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Abstract. We study tensor networks as a model of arithmetic computation for

evaluating multilinear maps. These capture any algorithm based on low-rank tensor

decompositions, such as $(=$+&) time matrix multiplication, and in addition many

other algorithms such as $(= log =) time discrete Fourier transform and $∗(2=) time

for computing the permanent of a matrix. However, tensor networks sometimes

yield faster algorithms than those that follow from low-rank decompositions. For

instance the fastest known $(=($+&)C) time algorithms for counting 3C-cliques can be

implemented with tensor networks, even though the underlying tensor has rank =3C

for all C ≥ 2. For counting homomorphisms of a general pattern graph % into a host

graph on = vertices we obtain an upper bound of $(=($+&) bw(%)/2) where bw(%) is
the branchwidth of %. This essentially matches the bound for counting cliques, and

yields small improvements over previous algorithms for many choices of %.

An extended abstract of this paper appeared in the Proceedings of the 10th Innovations in Theoretical Computer

Science Conference (ITCS 2019) [9].
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While powerful, the model still has limitations, and we are able to show a number

of unconditional lower bounds for various multilinear maps, including the following.

(a) An Ω(=bw(%)) time lower bound for counting homomorphisms from % to an

=-vertex graph, matching the upper bound if $ = 2. In particular for % a

E-clique this yields an Ω(= d2E/3e) time lower bound for counting E-cliques, and

for % a :-uniform E-hyperclique we obtain anΩ(=E) time lower bound for : ≥ 3,

ruling out tensor networks as an approach to obtaining non-trivial algorithms

for hyperclique counting and the Max-3-CSP problem.

(b) An Ω(20.918=) time lower bound for the determinant and the permanent of an

= × = matrix.

1 Introduction

One of the cornerstones of the theory of computation is the study of efficient algorithms:

For a function 5 , how much time is required to evaluate 5 on given inputs?

Answering this question for almost any specific 5 is well beyond reach of contemporary tools.

For example, it is theoretically possible that canonical NP-complete problems, such as the Circuit

Satisfiability problem, can be solved in linear time whereas they are widely believed to require

super-polynomial (or somewhat less widely, exponential) time [47, 51, 52]. The main reason

for this barrier to quantitative understanding is that it is very hard to prove lower bounds for

explicit functions in general models of computation such as circuits or Turing machines.

This situation withstanding, a more modest program to advance our understanding of

computation is to study restricted models of computation that for many 5 of interest are

simultaneously

1. general enough to capture the fastest-known algorithms for 5 , and

2. restricted enough to admit proofs of strong unconditional time lower bounds for 5 .

There is a substantial body of existing work that fits under this program, ranging from the study

of low-depth or otherwise restricted circuits (see, e. g., [8, Ch. 14]) to models of algorithm-design

principles such as greedy algorithms, backtracking, or dynamic programming [3, 41], to linear

or semidefinite programming relaxations for hard combinatorial optimization problems [71].

1.1 Multilinear maps

One class of functions 5 that are of substantial importance is the family of ℓ -linear maps
(multilinear maps) from ℓ input vector spaces to an output vector space.1 Examples range from

maps of known near-linear-time complexity in the input size, such as the discrete Fourier

transform [35, 97], to maps without known polynomial-time-complexity algorithms, such as

1Multilinear maps with ℓ = 1 are called linear, ℓ = 2 bilinear, ℓ = 3 trilinear, and so forth.
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the permanent of a matrix [89, 95]. Beyond motivation in numerical multilinear algebra and

its applications, recent advances in the study of fine-grained algorithm design and complexity

have highlighted the fundamental role of algebraic methods in the fastest-known algorithm

designs across a broad range of tasks from graph problems, such as all-pairs shortest paths and

:-clique, to parsing and constraint satisfaction problems, such as maximum satisfiability and

graph coloring [2, 17, 19, 44, 53, 75, 102, 103].

In this paper, we study the arithmetic complexity of evaluating a multilinear map, that is, the

number of operations (scalar additions, subtractions, and multiplications) needed to evaluate

the map. To set up a baseline, a generic ℓ -linear map from ℓ vector spaces of dimension = to a

scalar requires Ω(=ℓ ) scalars to represent the map directly using combinations of basis vectors.

Given this complexity of a direct explicit representation, it is a fundamental problem to seek

less costly representations, along with associated efficient algorithms that work on the chosen

representation.

We propose the systematic study of tensor networks on hypergraphs as a framework for

fast evaluation of multilinear maps, and show a number of upper and lower bounds on the

computational power of tensor networks in the spirit of (i) and (ii) above.

1.2 Tensor networks

Tensor networks have a long and rich history which can be traced as far back as 19
th
-century

studies in invariant theory due to Cayley [27, 28], Clebsch [31], Clifford [32], Sylvester [94],

and Kempe [57, 58]. Tensor networks are extensively deployed in applications from pure

mathematics and theoretical physics [56, 64, 66, 67, 80, 81, 85, 90] to computational physics

and chemistry [78, 83, 92]. In theoretical computer science, they appear in various guises,

including, for example, in the Holant framework [96, 25, 24], in the study of probabilistic

graphical models [62, 87], in the study of parallel programming [91], in the study of quantum

computing [7], and in the study of arithmetic complexity [11, 26, 40]. Tensor contraction is also

emerging as a basic computational primitive in computer hardware [54, 73]. (See Section 1.5 for

a detailed discussion.) As the precise definitions are somewhat technical, let us start with a few

simple motivating examples and then state our results, with the understanding that precise

definitions appear in Section 4.

In our setting, a tensor network is a hypergraph in which the vertices are tensors and the

hyperedges are called modes. Each mode that is incident to a tensor defines a “dimension” for

indexing the entries of the tensor—for example, a matrix is a tensor that is incident to two

modes, one mode for the rows of the matrix, and the other mode for the columns of the matrix.

A network may be simplified by a sequence of contractions, where each contraction takes a subset

of tensors and replaces it with a single tensor whose entries are obtained as generalized inner

products of the entries of the tensors being contracted.

As a concrete first example of these concepts, let us consider the task of multiplying two

matrices, � and �. More specifically, let � be a matrix with rows indexed bymode 8 and columns

indexed by mode :, and let � be a matrix with rows indexed by mode : and columns indexed

by mode 9. We may represent the multiplication task as the tensor network depicted on the left

in (1.1). The result of contracting � and � is a new matrix with rows indexed by 8 and columns
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indexed by 9, where the entry at each position (8 , 9) is ∑
: �8:�: 9 . If the three index sets all have

size =, then computing � · � by contracting them in such a direct manner uses Θ(=3) operations.
To obtain faster matrix multiplication, we can rewrite the bare-bones network on the left in (1.1)

using a low-rank decomposition of the matrix multiplication tensor. For example, Strassen’s

decomposition [93] of 2 × 2 matrix multiplication can be represented using the second network

in (1.1). Note that the index 8 used by � and the result has been separated into two distinct

indices 8 and 8′, and similarly for 9 and :.

A

B

i

k

j

α β

γ

A B

i′ k k′ j′

i j

ℓ

α =
k

1 0 1 0 1 -1 0
0 0 0 0 1 0 1

k
0 1 0 0 0 1 0
1 1 0 1 0 0 -1

i′

ℓ

γ =
j1 0 0 1 -1 0 1

0 0 1 0 1 0 0

j0 1 0 1 0 0 0
1 -1 1 0 0 1 0

i

ℓ

β =
j′1 1 0 -1 0 1 0

0 0 1 0 0 1 0

j′0 0 0 1 0 0 1
1 0 -1 0 1 0 1

k′

ℓ

(1.1)

We can execute the network by successively contracting groups of vertices. In (1.2) we see

the process of successively contracting pairs of tensors in a carefully chosen order, until only

a single tensor—the result of the computation—remains. Such an execution can be naturally

represented by a rooted binary tree, as shown on the right in (1.2), where the tensors of the

network form the leaves, and each internal node represents the result of contracting its two

children. To summarize, a tensor-network algorithm is specified by providing (a) a tensor

network that when contracted yields the desired result, and (b) an execution tree indicating the

order in which to contract tensors in the network.

α β

γ

A B

i′ k k′ j′

i j

ℓ

β

γ

B

k′ j′

i j

ℓ

γ

i j

ℓ

γ

i j

ℓ

A ·B
i j

(1.2)

The cost of performing one of the contractions in an execution is the product of the lengths

of the modes used by any tensor involved in the contraction. This simply measures (up to

a constant factor) the number of arithmetic operations (additions/multiplications) used to

compute the result by a direct, naïve computation that does not depend on the values of the

tensors. For example, the contraction of  and � in the first step of (1.2) has cost 28 because it

involves the three modes 8′ (length 2), : (length 2) and ℓ (length 7).

We observe that cost is data-oblivious—the tensor  is fixed with many zero-entries but these

entries still contribute to the cost. Indeed, in many cases there may be faster ways of evaluating

THEORY OF COMPUTING, Volume 18 (16), 2022, pp. 1–54 4

http://dx.doi.org/10.4086/toc


TENSOR NETWORK COMPLEXITY OF MULTILINEAR MAPS

a contraction than to evaluate it naively, and just like we saw above, this can often be dealt with

by rewriting the network appropriately. For instance, consider now the multiplication of two

2
: × 2

:
matrices. Because the family of matrix multiplication tensors is closed under Kronecker

products, this operation may be computed by a tensor network like the one shown in (1.3)

(depicting the case : = 5), where , � and � are as in (1.2). The rows/columns of the matrices

are now indexed by :-tuples of bits. A cost-efficient execution of this network successively

contracts tensors in the order shown to the right in (1.3). In this execution, the first contraction

of � with the first  block has a cost of 2
: · 2: · 7, and results in a tensor of size 2

:−1 × 2
:−1 × 7.

Then the contraction with the next  block has a cost of 2
:−1 · 2:−1 · 72

and produces a result of

size 2
:−2 × 2

:−2 × 7 × 7, and so on, until the contraction with the last  block which has a cost of

2 · 2 · 7: = $(7:). The contractions with the � and � blocks behave similarly. Thus all the Θ(:)
contractions in the execution have cost bounded by $(7:), meaning that we get a total running

time of $(:7:) = $(# log
2

7
log#) for # × # matrices.2

α β

γ

α β

γ

α β

γ

α β

γ

α β

γ

A B

i′1 k1 k′
1 j′1

i1 j1

ℓ1

i′2 k2 k′
2 j′2

i2 j2

ℓ2

i′3 k3 k′
3 j′3

i3 j3

ℓ3

i′4 k4 k′
4 j′4

i4 j4

ℓ4

i′5 k5 k′
5 j′5

i5 j5

ℓ5

(1.3)

This type of argument can capture any algorithm based on a low-rank decomposition of

the underlying tensor of the multilinear map, and indeed, this enables $(=$)-time3 matrix

multiplication using tensor networks. Beyond simple low-rank decompositions, which always

give rise to “star-like” networks as in (1.3), there are many interesting algorithms that can

be captured using networks with a more complicated topology. For instance, many maps of

substantial importance have a layered structure that decomposes the map to a sequence of

elementary maps. A canonical example is the discrete Fourier transform (DFT), which for a

smooth composite order such as 2
:
, can be decomposed into a fast Fourier transform (FFT) that

consists of a sequence of : transforms of order 2 interleavedwith diagonal-matrix multiplications

of twiddle factors [35, 97].

1.3 Our results

Starting with motivation (i) and seeking to express existing fastest-known algorithms as

executions of tensor networks by a sequence of contractions, we show upper bounds for a

2In fact, a more careful analysis gives running time $(# log
2

7).
3Throughout the paper, we write $(ℎ) = $F (ℎ) for the infimum over all C such that the arithmetic complexity

of multiplying an = × b=ℎc matrix with an b=ℎc × = matrix is $(=C )where ℎ > 0 is a constant. While the value of

$(ℎ) may depend on the underlying field F , we tacitly ignore this, since the field is fixed throughout the paper.

Also, we write simply $ = $(1) for the exponent of square matrix multiplication. For all fields it is known that

2 ≤ $ < 2.37286 [4, 69, 98]; for the state of the art on $(ℎ), see [70].
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number of natural problems. Beyond standard linear settings such as the FFT, not only do tensor

networks realize classical bilinear settings such as Abelian group algebra products and fast

matrix multiplication algorithms based on low tensor rank, they are powerful enough to capture

a substantial number of higher-linearity applications, including Ryser’s algorithm for matrix

permanent [89], and the Kruskal operator [60, 63] (see Section 3.5), which underlies realization of

rank-decompositions for tensor rank [61] and current fastest algorithms for detecting outlier

correlations [55].

One problem for which tensor networks turn out to be particularly useful is counting

homomorphisms from a fixed pattern graph % to a large host graph � on = vertices. The most

well-studied such problem is when % is a :-clique. For this problem, the currently fastest

algorithms run in time roughly $(=$:/3) [75, 44]. For general %, it is known that the problem

can be solved in $(=tw(%)+1) time [42], where tw(%) is the treewidth of %. We show that tensor

networks can solve the problem in $(=($+&) bw(%)/2) time, where bw(%) is the branchwidth of %.
When % is a :-clique, we have bw(%) = d2:/3e; if $ = 2, the running time coincides with that of

the currently fastest algorithms. On the other hand, if $ > 2, we can slightly improve upon this

to recover the currently fastest known running time of Eisenbrand and Grandoni [44] relying

on fast rectangular matrix multiplication. In the case of general %, the bound $(=($+&) bw(%)/2)
improves on the treewidth-based bound for graphs with bw(%) ≤ 2(tw(%) + 1)/$ (and in

particular if $ = 2 it is always as fast as the treewidth-based bound, ignoring the &). By recent

results of Curticapean, Dell, and Marx [37], fast algorithms for homomorphism-counting can

be used to obtain fast algorithms for counting subgraphs of � isomorphic to %, and in some

cases our new branchwidth-based bound leads to an improvement; for example, for counting

paths of length 7, 8 or 9, we get a running time of $(=3$/2+&) < $(=3.56) compared to $(=4)
using the treewidth-based bound, whereas for very long paths it is not clear whether we would

need $ = 2 in order for this bound to improve on the treewidth-based bound. Previous work

that combines branch decompositions and fast matrix multiplication includes Dorn [43] and

Bodlaender et al. [21].
Further applications captured by tensor networks are the set covering and set partitioning

frameworks via fast zeta and Möbius transforms that underlie the current fastest algorithms

for graph coloring [19] and its generalizations such as computing the Tutte polynomial [16, 17].

To summarize, we have the following compendium of upper bound results. For the detailed

definitions of the relevant multilinear maps, see Sections 3 and 5.

Theorem 1.1. We have the following upper bounds on arithmetic complexity via tensor networks.

1. $(=$(ℎ)+&) for the multiplication of matrices of shape = × b=ℎc and b=ℎc × = where ℎ > 0 is a
constant.

2. $(=($+&) bw(%)/2) for counting homomorphisms of a fixed pattern hypergraph % into a hypergraph
on = vertices.

3. $(=�+&) for counting E-cliques in an =-vertex graph, where � is the exponent of the complexity of
multiplying matrices of shape = bE/3c × = b(E+1)/3c and = b(E+1)/3c × = b(E+2)/3c .

4. $(max(= dℓ/2e($+&−1)A, =2dℓ/2eA$+&−2)) for the Kruskal operator of ℓ matrices of shape = × A.
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5. $(2: :) for the discrete Fourier transforms for the Abelian groups ℤ
2
: and ℤ:

2
.

6. $(2: :) for group algebra products on F [ℤ
2
: ] and F [ℤ:

2
] when 2 is unit in F .

7. $(2: :) for the semigroup algebra product on F [({0, 1}: , ⊆,∩,∪)].

8. $(2==) for the permanent of an = × = matrix.

Above & > 0 is an arbitrary constant.

