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ARTICLE

Nonlinear two-level dynamics of quantum time
crystals
S. Autti 1,2✉, P. J. Heikkinen 1,3, J. Nissinen1, J. T. Mäkinen 1, G. E. Volovik1,4, V. V. Zavyalov1,2 &

V. B. Eltsov 1

A time crystal is a macroscopic quantum system in periodic motion in its ground state. In our

experiments, two coupled time crystals consisting of spin-wave quasiparticles (magnons)

form a macroscopic two-level system. The two levels evolve in time as determined intrin-

sically by a nonlinear feedback, allowing us to construct spontaneous two-level dynamics. In

the course of a level crossing, magnons move from the ground level to the excited level driven

by the Landau-Zener effect, combined with Rabi population oscillations. We demonstrate that

magnon time crystals allow access to every aspect and detail of quantum-coherent inter-

actions in a single run of the experiment. Our work opens an outlook for the detection of

surface-bound Majorana fermions in the underlying superfluid system, and invites techno-

logical exploitation of coherent magnon phenomena – potentially even at room temperature.
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Perpetual ground state motion in equilibrium defines a time
crystal, but observing such motion is famously unfeasible1.
Experimental time crystal realisations thus bend either the

equilibrium2–4 or the perpetuity5–7 requirement, reaching stabi-
lity only if isolated from the environment and the observer1,8–10.
Consequentially, coupling separate time crystals while retaining
sufficient isolation is challenging, and time crystals have yet not
been studied in a dynamic environment. We arrange spontaneous
two-level dynamics of interacting time crystals, each consisting of
1012 magnons, in the superfluid B phase of 3He (3He-B). In this
system, the observable time crystal life time can be extended up to
a thousand seconds11 (109 periods of motion) in the absence of a
driving force, while the underlying superfluid system provides
intrinsic feedback for engineering coherent dynamics.

Magnons in 3He-B arise as the quanta of transverse spin waves,
associated with magnetisation that precesses about the external
magnetic field H. At sufficient magnon density and low enough
temperature, the precession synchronises spontaneously at uni-
form frequency ω and phase, forming a magnon Bose–Einstein
condensate12–14. The spontaneous synchronisation can be
demonstrated by pumping magnons to a higher energy level in
the confining trap from which they spontaneously fall to the
ground state5,15, or even by pumping incoherent magnons to the
system using a noise drive7,16. This shows that the magnon state
in the BEC is decoupled from the drive. The transverse spin
precession of the magnon condensate, therefore, manifests the
characteristic spontaneous periodic motion of a time crystal5,6.

The time crystal can be created using two different pumping
techniques. Using a continuous drive yields a Floquet (discrete)
time crystal. Here we use the pulsed technique where the drive is
turned off before the time crystal evolution begins. This approach
allows us to study uncontrived time crystal dynamics and inter-
actions in the absence of external enforcement. The time crystal
formation during the pumping pulse and its evolution thereafter
is characterised by two timescales. The first timescale τE ~ 0.1 s
describes the time crystal thermalisation17, that is, how quickly
the precession becomes coherent at the ground level in a trap,
following the pumping of magnons. The second timescale τN is
the time crystal lifetime. In an isolated sample container τN→∞
exponentially as temperature decreases. In practice there are also
losses in the circuit that is coupled to the precessing spins for
control and observation purposes. It is therefore necessary to
allow for a finite τN. The time crystal remains well defined as long
as τN≫ τE5,6.

In superfluid 3He, Cooper pairs possess orbital momentum
whose average distribution, parametrised by vector L, is axially
symmetric in the sample container (Fig. 1). The time crystal is
trapped in the middle of the superfluid sample by that distribu-
tion owing to spin-orbit interaction. We fine-tune the trap by
adding a magnetic field profile as detailed in Methods18–20. We
also place a free surface of the superfluid above the bulk trap
centre6. The free surface distorts the distribution of L as shown in
Fig. 2a, resulting in a second local minimum, located 3 mm above
the bulk trap minimum. Magnons can be trapped and form time
crystals in either of the traps or both of them simultaneously. In
this Article we concentrate on the lowest energy level in each trap.
We denote the time crystals “bulk” and “surface” corresponding
to the physical location. The location of a time crystal is identified
from experimental records by its response to changes in the
magnetic field profile6.

Let us denote the bulk time crystal population (that is, the
number of trapped magnons) NB and the surface population NS.
The bulk and surface precession frequencies (ωB, ωS) are deter-
mined by the profile of the confining trap, and the coupling Ω
between the crystals by the overlap of their wave functions, as
detailed in Methods. We will show that the dynamics of the

coupled levels are described by the macroscopic two-level
Hamiltonian

H ¼ _
ωB½NBðtÞ� �Ω

�Ω ωS

� �
; ð1Þ

where ℏ is the reduced Planck constant and t is time. Note that
this two-level system is conveniently parametrised by a macro-
scopic Bloch sphere (Fig. 2c) with the relative precession phase
between the time crystals corresponding to the azimuthal angle
and level populations corresponding to projection on the z axis,
in a direct analogy with the Bloch sphere description of micro-
scopic two-level systems such as qubits. In what follows we
measure all frequencies in the frame rotating at the Larmor fre-
quency ω0= ∣γH∣ taken at the centre of the bulk trap
(γ ≈−2⋅108rad s−1 T−1 is the 3He gyromagnetic ratio).

