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Abstract: The objective of this study is to investigate the potential of novel neural network architec-
tures for measuring the quality and quantity parameters of silage grass swards, using drone RGB
and hyperspectral images (HSI), and compare the results with the random forest (RF) method and
handcrafted features. The parameters included fresh and dry biomass (FY, DMY), the digestibility of
organic matter in dry matter (D-value), neutral detergent fiber (NDF), indigestible neutral detergent
fiber (iNDF), water-soluble carbohydrates (WSC), nitrogen concentration (Ncont) and nitrogen up-
take (NU); datasets from spring and summer growth were used. Deep pre-trained neural network
architectures, the VGG16 and the Vision Transformer (ViT), and simple 2D and 3D convolutional
neural networks (CNN) were studied. In most cases, the neural networks outperformed RF. The
normalized root-mean-square errors (NRMSE) of the best models were for FY 19% (2104 kg/ha), DMY
21% (512 kg DM/ha), D-value 1.2% (8.6 g/kg DM), iNDF 12% (5.1 g/kg DM), NDF 1.1% (6.2 g/kg
DM), WSC 10% (10.5 g/kg DM), Ncont 9% (2 g N/kg DM), and NU 22% (11.9 N kg/ha) using
independent test dataset. The RGB data provided good results, particularly for the FY, DMY, WSC
and NU. The HSI datasets provided advantages for some parameters. The ViT and VGG provided
the best results with the RGB data, whereas the simple 3D-CNN was the most consistent with the
HSI data.

Keywords: drone; remote sensing; hyperspectral; RGB; CNN; image transformer; silage production;
grass sward

1. Introduction

Timely estimates of grass sward biomass quantity and quality parameters are needed
to produce high-quality feed for animals in dairy and beef production systems. Grasses
accumulate biomass rapidly, especially in spring and summer, when approaching the
optimal harvest time, which is accompanied by a rapid decrease in the digestibility of
biomass [1,2]. Services based on weather data-based grass growth models with or without
additional sampling of grass quality are provided for farmers to help in silage sward
harvest time optimization (example of services: http://www.vallprognos.se/, http://
www.karpe.fi/darvoennuste.php, accessed on 29 May 2022). Equations of one D-value
prediction model are described, and its shortages are discussed by Hyrkäs et al. [3]. One
main shortage is that the service models do not consider many factors affecting grass sward
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yield quantity and quality, such as fertilizer application, age of stand and variability of
edaphic factors within a field. Site-specific information of the grass sward biomass quantity
and quality within a field would facilitate site-specific management of silage production.
Currently, farmers optimize the timing of harvest by using visual approximation of sward
growth stage (laborious on larger scale, prone to subjectivity), laboratory analyses of
samples (delayed results) and D-value prediction models available online (inaccurate).
Remote sensing of grass yield quantity and quality with drones and satellites opens up
new possibilities to improve efficiency and accuracy of making timely decisions on optimal
harvest times, and new envisioned online harvest optimization tools could utilize the best
features of these approaches and scale those cost-effectively to cover larger geographical
areas and different production systems.

Interest in utilizing satellite and drone remote sensing to support automated precision
farming is growing rapidly. In drone applications, spectral imaging using hyper- and multi-
spectral cameras equipped with specially designed spectral filters and RGB imaging using
regular cameras [4] are potential technologies for vegetation remote sensing. Compared to
hyper- and multispectral cameras, the advantages of regular RGB cameras include their
high spatial resolution and signal-to-noise ratio; their potential disadvantage is the reduced
spectral resolution. Furthermore, low-cost RGB cameras enable the implementation of
cost-efficient monitoring solutions. Most grass-related studies have used multispectral or
RGB cameras.

Machine learning analytics are the foundation for utilizing drones in precision agricul-
ture. Various supervised techniques have been used to estimate grass quality and quantity
parameters from drone imagery. Early studies used various indices and linear estimation
techniques [5,6]. Machine learning-based approaches have evolved afterwards [7–11]; they
extract various structural and/or spectral features from the remote sensing datasets to
optimize the models so that they provide the best fit between the features and references.

Recently, deep learning technologies have revolutionized the performance of machine
learning analytics. Conventional methods, such as Random Forest (RF) and support vector
machines (SVM), use predefined handcrafted features for classification or regression tasks.
Deep learning methods learn useful features from the data [12]. Deep neural networks
(DNNs) are neural networks with several layers of trainable weights. Convolutional neural
networks (CNNs) are neural networks with convolutional layers that are often used in
image recognition and classification tasks [13]. The use of DNNs for regression from images
has been reviewed by Lathuilière et al. [14]. Deep learning for aerial remote sensing data
classification and segmentation has been reviewed by [15–18]. Usually, in image recognition
tasks, 2D convolutional filters that operate in the spatial dimension are used in CNN. Often,
remote sensing data is acquired with spectral sensors using more than three channels;
for them, 3D-CNNs containing 3D convolutional filters take advantage of both spatial
and spectral dimensions in hyperspectral data [19]. Vision transformers are new types of
DNNs without convolutional layers [20]. Recently, transformers have been successfully
used in remote sensing data classification [21,22]. Deep learning requires large training
datasets to make the models reliable. Pretrained deep learning models are often designed
for image classification and the pretraining datasets consist of millions of hand-annotated
RGB images of objects. In transfer learning, the knowledge (i.e., model parameters) gained
from the classification of big datasets is used or fine-tuned by additional training for other
tasks, obtaining improved results [23,24].

Deep learning in vegetation remote sensing has been reviewed by Kattenborn et al. [25],
in agriculture by Kamilaris and Prenafeta-Boldú [26] and in UAV remote sensing by
Osco et al. [27]. RGB UAV images and DNNs for regression have been used for forage
grass biomass [28], winter wheat biomass [29], and Guineagrass dry matter yield [30]
estimation. RGB and 3D information were used in plant species cover fraction estimation
in [31]. Yang et al. [32] used RGB and multispectral images to estimate rice grain yield.