Perhaps the most interesting application above is the E-clique problem, which suggests

that one should seek to pursue generalizations to E-vertex hypercliques of

(E
:

)
hyperedges with

E > : ≥ 3. Indeed, subgraph counting is a problem that has received substantial interest over the

years (e. g., [53, 75, 6, 5, 44, 18, 20, 99, 100, 46, 45, 77, 59, 37]), but progress in the particular case

of E-clique has been stuck to the extent that the problem has attracted notoriety as a hardness

assumption in fine-grained complexity [1, 2]. Beyond the study of cliques, hypercliques, and

subgraph counting, nontrivial algorithms for such formswould have immediate applicability, for

example, in the study of maximum constraint satisfaction problems (Max-CSP) for constraints

of width : ≥ 3; see Williams [102] for the case : = 2. One of the main goals of our subsequent

lower bounds is to rule out tensor networks as candidates to yield improved algorithms in this

setting.

Turning from upper bounds to lower bounds and motivation (ii), tensor networks are

restricted enough to enable nontrivial lower bounds for many multilinear maps. To begin

with, an immediate limitation of tensor networks is that all the intermediate results during the

execution of a network are multilinear, and the execution of a network can be simulated by a

multilinear circuit. Raz [84] shows that multilinear formulas cannot compute the determinant

of an = × = matrix in a polynomial number of operations in =, even though polynomial-size

general circuits are known for the determinant (see [13, 22, 36, 88]).

It turns out that considerably stronger lower bounds can be shown for tensor networks.

In particular, we establish lower bounds for arithmetic complexity via tensor networks of

%-homomorphism counting and the Kruskal operator. These lower bounds are tight under the

assumption $ = 2. Furthermore, we rule out the possibility of any nontrivial algorithm designs

via tensor networks f or counting cliques in hypergraphs. The following theorem collects our

main lower-bound results, and should be contrasted with the upper bounds in Theorem 1.1.

Theorem 1.2. We have the following lower bounds on arithmetic complexity via tensor networks.

1. Ω(=bw(%)) for the multilinear form corresponding to %-homomorphism counting. In particular,
this yields a lower bound of Ω(= d2E/3e) for counting cliques of size E, and a lower bound of Ω(=E)
for counting hypercliques of size E.

2. Ω(max(=ℓ , = dℓ/2eA)) for the Kruskal operator of ℓ matrices of shape = × A.

3. Ω(
( =
=/3

)
) for the determinant and the permanent of an = × = matrix.
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We remark that [72] independently showed that the rank of the E-hyperclique tensor is

Ω(=E); our Ω(=E) lower bound for tensor networks strengthens that. One may wonder about

the gap between the bounds of Ω(
( =
=/3

)
) and $(2==) for the permanent. As we explain below,

our lower bound methods are inherently rank-based and cannot go beyond

( =
=/3

)
. A curious

point is that it is not immediately clear whether tensor networks can even achieve $∗(2=) time

for the determinant, and we do not know whether this is possible.

1.4 Overview of proof ideas

As a running example in this overview, we consider the 6-linear form � : F [=]×[=] × F [=]×[=] ×
. . . × F [=]×[=] → F that takes as input 6 matrices of size = × = and is defined by the equation

�(-(1) , -(2) , -(3) , -(4) , -(5) , -(6)) =
∑

8 , 9 ,:,ℓ∈[=]
-
(1)
8 9
-
(2)
8:
-
(3)
8ℓ
-
(4)
9:
-
(5)
9ℓ
-
(6)
:ℓ
. (1.4)

If " is the adjacency matrix of a loopless graph �, then �(", ", ", ", ", ") counts the 4-cliques

in the graph. Associated with � is the 6-tensor )(�) of size =2 × =2 × · · · × =2
, where each of the

6 modes is indexed by a pair (8 , 9) ∈ [=] × [=], and the value at a given position is the coefficient

of the corresponding term in �. Concretely,

)(�)81 91 ,82:2 ,83ℓ3 , 94:4 , 95ℓ5 ,:6ℓ6 =


1 if 81 = 82 = 83 and 91 = 94 = 95 and

:2 = :4 = :6 and ℓ3 = ℓ5 = ℓ6 ,

0 otherwise.

Upper bounds Most, but not all, of the families of multilinear maps we consider are closed

under taking Kronecker products. For instance, consider the 4-clique counting form (1.4) for an

=-vertex graph and its associated tensor )(�). Then for any : ≥ 1, the tensor associated with

the 4-clique counting form in =:-vertex graphs is )(�)⊗: , the :-fold Kronecker product of )(�)
with itself. We write �⊗: for the associated map. With this in mind, it is natural to seek general

constructions that, given an efficient evaluation of some map �, yields an efficient evaluation of

�⊗: .
We give such a construction, and show that the cost of the best tensor network execution for

�⊗: is essentially submultiplicative in a quantity that we call the amortized cost of an execution.

For tensors of order at most 3, the notion of amortized cost essentially captures the rank of

)(�), but for higher-order tensors, the amortized cost may be significantly smaller than the rank.

Roughly speaking, the amortized cost of a step in an execution of a map � is: (i) equal to the

normal cost if the operation involves the contraction of two tensors that both depend on some

input variables of �, but (ii) equal to the size of the result if only one of the tensors involved in

the contraction depends on the input variables of �. A precise definition appears in Section 5.1.

Our general upper bound for the cost of �⊗: can, somewhat informally, be stated as follows.

Theorem 1.3 (Submultiplicativity of cost, informal statement). If a multilinear map � has a tensor
network execution consisting of B steps, each with cost at most 2 and amortized cost at most 0, then �⊗:
has a tensor network execution consisting of at most : · B steps, each with cost at most 0:−1 · 2.
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An immediate corollary of this is that we can capture any algorithm for �⊗: based on a

low-rank decomposition of )(�) (Corollary 5.2). For example, this implies that tensor networks

can multiply = × = matrices in $(=$+&) time (Section 5.2).

However, returning to our running example form (1.4), as we explain below the tensor )(�)
has rank =4

, meaning that Corollary 5.2 only yields a trivial upper bound. This is where the

full generality of Theorem 1.3 comes in. Consider the form (1.4) for graphs on some constant

number =0 of vertices. As it turns out, we can design a network and an associated execution for

this form, depicted in (1.5), with an execution of cost =24+3

0
and amortized cost =4+1

0
, where =4

0
is

the rank of the tensor associated with =0 × =0 matrix multiplication. Picking =0 to be a large

enough constant so that 4 is approximately $, and letting : be such that = is approximately =:
0
,

we obtain via Theorem 1.3 an $(=$+&+1) time upper bound for (1.4).4

X(1) X(3) X(2) X(6) X(4) X(5)

i1 j1 i3 ℓ3 i2 k2 k6 ℓ6 j4 k4 j5 ℓ5

(1.5)

Lower bounds Just like many other arithmetic complexity lower bounds, our lower bounds

boil down to establishing lower bounds on the rank of certain matrices.

In order to establish a lower bound on the rank of )(�), we flatten it to a matrix and analyze

the rank of that matrix. There are 2
5
possible bipartitions of the 6 modes of )(�) into two

non-empty subsets, and the lower bound on the rank of )(�) that we obtain is the maximum of

the ranks of the resulting matrices. Using this method, it is easy to establish that for our example

from (1.4), the rank of )(�) = =4
. That this is an upper bound follows from (1.4), and that it is a

lower bound follows by considering the bipartition taking variables -(1) and -(6) as row indices,

and the other four variables as column indices. The resulting =4 × =8
matrix has full rank.

Tensor networks are more versatile and can be more efficient than low-rank decompositions

of )(�). Nevertheless, we show limitations on this versatility. In particular we show that every

tensor network execution for � induces a tree in which the leaves are the inputs of � and all

internal vertices have degree 3. We call this a socket tree. Each edge in a socket tree induces a

bipartition of the variables and our key technical lemma is to show that for each such bipartition,

the rank of the corresponding flattening of )(�) is a lower bound on the cost of the execution

that gave rise to the tree. Thus, to obtain a lower bound for the cost of a specific execution,

we consider the maximum rank obtained over all edges of the corresponding socket tree, and

to lower bound the cost of every tensor network execution, we minimize this quantity over

4This bound is the running time of the algorithm of Nešetřil and Poljak [75] for counting 4-cliques, which if $ > 2

is slightly worse than the running time of Theorem 1.1.
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all possible socket trees. We refer to the resulting quantity as the socket width of �, denoted

F(�) (formal definition appears in Section 6). Our general lower bound can thus be phrased as

follows, where 2(�) denotes the minimum cost of a tensor network for evaluating � (formal

definition appears in Section 4.5).

Theorem 1.4. For every multilinear map �, it holds that 2(�) ≥ F(�).
Indeed, for our running example (1.4), there are low-width socket trees establishing F(�) ≤

=3
, see (1.6). However, that bound is tight: ourΩ(= d2·4/3e) = Ω(=3) lower bound for the

(
4

2

)
-linear

form (Theorem 1.2) is obtained by provingF(�) ≥ =3
(Lemma 7.4) and appealing to Theorem 1.4.

i1, j1 i3, ℓ3 i2, k2 k6, ℓ6 j4, k4 j5, ℓ5

(1.6)

1.5 Earlier and related work

We now proceed to a more detailed discussion of earlier work.

Tensor networks The history of tensor networks (or, alternatively, tensor diagrams or diagrams) as
an analytical and computational tool goes back to the 19

th
-century to the work of Cayley [27, 28],

Clebsch [31], Clifford [32], Sylvester [94], and Kempe [57, 58]. The diagrammatic form used

here can be traced back to Penrose [81]. Some early appearances of tensor diagrams are by

Cvitanovic̀ [38], Cvitanovic̀ and Kennedy [39], Kuperberg [64], and many others. Surveys of

tensor diagrams are given by Penrose and Rindler [82] and by Landsberg [66]. Schrĳver [90]

provides a brief historical account.

Deviating from Penrose’s notation, we work relative to a fixed basis and a corresponding

dual basis in each relevant vector space to avoid distinction between primal and dual spaces.

This in particular enables a concise treatment of hyperedges and saves us from considering

orientation of edges, or the planar layout of edges in a drawing. That is, we will view a tensor

network combinatorially as a hypergraph with tensors associated at the vertices, and with a

subset of the hyperedges designated to form the boundary of the network (see Section 4 for the

precise definitions). A yet further conceptual difference is that we view the execution of a tensor

network as a sequence of contractions of sets of vertices (tensors) rather than as contractions of

hyperedges (modes). This choice enables us to reduce the size of hyperedges gradually before

eliminating them during an execution, thus enabling better granularity. For simplicity, we will

restrict to a purely multilinear framework and will not consider sums of networks although

such a study would be possible, and is pursued, e. g., in Penrose’s paper [81].

A large body of existing work in applications (see Section 1.2) studies how to efficiently

execute a given tensor network �. Our quest in this paper differs from such investigations in

that we take a multilinear map �, and seek to design the most efficient network � that realizes �, or
to establish lower bounds for best-possible designs. In particular, our upper and lower bounds

in Theorem 1.1 and Theorem 1.2 are over all tensor networks that realize a particular map � of

interest.
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Computational problems on tensors and tensor networks Problems on given tensors and

tensor networks are known to be mostly computationally hard as soon as the setting changes

from matrices to higher-order tensors. Håstad [48] showed that computing the rank of an

explicitly given ℓ -tensor is NP-complete over finite fields and NP-hard over rationals whenever

ℓ ≥ 3. Hillar and Lim extended the latter result to any field containingℚ [49]. They also showed

that many other tensor problems such as the eigenvalue, singular value and spectral norm

decision and approximation problems as well as the rank-1 approximation problem for 3-tensors

(over ℝ and in some cases over ℂ) are NP-hard.

The task of finding the value of a given scalar-valued tensor network is known to be

#P-complete (see, e. g., [10, 14]). Similarly, it is NP-hard to find the most efficient sequence of

contractions for a given network [65, 83].

Tensor networks in applications Beyond our present use of tensor networks as a model of

computation to efficiently evaluate multilinear maps, tensor networks have been used across a

broad range of applications. Accordingly, the following should be viewed as mere pointers to

further literature on tensor networks, not as an exhaustive listing of all applications of tensor

networks. Orus [78] gives an introduction to tensor networks in the context of computational

physics. Itai and Landau [7] study quantum computation and quantumalgorithms for evaluating

tensor networks [7]. Solomonik and Hoefler study sparse tensor algebra as a model for parallel

programming [91]. The Holant framework introduced by Valiant [96] and studied further by

Cai et al. [25, 24] involves the study of multilinear sum–product expressions that can be viewed

as tensor networks; for the reader familar with the Holant framework, the connection with

tensor networks is explained in Appendix A.3. Tensor networks appear naturally in the study of

probabilistic graphical models [62, 74, 87, 101], and in the study of various machine-learning

problems [29, 30].

Bilinear and multilinear complexity As was concisely outlined in Section 1.4, for bilinear

maps our present work is captured by the study of the tensor rank of 3-tensors and an extensive

body of work on bilinear complexity, with the arithmetic complexity of the matrix multiplication

map as the primary driver. For two starting points to this literature, we refer to the monograph

by Bürgisser, Clausen, and Shokrollahi [23] and to the survey by Pan [79]. Our present work can

be seen as generalizing this bilinear theory to higher orders of linearity via tensor networks and

their executions. The current state of the art for fast matrix multiplication is due to Alman and

Vassilevska Williams [4], Le Gall [68, 69], Le Gall and Urrutia [70], Vassilevska Williams [98],

Cohn and Umans [34], Cohn, Kleinberg, Szegedy, and Umans [33], Benson and Ballard [12], and

Huang, Rice, Matthews, and van de Geĳn [50].

1.6 Organization of this paper

Section 2 recalls preliminaries on tensors, multilinear maps, and branchwidth. Section 3 reviews

the specific multilinear maps that we study in this paper and describes the associated tensor for

each map. In Section 4, tensor networks, execution and cost of a tensor network, and cost of a
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multilinear map are defined. Section 5 presents tensor-network algorithms for the multilinear

maps introduced in Section 3. In Section 6, a general lower bound on the cost of evaluating a

multilinear map using a tensor network is obtained. The lower bound is expressed in terms of

the socket-width of a multilinear map. In Section 7, lower bounds on socket-width for concrete

multilinear maps studied in Sections 3 and 5 are derived. Finally, Appendix A gives some

background results on minimum-cost executions.

2 Preliminaries

Throughout the paper [=] denotes {1, 2, . . . , =} and F denotes an arbitrary fixed field.

2.1 Tensors

This section sets up our notation for tensors and multilinear maps. We work with tensors and

multilinear maps relative to fixed bases for the respective vector spaces over F .

Modes, indexing, and positions We will work with the following convention of positioning

individual entries inside a tensor. Let � be a finite set of modes. Associate with each mode 4 ∈ �
a finite nonempty index set �(4). In this case we say that � is a set of indexedmodes. The length of

4 is |�(4)|. A position is an element 9 ∈∏
4∈� �(4). Let us write �(�) = ∏

4∈� �(4) for the set of all
positions with respect to the indexed modes �. In the special case that the set � of modes is

empty we define the set �(�) of positions to consist of a single element.

For example, the 3-tensor  shown on the right in (1.1) (page 4) involves the set � = {8′, :, ℓ }
of modes where �(8′) = [2], �(:) = [2], and �(ℓ ) = [7] and a position in the tensor is an element of

�(�) = [2] × [2] × [7].

Tensors, matrices, vectors, and scalars Let � be a set of indexed modes. A tensor with respect

to � is a mapping ) : �(�) → F . Equivalently, we write ) ∈ F �(�) to indicate that ) is a tensor

with respect to the indexed set � of modes. We view the set F �(�) of all tensors over � as a vector

space over F with addition and scalar multiplication of tensors defined entrywise. We say that

|� | is the order of the tensor. A tensor of order zero is called a scalar, a tensor of order one is

called a vector, and a tensor of order two is called a matrix. The volume of the tensor is |�(�)|. The
tuple (|�(4)| : 4 ∈ �) is the shape of the tensor. It is convenient to use the “×” symbol to highlight

the shape of a tensor; that is, instead of writing, say (2, 3, 4) for the shape, we write 2× 3× 4. For

a position 9 ∈ �(�) and a tensor ) ∈ F �(�), we say that )9 ∈ F is the entry of ) at 9.

