted
wood consists of a brown, crumbling residue of modified lignin
(Jin et al., 1990; Yelle et al., 2008, 2011).

Decay is typically quantified by determining the loss in sample
mass or strength, while the effects on chemical composition
are traditionally determined using wet chemical methods.
Spectroscopic methods present an attractive alternative to
the laborious traditional methods, and near infrared (NIR)
spectroscopy in particular has been extensively utilized to study
various aspects of wood chemical composition and structure.
In the context of brown rot decay, NIR spectroscopy has been
used to study the chemical and physical changes in wood caused
by decay (Fackler et al., 2007; Fackler and Schwanninger, 2010,
2011) and as a tool to non-destructively estimate mass loss and/or
strength loss due to decay (Kelley et al., 2002; Fackler et al., 2007;
Green et al., 2010, 2012).

Despite the obvious usefulness of NIR spectroscopy in
analyzing the effects of brown rot decay, the spectroscopic
analyses fail to consider one important aspect of decay—local
variations within the substrate. Wood is a highly complex cellular
material, and its structure and composition vary on several
length scales. These variations affect the degradative efficiency
of fungi, which means that different parts of a wood sample will
be degraded to different extents or at different rates (Schwarze,
2007). Fungal colonization and decay are also slow processes,
resulting in further variations in the extent of decay within wood.
Given these variations and the fact that different degradative
reactions take place in different stages of decay, a comprehensive
understanding of the wood decay process requires the collection
of position-resolved chemical information from material in
different stages of degradation.

The objective of this investigation was to provide an overview
of the brown rot degradative process from early to advanced
stages of decay. Scots pine sapwood samples were exposed to
the brown rot fungi Coniophora puteana (Schum. ex Fries)
Karst. and Rhodonia placenta (Fr.) Niemelä, K.H. Larsson &
Schigel in a stacked-sample decay test designed to create a
continuum of decay stages across the samples. Hyperspectral
NIR images were collected from the decayed samples and the
spectral data analyzed first by ANOVA simultaneous component
analysis (ASCA) and then by principal component analysis
(PCA) followed by clustering to uncover the spatial distribution
of degradative reactions within the samples. The results provide
a visual overview of the brown rot degradative process and
demonstrate the applicability of NIR imaging to the study of
wood decay.

MATERIALS AND METHODS

Wood Samples and Decay Test
The Scots pine sapwood samples studied in this experiment were
the same as those studied in Belt et al. (2022). The samples

FIGURE 1 | Outline of the decay test set-up. Seven samples (sample position

1–7) were stacked in test tubes over nutrient agar inoculated with C. puteana

or R. placenta. The fungi colonized the samples progressively, producing a

series of samples in different stages of decay.

were sized 12 × 8 × 8mm (R × T × L) and contained 6–
7 annual rings per sample, allowing the detection of potential
earlywood-latewood differences and decay gradients within the
samples. Before the start of the decay test the samples were dried
at 60◦C to determine their initial mass and then sterilized by
ionizing radiation (25–50 kGy dose). The decay test (Figure 1)
was conducted in 16-mm-diameter test tubes containing 4ml of
2% malt extract agar. The tubes were inoculated with one plug of
mycelium from C. puteana (strain BAM Ebw. 15) or R. placenta
(strain BAM 113) stock cultures maintained on 2% malt extract
agar. Seven wood samples were then added to each tube, stacked
over the inoculated agar. A piece of plastic netting was placed
between the inoculated agar and the first wood sample to prevent
direct absorption of water from the agar. Five replicate tubes were
prepared per fungal species. The tubes were plugged with cotton
wool and incubated at 85% RH at room temperature. Due to
the stacked arrangement of the samples in the tubes, the fungi
colonized the samples successively. The decay test was allowed
to continue until the visible mycelial front of one of the fungi
reached the top of the topmost sample in one replicate tube.
After this the samples were removed from the tubes, wiped to
remove surface mycelium and then dried at 60◦C to determine
their decayed mass. The samples were stored in closed containers
over desiccant until imaging.