The essential difference of Eq. (1) from a standard two-level
Hamiltonian is the dependence ωB[NB(t)], which arises due to a
nonlinear feedback provided by the spin-orbit trap: a large local
magnon density expands the trap, changing the distribution of L,
thus decreasing ωB. This mechanism is extensively studied in
refs. 5,13,14,21, and the outcome is schematically illustrated in Fig. 2b.
Near the free surface the L distribution is fixed perpendicular to the
surface. Therefore ωS is constant to a good approximation. As the
time crystal populations decay, NB decreases and ωB increases. We
can thus make the energy levels in the double trap cross by selecting
suitable initial populations. A rigorous description of the macro-
scopic time crystal wave functions, the trapping potential, and the
feedback mechanism are derived in Methods. We emphasise that all
the relevant technical explanations can be found in Methods also
where not explicitly referenced.

We note that another characteristic feature of time crystals, the
lack of heating under continuous drive22, is also manifest in this
system. Under continuous pumping, the number of magnons in

Fig. 1 Schematic illustration of the experiment. The superfluid 3He sample
is contained in a quartz glass cylinder. The magnon time crystal (blue blob)
is trapped in the middle of the container by the combined effect of a
minimum in the static magnetic field, created using a pinch coil (green wire
loop), and by the spatial distribution of the superfluid orbital momentum
L (small green arrows). The coherent precession of magnetisation
M (magenta cone) in the time crystal is observed using transverse pick-up
coils. The static magnetic field H is oriented parallel to the axis of the
cylinder. The ripple on the superfluid free surface is added for illustrational
purposes. The two-level time crystal is schematically illustrated in Fig. 2.
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the time crystal is determined by the chemical potential that
corresponds to the pumping frequency (see Methods). When this
number would be exceeded, the time crystal spontaneously
decouples from the drive13, thus preventing overheating. Simi-
larily, during the slow population decrease after a pumping pulse,
the chemical potential (precession frequency) is continuously
adjusted to the changing magnon number21. Hence, the preces-
sion period and coherence become incommensurate with and
thus independent of the drive pulse even if the drive was ori-
ginally resonant.

In this Article, we study the dynamics of the two-level time
crystal system, carrying out two experiments. In the first
experiment, where the level crossing takes place at small NB, we
showcase crossing dynamics that follow the textbook description:
the system is initially in the ground state, but at an avoided level
crossing both levels are populated owing to Landau-Zener
population transfer. This “superposition” state continues to be
modified by Rabi population oscillations after the crossing. The
second experiment starts from a “superposition”, the level
crossing takes place at large NB where the feedback mechanism
transforms into dynamically changing coupling Ω. Analysis of the
second experiment shows that co-existing time crystals lay many-
body interactions bare for the capable observer in a single run of
the experiment. That is, in this case, the level crossing dynamics
cannot be described analytically, but while coherent quantum
phenomena are often hidden from direct inspection, time crystals
have no such limitations.

Results
Basic two-level dynamics at small NB. The time crystal levels can
be populated in desired proportion by a radio-frequency pulse via
adjacent coils (Fig. 1). To highlight the two-level dynamics, we
populate only the bulk time crystal in the beginning of the
experiment shown in Fig. 3a. After the pulse, the coherent pre-
cession of magnetisation induces an oscillating signal in the coils,
which allows inferring the precession frequency, and the signal
amplitude yields the magnon number. These quantities are
extracted from the experiment in Fig. 4. The pumping is followed
by exponential decay of NBðtÞ ¼ NBðt ¼ 0Þ expð�t=τBÞ with time
constant τB, controlled by temperature as detailed in Methods.

In Fig. 3, the ground level is initially located in the bulk trap,
NB decays at a rate determined by τB, and ωB increases slowly as
the trap recovers a narrower shape. Meanwhile, ωS remains
constant. Hence, ωB eventually crosses ωS before levelling out. In

a coupled two-level system, a level crossing has specific
consequences: The observed frequencies are the (dressed)
eigenfrequencies of the Hamiltonian which deviate from the
undressed frequencies ωB, ωS in the Rabi regime Ω > ∣ωB − ωS∣.
Due to this hybridisation, the observed levels avoid crossing each
other, and the global ground level smoothly switches from bulk to