A flattening of ) induced by a bipartition �1 ∪ �2 = � of the modes of ) is a |�(�1)| × |�(�2)|
matrix " where, for 91 ∈ �(�1) and 92 ∈ �(�2) we have " 91 , 92 = )91 92 . Given two order-ℓ

tensors ( ∈ F [=1]×[=2]×···×[=ℓ ]
and ) ∈ F [<1]×[<2]×···×[<ℓ ]

, their Kronecker product ( ⊗ ) is a tensor in

F [=1<1]×[=2<2]×···×[=ℓ<ℓ ]
defined by

(( ⊗ ))<1(81−1)+91 ,<2(82−1)+92 ,...,<ℓ (8ℓ−1)+9ℓ = (81 ,82 ,...,8ℓ)91 , 92 ,..., 9ℓ .
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For example, the tensor  shown on the right in (1.1) has order three, volume 28, and shape

(2, 2, 7) or 2× 2× 7. The flattening of  induced by the bipartition {8′, :} ∪ {ℓ } is the 4× 7 matrix

obtained by taking the four rows of the two 2× 7 matrices shown. The Kronecker product  ⊗ 
of  with itself is an order-3 tensor of shape 4 × 4 × 49.

2.2 Multilinear maps

Let �1 , �2 , . . . , �ℓ , �
′
be pairwise disjoint sets of indexed modes such that �1 , �2 , . . . , �ℓ are

nonempty. We say that a map � : F �(�1) × F �(�2) × · · · × F �(�ℓ ) → F �(�
′)
is an ℓ -linear map if � is

linear with respect to each of its ℓ inputs individually when the other inputs remain fixed. In

particular, a 1-linear map is a linear map. A multilinear map that gives a scalar output is a

multilinear form. In particular, � is a form if and only if �′ is empty.

The tensors of a multilinear map For an ℓ -linear map � : F �(�1) × F �(�2) × · · · × F �(�ℓ ) →
F �(�

′) , we define two slightly different tensors )(�) and )̂(�). The tensor )(�) is indexed by

�(�1) × �(�2) × · · · × �(�ℓ ) × �(�′), and the tensor )̂(�) is indexed by �(�1 ∪ �2 ∪ . . . ∪ �ℓ ∪ �′). At
a position (91 , 92 , . . . , 9ℓ , 9′) of )(�) and the corresponding position 91 92 . . . 9ℓ 9

′
of )̂(�) these take

the value

)(�)(91 , 92 ,..., 9ℓ , 9′) = )̂(�)91 92 ... 9ℓ 9′ = �
(
4(91) , 4(92) , . . . , 4(9ℓ )

)
9′ ,

where 4(98) ∈ F �(�8) denotes the tensor with a 1 in position 98 and 0s in all other position. The

only difference between )(�) and )̂(�) is their shape. The shape of )(�) is |�(�1)| × |�(�2)| ×
· · · × |�(�ℓ )| × |�(�′)|, except if � is a form in which case the |�(�′)| part is omitted. Thus )(�) is
of order ℓ + 1 (or ℓ if � is a form). The shape of )̂(�) is >

4∈�8 ,8∈[ℓ ] |�(4)| ×
>

4′∈�′ |�(4′)|, thus its
order is |�1 | + |�2 | + · · · + |�ℓ | + |�′ |.

For example, consider the matrix multiplication map � : F [=]×[=]×F [=]×[=] → F [=]×[=], i. e., for

two = × = matrices - and ., �(-,.) = - · .. The tensor )̂(�) is a 6-tensor where each position

is a 6-tuple (81 , :1 , :2 , 91 , 82 , 92) ∈ [=]6, and )(�) is a 3-tensor where each position is a triple

((81 , :1), (:2 , 91), (82 , 92)) ∈ ([=] × [=])3. The value of )̂(�) at position (81 , :1 , :2 , 91 , 82 , 92) (and of

)(�) at its corresponding position) is the value at position (82 , 92) of�(4(81:1) , 4(:2 91)) = 4(81:1) ·4(:2 91)
,

where 4(01) is the = × = matrix with a 1 in row 0 column 1 and zeroes elsewhere. This is 1 if

81 = 82, 91 = 92 and :1 = :2, otherwise 0.

In other words, each mode of )(�) corresponds to one of the inputs of �, or the output.

These inputs are in turn sets of indexedmodes somay contain more “fine-grained” structure, but

this information is lost at the level of granularity of )(�). When working with tensor networks

for evaluating �, we need to keep track of the fine-grained mode structure because this is in

many cases what allows us to construct efficient algorithms, hence in most parts of the paper we

are more interested in the tensor )̂(�)which contains this fine-grained structure.

On the other hand, )̂(�) does not contain information about which modes are grouped

together to form the inputs and output of �, and this information is also important. This leads

us to the notion of sockets, defined next.
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Sockets Let us study the tensor )̂(�) with respect to the map �. We say that the modes in

�1 ∪ �2 ∪ · · · ∪ �ℓ are the input modes of )̂(�), and the modes in �′ are the output modes of

)̂(�) with respect to �. Let us say that �1 , . . . , �ℓ are the input sockets of )̂(�) with respect to

�. Similarly, �′ is the output socket in )̂(�)with respect to �. In particular, the output socket is

empty if and only if � is a form. To describe a socketing of the modes of a tensor, it is convenient

to use parentheses to group a shape of a tensor into sockets, see also Section 2.1. Two multilinear

maps, �1 and �2, may have the same base tensor )̂(�1) = )̂(�2), and from a tensor )̂ one may

obtain different multilinear maps by varying how the modes of )̂ are assigned to input and

output sockets.

The form of a multilinear map Let � be a multilinear map with a nonempty output socket.

We can turn � into a multilinear form �(�) by turning its output socket into an input socket. Let

us say that �(�) is the multilinear form of �. We also set �(�) = � when � is a multilinear form.

For example, the form of the =×= square-matrix multiplication map is the form �(-,., /) =∑
8∈[=]

∑
9∈[=]

∑
:∈[=] -8 9.9:/8: .

2.3 Branch decompositions and branchwidth

A branch decomposition of a (hyper)graph � consists of (i) a tree ) whose every vertex has degree

either one or three, and (ii) a bĳection � between the (hyper)edge set of � and the set of vertices

of degree one in ). Deleting an edge 4 ∈ �()) from ) partitions ) into two subtrees, )1 and )2,

which via � give rise to a partition of the (hyper)edges of � into two sets, �1 and �2. The width
F(4) of the partition induced by 4 is the number of vertices of � that are incident to at least one

(hyper)edge in �1 and at least one (hyper)edge in �2. The width of the branch decomposition

(),�) is the maximum of the widths F(4) for 4 ∈ �()). The branchwidth bw(�) of � is the

minimum width of a branch decomposition of �.

For graphs, we recall the following upper bound on branchwidth.

Claim 2.1 (Robertson and Seymour [86]). For every = ≥ 3, bw( =) = d2=/3e. Consequently,
bw(�) ≤ d2|+(�)|/3e for every graph �.

3 Examples of multilinear maps

This section reviews the specific multilinear maps that we study in this paper. Together with

each map we describe its associated tensor and a socketing of the tensor that realizes the map.

3.1 Discrete Fourier transform

Let = ≥ 2 be an integer and let � ∈ F be a primitive =th root of unity in the field F if it exists.5

Define the = × = symmetric matrix Φwith entries Φ8 , 9 = �(8−1)(9−1)
for all 8 , 9 ∈ [=]. The discrete

5That is, � satisfies �= = 1 and �=/: ≠ 1 for all integer divisors : ≥ 2 of =.
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Fourier transform (DFT) of order = at � is the linear map ! : F [=] → F [=] defined for all G ∈ F [=] by
the matrix-vector multiplication !(G) = ΦG. In particular, the matrix Φ is the tensor associated

with !. The matrix Φ has two modes, namely its rows and columns. To realize !, take the

columns of Φ as the input socket, and the rows as the output socket.

3.2 Determinant and permanent

We write (= for the group of all permutations � : [=] → [=] (the symmetric group of degree =).

For � ∈ (= , let 2(�) be the number of cycles in the cycle decomposition of �, where each fixed

point of � is counted as a cycle. Further standard examples of multilinear maps include the

determinant and the permanent,

det� =
∑
�∈(=
(−1)=−2(�)

∏
8∈[=]

08 ,�(8) per� =
∑
�∈(=

∏
8∈[=]

08 ,�(8) , (3.1)

both of which are =-linear in the = columns (or the = rows) of the matrix � = (08 9)8 , 9∈[=]. The
determinant and the permanent are associated with order-= tensors )̂(det) , )̂(per) ∈ F [=]×[=]×···×[=]
defined for all 9 = (81 , 82 , . . . , 8=) ∈ [=] × [=] × · · · × [=] by

)̂
(det)
9

=

{
(−1)=−2(9) if 9 ∈ (=
0 otherwise

)̂
(per)
9

=

{
1 if 9 ∈ (=
0 otherwise.

(3.2)

A socketing of )̂(det)
and )̂(per)

that realizes the determinant and the permanent, respectively,

is to take each of the = modes as an input socket corresponding to �. The determinant and

permanent tensors are not closed under taking Kronecker products when = ≥ 2, because the

Kronecker product of two tensors has the same order as its input tensors, but for each = there is

exactly one determinant (permanent) tensor of order =.

3.3 Matrix multiplication

Let =, A, and < be positive integers. Perhaps the most fundamental example of a bilinear map is

the map that multiplies an =× A matrix � = (�8 9)8∈[=], 9∈[A] with an A ×< matrix � = (�8 9)8∈[A], 9∈[<]
to obtain the = × < product matrix � = (�8 9)8∈[=] , 9∈[<] defined for all 8 ∈ [=] and 9 ∈ [<] by

�8 9 =
∑
:∈[A]

�8:�: 9 . (3.3)

It is natural to view the input � ∈ F [=]×[A] as a 2-tensor, and similarly so for the input

� ∈ F [A]×[<], and the output � ∈ F [=]×[<]. Thus, (3.3) is naturally associated with the 6-tensor

)̂ ∈ F [=]×[A]×[A]×[<]×[=]×[<] with entries defined for all 81 , 82 ∈ [=], 91 , 92 ∈ [<], and :1 , :2 ∈ [A] by

)̂81:1:2 9182 92 =

{
1 if 81 = 82 and 91 = 92 and :1 = :2;

0 otherwise.
(3.4)
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To realize (3.3) using (3.4), we can use the socketing grouped by parentheses in ([=] × [A]) ×
([A] × [<]) × ([=] × [<]), where the first two groups are the two input sockets corresponding to

� and �, and the last group is the output socket corresponding to �.

Let us write 〈=, A, <〉 as a shorthand for the tensor (3.4). From (3.4) and the definition of the

Kronecker product it is immediate that matrix-multiplication tensors satisfy

〈=1 , A1 , <1〉 ⊗ 〈=2 , A2 , <2〉 = 〈=1=2 , A1A1 , <1<2〉 . (3.5)

That is, matrix multiplication tensors are closed under taking Kronecker products.

3.4 Group algebra product

Let (A,+) be an Abelian group of order =. Another fundamental example of a bilinear map is to

convolve two vectors 5 ∈ FA
and , ∈ FA

according to the group operation of A to obtain the

vector ℎ = 5 ∗ , ∈ FA
, defined for all : ∈ A by

ℎ: =
∑
9∈A

5(:−9) , 9 . (3.6)

The map (3.6) is associated with the 3-tensor )̂ ∈ FA×A×A
defined for all 8 , 9 , : ∈ A by

)̂8 9: =

{
1 8 + 9 = :;
0 otherwise.

(3.7)

A socketing of the three modes of (3.7) that realizes (3.6) is to take the first two modes as two

input sockets corresponding to 5 and ,, respectively, and to take the last mode as the output

socket corresponding to ℎ. The vector space FA
equipped with the convolution product ∗ is the

group algebra F [A].

3.5 Kruskal operator

Let =1 , =2 , . . . , =ℓ and A be positive integers. Matrix multiplication generalizes naturally to the

ℓ -linear task of multiplying ℓ matrices �(1) ∈ F [=1]×[A]
, �(2) ∈ F [=2]×[A]

, . . ., �(ℓ ) ∈ F [=ℓ ]×[A] to obtain

the order-ℓ tensor . ∈ F [=1]×[=2]×···×[=ℓ ]
defined for all (81 , 82 , . . . , 8ℓ ) ∈ [=1] × [=2] × · · · × [=ℓ ] by

.81 82···8ℓ =
∑
9∈[A]

�
(1)
81 9
�
(2)
82 9
· · ·�(ℓ )

8ℓ 9
. (3.8)

This map is known as the Kruskal operator [63, 60]6 of the matrices �(1) , �(2) , . . . , �(ℓ ).
The map (3.8) is associated with the 3ℓ -tensor

)̂ ∈ F [=1]×[A]×[=2]×[A]×···×[=ℓ ]×[A]×[=1]×[=2]×···×[=ℓ ]

6Kolda [60] calls this operator the Kruskal operator. Kruskal [63] studied the special case ℓ = 3.
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defined for all 81 , 8
′
1
∈ [=1], 82 , 8′

2
∈ [=2], . . ., 8ℓ , 8′ℓ ∈ [=ℓ ] and 91 , 92 , . . . , 9ℓ ∈ [A] by

)̂81 91 82 92···8ℓ 9ℓ 8′
1
8′
2
···8′

ℓ
=

{
1 if 81 = 8

′
1
, 82 = 8

′
2
, . . ., 8ℓ = 8

′
ℓ
and 91 = 92 = . . . = 9ℓ ;

0 otherwise.
(3.9)

A socketing of (3.9) that realizes (3.8) is to take each of the ℓ pairs of modes [=1] × [A], [=2] × [A],
. . ., [=ℓ ] × [A] as an input socket and the final ℓ modes [=1] × [=2] × · · · × [=ℓ ] as the output socket.

Let us write 〈=1 , =2 , . . . , =ℓ | A〉 for the tensor (3.9). Analogously to the closure property (3.5)

for matrix multiplication tensors, we observe that

〈=1 , =2 , . . . , =ℓ | A〉 ⊗ 〈=′
1
, =′

2
, . . . , =′ℓ | A

′〉 = 〈=1=
′
1
, =2=

′
2
, . . . , =ℓ=

′
ℓ | AA

′〉 . (3.10)

That is, Kruskal operator tensors are closed under taking Kronecker products. Furthermore, we

observe that 〈=, A, <〉 and 〈=, < | A〉 are equal after reordering of the modes. That is, the matrix

multiplication tensor (3.4) is the special case of the Kruskal operator tensor (3.9) when ℓ = 2.