NIR Imaging
Images were collected from the radial surfaces of the decayed
samples. Prior to imaging the surfaces were smoothed with a
rotary microtome or, in the case of the most extensively degraded
samples, by hand with a razor blade. The samples were then
placed on a vertical translation stage and the height of the stage
was adjusted to match each sample surface with the focal plane
of the camera. Images were recorded in line scanning mode
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with a Specim SWIR3 (Specim, Spectral Imaging, Ltd.) short-
wavelength infrared hyperspectral camera equipped with a OLES
macro lens. Each line scan recorded 384 pixels and 288 spectral
variables over a spectral range of 930–2,550 nm at a spectral
resolution of 12 nm (full width at half maximum). The lens had a
field of view of 10mm, resulting in a nominal pixel size of∼26×
26 µm2. Two halogen lamps generated polychromatic light, and
a HgCdTe detector array with a grating prism monochromator
gathered the reflected wavelengths from the exposed surface of
the samples. A calibration reflectance target was scanned along
with the samples, resulting in overall image dimensions of 1,029
× 384 pixels. All images were captured in reflectance mode.

Image Segmentation and Transformation
The acquired images were preprocessed using amedian filter with
a moving window of 3× 3 units and corrected with the measured
reflectance target and dark current intensities. The reflectance
images were preprocessed with standard normal variate (SNV)
transformation and mean centering and the image backgrounds
and saturated pixels were identified using PCA (Wold et al., 1987)
and removed. One region of interest (ROI) of 281 × 301 pixels
was selected from the center of each image and the ROI pixels
were converted into absorbance using Equation (1):

A = log10 (1/r) (1)

where A represents absorbance and r the unitless reflectance
values. A ROI smaller than the sample size was used to exclude
damaged regions on the edges of the most extensively decayed
samples while keeping the image size consistent across all
samples. Bands outside the range 1,100–2,400 nm were excluded,
and the average spectra of the samples were determined based on
the selected ROIs.

ASCA
The average spectra were decomposed into the main effects and
corresponding two-factor interactions between sample position,
fungal species, and replicate number based on the conditions of
the decay test. The decomposition was determined according to
the general ASCA model (Smilde et al., 2005; Bertinetto et al.,
2020, Equation 2):

Xm = Xp+ Xf+ Xr+ X(p x f)+ X(p x r)+ X(f x r)+ E (2)

where Xm denotes the SNV transformed and mean centered
average sample spectra, Xp, Xf , and Xr the main effect matrices
of sample position, fungal species and biological replicates,
respectively. The remaining effect matrices X(p x f ), X(p x r), and
X(f x r) denoted the corresponding two-factor interactions and
E a matrix of model residuals. Equation (2) also partitioned
the variation in the spectra to their factor-specific contributions
based on the corresponding sum of squares. After statistical
evaluation, the decomposition in Equation (2) was revised by
combining the position and the position x fungus effects (Jansen
et al., 2005, Equation 3):

Xm = Xp+(p x f)+Xf+ Xr+ Xp x r+ Xf x r+ E (3)

The effect matrices in Equations (2) and (3) were then
decomposed into ASCA scores and loadings (Equation 4):

Xi = TiP
T
i (4)

where Ti and PTi denoted the score and orthonormal loading
(PTi Pi=I) vectors of the effect matrix Xi, i ∈

{

p, . . . , f x r
}

.
The natural variation within the factor levels was considered by
projecting the residuals onto the ASCA loadings as discussed by
(Zwanenburg et al., 2011, Equation 5):

Si = (Xi+E)Pi = Ti+EPi (5)

where Si denoted the combined ASCA scores of the effect i, i ∈
{

p, . . . , f x r
}

. The statistical significance of the ASCA effects in
Equation (2) were evaluated based on 10,000 permutations (Vis
et al., 2007; Bertinetto et al., 2020) using the ASCA tool included
in PLS toolbox (Eigenvector Research, Inc.).