a b c

Fig. 2 Time crystal two-level system. a The distribution of L (green arrows) confines magnons in two local minima, hosting two adjacent time crystals: one
in the bulk of the superfluid (blue blob) and the other one touching the free surface (red blob). In each time crystal, magnetisation is precessing coherently,
which couples to measurement circuitry as shown in Fig. 1. b Magnons in the bulk modify the confining trap created by the L distribution. When the bulk
population is large (cyan blob), the textural trap is widened (red arrows), which modifies also surface time crystal’s wave function (magenta blob). This
increases the coupling between the states. Changes in the trap and the wave functions have been exaggerated for illustrational purposes. c The state of the
two-level system (red arrow) can be illustrated using a Bloch sphere where radial distance corresponds to magnon number NB+ NS, the relative phase
between the time crystals’ precession corresponds to the azimuthal angle ϕ, and the polar angle θ describes the relative weights of the two-level basis
states in the “superposition” (see Methods).
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Fig. 3 Two-level time crystal dynamics at small NB. a The signal from the
pick-up coils, analysed with windowed Fourier transformation (FT), shows the
bulk time crystal as a moving sharp peak. Frequency is plotted in the rotating
frame Δω=ω−ω0. The excitation pulse at t=0 is framed out for clarity.
Initially ωB <ωS, but as the population in the bulk trap decays, at t= 3.3 s, the
global ground state moves to the surface in an avoided crossing. The excited
state, now located in the bulk, is simultaneously populated. Rabi (Josephson)
population oscillations are seen as a side band. Coupling extracted from the
side band extrapolates to Ω/(2π)= 1.7 ± 0.4Hz at the crossing, in good
agreement with the fitted simulation value Ω/(2π)≈ 1.4Hz. b The numerical
simulation recreates the population transfer and the side band, confirming
that the population transfer is due to Landau-Zener transition (analysis in
Fig. 4). In the absence of measurement noise also the side band of the surface
time trace is weakly visible. c Subtracting the simulation from the experiment
shows that the point-wise residuals remain smaller than 5%. The relative
difference is normalised by the total signal at the crossing. In this
measurement temperature was 180 μK and ω0/(2π)= 833 kHz.
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surface (from ωB to ωS) as seen in Fig. 3a. Population transfer
between the levels is also observed, as both of the levels are
populated after the avoided crossing.

Traversing the avoided crossing adiabatically would allow
the entire magnon population to follow the global ground state,
but here some magnons move to the state with higher
eigenenergy (precession frequency). This process is generally
known as Landau–Zener–Stueckelberg–Majorana tunnelling,
or Landau–Zener tunnelling. The population transferred
depends on the rate of level crossing d∣ωS− ωB∣/dt at ωB = ωS.
For usual coupled non-linear oscillators with damping, the
crossing rate is determined directly by the damping. Here the
decay rate τB = 3.5 s corresponds to d∣ωB[NB(t)]/(2π)∣/dt ~
24 Hz s−1. Using this and the coupling directly extracted from
the experiment as explained below yields the predicted
Landau–Zener population transfer fraction 0.9% to the excited
state, which is two orders of magnitude smaller than that
observed in the experiment. In this case, only one of the two
levels would be visible in Fig. 3a after the crossing. In similar
experimental runs with smaller d∣ωS − ωB∣/dt we have
observed population transfer up to 20 orders of magnitude
larger than the corresponding Landau-Zener prediction.

We can analyse this striking mismatch by simulating the time
evolution of the two-level Hamiltonian numerically. We feed the
experimentally-determined bulk and surface decay rates, τB and
τS, the corresponding initial populations, and the measured
ωB[NB] dependence to a numerical simulation of the two-level

Hamiltonian (see Methods). The coupling constant Ω is used as a
fitting parameter yielding Ω/(2π)= 1.4 Hz.

The outcome of the simulation, plotted in the same way as
the experimental signal, is shown in Fig. 3b. We can directly
compare it with the experiment by subtracting the simulated
time-dependent Fourier spectrum from the experimental one
(Fig. 3c). The simulation underestimates the change of the surface
time crystal frequency near the crossing as shown in Fig. 4a,b,
which causes the largest deviation between the Fourier spectra.
Otherwise the typical deviation between the two signals, as
normalised by the total signal at the crossing, is less than 5%. In
particular, the simulation replicates the magnitude of the
population transfer, that is, 60% of magnons move to the excited
state. The simulated population dynamics are compared directly
with the measured signal in Fig. 4c. We emphasise that repeated
runs of the simulation with perturbed input parameters reveal
that this qualitative level of population transfer is insensitive to
the precise value of any of the input parameters.

To explain this observation, we extract the undressed
frequencies from the simulation in the region near the avoided
crossing (Fig. 4b). As a result of the feedback ωB(NB), the bulk
frequency is changing both owing to the slow decay of NB and
because of the population transfer from NB to NS by Rabi
oscillations. Thus, their combined effect increases the crossing
rate d∣ωS−ωB∣/dt. The magnitude of the Landau-Zener popula-
tion transfer is determined within ~50 ms of the crossing23, and
in this window ωB(t) can be linearised. Inserting the accelerated

0 2 4 6
time (s)

10-2

10-1

100

N
).

mron(

3 3.2 3.4 3.6 3.8 4 4.2
time (s)

0

0.5

1

1.5

N
(n

or
m

.)

0 2 4 6
time (s)

100

120

140

160

180

200

/(
2

)z
H(

)

simulation

experiment

3 3.2 3.4 3.6 3.8 4 4.2
time (s)

160

165

170

175

180

185

190

/(
2

)
(H

z)

dc

a b

NB

NS

NB
0

dressed states undressed states

Fig. 4 Analysis of two-level dynamics at small NB. a The dressed ground level time crystal frequency in the simulation (thin magenta line) follows that
extracted from the experiment (thick black line). The experimental line is obtained by tracing the maximum in the Fourier spectrum shown in Fig. 3
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Oscillations of the frequencies after the crossing arise owing to the population oscillations. b We can hence use the simulation to extract the undressed
frequencies ωB (thick red line) and ωS (thin blue line), which cross at t= 3.3 s (dotted vertical line). The crossing rate d∣ωS−ωB∣/dt≈ dωB/dt is accelerated
intrinsically by the feedback ωB(NB), as illustrated by the different slopes of the dash-dotted and dashed red lines. The Landau-Zener population transfer
magnitude is determined by this speed-up. Frequencies are plotted in the rotating frame Δω=ω−ω0. The corresponding populations are shown in the
panels below: c The measured signal amplitude (ground level - thick black line, excited state - dotted thick dark red line) agrees with the simulated dressed
populations (ground level - thin magenta line, excited state-thin cyan line). Both the total population from simulation and the measured signal are
normalised to one at the crossing, and the filling factors applied for comparison in Fig. 3 (see Methods) are not used here. d The undressed populations NB