3.6 Homomorphism-counting forms

Further multilinear maps arise naturally by algebraization of combinatorial problems. For

example, the linear form of the matrix multiplication map∑
8 , 9 ,:∈[=]

�8 9� 9:�:8 (3.11)

can be used to count the triangles in a graph, and the form∑
8 , 9 ,:,ℓ∈[=]

�8 9�8:�8ℓ�9:� 9ℓ�:ℓ (3.12)

can be used to count the occurrences of any 4-vertex subgraph in a graph by varying the six =×=
matrices �, �, �, �, �, � ∈ F [=]×[=]. A more complicated variant takes as input four 3-tensors

�, �, �, � ∈ F [=]×[=]×[=] of shape = × = × = and considers the linear form∑
8 , 9 ,:,ℓ∈[=]

�8 9:�8:ℓ�8 9ℓ�9:ℓ . (3.13)

An =4−�
time algorithm for the associated trilinearmap (�, �, �) ↦→ �would imply an algorithm

for the Max 3-Sat problem with running time (2 − �′)= [102].
The forms (3.11), (3.12), and (3.13) are all special cases of what we call a homomorphism-

counting form defined by a hypergraph %, or, succinctly, a %-linear form. In more precise terms,

let % be a :-uniform hypergraph on E ≥ : vertices and write

([E]
:

)
for the set of :-element subsets

of [E]. For each hyperedge ( = {81 , 82 , . . . , 8:} ∈ �(%) ⊆
([E]
:

)
of %, let -(() be an input tensor of

shape [=](. The %-linear form of order = is the form∑
�∈[=]+(%)

∏
(∈�(%)

-
(()
� |( , (3.14)
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where � |( is the restriction of � to the : indices in (. For example, the forms (3.11), (3.12),

and (3.13) are the %-linear forms corresponding to % being a triangle, a  4, and a complete

3-uniform hypergraph on 4 vertices, respectively. It is immediate that (3.14) is an |�(%)|-linear
map.

The map (3.14) is associated with a tensor )̂ of order : · |�(%)| whose modes are" = { ((, 8) |
( ∈ �(%), 8 ∈ ( } with index sets �(((, 8)) = [=]. The entries of )̂ are defined by

)̂9 =

{
1 if ∃� ∈ [=]+(%) such that 9((,8) = �8 for every ((, 8) ∈ ";

0 otherwise.
(3.15)

A socketing of (3.15) that realizes (3.14) is given by one input socket for each hyperedge ( ∈ �(%)
such that the socket contains the : modes ((, 8) for 8 ∈ (.

Let us observe that the tensors of the forms (3.12) and (3.13) are actually the same—they are

both of order 12, have volume =12
, and are in fact equal to the outer product of the = × = × =

identity tensor with itself 4 times after renaming of modes. However, due to the difference in

socketing, the forms are computationally very different. We show in Section 7 that while there

are non-trivial tensor network algorithms for evaluating (3.12), no such algorithms exist for

(3.13).

Let us write 〈=〉% for the tensor )̂ as defined in (3.15). Analogously to the closure properties

(3.5) and (3.10), we observe the closure property

〈=〉% ⊗ 〈=′〉% = 〈==′〉% . (3.16)

4 Tensor networks

4.1 Networks

A network (or diagram) consists of a finite set + of vertices, a finite set � of hyperedges, an incidence
relation � ⊆ + × �, and a boundary � ⊆ �. A network is nondegenerate if every hyperedge is

incident to at least one vertex. In what follows we assume that all networks are nondegenerate.

A hyperedge 4 ∈ � is a loop if 4 ∉ � and 4 is incident to exactly one vertex.

For a vertex E ∈ + , let us write �(E) = {4 ∈ � : (E, 4) ∈ �} for the set of hyperedges incident to
E. Dually, for a hyperedge 4 ∈ �, let us write �(4) = {E ∈ + : (E, 4) ∈ �} for the set of vertices

incident to 4. For a network �, we write +(�), �(�), �(�), and �(�) to refer to the vertices of �,

the hyperedges of �, the incidence relation of �, and the boundary of �, respectively.

For example, on the left in (1.2) (page 1.2), we see a network with five vertices + =

{�, �, , �, �}, seven hyperedges � = {8 , 9 , ℓ , 8′, :, :′, 9′}, and boundary � = {8 , 9}. The vertices
incident to 8′ are �(8′) = {�, }.

Induced networks For a network � and a nonempty subset, ⊆ +(�), the induced network

�[,] consists of the vertices in, together with the hyperedges of � that are incident to at
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least one vertex in, ; the boundary of �[,] consists of all hyperedges that are at the boundary
of � or incident to a vertex outside, . Formally,

+(�[,]) =, ,

�(�[,]) = {4 ∈ �(�) : ∃F ∈, s.t. (F, 4) ∈ �(�)} ,
�(�[,]) = �(�) ∩ (+(�[,]) × �(�[,])) ,
�(�[,]) = (�(�) ∩ �(�[,])) ∪ {4 ∈ �(�[,]) : ∃E ∈ +(�)\, s.t. (E, 4) ∈ �(�)}.

(4.1)

For a vertex E ∈ + , we abbreviate �[E] = �[{E}]. Note that the boundary of �[E] consists of all
non-loop hyperedges incident to E in �.

For example, for the network on the left in (1.2), the induced network �[{, �}] has
hyperedges �(�[{, �}]) = {8′, :, ℓ } and boundary �(�[{, �}]) = {ℓ }.

4.2 Tensor networks

Let � be a network. We index � by associating with each hyperedge 4 ∈ � an index set �(4) of size
ℓ (4). Induced networks inherit indexing by restriction. Next we associate with each vertex E ∈ +
a tensor )(E) ∈ F �(�(E)). We say that � equipped with the tensors ()(E))E∈+ is a tensor network.

The value of a tensor network �, or the tensor represented by �, is a tensor )(�) ∈ F �(�),
defined for all 8 ∈ �(�) by

)(�)8 =
∑

9∈�(�(�)\�)

∏
E∈+

)(E)8 9 . (4.2)

Observe that in (4.2) the positions 8 and 9 together identify a unique entry of )(E) by projection

to �(�(E)). We also observe that the value of a tensor network with an empty boundary is a scalar.

4.3 Contracting tensors

Let � be a tensor network and let, ⊆ +(�) be a nonempty set of vertices. Let F be a new

element not in + . We may contract, in � to obtain a tensor network �/, by replacing the

sub-network �[,] in � with the single vertex F whose associated tensor )(F) is the tensor

represented by �[,]. Formally,

+(�/,) = (+(�) \,) ∪ {F} ,
�(�/,) = �(�) \ (�(�[,]) \ �(�[,])) ,
�(�/,) = (�(�) \ �(�[,])) ∪ {(F, 4) : 4 ∈ �(�[,])} ,
�(�/,) = �(�) ,

)(F) = )(�[,]) .

(4.3)

The cost of contracting, in � is 2(�,,) = ∏
4∈�(�[,]) |�(4)|. The value of a tensor network is

invariant under contraction, i. e., for all nonempty, ⊆ +(�) it holds that )(�) = )(�/,) (see
Lemma A.1 for a proof).

For example, contracting, = {, �} in the network on the left in (1.2) results in the network

shown in the second step, where the tensor ) = )(�[{, �}]) of the new (unlabelled) vertex is a

vector of length ℓ , which in position D takes the value )D =
∑
8′,: 8′:D�8′: .
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4.4 Execution and cost of a tensor network

To compute the tensor )(�) from a given tensor network �, we may proceed by a sequence

of contractions on �. Such a process is called executing �, and the cost of � is the cost of a

minimum-cost execution of �. We proceed with the details.

Let� = �0 be a tensor network with at least one tensor. For : = 1, 2, . . . , C, select a nonempty

subset,:−1 ⊆ +(�:−1) such that,:−1 has at least two tensors or consists of a single tensor with

a loop. Set �: = �:−1/,:−1 and observe that the number of tensors and/or modes decreases by

at least one in the contraction. Suppose that �C is loopless and consists of a single tensor. We

say that such a sequence of contractions is an execution of � in C steps. The cost of the execution
is max:=1,2,...,C 2(�:−1 ,,:−1). The cost of an execution in zero steps is defined to be 0.

It is immediate that � has at least one execution and every execution consists of at most

2|+(�)| − 1 steps. By invariance under contractions, we have )(�C) = )(�). The cost 2(�) of �
is the cost of a minimum-cost execution of �.

An execution of � of cost 2(�) immediately translates into an algorithm that computes )(�)
using $(2(�)|+(�)|) arithmetic operations in F , since the contraction step �: = �:−1/,:−1

takes $(2(�:−1 ,,:−1)) ≤ 2(�) time to evaluate, and there are $(+(�)) steps.

Lemma 4.1. Let � be a tensor network. There exists a minimum-cost execution of � such that each
contracted set has size at most two. Furthermore, if � is loopless, we can assume that each contracted set
has size exactly two.

Lemma 4.1 is proven in Appendix A.2. In what follows we restrict to consider loopless �

only. Thus while a general execution may contract arbitrary vertex sets in � in each step, we

may assume without loss of generality that the minimum-cost execution has the structure of a

rooted binary tree, whose leaves are the vertices of the tensor network, and each internal vertex

is the tensor obtained by contracting its two children.

For example, (1.2) illustrates an execution of the network shown there, both as a sequence of

contractions of pairs of vertices, and more succinctly as an execution tree overlaid on top of the

network.

4.5 Cost of a multilinear map

Let us now define the cost of a multilinear map via the minimum-cost tensor networks (and

socketing) for evaluating the map. That is, the cost of a multilinear map is defined in terms of

the best tensor network that implements the map. In more precise terms, let

� : F �(�1) × F �(�2) × · · · × F �(�ℓ ) → F �(�
′)

be an ℓ -linear map. Consider the tensor )̂(�) of � and the associated input sockets �1 , �2 , . . . , �ℓ

and the output socket �′. Let �∗ be an arbitrary tensor network such that )(�∗) = )̂(�) and
the boundary satisfies �(�∗) = �1 ∪ �2 ∪ · · · ∪ �ℓ ∪ �′. Modify the network �∗ as follows. For

each : = 1, 2, . . . , ℓ , introduce a new vertex to �∗, make the new vertex incident to each of the

modes in the input socket �: , and associate the new vertex with a tensor -(:) ∈ F �(�: ). Remove
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the modes �1 ∪ �2 ∪ · · · ∪ �ℓ from the boundary of �∗. Let us denote the resulting network by

� and call the introduced ℓ new vertices the socket vertices of �. We observe that �(�) = �′

and �(-(1) , -(2) , . . . , -(ℓ )) = )(�). Furthermore, the cost 2(�) is independent of the value of
-(:) ∈ F �(�: ) for : = 1, 2, . . . , ℓ . We say that � is a realization of � if it can be obtained from � by

this process, and write D(�) for the set of all tensor network realizations � of �.

The cost of the map � is 2(�) = min�∈D(�) 2(�). In particular, we observe that the minimum

exists since the cost of a tensor network is a nonnegative integer and the familyD(�) is nonempty.

5 Upper bounds

This section presents tensor-network algorithms for the maps introduced in Section 3. We start

with our key technical result that cost is submultiplicative (Theorem 1.3, stated formally as

Theorem 5.1), which then enables us to represent essentially the fastest known algorithms using

tensor networks, and, in the case of %-linear forms, also improve on earlier work as reviewed in

Section 1.3.

Recall that the cost of an execution of a network is the maximum number of operations of any

step (contraction) in that execution, rather than the total running time (number of operations).

With the exception of Theorem 1.3, the results in this section are stated as the resulting upper

bound on running time but they are all derived by obtaining upper bounds on cost.

5.1 Submultiplicativity of cost

Let �1 , �2 , . . . , �ℓ , �
′
be pairwise disjoint sets of indexed modes such that �1 , �2 , . . . , �ℓ are

nonempty. Let

� : F �(�1) × F �(�2) × · · · × F �(�ℓ ) → F �(�
′)

be an ℓ -linear map. For a positive integer :, we define the ℓ -linear map �⊗: such that its tensor

satisfies )(�⊗:) = )(�)⊗: . Then

�⊗: : F �(�1): × F �(�2): × · · · × F �(�ℓ ): → F �(�
′): .

Note that )(�⊗:) = )(�)⊗: is the :-fold Kronecker product of )(�) with itself—that is, it has

the same order, but the index sets are larger—whereas )̂(�⊗:) is the :-fold outer product of

)̂(�)with itself—that is, its index sets have the same sizes, but its order is : times larger.

Let � be a network that realizes � and let T� be an execution tree for �. For each internal

vertex G in T� (that is, a vertex obtained by contraction), define the amortized cost of G by splitting

into the following three cases:

1. if neither of the two subtrees of G contains a socket vertex, the amortized cost of G is 1;

2. if exactly one of the subtrees of G, say, the subtree rooted at H (where G and H are adjacent

in T�), contains at least one socket vertex, the amortized cost of G is the maximum of the

volume of the tensor at G and the volume of the tensor at H;7

7Here, it is crucial to note that the volume of the other subtree rooted at G, only containing non-socket vertices,

does not contribute directly to the amortized cost of G.
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3. if both of the subtrees of G contain at least one socket vertex, the amortized cost of G is the

cost of the contraction to obtain G.

The amortized cost 0(T�) of T� is the maximum of the amortized costs of the internal vertices

of T� . Since the amortized cost of each internal vertex of T� is at most its cost, we have

0(T�) ≤ 2(T�). Furthermore, we observe that the amortized cost of G in case (ii) above may be

strictly less than the cost of the contraction to obtain G. In particular, in (ii) the amortized cost is

defined not by the cost of the contraction but rather by volume. This is because in a :th Kronecker

power we can amortize the cost of the aggregate transformation in case (ii) not with a single

contraction but with a sequence of : contractions. This observation will form the heart of the

proof of Theorem 1.3.

Before proceeding with the proof, let us illustrate the key ideas in visual terms. Let us start

with the three illustrations in (5.1).

(5.1)

Suppose the leftmost network in (5.1) is socketed so that the two modes at the top form the

output socket, and the four modes at the bottom form two input sockets so that modes in the

same socket are incident to the same vertex. In the middle in (5.1), we have adjoined two socket

vertices to the input sockets to obtain a realization �. On the right in (5.1), we display an

execution tree T� for �. Observe that the bottom-most internal vertices of T� , and the top-most

internal vertex of T� , have type (ii). The internal vertex in the center has type (iii). (There are no

internal vertices of type (i).) Supposing that all the modes have length at least 2, we also observe

that the vertices of type (ii) have amortized cost strictly less than their contraction cost.

Let us now consider the :th power of (5.1) visually, for : = 4:

(5.2)

The leftmost network in (5.2) depicts the :-fold outer product of the network on the left in

(5.1) with itself. Observe that we simply take : copies of the network, but that for the purposes

of the visualization we have taken care to draw the : copies of each mode together for the

socketing. In the middle in (5.2), we have adjoined two socket vertices to the input sockets to

obtain a realization �⊗: of �⊗: . On the right in (5.2), we display an execution tree T�⊗: for
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�⊗: . Observe how each of the internal vertices of type (ii) in T� gets expanded to a sequence

of : internal vertices in T�⊗: . This transformation from T� to T�⊗: is the gist of the following

theorem.

Theorem 5.1 (Formal statement of Theorem 1.3). Let � be an arbitrary realization of � and let T�
be an arbitrary execution tree for �. For all positive integers :, we have

2(�⊗:) ≤ 0(T�):−12(T�) . (5.3)

Furthermore, this realization of �⊗: consists of at most : · |+(�)| vertices.

Proof. Let �∗ be the subnetwork of � with )(�∗) = )̂(�). That is, �∗ is the network induced

by all the non-socket vertices of �. Taking : disjoint copies of �∗, we obtain a network whose

tensor is )̂(�⊗:). Attaching the resulting network to tensors at sockets gives a realization of �⊗: .
Let us write �⊗: for this realization.

To establish (5.3), it suffices to construct an execution tree T�⊗: for �⊗: whose cost satisfies

2(T�⊗: ) ≤ 0(T�):−12(T�). We construct T�⊗: by rewriting T� from leaves towards the root to

consider the : copies of each vertex in �∗. We start with leaf vertices which are the vertices of

�⊗: . We split the process into cases (i), (ii), and (iii) as in the definition of amortized cost. Let G

be the internal vertex of T� that we are currently considering.