Previous studies have shown that it is possible to estimate plants’ quality parameters
along with biomass or yield. Dvorak et al. [33] estimated the yield and nutritive value
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of alfalfa throughout its growth cycle using photogrammetric point clouds; parameters
included acid detergent fiber (ADF), neutral detergent fiber (NDF), and crude protein (CP).
Gruner et al. [34] developed models for aboveground biomass and NFix estimation for two
legume-grass mixtures through a whole vegetation period based on UAV multispectral
data using partial least squares regression (PLSR) and RF regression. Wijesingha et al. [10]
developed models for CP and ADF for multiple grassland types using UAV-borne imag-
ing spectroscopy. Askari et al. [35] obtained good results for the prediction of biomass
and CP using multi-spectral UAV images and PLSR and multilinear regression (MLR).
Oliveira et al. [11] used RF and MLR to estimate the fresh and dry biomass, i.e., fresh
yield (FY) and dry matter yield (DMY) and five different quality parameters: digestibility
of organic matter in dry matter (the D-value), NDF, indigestible neutral detergent fiber
(iNDF), water-soluble carbohydrates (WSC), and the nitrogen concentration (Ncont) in
dry matter (CP = 6.25 × Ncont [36]) and nitrogen uptake (NU); this dataset will be further
investigated in this study.

Recent studies have shown that DNNs outperform classical machine learning algo-
rithms in quantity parameter estimation [26,29]. To investigate the performance of DNNs
in grass quality parameter estimation, we studied various neural network architectures for
estimating both the quantity and quality parameters of silage grass swards using drone
RGB and hyperspectral images (HSI). Simple 2D- and 3D-CNNs trained from scratch and
two different types of deep pretrained models, the VGGNet [37] and the Vision Trans-
former [20], were studied. Our primary objective was to compare their performance with
the results of classical machine learning with handcrafted features. Our further objective
was to compare the performance of the low-cost RGB camera and hyperspectral camera,
as well as to study the advantages of utilizing dense photogrammetric point clouds. To
efficiently compare DNN and classical remote sensing methods, we used the same dataset
as in an earlier study [11].

2. Materials and Methods
2.1. Test Area and References

The study areas were located in the municipality of Jokioinen in southwest Finland
(approximately 60◦48′N, 23◦30′E) (Figure 1). The datasets were captured in the spring
growth (referred to as primary growth, PG) and summer growth (referred to as regrowth,
RG) phases in summer 2017. The grass field for the primary growth training was a second-
year timothy meadow fescue (Phleum pratense and Lolium pratense) ley, which was managed
as a silage production sward in 2016. The grass fields for testing the primary growth
estimation models and for training and testing the regrowth models were located approxi-
mately 1.2 km from the primary growth training area. The sward was a second-year sward,
established on the 2nd of June in 2015, with a seed mixture composed of 67% timothy fescue
and 33% tall fescue. However, the stand composition was nearly pure timothy in 2017.

The primary growth training dataset included a total of 96 sample plots, which
consisted of four replicates, six nitrogen fertilizer levels (0, 50, 75, 100, 125 and 150 kg ha−1)
and four harvesting/measuring dates (6th, 15th, 19th and 28th of June). The regrowth
datasets were obtained from a field in which primary growth was harvested for silage
on 19 June. There were 108 sample plots with nine different nitrogen application rates or
sources (0–150 kg N ha−1), 4 replicates and three harvest dates (25th of July and 1st and
15th of August). Independent areas were used for testing. The sizes of harvested samples
varied in different areas, as discussed in Section 2.2. Details of the materials are given
in [9,11].

Various parameters were measured from the harvested datasets, including FY, DMY,
D-value, NDF, iNDF, WSC, Ncont and NU (see [11]). The reference data statistics are
presented in Table 1.
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Table 1. Reference data statistics for the primary growth (PG) and regrowth (RG) training and
testing datasets: fresh and dry biomass (FY, DMY), the digestibility of organic matter in dry matter
(D-value), neutral detergent fiber (NDF), indigestible neutral detergent fiber (iNDF), water-soluble
carbohydrates (WSC), and the nitrogen concentration (Ncont) in dry matter and nitrogen uptake (NU).

FY (kg/ha) DMY
(kg DM/ha)

D-Value
(g/kg DM)

iNDF
(g/kg DM)

NDF
(g/kg DM)

WSC
(g/kg DM)

Ncont
(g N/kg DM)

NU
(N kg/ha)

PG Train

Mean 11,046.0 2652.6 710.1 62.0 537.8 138.8 22.1 53.6
Min 1022.2 336.0 632.0 11.0 435.0 76.0 11.8 7.6
Max 25,459.3 6135.1 770.0 128.0 614.0 246.0 40.8 105.7
Std 6955.0 1578.8 39.7 31.8 56.1 42.2 7.6 26.7

PG Test

Mean 11,205.7 2408.4 720.8 41.4 591.0 108.4 21.7 54.4
Min 4796.2 1255.9 708.0 29.0 573.0 79.0 16.0 21.1
Max 18,783.5 3822.4 741.0 49.0 605.0 160.0 27.8 104.0
Std 4440.3 816.3 11.8 5.6 10.5 31.4 4.3 26.0

RG train

Mean 16,658.3 3542.9 689.6 65.9 546.0 137.1 20.2 70.5
Min 1379.3 368.0 618.0 13.0 426.0 50.0 13.0 7.5
Max 32,390.6 7228.7 756.0 137.0 612.0 294.0 33.1 132.9
Std 8043.4 1611.1 34.4 30.5 44.4 64.4 4.9 32.3