Multivariate Image Analysis
One replicate tube of samples exposed to C. puteana and R.
placenta was selected for image analysis. The images collected
from the selected samples were combined into one mosaic per
fungal species, after which the mosaics were decomposed into
PCA scores and loadings (Equation 6):

Mm = TPT+ En (6)

where Mm denotes the preprocessed and mean centered mosaic
spectra, T a matrix of PCA score vectors, P a matrix of PCA
loadings (PTP=I), and En a residual matrix after n principal
components. The calculations were performed on unfolded
mosaics using the singular value decomposition algorithm (Wall
et al., 2003). The first principal component was used to remove
extreme pixels based on threshold values and the PCA scores and
loadings were redetermined. The final scores were refolded back
into mosaic dimensions to visualize the chemical changes and to
interpret the respective loadings.

Finally, a PCA-based clustering approach was used to group
the image pixels. K-means clustering segregated the pixels into
distinct classes based on their correlation with the mean of
each cluster. Euclidean distances were used to select the first
centroids furthest away from the center of the score space.
The average class spectra were determined and the class vectors
were refolded back into mosaic dimensions. The data analyses
were performed using in-house Matlab R© scripts (MathWorks,
Inc.) including commercial functions from the PLS toolbox
(Eigenvector Research, Inc.).

RESULTS

Decay Test Results
To produce a series of samples in different stages of brown rot
decay, samples of Scots pine sapwood were exposed to pure
cultures of C. puteana and R. placenta in a stacked-sample decay
test. The mass losses of the samples were measured, after which
the samples were analyzed by NIR imaging to gather information
on the chemical changes caused by decay and their spatial
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distribution within the samples. The mass loss measurements
(Figure 2A) showed that the decay test succeeded in producing
a succession of decay stages. The samples exposed to C. puteana
exhibited a linear increase in mass loss from an average of
−3.6% at position 1 (topmost sample) to an average of 54.0%
at position 7 (bottommost sample). R. placenta produced a non-
linear increase in mass loss, reaching an average of 50.8% at
position 7. Apart from the high mass losses recorded at position
7, the mass losses caused by R. placenta were substantially lower
than their C. puteana counterparts. The SNV transformed and
mean-centered average NIR spectra of the samples (Figure 2C)
indicated substantial chemical changes in the samples as a
function of mass loss.

ASCA
The spectral data were first analyzed by ASCA to identify the
key spectral changes caused by decay and to look for differences
between the two fungal species. As shown in Table 1, the position
and fungus main effects and the position × fungus interaction
were found to have a statistically significant effect (p < 0.05
according to permutations) on the variation in the sample
spectra. The position and the position × fungus interaction
effects were then combined into one effect. This step enabled
us to include the significant position effects into a single sub-
model while still isolating the main fungus effect. The ASCA
loadings and scores of the first component of the fungus effect
and the combined position + (position × fungus) effect are
shown in Figure 3, along with the ASCA loadings and scores
of the replicate effect. There was no consistent pattern in
the replicate effect scores, which showed that there were no
systematic differences between the replicates.

The position + (position × fungus) combination effect
accounted for 84% of the data variation. The loading had positive
bands at 1,130, 1,670, 1,903 and 2,240 nm, and negative bands
at 1,509 and 2,080 nm. The bands at 1,130 and 1,670 nm were
assigned to the aromatic C-H stretch of lignin (Shenk et al.,
1992; Fackler and Schwanninger, 2010; Sandak et al., 2011;
Schwanninger et al., 2011a), while the band at 1,903 nm was
assigned to the C=O stretch of lignin (Schwanninger et al.,
2011b; Popescu and Popescu, 2013). The positive bands at 1,509
and 2,080 nm are due to the O-H stretch of cellulose interchain
hydrogen bonds and the O-H stretch + C-H deformation of
semi-crystalline or crystalline cellulose, respectively (Watanabe
et al., 2006; Fackler and Schwanninger, 2010; Schwanninger et al.,
2011a). The position+ (position× fungus) effect scores changed
from negative to positive from sample position 1 to position 7
for both fungal species, indicating a decrease in cellulose content
and an increase in lignin content, particularly in aromatic and
carbonyl functionalities. The score values and gravimetrically
determined mass losses (Figure 2) followed similar trends as a
function of mass loss.