In case (i), we perform the contraction indicated by G in each of the : copies of �∗ in �⊗:

individually. This creates : new internal vertices in T�⊗: that are all copies of G. We set these :

vertices as the vertices that correspond to G in the subsequent steps. Each of these contractions

in T�⊗: has the same cost as the contraction indicated by G in T� . This cost is less than or equal

to 2(T�).
In case (ii), let H be the child of G in T� such that the subtree rooted at H contains a socket

vertex, and let I be the other child of G in T� . There is a single vertex in T�⊗: corresponding to H

and : identical vertices in T�⊗: corresponding to I. We contract these : vertices individually

each with the vertex that corresponds to H. This creates : new internal vertices in T�⊗: , where

we set the topmost vertex as the vertex that corresponds to G in the subsequent steps. After the

8th step, the corresponding tensor has 8 copies of modes of G and : − 8 copies of modes of H.

The cost of the contraction in the 8th step is the cost of contracting H and I in T� multiplied by

the the volume of H to the power : − 8 and the volume of G to the power 8 − 1. Since the volumes

of G and H are less than or equal to 0(T�), this cost is less than or equal to 0(T�):−12(T�).
In case (iii), let H and I be the two child vertices of G in T� . By the structure of the earlier

steps, we have that a single vertex in �⊗: corresponds to H, and similarly for I. We contract

these two vertices. This creates one new internal vertex in T�⊗: , which we set as the vertex that

corresponds to G in the subsequent steps. This tensor has : copies of modes of G. The cost

of this contraction in T�⊗: is the cost of the corresponding contraction in T� to the :th power,

because both tensors have : copies of all modes compared to H and I. By definition, in case (iii)

the amortized cost of contracting H and I is the same as the cost of contracting H and I. Hence

the cost of this contraction in T�⊗: is less than or equal to 0(T�): ≤ 0(T�):−12(T�).
This rewriting process produces an execution tree T�⊗: for�⊗: with 2(T�⊗: ) ≤ 0(T�):−12(T�).

�
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An immediate corollary is that tensor networks can use low rank decompositions of )(�) to
efficiently evaluate �⊗: .

Corollary 5.2 (Submultiplicativity of low-rank executions). Let � : F �(�1) × F �(�2) × · · · × F �(�ℓ ) →
F �(�

′) be a multilinear map. Define < =max{|�(�1)|, |�(�2)|, . . . , |�(�ℓ )|, |�(�′)|} and A = rk)(�).
Then 2(�⊗:) ≤ max(A, <): min(A, <)

Proof. By taking a star-like network topology (as in (5.1)) we get an execution with 0(T�) =
max(A, <) and cost 2(T�) = < · A. �

5.2 Fast matrix multiplication

Let us now illustrate the use of Theorem 5.1 by capturing fast matrix multiplication with tensor

networks. We start by recalling that for a constant ℎ > 0, we write $(ℎ) for the rectangular matrix

multiplication exponent (see Section 1.3). It is immediate that max(2, ℎ + 1) ≤ $(ℎ) ≤ ℎ + 2; for

the state-of-the-art bounds on $(ℎ), see Le Gall and Urrutia [70].

Lemma 5.3. For all constants ℎ > 0 and & > 0 it holds that an = × b=ℎc matrix may be multiplied with
an b=ℎc × = matrix in $(=$(ℎ)+&) operations by executing a tensor network.

Proof. Fix an 0 < & < 1. Let 0 < �1 , �2 < 1 be constants whose precise values we will fix later.

By definition of $(ℎ), for all C > $(ℎ) there exists a constant * > 0 such that the arithmetic

complexity of multiplying an 2× b2ℎc matrix with an b2ℎc × 2matrix is at most*2C for all 2. Since

the rank of a bilinear map is bounded from above by two times its (multiplicative) complexity

(see [23, §14.1]), it follows that there exist three 3-tensors , �, � respective shapes (2 × 1) × 3,
(1× 2)× 3, and (2× 2)× 3 for positive integer constants 1, 2, and 3with max(22 , 21) ≤ 3 ≤ 2$(ℎ)+�1

and 2ℎ−�2 ≤ 1 ≤ 2ℎ such that , �, � decompose the matrix multiplication tensor 〈2, 1, 2〉 defined
by (3.4) as depicted below; the indices 81 , :1 , :2 , 91 , 82 , 92 refer to the tensor (3.4). The mode

shared by , �, � in (5.4) has length 3, the modes 81 , 82 , 91 , 92 each have length 2, and the modes

:1 , :2 have length 1.

〈c, b, c〉

i1 k1 k2 j1

i2 j2

α β

γ

0 1

2

0 1

2

0 1

2

(5.4)

For example, for ℎ = 1, Strassen’s decomposition [93] as depicted in (5.5) below realizes (5.4)

with 2 = 1 = 2 and A = 7. We use the numbering in magenta to indicate correspondence between
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modes in (5.4) and (5.5).

α =
1

1 0 1 0 1 -1 0
0 0 0 0 1 0 1

1
0 1 0 0 0 1 0
1 1 0 1 0 0 -1

0

2

β =
1

1 1 0 -1 0 1 0
0 0 1 0 0 1 0

1
0 0 0 1 0 0 1
1 0 -1 0 1 0 1

0

2

γ =
1

1 0 0 1 -1 0 1
0 0 1 0 1 0 0

1
0 1 0 1 0 0 0
1 -1 1 0 0 1 0

0

2

(5.5)

Let us next set up an application of Theorem 5.1. Let � : F [2]×[1] × F [1]×[2] → F [2]×[2] be the
bilinear map that multiplies a 2 × 1 matrix with a 1 × 2 matrix. Observe that the tensor of � is

)̂(�) = 〈2, 1, 2〉. To realize �, define two input sockets in (5.4), namely {81 , :1} and {:2 , 91} to
obtain a realization � and an execution tree T� as follows:

(5.6)

Since max(22 , 21) ≤ 3, the amortized cost of T� satisfies 0(T�) = 3. The cost is 2(T�) =
max(22 , 21)3.

Let the matrices - ∈ F [=]×[b=ℎc] and . ∈ F [b=ℎc]×[=] be given. We construct a tensor network

that multiplies - and .. We may assume that �2 < ℎ. Let : = d ℎ log =

(ℎ−�2) log 2
e. We observe that

=ℎ ≤ 2(ℎ−�2): ≤ 1: and = ≤ 2(1−�2/ℎ): ≤ 2: . Extend the matrices -,. to - ∈ F [2
:]×[1:]

and

. ∈ F [1:]×[2:] by inserting rows and columns with zero-entries.

Since 〈2, 1, 2〉⊗: = 〈2: , 1: , 2:〉 by (3.5), we have that �⊗: is the map that multiplies a

2: × 1: matrix with a 1: × 2: matrix. Using Theorem 5.1 with � and T� , we obtain 2(�⊗:) ≤
0(T�):−12(T�) = 3: max(22 , 21). Moreover, the realization �⊗: of �⊗: given by Theorem 5.1

consists of |+(�⊗:)| = $(:) vertices. We can now associate - and . with the two socket vertices

of �⊗: , taking care to associate - with the left socket (originating from {81 , :1} and ) and .
with the right socket (originating from {:1 , 91} and �). (Cf. (5.2) for an illustration how � and T�
in (5.6) yield �⊗: and T�⊗: .) Executing �⊗: then results in the product matrix �⊗:(-,.) = -.
in

3: max(22 , 21)|+(�⊗:)| ≤ 2($(ℎ)+�1):221 |+(�⊗:)|
≤ =($(ℎ)+�1)(ℎ/(ℎ−�2))25+ℎ1 |+(�⊗:)|
= $(=$(ℎ)+&)

operations for all large enough =; here we have used the elementary upper bound $(ℎ) ≤ ℎ + 2

and selected �1 , �2 to be small enough constants (that depend on the constants ℎ and &). �
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The following lemma illustrates that we can also capture rectangular matrix multiplication

by reduction to square matrix multiplication using tensor networks. This lemma in particular

covers the cases when A does not grow as a polynomial function of =. We also observe that if

$ = 2, the upper bounds in the lemma are optimal up to the choice of & > 0 because of the size

of the input/output.

Lemma 5.4. For all & > 0 it holds that we may multiply an = × A matrix with an A × = matrix by
executing a tensor network in

1. $(=$+&−1A) operations when A ≥ =, and

2. $(=2A$+&−2) operations when A ≤ =.

Proof. Fix an & > 0 and let , �, � be three 3-tensors of shape (2 × 2) × 3 for constants 1 = 2 and
3 as in the proof of Lemma 5.3. Let the matrices - ∈ F [=]×[A] and . ∈ F [A]×[=] be given. We

construct tensor networks that compute the product -..

To establish (i), first pad - and . using rows and columns of zero-entries so that both =

and A become positive integer powers of 2 and = divides A. This increases = and A by at most a

multiplicative factor 2. We now have = = 2: and A = 2C for positive integers C ≥ :.
Observe that we can compute the = × = product matrix -. by taking the sum of

A
= = 2

C−:

matrix products of size = × =.
Let us implement this computation with a tensor network. Reshape - to a (: + C)-tensor

whose all modes have length 2. The first : modes index the rows, the last C modes index the

columns. Reshape . to a (C + :)-tensor whose all modes have length 2. The first C modes index

the rows, the last : modes index the columns.

Connect - and . into a network as displayed in (5.7) on the right.

〈n, r, n〉

X Y

〈ck, ck, ck〉

X Y

Ic
Ic

t− k modes,
each of length c

}

k modes,
each of length c{

(5.7)

That is, we join C − : column modes of - with the matching C − : row modes of . using C − :
identity matrices �2 (to avoid degeneracy of the network if - and . are removed). Then we

connect the remaining modes of - and . to the left and right sockets of a matrix multiplication

network for 2: × 2: matrices as depicted by 〈2: , 2: , 2:〉 in (5.7); this matrix multiplication network

is obtained as in the proof of Lemma 5.3 with 1 = 2. The result is a multiplication network
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〈=, A, =〉 as depicted in (5.7) on the left. We execute this network using the structure on the right

in (5.7) by first contracting (with zero cost) the identity matrices �2 with .. We then execute the

remaining network as in the proof of Lemma 5.3. For large enough =, the cost of the execution

is at most 2:($+&/2)+22C−:+1
, which translates to $(=$+&A) operations since the network has $(:)

vertices whose contractions have nonzero cost.

To establish (ii), first pad - and . using rows and columns of zero-entries so that both =

and A become positive integer powers of 2 and A divides =. This increases A and = by at most a

multiplicative factor 2. We now have A = 2: and = = 2C for positive integers C ≥ :.
Observe that we can compute the = × = product matrix -. by taking ( =A )2 = 22(C−:)

matrix

products of size A × A.
Let us implement this computation with a tensor network. Reshape - to a (C + :)-tensor

whose all modes have length 2. The first C modes index the rows, the last : modes index the

columns. Reshape . to a (: + C)-tensor whose all modes have length 2. The first : modes index

the rows, the last C modes index the columns. Connect - and . into a network as displayed in

(5.7) on the right.

〈n, r, n〉

X Y

〈ck, ck, ck〉

X Y

Ic Ic

Ic Ic

t− k modes,
each of length c{

k modes,
each of length c{

(5.8)

That is, we join C − : row modes of - each to an identity matrix �2 whose other mode is at the

boundary. Similarly, we join matching C − : column modes of . each to an identity matrix �2
whose other mode is at the boundary. (This is to avoid degeneracy of the network if - and .

are removed.) Then connect the remaining modes of - and . to the left and right sockets of a

matrix multiplication network for 2: × 2: matrices as depicted by 〈2: , 2: , 2:〉 in (5.8); this matrix

multiplication network is obtained as in the proof of Lemma 5.3 with 1 = 2. The result is a

multiplication network 〈=, A, =〉 as depicted in (5.8) on the left. We execute this network using

the structure on the right in (5.8) by first contracting (with zero cost) the identity matrices �2 with

- and ., respectively. We then execute the remaining network as in the proof of Lemma 5.3.

For large enough A, the cost of the execution is at most 2:($+&/2)+222(C−:)+1
, which translates to

$(=2A$−1+&) operations since the network has $(:) vertices whose contractions have nonzero

cost. �

Let us conclude this subsection with a well-known lemma on rectangular matrix multiplica-

tion that we can also capture with tensor networks.

Lemma 5.5. For all non-negative integers 0, 1, 2 and & > 0 it holds that we may multiply an =0 × =1
matrix by an =1 × =2 matrix via a tensor network in $(=max(0+1,1+2,0+2)($+&)/2) operations.

THEORY OF COMPUTING, Volume 18 (16), 2022, pp. 1–54 27

http://dx.doi.org/10.4086/toc


PER AUSTRIN, PETTERI KASKI, AND KAIE KUBJAS

Proof. By symmetry we may assume that 0 ≤ 2. Thus there are three cases to consider, namely

(i) 0 ≤ 1 ≤ 2, (ii) 0 ≤ 2 ≤ 1, and (iii) 1 ≤ 0 ≤ 2.
When 0 ≤ 1 ≤ 2, we need to achieve $(=(1+2)($+&)/2) operations. Toward this end, it

suffices to multiply an =1 × =1 matrix with an =1 × =2 matrix, which can be implemented as

=2−1 multiplications of two square matrices of size =1 × =1 . Proceeding analogously as in

Lemma 5.4, we obtain a network that can be executed in $(=2−1=1($+&/2)) operations. We have

2 − 1 + 1($ + &) ≤ (1 + 2)($ + &)/2 as desired since 2 ≥ 1, $ ≥ 2, and & ≥ 0.

When 0 ≤ 2 ≤ 1, we need to achieve $(=(1+2)($+&)/2) operations. Toward this end, it suffices

to multiply an =2 × =1 matrix with an =1 × =2 matrix, and apply part (i) of Lemma 5.4 to

obtain a network that can be executed in $(=1+2($+&−1)) operations. We have 1 + 2($ + & − 1) ≤
(1 + 2)($ + &)/2 as desired since 1 ≥ 2, $ ≥ 2, and & ≥ 0.

When 1 ≤ 0 ≤ 2, we need to achieve $(=(0+2)($+&)/2) operations. Toward this end, it suffices

to multiply an =0 × =1 matrix with an =1 × =2 matrix. An easy modification of part (ii) of

Lemma 5.4 gives a network that can be executed in $(=0+2+1($+&−2)) operations. We have

0 + 2 + 1($ + & − 2) ≤ (0 + 2)($ + &)/2 as desired since 1 ≤ 0, 1 ≤ 2, $ ≥ 2, and & ≥ 0. �

5.3 Homomorphism-counting for pattern graphs of small branchwidth

Our main result in this section is the following upper bound for %-linear forms when % is a

graph of small branchwidth.

Lemma 5.6. For any fixed pattern graph % and every & > 0, there is a tensor network that evaluates the
%-linear form of order = in $(=2 + =bw(%)($+&)/2) operations.
Proof. Consider any branch decomposition of % of width bw(%). Rooting this decomposition

arbitrarily by subdividing any edge and taking the newly added vertex as root, we obtain a

binary rooted tree ) with |�(%)| leaves where the leaves are identified by the edges of %. Let A

be the root of ) and for each vertex D of ), let:

1. �D ⊆ +(%) (mnemonic: � for “crossing” or “cut”) be the set of all vertices of % that appear

both in some leaf in the subtree rooted at D, and in some leaf outside the subtree. By

definition |�D | ≤ bw(%) for all D, and �A = ∅.

2. �D ⊆ +(%) (mnemonic: � for “done”) be the set of all vertices of % that appear only in

leaves in the subtree rooted at D, and not outside. Note that �D and �D form a partition of

the set of all vertices appearing in some leaf in the subtree rooted at D, and that �A = +(%).

3. �D ⊆ �(%) be the set of all leaves of the subtree of ) rooted at D (recall that each leaf of )

corresponds to an edge). Note that �A = �(%).