RG test

Mean 17,144.0 3898.6 677.4 81.0 530.5 141.6 20.3 76.5
Min 7843.1 2073.3 631.0 57.0 464.0 89.0 14.7 37.8
Max 27,911.1 7346.0 714.0 111.0 575.0 207.0 28.5 104.9
Std 7259.5 1621.7 28.6 18.6 36.6 50.4 5.0 27.4

2.2. Drone Remote Sensing Datasets

A Gryphon Dynamics quadcopter drone was used to collect remote sensing datasets.
Two cameras were operated onboard, the 36.4 megapixel Sony A7R (RGB) camera (Sony
Corporation, Minato, Tokyo, Japan) with a Sony FE 35 mm f/2.8 ZA Carl Zeiss Sonnar T*
lens (Sony Corporation, Minato, Tokyo, Japan) and the Fabry Pérot (FPI) hyperspectral
2D frame camera (the prototype FPI2012b) with an image size of 1024 × 648 pixels and
36 bands in the range of 500–900 nm. Datasets were collected under varying conditions
using flight heights of 30 and 50 m. Photogrammetric processing was carried out using
Agisoft PhotoScan Professional software (version 1.3.4, Agisoft LLC, St. Petersburg, Russia).
For the FPI images, the in-house georeferencing, radiometric and orthomosaic processing
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pipeline was used [38,39]. Orthophoto mosaics with ground sampling distances (GSDs) of
0.8 cm and 4 cm for the RGB and HSI, respectively, were created. Reflectance calibration
was carried out for the HSI, and the RGB datasets were used with and without reflectance
calibration. Point clouds were extracted from the RGB images and used to generate digital
surface models (DSM) and digital terrain models (DTM), which were employed to calculate
the canopy height models (CHM) of the study areas. The details of the processing are given
by Viljanen et al. [9] and Oliveira et al. [11].

For machine learning, the following remote sensing data combinations were used:
RGB, RGB + CHM, RGB_Refl, HSI and HSI + CHM. The reflectance calibrated RGB mosaic
(RGB_Refl) is an additional dataset to the previous paper [11]. Images of 1 m × 1 m sub-
plots of the harvested sample plots were cropped to create the training/validation and
testing datasets. For the primary growth, the training/validation set included 192 images
of 1 m × 1 m (96 harvested samples of size of 1.5 m × 2.6 m) and the test set included
104 images of 1 m × 1 m (8 harvested samples of size of 1.5 m × 12.6 to 13.4 m). For
the regrowth, the training/validation set included 216 images (108 harvested samples
of size of 1.5 m × 3 m) and the test set included 2392 sub-images (covering an area of
23 m × 13 m from 8 plots of size of approximately 30 m × 30 m). The same reference value
was given as the reference value to each sub-image. The input image size of 1 m × 1 m
was used to normalize the input data and to avoid potential problems of varying sizes
of the reference plots; this is also a representative resolution to be used in the real farm
application. The diversity of the training sample was increased by data augmentation
during the training phase. The numbers of training and testing samples are summarized
in Table 2 and examples of harvested samples of training and testing datasets and their
splitting into sub-images are shown in Figure 1.

Table 2. Summary of the training and testing data.

Training Testing

Sample Plots 1 m × 1 m Plots Sample Plots 1 m × 1 m Plots

Primary growth 96 192 8 104
Regrowth 108 216 8 2392

2.3. Neural Network Architectures for Estimating Grass Quality and Quantity Parameters

Methods for tackling limited training datasets in deep learning include transfer learn-
ing using pretrained models, data augmentation and using simpler models. Strategies for
transfer learning are either using the pretrained network as a feature extractor and only
changing the last classification layer or finetuning the parameters of the entire network. In
this study, finetuning was selected instead of freezing as the transfer learning method, since
the grass image data is very different from the image recognition problem. By changing the
last model layer to have only one output, the model predicts a single value and can be used
for regression instead of classification. Four different models were selected for this study:
VGGNet and Vision Transformer (ViT), which represent very deep neural networks as well
as in-house designed 2D- and 3D-CNN architectures. We conducted a preliminary study
with various DNN architectures available in PyTorch or timm and concluded that the VGG
and ViT represented well the CNN and transformer-based approaches. The simpler 2D-
and 3D-CNN architectures were used to provide reference to the pretrained models.

VGGNet is a very deep convolutional neural network developed for large-scale image
recognition [37]. It has been used in numerous studies since its publication in 2014. It is
available with different numbers of layers. In this study, we used VGG16 (referred to as
VGG in this paper) with batch normalization pretrained using the ImageNet 21k set [40].
VGG16 has 16 weight layers (13 convolution layers and 3 fully connected layers). The
number of trainable parameters is very large, over 134 million. VGG16 for regression was
thoroughly analyzed by Lathuilière et al. [14]. In a previous study, a pretrained VGGNet11
showed good performance [28].
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ViT [20] is a recent deep learning architecture for image recognition tasks that does
not include convolutional filters; rather, it is based on self-attention-based Transformers
used in natural language processing. Images are split into patches and a sequence of linear
embeddings from flattened patches is fed into a Transformer Encoder. They require even
bigger training datasets than deep CNNs, but outstanding results have been reported
in image recognition tasks [20] and many pretrained models are available. In this study,
we used a small ViT, ViT-S, with 16 patches and an image size of 224 [41]. It consists of
12 transformer encoder blocks with 6 attention heads and has an embedding dimension
of 384. The number of parameters was 22 million. The model was also pretrained on the
ImageNet dataset.