(thick red line) and NS (thin blue line) are extracted from the simulation. The total population is normalised to one at the crossing. The black line shows the
bulk population with the exponential decay compensated, N0

B ¼ NB expðt=τBÞ=NBðt ¼ 0Þ. After the crossing, the compensated bulk population averages at
N0
B ¼ 0:61 (horizontal dash line), corresponding to the fraction of population transferred to the excited state by the Landau-Zener mechanism.
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crossing rate to the Landau-Zener formula yields the expected
population transfer of 61%, in good agreement with the simulated
population transfer, 60% (Fig. 4d). That is, the population
transfer follows the Landau-Zener description with the crossing
rate taken at the instant of level crossing. Note that the Landau-
Zener description is thus valid even if the crossing rate is
regulated by intrinsic feedback. We conclude that the observed
population transfer strongly supports the two-level interpretation
of the time-crystal dynamics.

Far from the avoided crossing, the two-level interaction is
characterised by AC Josephson population oscillations between the
levels6. Owing to the feedback in the bulk trap, the oscillations result
in a side band that follows the bulk trace. The frequency of the
population oscillations is set by the difference of the time crystal
precession frequencies, equal to the difference of their chemical
potentials6. Thus, the side band is separated from the bulk trace by
∣ωB−ωS∣, as seen in Fig. 3a (see derivation in Methods). The
amplitude of the population oscillations is determined by the
coupling Ω, and the relative side band amplitude by the slope of
ωB(NB) (formulas are given in Methods). Thus, we can extract the
coupling directly from the experimental data, yielding Ω/
(2π)= 1.7 ± 0.4Hz in the level crossing region, in good agreement
with the simulation fitted value Ω/(2π)= 1.4 Hz.

Put together, the Josephon population oscillations, the
Landau–Zener population transfer, and the agreement on the
two-level coupling independently extracted from the different

aspects of the population dynamics confirm that the two-time
crystals form a macroscopic two-level system.

Dynamical coupling regime at large NB. Magnon time crystal
dynamics, enhanced by the nonlinear feedback, can be analysed
also directly without resorting to a numerical simulation of the
system. This is advantageous as it will allow untangling interac-
tions involving multiple time crystals that go beyond the two-
level description. As a simple demonstration of this capability, we
introduce a level crossing in a region where NB is an order of
magnitude larger than above. The resulting trap modification
affects not only ωB(NB) but also the constriction between the time
crystals, as sketched in Fig. 2b. This causes the coupling Ω to
change dynamically in the course of the crossing. Both levels are
populated in the beginning of the experiment (Fig. 5a) to allow
following their dynamics directly.

In this experiment the coupling is changing, but qualitatively
the dynamics follow a similar pattern as above: The ground state
moves from bulk to surface when the undressed frequencies cross
at t ≈ 3.8 s (Fig. 5b). The moment of the crossing is identified by a
sharp increase in the ground state trace relaxation rate from
τ�1
B ¼ 0:06 s�1 to τ�1

S ¼ 0:53 s�1 (Fig. 5c). The increase is
attributed to increased dissipation in the surface trap due to
surface-mediated emission of other spin wave modes24 and
potentially surface-bound Majorana states25,26, but a detailed

Fig. 5 Two-level time crystal with dynamic coupling at large NB. a The time crystals are created at t= 0. Frequencies are plotted in the rotating frame
Δω=ω − ω0. b Initially the ground level (black line) is located in the bulk and the excited level (solid green line) at the surface. At t ≈ 3.8 s (vertical dash
lines), the ground level moves smoothly to the surface in an avoided crossing. Dotted green line shows a linear interpolation of the excited-state frequency
at the crossing. c Most of the population follows the ground level (black line) movement from bulk to surface, identified by a sharp increase in the
exponential relaxation rate τ (fitted dash lines and values marked in the figure). Total population is normalised to one at the crossing. d Population
oscillations between the time crystals are seen as a side-band of the bulk crystal trace in panel a at frequency ωside band. The side band’s frequency
separation from the bulk trace, ∣ωB − ωside band∣ (solid black line), is equal to the frequency separation of the main traces, ∣ωB − ωS∣ (magenta dash line).
e The coupling Ω can be extracted from the side band and main trace amplitudes, in good agreement with that estimated by linear interpolation from the
separation of the main traces in panel b (horizontal dash line). In this measurement, temperature was 150 μK and ω0/(2π)= 624 kHz.
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study is left for the future. We note that the states can be
identified also by adjusting the magnetic field profile and
rerunning the experiment; the relaxation rate is a convenient
shortcut for distinguishing the two levels.