4. �D ∈ F [=]
�D

be the following order-|�D | tensor of shape =×=× · · ·×= defined for a position

8 ∈ [=]�D by
(�D)8 =

∑
9∈[=]�D

∏
(∈�D

-
(()
(8 9)|(

,

where 8 9 ∈ [=]�D∪�D is the Cartesian product of 8 and 9.
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Note that �A equals the value of the %-linear form (3.14). Furthermore, for a leaf D of )

corresponding to an edge {G1 , G2} of %, the tensor �D is easy to compute: if both G1 and G2 have

degree at least 2, then �D simply equals the input tensor -{G1 ,G2}
. On the other hand if G1 and/or

G2 has degree 1, then �D is either a vector or a scalar, being either the row sums, column sums,

or sum of all entries of -{G1 ,G2}
. Each of these is readily computed in $(=2) time by a contraction

of -{G1 ,G2}
with an appropriate tensor of ones.

As we shall see below, for every non-leaf vertex G of ) with children H and I, the tensor

�G equals the contraction of �H and �I . Thus, the desired result would follow if we can

show that the contraction of two siblings �H and �I can be computed by a tensor network in

$(=bw(%)($+&)/2) operations. We now proceed to establish this.

Partition �G into �GH∪�GI∪�GHI where �GHI = �G∩�H∩�I , �GH = �G \�I and �GI = �G \�H
(note that every element of �G must appear in exactly one of �H and �I so these three sets indeed

partition �G). Symmetrically partition �H into �GH ∪ �HI ∪ �GHI and �I into �GI ∪ �HI ∪ �GHI .
Note that �HI ⊆ �G and that the contraction of �H and �I at position (8 , 9 , :) for 8 ∈ [=]�GH ,
9 ∈ [=]�GI , : ∈ [=]�GHI is exactly∑

ℓ∈[=]�HI
�H(8 , :, ℓ )�I(9 , :, ℓ ) = �G(8 , 9 , :)

Let 0 = |�GH |, 1 = |�HI |, and 2 = |�GI |. Split each mode in �GH into two separate modes �
(G)
GH and

�
(H)
GH where the former is used to index �G and the latter is used to index �H . Similarly split the

modes in �GI and �HI , but not the modes in �GHI .

The contraction of �H and �I can then be evaluated using rectangular matrix multiplication

with the following tensor network.

Ay Az

〈na, nb, nc〉
C

(y)
yz

C
(z)
yz

C
(y)
xy C

(z)
xz

Cxyz
C

(x)
xy C

(x)
xz

(5.9)

By Lemma 5.5, this network can be evaluated in $(= |�GHI |=max(0+1,1+2,0+2)($+&)/2) operations.
Since 0+1+|�GHI | = |�H | ≤ bw(%), 1+2+|�GHI | = |�I | ≤ bw(%), and 0+2+|�GHI | = |�G | ≤ bw(%),
the number of operations used to contract �H and �I is bounded by $(=bw(%)($+&)/2). �

5.4 Clique-counting forms

For counting E-cliques, the general upper bound for %-linear forms (Lemma 5.6) with % =  E

gives a running time of $(=($+&)d2E/3e/2) = $(=($+&)bE/3c+
($+&)

2
(E mod 3)). In this section, we give

a slightly improved tensor-network algorithm, matching the running time of the currently
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fastest known algorithm of Eisenbrand and Grandoni [44]. That this is possible is more or less

immediate given that tensor networks can do fast rectangular matrix multiplication. It can

also be viewed as a consequence of a more careful analysis of the proof of Lemma 5.6 where,

towards the end, instead of using the generic upper bound of Lemma 5.5 for rectangular matrix

multiplication, we use the precise shape of the bottleneck matrix multiplication needed for the

E-clique case. For completeness, we give a more direct argument below.

For brevity, throughout this section we refer to the %-linear form for % =  E as the
(E
2

)
-linear

form.

Lemma 5.7. For all constants & > 0 and E ≥ 3, the
(E
2

)
-linear form of order = can be evaluated by

executing a tensor network in$(=�+&) operations, where $E/3 ≤ � ≤ $E/3+(E mod 3) is the exponent
of the arithmetic complexity of the 〈= bE/3c , = b(E+1)/3c , = b(E+2)/3c〉 matrix multiplication map.
Proof. Let (1, (2, and (3 be an arbitrary partition of the E vertices of  E into sets of sizes bE/3c,
b(E + 1)/3c and b(E + 2)/3c, respectively. Let �8 9 = �((8 , (8 ∪ ( 9) be the edges inside (8 and

between (8 and ( 9 . In particular, �12, �23 and �31 form a partition of the edges of  E .

We construct a network for evaluating the clique-counting form as follows. First, contract

all inputs -(01) with 01 ∈ �12 naïvely. This results in a tensor .(12)
with volume = |(1 |+|(2 |

which

we view as an = |(1 | × = |(2 |
matrix where the rows are indexed by multisubsets ' of [=] of size

|(1 | and the columns by multisubsets � of size |(2 |; the entry at row ', column � is the 0-1

indicator of whether ' ∪ � is a set of size |(1 | + |(2 | where all vertices of ' have edges to all

other vertices in ' ∪ �. Contract all of �23 and �31 similarly, obtaining an = |(2 | × = |(3 |
matrix

.(23)
and an = |(3 | × = |(1 |

matrix .(31)
. The cost of creating .(8 9) is simply its volume = |(8 |+|(9 | ≤ =�.

Next, perform the matrix multiplication / = .(12) · .(23)
in time $(=�+&) using the same

method as in the proof of Lemma 5.3. The matrix / at row ' ∈ [=]|(1 |
, column � ∈ [=]|(3 |

counts

the subsets * ∈ [=]|(2 |
such that, = ' ∪ � ∪* is a set of size |(1 | + |(2 | + |(3 | (viewing ', �

and* as multisubsets of [=] in the obvious way) where all vertices in ' ∪* have edges to all

other vertices in, .

Finally, contract / with .(31)
(identifying the rows of / with the columns of .(31)

and vice

versa) in time = |(3 |+|(1 | ≤ =� to obtain the number of E-cliques in the input graph. �

5.5 Fast Fourier transforms and fast convolution

Let us next express fast Fourier transforms as tensor networks and their executions. We start by

observing that the Cooley–Tukey [35] fast Fourier transform on ℤ
2
: can be implemented as a

tensor network. We assume � is a primitive (2:)th root of unity in the field F .

Lemma 5.8. The discrete Fourier transform for the Abelian group ℤ
2
: can be computed by executing a

tensor network in $(2: :) operations.
Proof. The case : = 0 is immediate so let us assume that : ≥ 1. We construct a tensor network

whose execution multiplies a vector G ∈ F [2:] with the DFT matrix Φ in Section 3.1 for = = 2
:
to

yield the result ΦG ∈ F [2:]. Toward this end, let us write �< for an < × < identity matrix,

�2 =

[
1 1

1 −1

]
(5.10)
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for the 2× 2 Hadamard-Walsh matrix, and '(:,9) ∈ F [2:] for the vector obtained by concatenating

2
9
copies of the vector

[1, 1, . . . , 1︸     ︷︷     ︸
2
:−1−9

, �2
9 ·0 , �2

9 ·1 , . . . , �2
9 ·(2:−1−9−1)︸                            ︷︷                            ︸

2
:−1−9

]

for 9 = 0, 1, . . . , : − 2. We can decompose Φ into a sequence of 2
: × 2

:
matrices (see, e. g., [97])

Φ = %(:)�(:,:−1))(:,:−2)�(:,:−2) · · ·)(:,1)�(:,1))(:,0)�(:,0) (5.11)

consisting of alternating butterfly matrices

�(:,9) = �2 ⊗ �2 ⊗ · · · ⊗ �2︸              ︷︷              ︸
9

⊗�2 ⊗ �2 ⊗ �2 ⊗ · · · ⊗ �2︸              ︷︷              ︸
:−9−1

and diagonal twiddle matrices

)(:,9) = diag('(:,9))

followed by a permutation matrix %(:) that permutes the indices in [2:] viewed as :-bit strings

by reversing the bit-order. Since only the (9 + 1)th Kronecker component in the butterfly matrix

�(:,9) is a nonidentity matrix, and multiplication of a vector with the diagonal twiddle matrix

)(:,9) corresponds to pointwise (Hadamard) multiplication with the vector '(:,9) on the diagonal,

we observe that the sequence (5.11) can be represented as a tensor network �∗ as depicted below

(for : = 5) so that all the modes have length 2.

H2

H2

H2

H2

H2

R5,3 R5,2 R5,1 R5,0

Φ = P (5) B(5,4) B(5,3) B(5,2) B(5,1) B(5,0)T (5,3) T (5,2) T (5,1) T (5,0)

(5.12)

We can now connect the network (5.12) to a data vector G ∈ F [2:] to obtain the network � below:

(5.13)

Below we depict in red an execution tree T� with cost 2
:+1

for the network (5.13). Observe that

the mode permutation (multiplication with the matrix %(5)) is not part of the execution since the
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permutation amounts to merely rearranging the modes.

(5.14)

Since the network has $(:) tensors, the execution (5.14) can be carried out in $(2: :) operations
in F . �

Lemma 5.9. The discrete Fourier transform for the elementary Abelian group ℤ:
2
can be computed by

executing a tensor network in $(2: :) operations.

Proof. This proof is analogous to the proof of Lemma 5.8 but omits the twiddle matrices )(:,9)

and the final permutation matrix %(:) from the decomposition of the tensor network. �

The following corollary is immediate from Lemma 5.8.

Lemma 5.10. The group algebra products on F [ℤ
2
: ] and F [ℤ:

2
] can be computed by executing a tensor

network in $(2: :) operations whenever 2 is a unit in F .

Proof. We start with F [ℤ
2
: ]. Let 5 , , ∈ F [2:] be two vectors given as input. Our task is to compute

the ℤ
2
: -convolution 5 ∗ , ∈ F [2:]. The case : = 0 is immediate so suppose that : ≥ 1. Recalling

that 5 ∗ , = Φ−1((Φ 5 ) · (Φ,)), where “·” denotes an elementwise (Hadamard) product of two

vectors of length 2
:
, let us construct a tensor network as follows. First take the FFT of 5 and ,

using Lemma 5.8, then multiply the resulting vectors elementwise, and finally take the inverse

FFT by replacing � with �−1
in Lemma 5.8 and multiplying with the diagonal matrix

1

2
: �2: .

Below we display (for : = 5) the resulting network � that executes to 5 ∗ ,.

(5.15)

The execution of the network proceeds from right to left analogously to (5.14).

(5.16)

THEORY OF COMPUTING, Volume 18 (16), 2022, pp. 1–54 32

http://dx.doi.org/10.4086/toc


TENSOR NETWORK COMPLEXITY OF MULTILINEAR MAPS

The cost of this execution is 2
:+1

. Since the network has $(:) tensors, the execution (5.16) can be

carried out in $(2: :) operations in F .

The case of F [ℤ:
2
] is analogous but replacing Lemma 5.8 with Lemma 5.9 and modifying the

networks accordingly. �

5.6 Yates’ algorithm

A particularly simple use case for Theorem 5.1 occurs when � : F [B] → F [C] is a linear map. It

is immediate that we can realize � with a two-vertex network and an execution tree that has

amortized cost max(B, C) and cost BC.

Then, Theorem 5.1 immediately implies that we can evaluate �⊗: : F [B]
: → F [C] using a tensor

network with cost max(B:+2 , C:+2) and $(:) vertices. In particular, the network can be executed

in $(max(B:+2 , C:+2):) operations in F . This network in essence realizes Yates’ algorithm [104]

for multiplying an B:-length vector with the :th Kronecker power of an B × C matrix to obtain

C:-length vector.

Applying the previous observation to � = �2 in (5.10) with B = C = 2, we obtain Lemma 5.9

as an immediate corollary. Similarly, other choices of 2 × 2 matrices yield the algebraic

core of currently the fastest known algorithms for problems such as graph coloring and its

generalizations such as computing the Tutte polynomial of a graph [16, 17, 19]. In particular,

the pair of mutually inverse 2 × 2 matrices

/2 =

[
1 1

0 1

]
, "2 =

[
1 −1

0 1

]
yield, as /⊗:

2
and "⊗:

2
, the zeta and Möbius tranforms for the lattice ({0, 1}: , ⊆,∩,∪) of all

subsets of a :-element set, partially ordered by subset inclusion. Theorem 5.1 yields immediately

the standard algorithms (normally developed via Yates’s algorithm) for the fast zeta and the fast

Möbius transforms via tensor networks. These networks can then be combined as in the proof

of Lemma 5.10 to yield the associated bilinear convolution maps (multiplication maps in the

semigroup algebra F [({0, 1}: , ⊆,∩,∪)]) to realize these maps in $(2: :) operations. We omit the

details due to similarity with Lemma 5.10.

5.7 Kruskal operator

We proceed to implement the Kruskal operator by taking Kronecker products and reducing to

fast rectangular matrix multiplication. Let us first proceed via Lemma 5.4 relying on square

matrix multiplication.

Lemma 5.11. For all constants & > 0 and ℓ = 1, 2, . . . it holds that we may evaluate the Kruskal operator
of ℓ matrices of shape = × A by executing a tensor network in

1. $(= dℓ/2e($+&−1)A) operations when A ≥ = dℓ/2e , and

2. $(=2dℓ/2eA$+&−2) operations when A ≤ = dℓ/2e .
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Proof. Fix an & > 0 and let , �, � be three 3-tensors of shape (2 × 2) × 3 for constants 1 = 2 and
3 as in the proof of Lemma 5.3. Let �(1) , �(2) , . . . , �(ℓ ) ∈ F [=]×[A] be given as input. We construct

a tensor network that computes the output . of the Kruskal operator (3.8).

Without loss of generality we may assume that ℓ is even by introducing a matrix �(ℓ+1) ∈
F [=]×[A] filled with 1-entries and setting ℓ ← ℓ + 1. By inserting rows and columns with

zero-entries as necessary, we can assume that both = and A are positive integer powers of

2. The key idea is now to take Kronecker products of the matrices �(1) , �(2) , . . . , �(ℓ/2) and

�(ℓ/2+1) , �(ℓ/2+2) , . . . , �(ℓ ) in the vertical dimension only to obtain two matrices � ∈ F [=ℓ/2]×[A] and
� ∈ F [=ℓ/2]×[A], respectively. We then multiply � and the transpose of � using fast rectangular

matrixmultiplication from Lemma 5.4 to obtain. ∈ F [=ℓ/2]×[=ℓ/2]. It is immediate from Lemma 5.4

that this results in the operation counts claimed in (i) and (ii) as long as we can realize the idea

using tensor networks. Taking Kronecker product in the vertical dimension only can be realized

by joining all the horizontal dimensions to a common mode, which becomes the inner mode for

matrix multiplication. The resulting network is depicted below (for ℓ = 6), where either (5.7) or

(5.8) is used for the subnetwork indicated with 〈=ℓ/2 , A , =ℓ/2〉 depending on whether (i) or (ii)

holds.

〈nl/2, r, nl/2〉

A(1) A(2) A(3) A(4) A(5) A(6)

(5.17)

In drawing (5.17) we have made two abstractions. First, each drawn mode in fact is a bundle

of modes, each of length 2. Second, each mode in a bundle that is incident to one of the input

matrices �(1) , �(2) , . . . , �(ℓ ) is in fact subdivided by inserting an identity matrix �2 just before the

incidence to the input matrix. The network (5.17) is executed first by contracting the (zero-cost)

identity matrices �2 , then contracting �(1) , �(2) , . . . , �(ℓ/2) and �(ℓ/2+1) , �(ℓ/2+2) , . . . , �(ℓ ), and
finally proceeding to execute the subnetwork 〈=ℓ/2 , A , =ℓ/2〉 as in Lemma 5.4. �

The next lemma gives a sharper conclusion using the rectangular matrix multiplication

exponents $(ℎ)when A is assumed to grow polynomially as a function of =.

Lemma 5.12. For all constants & > 0, � > 0, and ℓ = 1, 2, . . . it holds that we may evaluate the Kruskal

operator of ℓ matrices of shape =× A, where A = b=�c, by executing a tensor network in$
(
=
dℓ/2e$

(
�
dℓ/2e

)
+&)

operations.