In addition, simpler 2D-CNN and 3D-CNN models with a lower number of trainable
parameters were trained from scratch. These models consist of three 2D or 3D convolutional
layers and two fully connected layers (Table 3). The 2D-CNN had ~200,000 parameters and
3D-CNN ~300,000 parameters. The 3D-CNN model was used for the HSI datasets only. In
the additional test for the RGB reflectance data, only 2D-CNN and VGG were trained.

Table 3. Examples of simple 2D and 3D convolutional neural network (CNN) layers and layer output
sizes used in this study. The inputs for this 3D-CNN are hyperspectral image and canopy height
model (HSI + CHM) data cubes. K = Kernel, S = Stride, F = Filters, BN = Batch Normalization.

2D-CNN 3D-CNN (37 Input Channels)

Layer K S F Output Layer K S F Output

Conv2D 3 × 3 1 32 32, 125, 125 Conv3D 3 × 3 × 3 1 32 32, 37, 125, 125
BN2D 32, 125, 125 BN3D 32, 37, 125, 125
ReLU 32, 125, 125 ReLU 32, 37, 125, 125

MaxPool2D 2 × 2 2 32, 62, 62 MaxPool3D 2 × 2 × 2 2 32, 18, 62, 62

Conv2D 3 × 3 1 64 64, 62, 62 Conv3D 3 × 3 × 3 1 64 64, 18, 62, 62
BN2D 64, 62, 62 BN3D 64, 18, 62, 62
ReLU 64, 62, 62 ReLU 64, 18, 62, 62

MaxPool2D 2 × 2 2 64, 31, 31 MaxPool3D 2 × 2 × 2 2 64, 9, 31, 31

Conv2D 3 × 3 1 64 64, 31, 31 Conv3D 3 × 3 × 3 1 64 64, 9, 31, 31
BN2D 64, 31, 31 BN3D 64, 9, 31, 31
ReLU 64, 31, 31 ReLU 64, 9, 31, 31

AdaptiveAvgPool2D 64, 6, 6 AdaptiveAvgPool3D 64, 3, 3, 3

Linear 64 Linear 64
ReLU 64 ReLU 64

Dropout 64 Dropout 64
Linear 1 Linear 1

The models were implemented using PyTorch and timm (PyTorch image models)
Python libraries. The number of input channels was changed to match the number of
channels in input data: 3 (RGB, RGB_Refl), 4 (RGB + CHM), 36 (HSI), and 37 (HSI + CHM).
Pre-trained weights were only available for 3 channels, and for models with more input
channels, the weights from channels 1–3 were repeatedly copied over the rest of the
channels. In the timm library, the last layers of the VGG and ViT models are linear layers.

The image sizes of the georeferenced 1 m× 1 m subplots were approximately 25× 25 pixels
(HSI) and 125 × 125 (RGB, CHM) pixels. All images were scaled to the ImageNet size of
224× 224 pixels for the pretrained VGG and ViT networks and to 125× 125 pixels for the 2D-
and 3D-CNN networks using the nearest neighbor resampling. Data cubes for the four
input data combinations were stacked from the input data. Labels (reference measurements)
were min–max normalized to values between 0 and 1. The range from 0 to 1 was also
used for the remote sensing datasets; the RGB images were scaled from the range 0–255 to
0–1, the initial metric scale was used for the CHM, the initial reflectance scale was used
for the HSI images, the RGB_Refl values were very small (mostly less than 0.1) and were
therefore scaled between 0 and 1. The same scaling factor was used for all bands of the
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dataset, keeping the initial band ratios. The training dataset was split into training (80%)
and validation (20%) sets during the training phase. The test set was used only in the
performance evaluation.

We selected the final hyperparameters for the experiment based on the validation
results after several tests. AdamW optimizer [42] with a learning rate of 0.0001 (all except
ViT, 0.00001) and a weight decay of 0.01 was used in the training. In AdamW, weight decay
is a regularization term, which reduces the risk of overfitting. For the training, we used
the MSE cost function. The training batch size was 32. The deep pretrained models were
trained for 100 epochs and the simple models for 300 epochs. For each epoch, the diversity
of the training data was increased by using data augmentations, which included random
horizontal flip and random rotation between −180 and 180 degrees. The experiments were
conducted on the NVIDIA Quadro RTX 6000 GPU.

2.4. Performance Assessment

The training was repeated 5 times with different fixed random seeds to study the
stability of the models. In each run, the weights for the epoch that yielded the best validation
accuracy were used for testing the final models. The final predictions for the test plots were
determined as the mean of the predictions for 1 m × 1 m subplots of each test plot. The
median, minimum and maximum root-mean-square error (RMSE) and normalized RMSE
(NRMSE) were calculated from the estimation errors:

NRMSE = 100%×
(√∑n

i=1(xi − yi)
2

n
)
/y = 100%× RMSE/y, (1)

where xi is the predicted and yi is the reference value of test plot i, y is the average of
reference values, and n is the number of samples. In addition, the Scott–Knott test for
means [43,44] was used for the NRMSEs to rank the models and to find the best model or
models when a single model was not statistically superior.

The coefficient of variation (CV) for the NRMSEs of the five runs was used as an
indicator of the stability of the models. Modeling quality was also evaluated using the
Pearson correlation coefficient (PCC). The results from the DNN and CNN models were
compared to the RF results (Table 4) from a previous study by Oliveira et al. [11]. The RF
models for different parameters were trained using different combinations of RGB, HSI,
multispectral (MS) and CHM 3D features. RGB and HSI features included spectral bands
and several handcrafted vegetation and spectral indexes. The MS features were vegetation
indices using two spectral bands of the hyperspectral camera with the RGB dataset.

Table 4. Normalized root-mean-square errors (NRMSEs) for the Random Forest models for different
parameters trained using 3D structural features from the CHM (3D) as well as spectral bands (_b)
and vegetation indices (_i) extracted from hyperspectral (HS) and RGB images [11].