Josephson population oscillations between the two time
crystals are seen as the side band that follows the bulk time
crystal trace. As explained above, the side band is separated from
the bulk trace by ∣ωB − ωS∣. This separation is characteristic of the
Josephson effect, and it changes in time because ωB changes, as
shown in Fig. 5d. The surface time crystal is not followed by a
similar side band, because the surface trap is rigid and hence
population oscillations result in no side bands (see Methods). A
second bulk trace side band should be located symmetrically on
the other side of the bulk trace, but it exactly coincides with the
surface trace and is therefore not resolvable.

The side band amplitude allows us to extract the coupling
between the time crystals (Fig. 5e). The extracted coupling is the
largest in the beginning of the experiment and decreases when NB

decreases. That is, the constriction between the time crystals is
affected by the bulk trap modification (Fig. 2b), which makes the
coupling larger when NB is large. This is qualitatively in line with
the trap modification mechanism discussed in refs. 13,14,21.

Near the avoided crossing interference effects prohibit direct
access to the population oscillation in the experiment. However,
in a two-level system the coupling can also be extracted from the
minimum frequency separation of the dressed frequencies of the
two levels at the avoided crossing, which is equal to 2Ω. This is
done by interpolation in Fig. 5a. The result is shown by the
horizontal line in Fig. 5e, in good agreement with the dependence
extracted from the side bands. Note that near the avoided
crossing the separation of the dressed (observed) frequencies
equal to the difference between the Josephson frequency and the
Rabi frequency. That is, Rabi population oscillations smoothly
replace the Josephson oscillations, increasing the population
oscillation frequency as compared with the Josephson frequency,
which goes to zero.

It is worth noting that the relaxation rate of the bulk time
crystal depends on whether it is the global ground state or the
global excited state. In Fig. 5c the bulk relaxation time is τ�1

B ¼
0:06 s�1 until the level crossing (ground state), and it increases to
τ�1
B ¼ 0:2 s�1 after the level crossing (excited state). The same
observation, correspondingly, applies to the surface time crystal
relaxation rates. We emphasise that such change is never
observed in the absence of the level crossing, for example, if the
bulk time crystal is the ground state throughout the experiment.
That is, the excited state seems to slowly leak magnons to the
ground state. This observation hints that there is an additional
incoherent channel that allows magnons to move from the
excited state to the ground state, showing independently that the
two time crystals interact and that the level crossing has physical
consequences that penetrate the dynamics in the two-level
system.

The above analysis confirms that the two-level description is
valid and robust against dynamic variation its parameters, and
that direct experimental observations provide continuous access
to all relevant aspects of the interaction.

Discussion
To summarise, we have shown that the dynamics and interactions
of the two adjacent magnon time crystals are quantitatively
described by a two-level Hamiltonian. The levels are modified by
a nonlinear feedback, arising owing to spin-orbit interaction in
the underlying superfluid system. This allows engineering
intrinsic time crystal dynamics in the absence of continuous
external drive. We show that when the two-level eigenfrequencies

approach one another, the coupling between the levels results in
an avoided crossing with ensuing Landau-Zener population
transfer from the global ground state to the excited state. Rabi
population oscillations, combined with the feedback mechanism,
increase the population transfer by orders of magnitude. This is
quantified by comparing numerically simulated population
dynamics with the experiments. We also show that all relevant
observables and parameters including the eigenfrequencies and
the coupling between the time crystals can be simultaneously
extracted from the experiment. We emphasise that each mea-
surement sequence shown in this Article corresponds to a single
run of the experiment, but the phenomena are well reproducible.

We have shown that the spin-orbit interaction can be har-
nessed to create a nonlinear feedback for magnons in a coherent
time crystal system. Nonlinear feedback is needed for spin-based
versions of quintessential quantum devices such as the SQUID. It
remains an interesting task to explore the time-crystal two-level
system further by demonstrating parametric pumping of mag-
nons and logic gate operations between the two levels. For
example, parametric pumping can be arranged by modulating the
magnetic part of the trap at frequency Ω. Additionally, any
number of co-existing time crystals can be accommodated in a
magnetic landscape to increase the number of degrees of freedom,
and the flexible trap can be turned off by adjusting the external
magnetic field. These are important capabilities for realising
magnon-based devices27–32. To access phenomena such as
quantum entanglement, few-magnon operations can be imple-
mented using nano-fluidic confinement and ultra-sensitive NMR
techniques33,34. We emphasise that similar physical phenomena
including quasiparticle Bose-Einstein condensation and the
emergence of time crystals can be accessed in certain solid-state
room-temperature systems, for example based on magnons in
YIG films35–42. This opens the outlook of quasiparticle-based
coherent on-chip applications in ambient conditions, including
coherent quantum information processing27,28,30–32,39.

The three-dimensional topological superfluid is wrapped by a
two-dimensional system of surface-bound quasiparticles, among
them Majorana fermions43–49. At the free surface there are no
impurities (unlike at sample container walls), and surface-bound
Majorana fermions are expected to manifest themselves as
detectable zero-temperature magnetic dissipation25,26. Majorana
fermions have remained elusive despite a decade of searching in
different condensed matter systems50. The hybridised two-level
state is in direct contact with the free surface of the superfluid,
making and extremely sensitive probe for the bound Majorana
states. We have provided preliminary evidence that the surface
induces magnetic dissipation and that details of this signature can
be explored using the time-crystal two-level system.