The fungus effect explained 5% of the total data variation. The
loading vector was very similar to the position + (position ×

fungus) combination effect loading, with positive bands at 1,670,
1,908, and 2,240 nm (derived from lignin) and negative bands
at 1,498 and 2,080 nm (derived from cellulose). The C. puteana-
degraded samples had more positive effect scores at every sample

position than the R. placenta-degraded samples, suggesting that
the samples attacked by R. placenta had a higher carbohydrate
content and lower lignin content than the C. puteana samples.
This difference in composition is likely to be primarily due to the
higher mass losses of the C. puteana-exposed samples. However,
the score value differences between the two fungi persisted even
at sample position 7 where the mass loss differences were small
(Figure 2), which suggests that the spectral differences are not
solely a function of mass loss. In an effort to identify chemical
differences independent of mass loss between the two species,
the loadings of the fungus effect and the position + (position
x fungus) effect were compared (see Supplementary Figure 1).
The fungus effect loading showed deviations from the combined
effect loading at 1,404, 1,591, 1,887, 2,020, and 2,158 nm. The
1,404, 1,591, and 1,887 nm spectral contributions were assigned
to phenolic OH groups, crystalline cellulose and lignin carbonyl
groups (Tsuchikawa and Siesler, 2003; Schwanninger et al.,
2011a; Popescu and Popescu, 2013), respectively, which suggests
that differences related to lignin modification and cellulose
degradation exist between the fungi.

PCA
ASCA is an effective method for separating the effects of different
variables on the overall data variation, but it is not ideal for
imaging data due the averaging involved in determining the
ASCA effects. Therefore, to obtain position-resolved information
on decay progression, one sample tube per fungal species with
mass losses close to the fungus-specificmean was selected and the
images analyzed by PCA. Figure 4 shows the loadings and scores
of the first four PCs derived from the C. puteana sample set.

PCs 1 and 2 explained 21 and 13% of the data variation,
respectively, and provided information related to fungal
degradation and earlywood-latewood differences. The PC1
loading vector had positive bands at 1,648 and 2,236 nm and
negative bands at 1,474 and 2,062 nm. The 1,648 nm band
was assigned to the C-H stretch of aromatic groups in lignin,
while the 1,474 and 2,062 nm bands were assigned to the
O-H stretch of glucomannan or amorphous/semi-crystalline
cellulose, and the O-H stretching + O-H deformation of semi-
crystalline/crystalline cellulose, respectively (Sandak et al., 2011;
Schwanninger et al., 2011a). The PC2 loading vector had positive
bands at 1,883, 1,989, 2,141 nm and negative bands at 1,491
and 2,342 nm. The positive bands at 1,883 and 2,141 nm were
assigned to the C=O and C-H+ C=O stretch of lignin (Popescu
and Popescu, 2013), while the negative 1,491 nm band was
assigned to the O-H stretch of glucomannan or amorphous/semi-
crystalline cellulose (Tsuchikawa and Siesler, 2003; Schwanninger
et al., 2011a). The 2,342 nm band was derived from cellulose
(Shenk et al., 1992; Schwanninger et al., 2011a). Both the PC1
and PC2 scores increased from sample position 1 to position
7, reflecting selective carbohydrate degradation. Earlywood and
latewood regions were identified by visual inspection of false-
color images generated from unprocessed image data, and it was
found that positive PC1 scores were associated primarily with
earlywood, while positive PC2 scores were in turn more strongly
associated with latewood. This suggests that the degradation of
earlywood is characterized by strong degradation of both low
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FIGURE 2 | Mass losses of all sample blocks caused by C. puteana and R. placenta (A) and the SNV transformed average NIR spectra of the samples before (B) and

after mean-centering (C) colored according to mass loss.