Random Forest FY DMY D-Value iNDF NDF WSC Ncont NU

Primary Growth NRMSE%

3D + RGB_b + RGB_i 40.8 50.6 5.3 99.8 6.7 35.8 17.2 25.5
3D + RGB_b+ RGB_i + MS_i 24.1 35.7 4.0 78.4 6.7 37.9 12.5 19.0

HS_b + HS_i 36.8 31.6 1.4 37.8 12.9 39.9 19.7 31.3
3D + HS_b + HS_i 20.8 23.0 2.8 67.0 9.3 41.8 17.8 31.2

Regrowth NRMSE%

3D + RGB_b + RGB_i 36.4 27.8 2.5 24.2 4.2 32.6 24.6 34.5
3D + RGB_b+ RGB_i + MS_i 26.6 25.9 2.8 27.0 3.6 17.0 19.0 26.3

HS_b + HS_i 29.2 30.7 4.9 41.4 4.0 28.4 14.0 29.3
3D + HS_b + HS_i 30.6 30.8 4.9 41.2 2.5 26.8 13.5 30.4
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3. Results

All results are presented in Figures 2–10. NRMSE (%) for each data combination and
DNN and comparison to RF is presented in Figures 2–7. The PCC, RMSE and CV values
are presented in Figure 8. Observed vs. predicted values for five runs for the models with
the lowest median RMSE are plotted for each parameter in Figures 9 and 10. The best
models according to the Scott–Knott test are listed in Table 5. In the following, the results
are described for each parameter separately.

3.1. Fresh and Dry Matter Yield Estimation

In general, the pretrained RGB VGG and ViT models provided very good estimation
accuracies for FY and DMY. The best models according to the Scott–Knott test (Table 5)
were the RGB VGG and RGB_refl VGG for the primary growth FY (NRMSE 18.8% and
19.6%, PCC 0.89 and 0.87), RGB_refl VGG for the primary growth DMY (NRMSE 21.2%,
PCC 0.79), HSI + CHM 3D-CNN for the regrowth FY (NRMSE 24.7%, PCC 0.94), and
RGB + CHM ViT for the regrowth DMY (NRMSE 24.6%, PCC 0.90). However, for regrowth,
the results of the HSI 3D-CNN and RGB + CHM VGG and ViT models were at a similar
level (Figure 2).

Considering the impact of CHM, the HSI models improved when the CHM was
included in the estimation. In the case of the RGB image-based models, the use of CHM
was advantageous with the regrowth data.

Most models outperformed the RGB + CHM RF, but only a few outperformed the
best RF results that were obtained with 3D + HSI features for primary growth and
3D + RGB + MS features for regrowth [11]. It is noteworthy that the results with the RGB
dataset with VGG and ViT were close to or even better than the best results of the RF
estimators with the HSI or MS data (Figure 2).

It is also notable that the simple 2D-CNN produced very unstable results for the
primary growth RGB data. The variation of the NRMSEs was generally less than 10%;
however, some higher values were obtained with the primary growth FY (Figure 8, NRMSE
CV). It can be observed that each model produced very similar FY and DMY estimates,
which is an indication of the consistency of the models. For the best-performing models,
the FY estimates were slightly more accurate than the DMY estimates, which is consistent
with the expectations.

3.2. D-Value

For the D-value, the best models (Table 5) were RGB_Refl VGG and RGB + CHM ViT
for primary growth (NRMSE 1.2% and 1.2%, PCC 0.82 and 0.82) and RGB + CHM ViT for
regrowth (NRMSE 2.5%, PCC 0.91). In general, the CHM improved the results.

For primary growth, all DNNs provided median NRMSE around 2% or better, which
is close to the best results with the RF with the HSI bands and indexes. For regrowth,
the D-value NRMSE was 2.5–6%, which was worse than the results of the best RF mod-
els (Figure 3). The NRMSE CVs were in most cases 10–20%, indicating relatively good
repeatability (Figure 8, NRMSE CV).

3.3. NDF and iNDF

The PCCs were low for NDF and iNDF, especially for the primary growth data
(Figure 8). For regrowth, however, acceptable results were obtained with some models.
For primary growth, the best models (Table 5) were the RGB_Refl VGG (NRMSE 12.3%,
PCC 0.40) for iNDF and the HSI + CHM VGG for NDF (NRMSE 1.1%, PCC 0.81). For
the regrowth iNDF, all models with RGB data provided good results and the best model
was the RGB + CHM ViT (NRMSE 14.4%, PCC 0.91). For the regrowth NDF, the models
with HSI data provided the best results; the best was the HSI + CHM 2D-CNN (NRMSE
4.2%, PCC 0.88). The CHM improved the results for the primary growth NDF and the
regrowth iNDF.
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HSI + CHM model. RFL is the reflectance-calibrated RGB data. The best RF model is the result with
the best feature combination, including any of RGB, CHM, HS and MS features [11].
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Figure 3. The DNN results for the 5 runs (median (x), min and max NRMSE (%)) and comparison to
RF results [11] for D-value. RGB+ is the RGB + CHM and HSI+ is the HSI + CHM model. The best
RF model is the result with the best feature combination, including any of RGB, CHM, HS and MS
features [11]. In (b), the best RF is RGB + RF.
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The DNNs outperformed the RF NRMSE, except for the regrowth NDF (Figure 4).
There was some variability in the NRMSEs, especially for primary growth; in the above-
mentioned best cases, they varied between 5–25% (Figure 8, NRMSE CV).