Methods
Experiment. The superfluid 3He sample is placed in a cylindrical quartz-glass
container (15 cm long, 6 mm diameter) in a nuclear demagnetisation refrigerator
(Fig. 1). The lower end of the sample container connects to a volume of sintered
silver powder surfaces, thermally linked to the nuclear refrigerant. This allows
cooling the 3He down to 130 μK. Temperature of the superfluid is measured using
a quartz tuning fork51,52, and pressure is equal to saturated vapour pressure, which
is vanishingly small at these low temperatures. The superfluid transition tem-
perature at saturated vapour pressure is Tc ≈ 0.9 mK. The sample container is
surrounded by two transverse NMR coils, which are part of a tank circuit resonator
with Q ≈ 150, and a pinch coil used to create an axial minimum of the magnetic
field. The resonance frequency of the tank circuit can be tuned in eight equidistant
steps between 550 kHz and 833 kHz, corresponding to external magnetic fields
between 16.5 mT and 25mT. The signal is amplified by a cold preamplifier53 and
room temperature amplifiers.

The free surface is located 3 mm above the centre of the magnetic field
minimum. The location of the free surface is adjusted by removing 3He slowly until
the desired location is achieved, measuring the pressure of 3He gas in a calibrated
volume that results from the removal of liquid from the originally fully filled
sample container. The outcome is favourably compared with the observed magnon
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spectrum and a numerical model of the trap. The resulting two traps for magnons
are detailed in the next Section.

The time crystal wave function can be written as Ψ= ae−iωt, where t is time, ω
is the precession frequency related to the chemical potential μ= ℏω, the phase term
eiφ is contained in a, and the number of magnons N= ∣a∣2. The tipping angle of the
precessing magnetisation βM, measured from the magnetic field H, parametrises

the spatial profile of the wave function, N ¼ jaj2 / R
sin2 βM

2 dV . The signal
induced in the pick-up coils (Fig. 1) is sinusoidal, corresponding to the
magnetisation along the axis of the NMR coil, or in other words, real part of the
rotating complex wave function, e−iωt. The measured signal amplitude is
proportional to the amplitude of the time crystal wave function,

A ¼ c
ffiffiffiffi
N

p
; ð2Þ

where c contains the so-called filling factor of the state within the NMR coils, the
amplification provided by the tank circuit resonator and other amplifiers in the
measurement circuit53, and physical constants20,21.

A desired level in the trap can be populated by a radio-frequency pulse via the pick-
up coils, followed by slow population decay owing to two mechanisms: The fermionic
thermal excitations of the superfluid cause non-hydrodynamic spin diffusion18. This
contribution can be made exponentially small in the zero-temperature limit (1000 s life
time has been achieved11) or dominant at higher temperatures. Observing and
controlling the quasi-perpetual time crystal motion inevitably causes also external
dissipation,54 in our case radiation losses in the measurement circuitry18. Both of these
dissipation mechanisms cause exponential population decay in time, in combination
described by time constant τN. The time crystals are well defined provided the life time,
which here is τN ~ 10 s, is much longer than the time it takes for the time crystal to
form after the pulse (here τE ~ 0.1 s)5,6.

The two level system, in the absence of coupling between the states, is described
by the “superposition” wave function Ψ ¼ b e�iωB t þ s e�iωS t , where b ¼ ffiffiffiffiffiffi

NB
p

e�iφB

and s ¼ ffiffiffiffiffiffi
NS

p
e�iφS . Only the relative phase enters the dynamics of the system.

Hence, b can be chosen to be real, and the combination b, s conveniently illustrated
by a macroscopic Bloch sphere (Fig. 2c): The surface corresponds to states with
total magnon number N0= ∣b∣2 + ∣s∣2=NB+NS, and the interior to smaller
magnon numbers reached during the population decay. The weights of the basis
states in the superposition, that is, the fraction of the total population in the bulk
(surface) state is given by the polar angle θ with NB ¼ N0 cosðθ=2Þ
(NS ¼ N0 sinðθ=2Þ). The relative phase ϕ corresponds to the azimuthal angle in the
x-y plane of the sphere. It evolves in time according to

ϕ ¼ φB � φS þ
Z t

0
ðωB � ωSÞdt: ð3Þ

We note that controlling the relative phase is beyond the scope of the present
work and requires adjusting the NMR coil geometry.

Level dynamics in a flexible trap. 3He-B is a p-wave superfluid, hence, the orbital
momentum of the Cooper pairs is equal to one. In the sample container cylinder,
the average orbital momentum L is distributed symmetrically (“texture”, Fig. 1)
owing to the orienting effects of the magnetic field and the container walls. In
addition, we create an axial minimum of H using a pinch coil, which confines the
magnons due to the Zeeman energy. The bulk trapping potential U(r)=UH+UL

therefore has a magnetic part,

UH ¼ _ω0ðrÞ ; ð4Þ
and a component created by the L distribution owing to the spin-orbit interaction

UL ¼ _
4Ω2

B

5ω0
sin2ðβLðrÞ=2Þ : ð5Þ

Here ω0(r)= ∣γH(r)∣ is the local Larmor frequency which depends on position
r, ΩB is the B-phase Leggett frequency, γ ≈ −2⋅108rad s−1 T−1 is the gyromagnetic
ratio of 3He, and the order parameter distribution is parametrised by the tipping
angle of the orbital anisotropy axis, βL(r), measured from the direction of the
magnetic field H, oriented along the cylinder axis.