TABLE 1 | The variation and significance of the main effects and their two-factor interactions from ASCA.

Effect Position Fungus Replicate Position ×

fungus

Position ×

replicate

Fungus ×

replicate

Residual

Variation (%) 75.7 4.3 1.3 8.1 4.6 0.7 5.2

p-valuea <0.01 <0.01 0.40 <0.01 0.71 0.67 –

aBased on 10,000 permutations.

and high crystallinity carbohydrates and an increase in aromatic
lignin content, while the degradation of latewood is characterized
by the degradation of low crystallinity carbohydrates and an
increase in lignin carbonyl content.

PCs 3 and 4 explained 11 and 7% of the data variation,
respectively. The PC3 loading vector had a positive band at
2,118 nm assigned to cellulose (Schwanninger et al., 2011a) and
a negative band at 1,894 assigned to the C=O stretch of lignin
(Popescu and Popescu, 2013). The PC3 scores were generally
more positive in latewood than earlywood and decreased from
sample position 2 to position 7, indicating a decrease in cellulose
content and an increase in lignin carbonyl content, particularly
in earlywood. The PC4 loading vector in turn had positive
bands at 1,922 and 2,353 nm and negative bands at 1,648 nm
and 2,219 nm. The PC4 scores were more positive in earlywood
at sample positions 1–4 and in latewood at position 5–7, and
they generally decreased from position 1 to position 7. The
overall decrease in PC4 scores from position 1 to position 7 is
consistent with a decrease in cellulose content and an increase in
lignin content.

The loadings and scores of the first four PCs derived from
the R. placenta sample set are given in Supplementary Figure 2.
The R. placenta set yielded results similar to the C. puteana
set, with PC1 (25%) and PC2 (13%) providing information on
carbohydrate degradation and lignin modification in earlywood
and latewood, respectively. PC3 (8%) and PC4 (6%) were also
similar to those derived from the C. puteana sample set, although

the scores did not follow a consistent trend as a function of
sample position.

Clustering
To get a clearer view of the progress of degradation in the
samples, the spectra in the C. puteana and R. placenta data sets
were separated into distinct classes using k-means clustering
based on the scores of PCs 1–4. The number of classes was set to
three as this was found to provide the clearest separation between
degraded and undegraded areas. The mean-centered spectra of
the three classes and the class assignments of the image pixels are
given in Figure 5 for the C. puteana-degraded sample set.

The mean-centered spectrum of class 1 had carbohydrate-
derived positive bands at 1,474 nm (glucomannan or
amorphous/semi-crystalline cellulose) and 2,062 nm (semi-
crystalline/crystalline cellulose), along with a negative band at
2,241 nm. The mean-centered spectrum of class 2 in turn showed
only a broad negative spectral feature at 2,113 nm assigned
to cellulose (Schwanninger et al., 2011a). The mean-centered
spectrum of class 3 showed features of brown rot degradation: it
had lignin-derived positive bands at 1,648 nm (aromatic groups),
1,883 nm (C=O) and 2,225 nm, and carbohydrate-derived
negative bands at 1,479 nm (glucomannan or amorphous/semi-
crystalline cellulose) and 2,062 nm (semi-crystalline/crystalline
cellulose). In the least degraded samples at positions 1 and 2,
the latewood regions of the samples were represented by the
carbohydrate-rich class 1, while the earlywood regions were
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FIGURE 3 | ASCA first component loadings and scores of the position + (position × fungus) combination effect, the fungus effect, and the replicate effect.