3.4. WSC

The PCC values indicated good performance of the estimators (Figure 8). Particularly,
the 3D-CNNs with the HSI data were consistent in all cases; the best models (Table 5) were
HSI + CHM 3D-CNN for primary growth (NRMSE 9.7%, PCC 0.98) and the HSI VGG for
regrowth (NRMSE 20.2%, PCC 0.90). In general, the HSI data performed well, but good
results were also obtained with RGB data using VGG and ViT. The CHM improved the
results for only a few models.

All DNN models outperformed RF models for the primary growth data and the
primary growth results were better than the regrowth results. In the case of the regrowth
data, the best RF models (RGB + CHM + MS features) outperformed the DNN models, but
the DNNs outperformed the RF models with RGB data (Figure 5).

The variability of the NRMSEs was mostly 10–20% for the primary growth and 5–10%
for the regrowth (Figure 8, NRMSE CV).
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MS features [11]. Note that in (b,c), the best RF is RGB + RF. In (a), RGB+ RF is too high for the range.
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3.5. Ncont

One of the biggest improvements of all parameters in comparison to RF was obtained
for the Ncont parameter but only for some models. In general, the HSI + CHM 2D- and
3D-CNN models performed well. The best models (Table 5) were HSI + CHM 3D-CNN
for primary growth (NRMSE 9.1%, PCC 0.96) and HSI + CHM 3D-CNN for regrowth
(NRMSE 10.1%, PCC 0.95). The VGG and ViT RGB models provided better results with the
regrowth data than with primary growth data. The CHM clearly improved the estimation
results for the HSI data. RGB-only models were worse than HSI, especially for the regrowth
data (Figure 6).

The NRMSEs of the best models outperformed or were at the same level as the best
RF results (Figure 6), but for them considerable variation of approximately 20–30% can be
observed in the NRMSE (Figure 8, NRMSE CV). However, there are also good models with
a CV value below 10%, e.g., 2D- and 3D-CNN models for HSI + CHM for the regrowth data.
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3.6. NU

The best models (Table 5) were HSI 3D-CNN for primary growth (NRMSE 21.9%, PCC
0.89) and HSI + CHM 2D- and 3D-CNN for regrowth data (NRMSE 23.5% and 24.1%, PCC
0.90 and 0.97). For primary growth data, RGB DNNs also produced good results, and
for regrowth, practically all models provided satisfactory results, excluding HSI ViT and
HSI + CHM ViT. In general, the 2D- and 3D-CNNs were good with the HSI. It also seems
that the CHM slightly improved the results for regrowth data but reduced the accuracy
with the primary growth data.

The RF appeared to provide better NRMSEs than the evaluated neural networks in
the primary growth NU estimation, whereas the DNNs achieved results comparable to the
best RF results with the regrowth data (Figure 7). The variation in NRMSEs for the best
models was less than 10% (Figure 8, NRMSE CV).
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Figure 9. Primary growth observed (measured) vs. predicted (estimated) parameters for the best
median RMSE models for (a) FY; (b) DMY; (c) D-value; (d) iNDF; (e) NDF; (f) WSC; (g) Ncont; (h) NU;
each for 5 runs of the models.
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for 5 runs (presented by colors) of the models.
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Table 5. The best DNN model(s) for each dataset according to the Scott–Knott test.

Primary Growth Regrowth

FY VGG RGB, VGG RGB_Refl 3D HSI + CHM
DMY VGG RGB ViT RGB + CHM

D-value ViT RGB + CHM, VGG RGB_Refl ViT RGB + CHM
iNDF VGG RGB_Refl ViT RGB + CHM
NDF VGG HSI + CHM 2D HSI + CHM
WSC 3D HSI + CHM VGG HSI
Ncont 3D HSI + CHM 3D HSI + CHM

NU 3D HSI 2D HSI + CHM, 3D HSI + CHM

4. Discussion

We studied the performance of two very deep DNN models (VGG and ViT) and
simple 3D- and 2D-CNN models for the yield quality and quantity estimation of silage
production grass sward using RGB, RGB + CHM, HSI and HSI + CHM remote sensing
datasets. The results were compared to our previous study with classical ML techniques
RF using handcrafted features [11]. We used NRMSE, PCC and NRMSE CV to evaluate the
general success of machine learning (Figure 8).

4.1. Performance of Different Remote Sensing Technologies

In general, good results were obtained for the FY, DMY, WSC, Ncont (or CP) and
NU. The lowest PCCs appeared for the iNDF and NDF, particularly in the case of primary
growth data. Repeating the estimation with different random number settings showed
that most of the models were relatively stable; however, poorer repeatability appeared
more systematically for the 2D-CNNs with the primary growth RGB and RGB + CHM data
(Figure 8, NRMSE CV).

In most cases, the RGB datasets were comparable to and, in several cases, outper-
formed the HSI datasets. The RGB data provided good results, particularly for the FY,
DMY, WSC and NU; the RGB image-based models outperformed HSI-based models for
the FY, DMY, D-value and iNDF (Table 5). Considering the advantages of the HSI datasets,
they outperformed the RGB datasets in the case of NDF, WSC, Ncont and NU (Table 5).
Comparing the results with RF and handcrafted features, the best RGB DNN models (with-
out CHM) outperformed the RGB RF models in all cases, except for the regrowth DMY,
D-value and NDF. The best DNN models outperformed the best RF models, excluding the
cases with regrowth D-value, NDF and WSC, and primary growth NU.