Bringing the free surface above the trap centre distorts the order-parameter trap
as βL= 0 at the free surface, creating a local minimum at the surface. Note that we
study the time crystals in a frame rotating at the Larmor frequency ω0 where the
uniform magnetic field is absent. Where the notation ω0 is used without an explicit
reference to position, this means Larmor frequency in the middle of the bulk trap,
corresponding to the minimum of the harmonic trapping potential. The time
crystals located in the two traps can be identified and their frequencies adjusted by
changing the profile of the field minimum, aided by the different relaxation rates.
Below we concentrate on studying the feedback created by the flexible bulk trap.

The harmonic bulk trap has a radial trapping frequency ωr/(2π) ~ 200 Hz
corresponding to UL and an axial trapping frequency ωz/(2π) ~ 20 Hz
corresponding to UH. The resulting precession frequency is ω0+ ωr+ ωz/2.
Therefore the axial trap can be neglected in the below analysis. It is thus convenient
to measure all frequencies in the frame rotating at ω0. A more detailed analysis of
the bulk trap can be found in refs. 18–20.

The textural part of the trapping potential feels local magnon density due to
spin-orbit interaction: The equilibrium texture minimises a range of free-energy
contributions, including the orienting effects of the magnetic field and the sample
container walls55. An important additional contribution is the spin-orbit
interaction energy

Fso ¼ jΨðrÞj2UL ; ð6Þ
where ΨðrÞ / sin2βM=2 contains the spatial variation of magnon density which
gives rise to the feedback effect. That is, the bulk trap profile and the shape of the
time crystal wave function depend on NB so that dωB/dNB < 0. In the limit of large
magnon number the bulk trapping frequency follows13

ωBðNBÞ ¼ �ωBð1� kNp
BÞ ð7Þ

Here k > 0 depends on the rigidity of the textural trap and the profile of the
magnetic field minimum, p ≈ 5/7,13 and �ωB stands for the time crystal trapping
frequency in the limit of zero magnons. We emphasise that although ωB changes
during the decay of the magnon time crystal, the change is very slow as compared
with ω0/(2π) ~ 1MHz, and we can thus assume that the wave functions always
correspond to the instantaneous trap shape21. Note that the surface trap is
rigidified by the adjacency of the free surface, and ωS is therefore independent of NS

to a good approximation.
It is possible to describe the self-trapping effect numerically in a self-consistent

calculation of the order parameter texture55,56, the resulting trap20, the time crystal
wave function13,14,21,57, and population decay18,19,24,58. That is however not
necessary for understanding the experiments presented in this Article, because
finding a general form of Eq. (7) can be circumvented by fitting and numerical
differentiation of the experimental data where necessary, and all other effects can
be measured independently. For simplicity, we refer to Eq. (7) in the below
discussion, but the reader should bear in mind that the general form of the
nonlinearity is more complicated.

Josephson coupling. Let us study the observable consequences of the population
oscillation. We use the language of the Josephson effect, analogous to the AC
Josephson effect6, as the oscillation amplitude can only be reliably extracted from
the experiment far from the avoided crossing. Near the avoided crossing one
should use the more general Rabi oscillation picture.

The amplitude of the AC Josephson population oscillation is

ΔNB ¼ Ω
ffiffiffiffiffiffiffiffiffiffiffiffi
NBNS

p
jωB � ωSj

: ð8Þ

Here Ω is the coupling, and ΔNB≡−ΔNS. The Josephson frequency is
ωJ= ∣ωB − ωS∣. This oscillation modulates the bulk condensate frequency ωB as
follows from the self-trapping Eq. (7). The frequency modulation (FM) is
sinusoidal to a good approximation. This is because the amplitude of the
population oscillation is small as compared with the total population, and Eq. (7)
can be linearised.

The resulting instantaneous bulk time crystal frequency ~ωB can be written as

~ωBðtÞ ¼ ωBðNBÞ þ ΔωB cos½ðωBðNBÞ � ωSÞt�: ð9Þ
Here ΔωB is the FM amplitude. It is connected to the population oscillation

amplitude ΔNB by

ΔωB ¼ ΔNB dωBðNBÞ=dNB: ð10Þ
Fourier decomposition of the resulting frequency-modulated signal yields

AðnÞ
B ¼ JnðΔωB=ðωB � ωSÞÞje�iðωBþnðωB�ωSÞÞt j ð11Þ

Here Jn is the Bessel function of the first kind of order n. The bulk main trace
corresponds to n= 0. Combining the above expressions, and denoting the first side
band (∣n∣= 1) amplitude as ASB, the coupling term can be linearised and expressed
in quantities that can be directly measured:

Ω ¼ 2ASBðωB � ωSÞ2
A2
BAS dωBðABÞ=dA2

B

ð12Þ

Here we assumed that the filling factors of the bulk and surface states in Eq. (2) are
equal and constant. Where the time crystal shapes are changing due to changes in
the trap profile, the coupling extracted using the above expression is therefore only
approximate.

The side band of the bulk time crystal is seen in Fourier analysis of the
experimental signal (Fig. 5d). The coupling extracted from this record using
Eq. (12) extrapolates to Ω/(2π) ≈ 1.7 Hz at the crossing, in good agreement with the
fitted simulation value Ω/(2π) ≈ 1.4 Hz. Note that there should be another side
band symmetrically at lower frequency than the bulk trace, but it is covered by the
surface trace at exactly the same frequency.