assigned to a mixture of class 1 and class 2. The assignment
of some earlywood pixels to class 2 was interpreted as a
representation of incipient brown rot decay, although it may
also be at least partially due to the lower carbohydrate content of
undegraded earlywood (Bertaud and Holmbom, 2004). Further
signs of brown rot degradation appeared in earlywood at sample
position 3, where the pixels assigned to the carbohydrate-rich
class 1 disappeared while pixels assigned to the degradation-
specific class 3 appeared. At position 7 virtually all of the
earlywood pixels were assigned to class 3. The first signs of
latewood degradation were seen at sample positions 4 and 5,
where pixels assigned to class 2 appeared amongst the class 1
pixels. At position 6 the width of the intact latewood regions
represented by class 1 appeared to decrease, which suggests that
the latewood regions were progressively degraded, presumably
from the earlywood side of the region. Most of the latewood
regions were degraded and represented by class 3 at position 7,
although narrow bands of intact latewood still persisted.

The application of clustering to the R. placenta-
degraded sample set provided similar results (see
Supplementary Figure 3). In the least degraded samples
at positions 1 and 2, the latewood regions of the samples
were represented by the carbohydrate-rich class 1, while the
earlywood regions were represented by class 2. Brown rot
degradation became apparent at sample positions 3 and 4, where
pixels represented by the degradation-specific class 3 appeared in
the earlywood regions. Latewood degradation became apparent
only at position 1, where most of the image pixels were assigned

to class 3. Thin bands of intact latewood represented by class 1
could be seen at the less degraded end of the sample at position 1.

DISCUSSION

Analysis of the spectral data by ASCA and PCA showed
that both C. puteana and R. placenta caused carbohydrate
degradation and lignin modification in Scots pine sapwood in
the decay test set-up utilized in this experiment. The ASCA
results (Figure 3) revealed that the main spectral changes
associated with decay were the degradation of semi-crystalline
and crystalline cellulose and the increase in aromatic and
carbonyl functionality in lignin. PCA identified similar changes
(Figure 4 and Supplementary Figure 2). Cellulose degradation
is a typical finding in brown rot decay as the fungi mineralize
only the carbohydrate fraction of the wood cell wall. Brown rot
fungi usually digest hemicelluloses ahead of cellulose (Winandy
and Morrell, 1993; Curling et al., 2002), and the identification of
cellulose rather than hemicellulose degradation as a key spectral
change due to decay is most likely a consequence of the high
mass losses seen in the more extensively degraded samples. The
increasing contributions from carbonyl and aromatic functions
in lignin are in turn consistent with lignin modification along
with an overall increase in lignin content. Brown rotted lignin
has been shown to have increased carbonyl and aromatic content,
in addition to increased hydroxyl and reduced methoxyl content
(Jin et al., 1990; Yelle et al., 2008, 2011). Lignin modification is
thought to be caused by hydroxyl radicals, which are produced
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FIGURE 4 | Loadings and scores of PCs 1–4 in a set of samples exposed to C. puteana. Each individual image in the score mosaics is sized 7.3 × 7.8mm.

by brown rot fungi in the initial stages of decay (Arantes
et al., 2012; Zhang et al., 2016; Zhang and Schilling, 2017).
Hydroxyl radical attack causes the depolymerization and rapid
repolymerization of lignin (Yelle et al., 2008, 2011), resulting
in structural arrangements that allow the digestion of the
carbohydrate fraction of the cell walls. The carbohydrates are
enzymatically hydrolyzed into sugars after the initial radical
attack (Zhang et al., 2016; Zhang and Schilling, 2017), either in
the cell wall after the structure has been opened up by radical
attack, or more likely in the cell lumen after diffusion of radical-
generated carbohydrate fragments into the lumen (Goodell et al.,
2017).