Proof. Proceed as in the proof of Lemma 5.11, but implement the subnetwork for 〈= dℓ/2e , A , = dℓ/2e〉
as in Lemma 5.3. More precisely, take # = = dℓ/2e , ℎ = �/dℓ/2e, and observe that 〈#, b# ℎc , #〉 =
〈= dℓ/2e , A , = dℓ/2e〉. �

To our knowledge, Lemmas 5.11 and 5.12 capture the state of the art for computing the

Kruskal operator.
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5.8 The permanent

The following lemma observes that essentially the fastest known algorithm for the permanent,

namely Ryser’s algorithm [89], can be realized as a tensor network. Here by essentially fastest

knownwemean the base of the exponential running time. Sub-exponential speed-ups to Ryser’s

algorithm are known, see, e. g., Björklund [15].

Lemma 5.13. The permanent of an = × = matrix can be computed by executing a tensor network in
$(2==) operations.

Proof. We observe that Ryser’s algorithm [89] for the permanent (3.1), namely the inclusion–

exclusion expression

per� =
∑
(⊆[=]
(−1)=−|( |

∏
8∈[=]

∑
9∈(

08 9

is implementable with a star-shaped tensor network consisting of = matrices of shape 2
= × =

joined together by a common mode (of length 2
=
), with the = modes of length = being the

boundary of the network. Each of the = matrices consists of the {0, 1}-valued incidence vectors

of the 2
=
subsets ( ⊆ [=], with one of the matrices arbitrarily selected to contain signed rows

determined by (−1)=−|( | . The input to the network consists of = vectors of length =, namely the

rows of the = × = input matrix �. The network is executed by first executing the = matrix-vector

multiplications, and then contracting the resulting = vectors of length 2
=
until the scalar per�

remains. �

6 A lower bound for the cost of a multilinear map

In this section, we prove a general lower bound on the cost of evaluating a multilinear map

using tensor networks, as defined in Section 4.5. The lower bound is expressed in terms of the

socket-width of a multilinear map, which we now proceed to define.

Let � : F �(�1) × F �(�2) × · · · × F �(�ℓ ) → F �(�
′)
be an ℓ -linear map. A socket-tree of � is a tree T(

whose ℓ + 1 leaf vertices are the sockets �1 , �2 , . . . , �ℓ , �
′
of � and whose internal vertices all

have degree exactly 3. Associate with each edge 4 = {G' , G�} of T( the two subtrees T((G' , 4)
and T((G� , 4) obtained by removing 4, where T((G' , 4) is the subtree containing G' and T((G� , 4)
is the subtree containing G� . Let !(G' , 4) be the set of leaves in T((G' , 4) and let !(G� , 4) be the
set of leaves in T((G� , 4).

The sets !(G' , 4) and !(G� , 4) are both nonempty and together partition the set of sockets.

Consider the flattening "(T( , 4) of the tensor )(�) such that the modes in !(G' , 4) index the

rows and the modes in !(G� , 4) index the columns of"(T( , 4). The width of T( at 4 is the rank of

"(T( , 4), and the width of T( is F(T() = max4∈�(T() rk("(T( , 4)).
Let us write S (�) for the set of all socket-trees of the multilinear form �. We define the

socket-width of � to be F(�) = minT(∈S (�) F(T().
The rest of this section is devoted to proving Theorem 1.4:

Theorem 1.4. For every multilinear map �, it holds that 2(�) ≥ F(�).
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First, we prove that without loss of generality, we may restrict attention to forms rather than

general maps.

Claim 6.1. For any multilinear map �, it holds that 2(�) ≥ 2(�(�)).

Proof. We observe that � and �(�) satisfy )̂(�) = )̂(�(�)). Any network � ∈ D(�) can be

modified to a network �′ ∈ D(�(�)) by attaching a tensor -′ ∈ F �(�′) to the boundary of �. Let

� ∈ D(�) be such that 2(�) = 2(�). The minimum-cost execution of �, followed by contracting

)(�) and -′, is an execution of �′. Its cost is 2(�), since the cost of contracting of )(�) and -′
is

∏
4∈�(�) |�(4)| and

∏
4∈�(�) |�(4)| ≤ 2(�), because the last step of the minimum-cost execution

of � contracts a set, with all modes 4 ∈ �(�) incident to, . Thus, 2(�) ≥ 2(�(�)). �

Furthermore, F(�) = F(�(�)) for every multilinear map �, since F(�) only depends on the

tensor )(�), but not on which of its coordinates (if any) is the output. Thus it suffices to prove

Theorem 1.4 for multilinear forms, which we now proceed to do.

Lemma 6.2. For any multilinear form �, it holds that 2(�) ≥ F(�).

Proof. Let � ∈ D(�) be such that 2(�) = 2(�). It is a tensor network with empty boundary

and a socket vertex (8 ∈ +(�) for each input socket �8 , where 8 = 1, 2, . . . , ℓ . Its tensor is

)(�) = �(-(1) , -(2) , . . . , -(ℓ ))where -(8) = )((8) for 8 = 1, 2, . . . , ℓ .

By Lemma 4.1, a minimum-cost execution of � can be represented by a rooted binary tree

T� , where the set of leaves of T� are +(�) and each inner vertex represents the vertex obtained

by contracting its two children. Let T( be the unique socket-tree of � that is obtained as a

topological minor of T� . Slightly abusing the notation, we assume that the leaves of T( are

the socket vertices (1 , (2 , . . . , (ℓ instead of the sockets �1 , �2 , . . . , �ℓ . To establish the lemma, it

suffices to show that T� has cost at least F(T(), since F(T() ≥ F(�).
Let 4 = {G' , G�} ∈ �(T() be an edge of the socket tree T( with rk("(T( , 4)) = F(T(), and let

4̃ be an edge of the execution tree T� in the subdivision of 4 appearing in T� . Without loss of

generality we may assume that 4̃ is directed from the part of T� corresponding to G' towards the

part corresponding to G� (if not, simply switch names of G' and G�). Define (' = !(G' , 4) and
(� = !(G� , 4). Let,' ⊆ +(�) be the set of non-socket vertices of � that appear on the same

side of 4̃ in T� with socket vertices (' and let,� be the set of remaining non-socket vertices of

�. See Figure 1 for an illustration of all these definitions. Finally, let �′ = �/('/(�/,'/,� be

the result of contracting each of these four sets of vertices of �. For notational convenience, we

identify the four vertices of the new network with the four subsets (' , (� ,,' ,,� .

Now, the tensor % = )(�′[,' ∪ (']) appears as an intermediate result in the execution T� ,8
hence the volume of % is a lower bound on the cost of T� .

We group the modes of �′ incident on (' or,' as shown in Figure 2: �(, are all modes

in �′ incident exactly upon (' and,', �,� are all modes incident on,' but not on (', �(�

8Note that this follows from our choice that the ' part of � is below 4̃ in the execution tree, and that the same is

not necessarily true for the tensor )(�′[,� ∪ (�]). E.g. if in Figure 1 we had instead taken 4̃ to be the edge further

down which joins -(1) and -(2) with �(1) then )(�′[,� ∪ (�])would be the contraction of �(1), �(2), -(3) and -(4),
which is not an intermediate result in the execution of T� .
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ẽ

A(1)

WR

X(1) X(2)SR X(3) X(4)

SC

WC

A(2)

(a) Example of a possible execution tree T� . Given the

choice of 4 in the corresponding socket tree T( shown

on the right there are four possible choices of 4̃.

e

X(1)

X(2)

xR xC

X(3)

X(4)

SR SC

(b) The corresponding socket tree T(. The
exact choice of 4̃ in T� determines which

part of the cut is the G' part, and which is

the G� part.

Figure 1: Illustration of the notation used for the execution and socket trees.

SR

SC

WR
WC

ESC

ESW

EWC

ESWC

Figure 2: Illustration of �′. We group the modes of �′ based on how they connect (', (� , and

the “� part” of �′.

are all modes incident on (' but not,', and finally �(,� are all modes incident upon (',,',

and at least one of (� or,� . Write �( = �(, ∪ �(� ∪ �(,� for the modes incident on (', and

similarly �� = �,� ∪ �(� ∪ �(,� for all modes incident upon at least one of (' or,', and at

least one of (� or,� . Note that |�(��)| is precisely the volume of % which we aim to lower

bound.

Define a matrix � ∈ F �(�() × F �(�� ) as follows. We identify its row indices 8 ∈ �(�() as being
triples 8 = (8(, , 8(� , 8(,�) ∈ �(�(, )× �(�(�)× �(�(,�) and similarly its column indices 9 ∈ �(��)
are triples 9 = (9(� , 9,� , 9(,�) ∈ �(�(�) × �(�,�) × �(�(,�). Then the entries of � are

�(8(, ,8(� ,8(,� ),(9(� , 9,� , 9(,� ) =

{
)(�′[,'])8(, , 9,� , 9(,�

if 8(� = 9(� ∧ 8(,� = 9(,� ,

0 otherwise,

In the case when �( = �(, (i. e., all modes incident on (' connect only to ,'), � is

simply a flattening of )(�′[,']). Recall that )(�′[(']) ∈
∏

4∈�( F
�(4)

. Then for every
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9 = (9(� , 9,� , 9(,�) ∈ �(��), we have∑
8∈�(�()

�8 , 9)(�′[('])8 =
∑

8(,∈�(�(, )
�(8(, , 9(� , 9(,� ), 9)(�′[('])8(, , 9(� , 9(,�

=
∑
8(,

)(�′[,'])8(, , 9,� , 9(,�
)(�′[('])8(, , 9(� , 9(,�

= %9(� , 9,� , 9(,�
= %9

(recall that % is the contraction of )(�′[,']) and )(�′[('])). Viewing )(�′[(']) as a row vector

in F �(�() we see that % is simply the vector-matrix product % = )(�′[(']) · � ∈ F �(�� ).
Symmetrically, for the other half of �′, we can write & = )(�′[,� ∪ (�]) as a matrix-vector

product & = � ·)(�′[(�]) ∈ F �(�� ) where � is a matrix corresponding to )(�′[,(]) analogously
to how � corresponds to )(�′[,']).

Thus we have )(�) = )(�′[(']) · � · � · )(�′[(�]). Recall that for each socket vertex (8 in

the original network �, we have )((8) = -(8). Denoting -' = )(�′[(']) and -� = )(�′[(�]),
we get -' =

⊗
(8∈(' -

(8)
and -� =

⊗
(8∈(� -

(8)
.9 Hence

�(-(1) , -(2) , . . . , -(ℓ )) = -' · � · � · -� .

It follows that � · � is the flattening of )(�) to a matrix with rows indexed by the sockets in ('
and columns indexed by the sockets in (� . But this flattening is precisely the matrix "(T( , 4),
implying that |�(��) | ≥ rk("(T( , 4)) = F(T(), as desired. �

7 Lower bounds for socket-width

In this section we establish lower bounds on socket-width for concrete maps.

7.1 Determinant and permanent

We now prove lower bounds for the socket width of the determinant and permanent. Let us

start with the following trivial observation.

Claim 7.1. For any socket tree T( with = ≥ 2 leaves, there is an edge 4 = {G' , G�} such that
=/3 ≤ |!(G' , 4)| < 2=/3.

Proof. Consider all edges 4 = {G' , G�} such that |!(G' , 4)| ≥ =/3. At least one such edge certainly

exists since = ≥ 2. Indeed, an edge 4 = {G' , G�} incident to a leaf G� has |!(G' , 4)| = = − 1 leaves.

Among these, choose an edge such that T((G' , 4) is of minimal size. Assume for contradiction

that |!(G' , 4)| ≥ 2=/3. But then one of the two subtrees of G' in T((G' , 4)must have at least =/3
leaves, and since they are smaller than T((G' , 4), this contradicts the minimality of T((G' , 4). �

9These identities use the fact that � is derived from a non-degenerate network �∗ for )̂(�). In particular, every

mode in the network � is incident upon at least one non-socket vertex, hence all modes incident upon (' are

boundary modes in �′[('], and similarly for (� .
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Lemma 7.2. For every positive integer = ≥ 2, the socket-width of both the determinant and the permanent
of an = × = matrix is at least

( =
d=/3e

)
.

Proof. Let T( be a socket tree for the permanent, let 4 = {G' , G�} be an arbitrary edge in T(, and
let : = |!(G' , 4)| be the number of leaves in T((G' , 4). We now show that rk("(T( , 4)) ≥

(=
:

)
.

Recall that the sockets of T( are the = rows of the input matrix. Without loss of generality,

number the rows so that the leaves of T((G' , 4) are rows 1 to :, and the leaves of T((G� , 4) are
rows : + 1 to =. The rows of "(T( , 4) are indexed by a tuple 9' = (81 , . . . , 8:) ∈ [=]: , and the

columns are indexed by a tuple 9� = (8:+1 , . . . , 8=) ∈ [=]=−: . The entry of "(T( , 4) at position
(9' , 9�) is 1 if (81 , 82 , . . . , 8=) is a permutation. For any set* ∈

([=]
:

)
, let D1 < D2 < . . . < D: be the

elements of* in ascending order and define 9'(*) = (D1 , . . . , D:); let D:+1 < D:+2 < . . . < D= be

the elements of [=] \* in ascending order and define 9�(*) = (D:+1 , D:+2 , . . . , D=).
For*1 , *2 ∈

([=]
:

)
, the entry of"(T( , 4) at position (9'(*1), 9�(*2)) equals 1 if*1 = *2, and 0

otherwise. This induces a

(=
:

)
×

(=
:

)
identity submatrix of "(T( , 4), implying rk("(T( , 4)) ≥

(=
:

)
.

By Claim 7.1, T( has an edge 4 with =/3 ≤ : < 2=/3. For that edge, rk("(T( , 4)) ≥
(=
:

)
≥( =

d=/3e
)
, which completes the proof for the permanent.

For the determinant, the only change is that some entries of"(T( , 4) become −1 instead of 1,

but this only changes the identified submatrix from an identity matrix to a diagonal matrix and

in particular does not change its rank. �

The preceding proof is similar to a lower bound by Nisan ([76], Lemma 2) used to obtain

lower bounds for algebraic branching programs. But the lower bounds obtained there can be

made as sharp as Ω(2=) whereas in our setting, we cannot rule out the possibility of a tensor

network that avoids splitting the = variables in two approximately equal size parts. This means

that the best we can obtain with our current method is

( =
d=/3e

)
instead of

( =
=/2

)
.

7.2 %-linear forms

Suppose T( is a socket tree for a %-linear form for a :-uniform hypergraph % on E vertices. Recall

that the sockets of this form correspond to the elements of �(%) ⊆
([E]
:

)
. Given an edge 4 ∈ �(T()

and a vertex G ∈ +(T(), we write

*(G, 4) =
⋃

(∈!(G,4)
( ⊆ [E].

Claim 7.3. Let T( be a socket tree for the %-linear form of order =. Let 4 = {G' , G�} ∈ �(T() and
suppose |*(G� , 4) ∩*(G' , 4)| = D. Then the socket width of T( is at least F(T() ≥ =D .

Proof. Let < = =D . We show that rk("(T( , 4)) ≥ < by identifying an < × < identity submatrix

of "(T( , 4).
Define �' = { ((, 8) | ( ∈ !(G' , 4), 8 ∈ ( } to be the modes contained in the sockets on the G'

side of 4, and analogously �� = { ((, 8) | ( ∈ !(G� , 4), 8 ∈ ( }.
The rows of "(T( , 4) are indexed by �(�') and the columns are indexed by �(��). We will

consider an < × < submatrix of "(T( , 4) whose rows and columns are indexed by the elements
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� ∈∏
8∈�[=8]. More specifically, each row of the submatrix is indexed by 9' where 9' |((,8) = � | 8

for 8 ∈ �, and 9' |((,8) = 1 for 8 ∉ �. Each column is indexed by 9� where 9� |((,8) = � | 8 for 8 ∈ �
and 9� |((,8) = 1 for 8 ∉ �.