The CHM data provided advantages, particularly when combined with the HSI
datasets in the case of the primary growth estimation. For the RGB models, the CHM
did not provide significant advantages in most cases, indicating that the RGB images
provided sufficient information for several parameters. The approach based on images only
is attractive, particularly for fast response real-time applications because CHM generation
requires extensive data processing. In particular, the DNNs using only RGB images seem
useful from the processing and practical data collection point-of-view. When compared
with RF models for HSI and multiple data sources, RGB-only DNNs showed promising
performance. In this study, the results for CHM are not clear. Viljanen et al. [9] showed
that CHM quality varied during four harvesting dates in primary growth when comparing
the height measured with manual measuring tape and the height of CHM. The R2 of the
estimations were greater than 90% on 15 and 19 June but less than 80% in the first and last
cutting dates 6 and 28 June, respectively. The authors concluded that the reason was that
on the first cutting date, the grass was still very sparse and by the last date it was already
overgrown and started to bend and lodge. This might have had an effect on the results of
this study.

The reflectance calibration of the RGB datasets improved the results for the primary
growth data in comparison to the uncalibrated RGB data for some parameters; this may
indicate that there is a need to emphasize the importance of calibration. In some cases,
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however, the reflectance calibration did not have an impact on or even deteriorated the
accuracy. The relatively small impact of reflectance calibration might be explained by
the fact that in the case of uncalibrated data, the image values were scaled to the range
of 0–1. Moreover, the transformation of consumer RGB images with spectral response
optimized for the human visual range to the reflectance scale might not be ideal because
the transformation might even reduce the radiometric quality.

The DNNs improved the results of RGB image-based models more than the estimators
based on the HSI data when compared to the results obtained with classical RF based on
handcrafted features [11]. Potentially, the richer spatial information of the high spatial
resolution RGB images, with 0.8 cm GSD, in comparison to the HSI images, with 4 cm
GSD, could have contributed to this performance. ViT and VGG appeared to be the best
networks with RGB data and provided equally good results in most cases. The lack of
pretrained models for HSI data due to different sensor types and channels also complicates
the possibilities of applying transfer learning. HSI data are likely to benefit from more
sophisticated pretrained DNN models, which can handle joint coupling of spatial and
spectral features [45]. It was thus a logical result that the deep RGB-pretrained models
did not work as well for HSI as they did for RGB. Additionally, these models focus on 2D
information and due to the lower spatial resolution, the geometric features in the HSI image
are not so clear. Simple 3D-CNNs, which can consider both spatial and spectral features,
appeared to be the best option for HSI data in this study. Methods in which HSI data are
regressed to a particular parameter have generally been relatively little studied compared to
classification methods. One reason for this is the availability of openly available materials.
The hyperspectral datasets used in this study were captured with a relatively old camera
model, the FPI prototype 2012b, whose characteristics are similar to commercially available
Senop Rikola cameras [46]. Further improvements could be expected for HSI analyses if
using the latest versions of the Senop cameras or other novel HSI sensors with improved
spectral, radiometric and spatial performance [47].

4.2. Data and Application Area-Related Aspects

Many DNNs were initially designed for image classification using shapes, textures and
colors. In this study, the prominent characteristics are color/spectra and texture. For the
quantity parameters (FY, DMY), the texture may be more relevant and for some parameters
(WSC, NU) the color/spectral information could provide added value. On the other hand,
the structure of the grass, such as the stem–leaf ratio, is also linked to quality parameters
such as to Ncont and D-value [48]. Such structural patterns could be visible in the texture
of grass sward images if the resolution is high enough. We studied timothy-dominated
grass sward. It is the most common in Nordic agriculture, but in organic production,
mixed grass-clover swards are common. Their management, growth and feeding quality
development differ from grass swards [49]. As the clover component in the mixture fix
nitrogen biologically for the sward and for the subsequent crop, the site-specific information
of clover and grass composition in the sward within the field would be very valuable for
management measures, such as fertilizer application [50,51]. Sun et al. [52] studied the
estimation of botanical composition in mixed clover-grass fields using machine learning-
based image analysis. CNN or ViT might also be useful in drone image analysis with
complex mixed swards and providing a very useful approach in organic production. More
studies are needed on these aspects in different test setups.

Based on expectations, the biomass-related traits FY and DMY are generally easier to
estimate than the traits based on leaf pigments and molecular structures that are visible
in spectra. In this study, the lowest NRMSE values were obtained for the D-value, iNDF,
NDF, WSC and Ncont. One factor impacting the level of NRMSE could be related to the
characteristics of the reference data. Table 1 and Figures 9 and 10 show that the data
variability was lower for these quantities; the lower data value range could lead to easier
estimation tasks and result in lower NRMSE values. Furthermore, the NRMSEs in this
study were consistent with the results from the previous study with RF [11].
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There were significant differences in the primary growth and regrowth results. How-
ever, also in the previous study [11], similar differences were present (for different growth
phases and input data combinations). The first aspect is related to the characteristics of
the sward. In primary growth, the share of stems increases as the season proceeds and the
plants start heading. Heading was abundant at the 4th harvesting date. In regrowth, stem
formation remains small, and the stand is formed from leaf sheaths and leaf lamina [53].
By stem formation, the stand grows higher in primary growth than in regrowth. In the
regrowth, the growing time of the stand prior to the second and third harvest times was
longer than would be advised for common silage production. Therefore, the primary and
regrowth were different due to the physical characteristics of the vegetation. Secondly,
the training and testing areas were located in the same field in the regrowth phase and
the datasets were collected during the same flight, whereas the training and testing areas
were located in different fields with 1.2 km distance in the primary growth phase and were
collected in different flights [11]; this resulted in greater differences between the training
and testing datasets due to different environments and different conditions during the
data capture, which could have deteriorated results. In general, the CV was lower for the
models based on regrowth data. Third, in the primary growth, the weak initial growth and
the lodging in the final phases caused some challenges for the models [9,11].