Analysis of the image-form data by PCA (Figure 4 and
Supplementary Figure 2) showed that the earlywood regions
of the brown rot degraded samples were characterized by the
degradation of both high and low crystallinity carbohydrates
and an increase in lignin carbonyl and aromatic content, while
the latewood regions were characterized by the degradation
of low crystallinity carbohydrates and an increase in lignin
carbonyl content. Although the spectral differences between
earlywood and latewood may reflect some variations in the
fungal degradative process between earlywood and latewood, the

differences are most likely primarily derived from differences
in the extent of decay. The fact that brown rot fungi
degrade amorphous carbohydrates ahead of crystalline cellulose
(Winandy and Morrell, 1993; Curling et al., 2002) suggests
that the earlywood regions showing high-crystallinity and low-
crystallinity carbohydrate degradation are more extensively
degraded than the latewood regions, which showed only
low crystallinity carbohydrate degradation. The association
of increasing carbonyl content with latewood also supports
this, given that lignin modification is thought to take place
in the initial decay stages. The association of increasing
aromatic content in addition to increasing carbonyl content with
earlywood is most likely related to the increasing residual lignin
content with selective carbohydrate removal.

PCA and cluster analysis showed that both C. puteana
(Figures 3, 4) and R. placenta (Supplementary Figures 2, 3)
initiated degradation in the earlywood regions of the samples
and that the earlywood regions remained more extensively
degraded even in advanced decay. Brown rot decay is known
to be initiated in earlywood where the large cell lumens and
abundant pit connections allow the fungal hyphae to spread
(Schwarze, 2007; Bouslimi et al., 2014).Microscopy-based studies
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FIGURE 5 | Mean-centered spectra of classes 1–3 and the class assignments of image pixels in a set of samples exposed to C. puteana. Each individual image in the

mosaic is sized 7.3 × 7.8mm.

have demonstrated that earlywood shows more visual signs of
decay during the incipient stages (Schwarze, 2007; Bouslimi
et al., 2014), but X-ray densitometry results have shown that
both the absolute and relative density losses of latewood quickly
surpass the density losses of earlywood as the decay progresses
(Bucur et al., 1997; Macchioni et al., 2007; Reinprecht et al.,
2007).We did not perform density measurements, but our results
demonstrate that in terms of chemical composition, earlywood
remains more extensively degraded than latewood until very
advanced decay stages.

Apart from differences in the mass losses recorded at
different sample positions in the decay test tubes (Figure 2),
our results showed that C. puteana and R. placenta produced
highly similar degradative changes in pine sapwood. Genome
sequencing and gene expression analyses have revealed notable
differences in degradative machinery between C. puteana and
R. placenta (Floudas et al., 2012), but our results showed
that the two fungi produced similar spectral changes related
to carbohydrate degradation and lignin modification and
similar spatial patterns of decay involving extensive earlywood
degradation. Fackler and Schwanninger (2010) were unable
to detect meaningful NIR spectral differences between wood
degraded by R. placenta and the brown rot fungus Gloeophyllum
trabeum, and strong similarities in the physiochemistry of
degraded wood have been observed after degradation by brown
rot fungi of distinct evolutionary origins (Kaffenberger and
Schilling, 2015). Comparison of the ASCA loadings of the fungus
main effect and the position + (position × fungus) combination
effect (Supplementary Figure 1) revealed differences related to
crystalline cellulose and hydroxyl and carbonyl groups on lignin,

which may reflect chemical differences in the wood degraded by
the two fungi. However, a more comprehensive assessment of
the chemical differences would require the analysis of a series of
samples showing comparable mass losses.

CONCLUSIONS

NIR hyperspectral imaging in combination with ASCA, PCA
and clustering showed that the degradation of pine sapwood
by C. puteana and R. placenta resulted in carbohydrate
degradation and lignin modification. Consistent with the current
understanding of brown rot decay, our results showed that
both fungi initiated degradation in earlywood. However, our
results also demonstrated that the earlywood regions of the
samples remained more extensively degraded even in advanced
decay. Apart from differences in the recorded mass losses, the
degradative changes caused by C. puteana and R. placenta were
very similar. Our results showed that NIR hyperspectral imaging
is a suitable method for obtaining position-resolved chemical
information from brown rot decayed samples, making it a useful
tool for understanding the fungal degradative process. In the
future the method may be used to examine the degradation of
different types of wood materials such as modified wood for
which the fungal degradative process is less well-understood.
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