The surface trap is only weakly modified in similar fashion, yielding no visible
side bands in the experiment. That is, the AC Josephson effect in a fully rigid trap
results in no side bands owing to complex interference of the two wave functions.
This can be confirmed by solving the dynamics of the rigid non-decaying coupled
system analytically. We used this result to test the validity of the numerical
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simulation discussed below. Note that Ref. 6 misleadingly implies that population
oscillations directly cause the side bands even in the absence of nonlinear feedback.

Near the avoided crossing one should use the more general Rabi oscillation
picture. Solving for the eigenfrequencies of the Hamiltonian in the Rabi regime

yields the Rabi frequency ωR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωB � ωSÞ2 þ ð2ΩÞ2

q
. In the limit Ω≪ ∣ωB− ωS∣

this is reduced to ωR= ωJ. The region where ωR ≠ ωJ is not directly visible in the
experiments due to interference effects.

Landau–Zener tunnelling. In the presence of exponential population dissipation,
the time crystal population follows

NαðtÞ ¼ Nαðt ¼ 0Þe�2t=τα ; ð13Þ

where 1/τα is the relaxation rate of the measured signal (2), and α is either B for the
bulk or S for surface. For the surface time crystal this makes little difference other
than that the population decays slowly. The bulk time crystal frequency ωB depends
on NB according to Eq. (7), and the frequency therefore increases during the decay.
Hence, we have obtained the flexible two-level system described by the
Hamiltonian (1).

Let us choose ωB(NB= 0) >ωS and NB(t= 0) such that ωB(NB(t= 0)) <ωS. Now
the frequencies of the surface and bulk time crystals will cross in the eigenbasis where
Ω= 0. If Ω > 0 and NB decreases adiabatically, magnons in the bulk trap will smoothly
move to the surface trap, remaining in the global ground state in an avoided crossing.
The minimum frequency separation of the global ground state and the excited state at
the avoided crossing is 2Ω, as can be solved from the Hamiltonian.

If the avoided crossing is passed non-adiabatically, a part of the ground state
magnon population moves to the excited state. This phenomenon is known as the
Landau–Zener–Stueckelberg–Majorana effect. In our case this means that after the
avoided crossing some population remains in the bulk trap, which corresponds to
the new excited state in the system. The fraction of population promoted to the
excited state is59

δn ¼ exp � 2πΩ2

j∂tðωB � ωSÞj

� �
; ð14Þ

where ∂t stands for time derivative. Note that while in the canonical Landau-Zener
problem the time derivative is constant, in our case it keeps changing. However, the
magnitude of the Landau-Zener population transfer is determined within a time
window �1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij∂tðωB � ωSÞj
p

of the level crossing23 (≲100ms wide in our
experiment). Therefore, ωB(t) can be linearised, or in other words, the time derivative
taken at the avoided crossing gives the correct Landau-Zener population transfer.

Numerical simulation. The time crystal two-level Hamiltonian can be combined
with the slow decay into a pair of equations:

i∂tΨB ¼ ðωBðNBÞ � i τ�1
B ÞΨB � ΩΨS ð15Þ

i∂tΨS ¼ ðωS � i τ�1
S ÞΨS �ΩΨB: ð16Þ

Here the right hand side corresponds to the Hamiltonian (1), and i is the
complex unit. This pair of equations can be solved numerically. Our main
motivation for the numerical simulation is to show that the simple two-level
Hamiltonian describes the dynamics of the system exhaustively, that is, that the
large population transfer is explained by the intrinsic dynamics of the two-level
Hamiltonian. The most important test for this picture is the avoided crossing and
the related population transfer. Reproducing the Rabi oscillations that result in a
frequency-modulation of the time crystal frequencies is a secondary test.

The initial time crystal wave functions, the time crystal decay rates, and the bulk
trap self-trapping power law, Eq. (7), can be extracted from experimental data
independently and used as the parameters of the numerical simulation. The
coupling Ω at the avoided crossing cannot be directly extracted from the
experiment, and is used as a fitting parameter. To compare with the measured
signal we also need the filling factors cα. They are used as fitting parameters as well.

We note that to reproduce the experimental signals in general, three additional
effects need to be included in the simulation: (i) The surface time crystal frequency
depends on the population in the bulk trap and (ii) also on the population in the
surface trap; ωS= ωS(NB,NS). (iii) Both τB and τS change at the avoided crossing,
and to allow for this transition to take place smoothly, we use a smooth
interpolation function between the asymptotic relaxation rates in the Rabi regime
with the width of the crossing region being another fitting parameter with value
~Ω−1. Effect (i) is due to the widening of the constriction that separates the time
crystals (Fig. 2). This connection is included in the simulation, and it is seen as a
decrease of ωS in Fig. 4a at t < 1 s, where bulk population is large and surface
population negligible. However, this effect can be safely neglected in the analysis of
the Landau–Zener effect in Fig. 3, because the avoided crossing takes place at small
NB. The second dependence (ii) is what produces the frequency-oscillations of the
magenta line in Fig. 4c. Both effects can be extracted from experimental data
independently.

Data availability
The data used in this study are available in the Zenodo database under accession code
https://doi.org/10.5281/zenodo.6510863.

Code availability
The simulation codes and guidance in their use are available from the corresponding
author upon reasonable request.
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