The value of the submatrix at position (9' , 9�) is 1 if there exists � ∈ ∏
8∈�[=8] such that

9' |((,8) = � | 8 and 9� |((,8) = � | 8 for all 8 ∈ � and 0 otherwise. We obtain an < × < identity matrix

as desired. �

From this claim, the branchwidth-based lower bound is immediate.

Lemma 7.4. For any hypergraph %, the socket width of the %-linear form of order = is at least =bw(%).

Proof. Any socket tree for a %-linear form can be directly viewed as a branch decomposition

of %. Thus, by definition every socket tree for the form has an edge 4 = {G' , G�} where

|*(G� , 4) ∩*(G' , 4)| ≥ bw(%), and the lemma now follows from Claim 7.3. �

For counting homomorphisms of hypergraph cliques, that is, the %-linear form for the

complete :-uniform hypergraph % =
([E]
:

)
on E vertices, we need the following simple lower

bound on the branchwidth of complete hypergraphs (which is most likely known, but we are

not aware of a reference).

Lemma 7.5. For E > : ≥ 3, the complete :-uniform hypergraph on E vertices has branchwidth E.

Proof. Let ) be an arbitrary branch decomposition of the hypergraph. We claim that there

always exists an edge 4∗ = {G∗
'
, G∗

�
} such that *(G∗

'
, 4∗) = *(G∗

�
, 4∗) = [E], implying that the

width of the decomposition is at least E. Towards establishing this claim, we first observe that

for every edge 4 = {G' , G�}, at least one of*(G' , 4) and*(G� , 4) is equal to [E]. Indeed, assume

towards contradiction that there is an edge 4 = {G' , G�} with 81 ∉ *(G' , 4) and 82 ∉ *(G� , 4) for
some not necessarily distinct 81 , 82 ∈ [E]. Since : ≥ 2, there exists an edge ( ⊇ {81 , 82}, and that

edge must appear in either T((G' , 4) or T((G� , 4), violating the assumption.

Now suppose for contradiction that the claim about the existence of 4∗ does not hold. Direct

each edge towards the subtree which covers [E] (which, by the observation above, always exists).

For example, if*(G' , 4) = [E] and*(G� , 4) ≠ [E] then 4 is directed towards G'.

Since a tree is acyclic, there must be some vertex G∗ such that all edges incident to G∗ are
directed towards G∗. The vertex G∗ cannot be a leaf, because the subtree consisting of a leaf

contains a single edge, which covers : < E elements. Thus G∗ has degree 3. Let the three edges

incident to G∗ be 41 = {G∗ , H1}, 42 = {G∗ , H2} and 43 = {G∗ , H3}. Since all the edges are directed
towards G∗ there are 81 , 82 , 83 ∈ [E] such that 81 ∉ ((H1 , 41), 82 ∉ ((H2 , 42) and 83 ∉ ((H3 , 43). Since
: ≥ 3 there exists an edge ( ⊇ {81 , 82 , 83}. But now the edge ( cannot appear in any of the

subtrees rooted at H1, H2, or H3. Since these three subtrees together cover all leaves, this yields

the desired contradiction and we conclude that there must exist an edge 4∗ = {G∗
'
, G∗

�
} such that

*(G∗
'
, 4∗) = *(G∗

�
, 4∗) = [E] and therefore the branchwidth is E. �

7.3 Kruskal operator

We say that an ℓ -linear Kruskal operator is =-uniform if the lengths of the modes satisfy

= = =1 = =2 = · · · = =ℓ .
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Lemma 7.6. For positive integers = and A, the socket-width of an =-uniform ℓ -linear Kruskal operator is
at least max

(
=ℓ , = dℓ/2eA

)
.

Proof. Let T( be an arbitrary socket tree for the operator. One of the leaves is the output socket

representing the tensor � of shape = × = × · · · × = (ℓ times) that is obtained by applying the

Kruskal operator to the input matrices �(8) of shape = × A, where 1 ≤ 8 ≤ ℓ .
Consider the neighbor G of the output socket. It has three neighbors: the output socket leaf,

and two other vertices G' and G� . Either the subtree rooted at G' or the one rooted at G� must

contain D ≥ dℓ/2e input sockets (since together they contain all ℓ input sockets). Let 4 be the

edge leading to that subtree.

We claim that rk("(T( , 4)) ≥ =DA. Suppose without loss of generality that the input sockets

�(1) , . . . , �(D) are in the subtree rooted at G', and that the input sockets �(D+1) , . . . , �(ℓ ) are in
the subtree rooted at G together with the output socket.

Each row of "(T( , 4) is indexed by sequences of 2D indices (81 , 91 , . . . , 8D , 9D) where each

8B ∈ [=] and each 9C ∈ [A]. Each column is indexed by a sequence of ℓ + 2(= − D) indices (8′
1
, . . . , 8′

ℓ
;

8D+1 , 9D+1 , . . . , 8ℓ , 9ℓ ) where each 8B , 8
′
B′ ∈ [=] and each 9C ∈ [A]. An entry of "(T( , 4) is 1 if and

only if 8′
1
= 81 , 8

′
2
= 82 , . . . , 8

′
ℓ
= 8ℓ , and 91 = 92 = . . . = 9ℓ .

For any 81 , . . . , 8D ∈ [=] and 9 ∈ [A], consider the row index (81 , 9 , 82 , 9 , . . . , 8D , 9) and the

column index (81 , 82 , . . . , 8D , 1, 1, . . . , 1; 1, 9 , 1, 9 , . . . , 1, 9). The =DA × =DA submatrix of "(T( , 4)
induced by these sets of row and column indices is the identity matrix, thus rk("(T( , 4)) ≥ =DA
as desired.

For the =ℓ lower bound, we instead consider the edge 4′ joining G with the output socket.

Now the rows are indexed by (81 , 91 , 82 , 92 , . . . , 8ℓ , 9ℓ ) and the columns by (8′
1
, . . . , 8′

ℓ
). The =ℓ × =ℓ

identity submatrix is obtained by taking for every 81 , . . . , 8ℓ ∈ [=], the row (81 , 1, 82 , 1, . . . , 8ℓ , 1)
and the column (81 , . . . , 8ℓ ). �

A Background on tensor networks

This appendix summarizes some results on tensor network contractions, minimum-cost exe-

cutions, and explains the connection between the Holant framework and tensor networks. In

the language of graphical models, computing the value of a tensor network is known as the

sum-product inference task and the results in Appendices A.1 and A.2 can be found in [62, Part

II].

A.1 Invariance property

In the following lemma, we will show that the tensor of a network is equal to the tensor of any

network that is obtained by a contraction from the original network. In particular, this implies

that any execution gives the same tensor.

Lemma A.1 (Invariance). Let � be a tensor network. For all nonempty , ⊆ +(�) it holds that
)(�) = )(�/,).
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Proof. Let , ⊆ +(�) be nonempty, let F be the vertex that replaces �[,] in �/, and let

8 ∈ �(�(�/,)) = �(�(�)). From (4.1), (4.2), and (4.3), it follows that

)(�/,)8 =
∑

9∈�(�(�/,)\�(�/,))

∏
E∈(+(�)\,)∪{F}

)(E)8 9

=
∑

9∈�(�(�/,)\�(�/,))
)(F)8 9

∏
E∈+(�)\,

)(E)8 9

=
∑

9∈�(�(�/,)\�(�))
)(�[,])8 9

∏
E∈+(�)\,

)(E)8 9

=
∑

9∈�(�(�/,)\�(�))

∑
9′∈�(�(�[,])\�(�[,]))

∏
F∈,

)(F)8 9 9′
∏

E∈+(�)\,
)(E)8 9

=
∑

9∈�(�(�/,)\�(�))

∑
9′∈�(�(�[,])\�(�[,]))

∏
E∈+(�)

)(E)8 9 9′

=
∑

9′′∈�(�(�)\�(�))

∏
E∈+(�)

)(E)8 9′′

= )(�)8 .

�

A.2 The structure of a minimum-cost execution

In this section, we analyze the structure of a minimum-cost execution. In particular, we prove

Lemma 4.1, which states that each contracted set has size at most two, and also show that one

can always contract adjacent vertices in a network.

Lemma A.2. Let � be a tensor network. There exists a minimum-cost execution of � such that each
contracted set has size at most two. Furthermore, if � is loopless, we can assume that each contracted set
has size exactly two.

Proof. If � contains loops, we may assume that a minimum-cost execution first removes all

the loops by contracting singleton vertices incident to loops. Indeed, the cost of contracting a

singleton vertex is the volume of the tensor associated to it. Since the result of an execution is

a single tensor, then every vertex has to be contained in a contracted set of an execution and

none of the hyperedges incident to a vertex can be removed before the vertex is contained in a

contracted set. Hence, the volume of any tensor in the tensor network is a lower bound for the

cost of any execution of � and we may contract singleton vertices.

So let us assume that � is loopless. Suppose that a minimum-cost execution of � contains

a contraction by a set, = {F1 , F2 , . . . , FB} of size at least B ≥ 3, and let F be the new vertex

after this contraction. Then we can replace the contraction by , with two contractions by

, ′ = {F1 , F2 , . . . , FB−1} and, ′′ = {F, FB} without increasing the cost of the execution. The

cost of contracting, ′ is less than or equal to the cost of contracting, , because every hyperedge
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incident to , ′ is also incident to , . The cost of contracting , ′′ is less than or equal to the

cost of contracting, , because the set of hyperedges incident to F is contained in the set of

hyperedges incident to, ′. We repeat this procedure until all contracted sets in the execution

have size at most two. �

Two tensors in a tensor network are called adjacent if they are incident to a common mode.

Lemma A.3 (Execution by contracting adjacent tensors). Let � be a loopless tensor network that is
connected as a hypergraph. Then, there exists a minimum-cost execution of � such that each contracted
set has size two and consists of adjacent vertices.

Proof. Consider a minimum-cost execution of � such that each contracted set has size two; such

an execution exists by Lemma A.2. If all contracted sets in the execution consist of adjacent

vertices, we are done. Otherwise, consider a contraction of two vertices, D and E, such that D

and E are not adjacent when they are contracted to yield the vertex DE. Consider the steps of

the execution after this contraction step. Let us call such a step a relevant step if it involves a

descendant of the vertex DE. Let us modify the execution as follows. First, delete the contraction

of D and E from the execution. Then, for each relevant step in execution order, replace the

descendant of the vertex DE with the current descendant of either D or E so that the contraction

becomes a contraction of adjacent vertices whenever possible. If the descendants of D and E

become adjacent after a relevant step, contract the descendants of D and E, and then continue

the execution without further changes. Since � is connected, the descendants of D and E must

eventually become adjacent.

We will show that this modification of the execution gives again an execution and that it has

cost no larger than the original minimum-cost execution. In the modification of the execution,

let the contraction sets containing D or a descendant of D and not containing a descendant of E

be {D, F1}, {DF1 , F2}, . . ., {DF1 . . . FB−1 , FB}; similarly, let the contraction sets containing E or a

descendant of E and not containing a descendant of D be {E, I1}, {EI1 , I2}, . . ., {EI1 . . . IC−1 , IC}.
Here F1 , . . . , FB , I1 , . . . , IC can be vertices of � or vertices obtained after contraction steps.

Contracting {DF1 . . . FB , EI1 . . . IC} gives the vertex DF1 . . . FBEI1 . . . IC , which appears also in

the original execution. Hence, after a certain number of steps the tensor networks in the

original execution and in the modification are the same (after making necessary non-relevant

contractions) and the modification of the original execution is also an execution.

First we consider the cost of contracting {DF1 . . . F8−1 , F8} in the modified execution

with 1 ≤ 8 ≤ B. There is a 9 satisfying 1 ≤ 9 ≤ C so that the original execution contracts

{DF1 . . . F8−1EI1 . . . I 9 , F8}. Then the cost of contracting {DF1 . . . F8−1 , F8} is at most the cost

of contracting {DF1 . . . F8−1EI1 . . . I 9 , F8}, because every hyperedge incident to the vertex

DF1 . . . F8−1 in the modified execution has to be incident to DF1 . . . F8−1EI1 . . . I 9 in the original

execution. Otherwise, there would be a hyperedge in � that is incident only to vertices in

{D, F1 , . . . , F8−1 , E, I1 , . . . , I 9}, and in particular both to vertices in {D, F1 , . . . , F8−1} and in

{E, I1 , . . . , I 9}. This is impossible, because then DF1 . . . F8−1 and EI1 . . . I 9 would be adjacent

vertices in the modified execution, but by assumption DF1 . . . FB and EI1 . . . IC are the first

adjacent descendants of D and E in the modified execution. Similarly, we can show that the cost
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of contracting {EI1 . . . I 9−1 , I 9} in the modified execution for 1 ≤ 9 ≤ C is less than the cost of

contracting a set in the original execution.

Second we consider the cost of contracting {DF1 . . . FB , EI1 . . . IC} in the modified execu-

tion. Without loss of generality, we can assume that in the original execution the vertex

DF1 . . . FBEI1 . . . IC is obtained from contracting {DF1 . . . FBEI1 . . . IC−1 , IC}. We will show that

the cost of contracting {DF1 . . . FB , EI1 . . . IC} in the modified execution is less than or equal

to the cost of contracting {DF1 . . . FBEI1 . . . IC−1 , IC} in the original execution. Indeed, every

hyperedge incident to DF1 . . . FB in the modified execution is incident to DF1 . . . FBEI1 . . . IC−1 in

the original execution, because otherwise there would be a hyperedge in � that is incident only

to vertices in {D, F1 , . . . , FB , E, I1 , . . . , IC−1}, and in particular both to vertices in {D, F1 , . . . , FB}
and {E, I1 , . . . , IC−1}. However, by assumption DF1 . . . FB and EI1 . . . IC are the first adjacent

descendants of D and E in the modified execution. Similarly, every hyperedge incident to

EI1 . . . IC in the modified execution is incident to DF1 . . . FBEI1 . . . IC−1 or IC in the original

execution, because otherwise there would be a hyperedge in � that is incident only to ver-

tices in {D, F1 , . . . , FB , E, I1 , . . . , IC−1}, and in particular both to vertices in {D, F1 , . . . , FB} and
{E, I1 , . . . , IC−1}. This contradicts that DF1 . . . FB and EI1 . . . IC are the first adjacent descendants

of D and E in the modified execution.

The modified execution consists of at least one less contraction of nonadjacent vertices.

Repeating this procedure until there are no contractions of nonadjacent vertices completes the

lemma. �

A.3 Holant framework

In this section, we elaborate on the connection between tensor networks and the Holant

framework. We follow the exposition in [25]. The main object of the Holant framework is a

signature grid. A signature grid is a triple Ω = (�, ℱ ,�), where � = (+, �) is an undirected

graph, ℱ is a set of functions and � assigns to each vertex E ∈ + a multivariate function 5E ∈ ℱ
with input variables corresponding to the edges incident to E and taking values in a finite set (.

The function 5E is called the signature of E. The edges of � are considered to be variables that

take values in the set (. An assignment � : �→ ( gives an evaluation

∏
E∈+ 5E(� |�(E)), where

�(E) is the set of edges incident to a vertex E. The Holant of a signature grid is the sum of these

evaluations over all the assignments �:

HolantΩ =
∑

�:�→(

∏
E∈+

5E(� |�(E)).

A generalization of a signature grid is an ℱ -gate that additionally allows dangling edges for

input and output variables.

Signature grids are special instances of tensor networkswith the restriction that all hyperedges

are of size two and the index sets associated to different edges are equal. Signature grids

correspond to tensor networks with empty boundary; ℱ -gates do not have the restriction. A

signature 5E associated to a vertex E in a signature grid corresponds precisely to a tensor )(E)
associated to a vertex E in a tensor network. The Holant of a signature grid is the same as the

value of the corresponding tensor network.
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