The small dataset will also have an influence on the results. Repeated experiments and
averaging over the plots were carried out to make the results more reliable. Due to the small
dataset, some models were not able to learn adequately, resulting in a high CV. In this study,
we had separate training and testing areas as opposed to the sample shuffling method used
in many DNN studies, making it more challenging to estimate the parameters than with
shuffled plots but also giving more reliable evidence of the performance of the model. The
instability in some of the DNN results confirms the need for repeat training, as also stated
by Lathuilière et al. [14]. In general, RF does not require as large a training dataset as DNNs
for good results. Especially for HSI data, the handcrafted features seem to produce good
RF results. In [54], shallow CNN for feature extraction with an RF classification head was
used for plant disease identification, and it outperformed deep pretrained models. This
kind of hybrid approach could be tested in the future.

4.3. Assessment of the Results and Future Research

The results are comparable to previous studies using DNNs to estimate biomass and
yield in different agricultural applications. Ma et al. [29] estimated winter wheat biomass
using a DNN inspired by the VGG. The reported NRMSE was 25% (10% better than with RF).
Castro et al. [28] estimated forage biomass (corresponding FY) using AlexNet, ResNet18
and VGGNet. The best mean absolute percentage error (MAPE) produced with AlexNet
was 13 ± 2.2% (mean absolute error is usually lower than RMSE, as single bad predictions
affect less). Yang et al. [32] estimated rice grain yield with two-branch CNN using RGB
and MS imagery; MAPE of 20.4% was reported. In a comparison of RGB and RGB + MS,
it was found that spatial information from very high resolution RGB images dominates
the prediction. In [30], Guineagrass dry matter yield was estimated using the RGB sensor
embedded in the DJi Phantom 4 Pro. The ResNeXt50 pretrained model was the best among
several pretrained models from the literature with an RMSE of 413 ± 118 kg·ha−1.

A few studies have estimated quality parameters using classical remote sensing tech-
niques, but to the author’s knowledge, there do not yet exist studies with deep learning
models. Michez et al. [55] reported R2 values of 0.33–0.85 for different quality parameters
using RGB and multispectral sensors and MLR models. A study by Wijesingha et al. [10]
indicated that the support vector regression provided the highest precision and accuracy
when estimating CP (median NMRSE 10.6%) and the cubist regression model proved
for the ADF estimation NRMSE of 13.4%. Askari et al. [35] obtained promising results
for CP estimation with multispectral UAV imagery with PLSAR and MLR techniques.
Dvorak et al. [33] used photogrammetric point clouds for predicting yield, ADF, NDF and
CP, with R2 values of 0.81, 0.81, 0.78, and 0.79, respectively. Feng et al. [56] developed a



Remote Sens. 2022, 14, 2692 18 of 21

multitask learning (MTL) approach to simultaneously predict multiple quality traits of
alfalfa. The algorithm first extracts shared information through a long, short-term memory
(LSTM)-based common hidden layer. To enhance the model flexibility, it is then divided
into multiple branches, each containing the same or a different number of task-specific fully
connected hidden layers. The approach outperformed various single-task machine-learning
models (e.g., RF and support vector machine).

Our results showed that deep learning had the potential to outperform classical
machine learning in grass quality and quantity parameter estimation for most of the
parameters. This was validated by repeating training with several random seeds and by
using completely independent test data. There are still many questions that still remain to
be covered in future studies. First, there are questions concerning the reference datasets.
Particularly, the amount and representativeness of training and testing data should be
increased, and studies should be repeated with different datasets. The second fundamental
question is the ability of remote sensing datasets to model the properties of interest. Our
study showed good results for some parameters, but more extensive testing with different
datasets is needed to answer this question comprehensively. Third, the quality of the
remote sensing dataset is always a question and is expected to influence performance. More
specifically, future studies should elaborate which remote sensing data is required and what
is the required quality, e.g., with respect to spectral characteristics, spatial resolution, and
calibration. Finally, this study still worked with samples cropped from a controlled trial site.
The implementation of efficient pipelines for practical estimation tasks over heterogeneous
objects will be an important need for future development.

5. Conclusions

This study evaluated the performance of novel pretrained deep neural network (DNN)
architectures and simple 2D- and 3D-CNNs in estimating various silage grass stands
quality and quantity parameters using drone-based remote sensing images. The models
were trained and tested on primary growth and regrowth datasets for four remote sensing
data combinations: RGB images, RGB + canopy height model (CHM), hyperspectral images
(HSI), and HSI + CHM. The results were validated by repeating the training with several
random seeds and by using completely independent test data. Both simple and very
deep models produced promising results. Using only RGB data, many DNN models
outperformed the random forest models trained with RGB images and CHM or with
HSI and CHM. The HSI outperformed the RGB images for some parameters, particularly
the nitrogen concentration and nitrogen uptake. The RGB models outperformed the HSI
models in fresh yield and dry matter yield. D-value and indigestible neutral detergent
fiber (iNDF). The results are promising but still can be considered preliminary, because
the training and testing datasets were relatively limited, improved pretrained networks
could support hyperspectral data modeling and the networks could potentially be further
optimized. To build operational models and to compare the performance of different DNNs
comprehensively, more data is needed.

This study was the first to compare novel deep learning architectures with classical ran-
dom forest with handcrafted features using both RGB and HSI data in various grass quality
parameter estimation tasks. The results indicated promising performance of DNNs in silage
grass quality and quantity estimation and also indicated several topics for future research.

The approach has the potential for fast estimation of grass characteristics. Increased
possibility for rapid results would be highly needed and appreciated by farmers when
deciding on harvest time and planning the harvesting process. Simplest equipment (RGB
cameras) and data processing would be appreciated by service providers in their farm
advisory work. Different parameters are most important depending on the time of season
or production type. In organic production, monitoring the nitrogen status of the stands is
important, and for grazing, the uniformity of stands and amount of biomass are important
for management decisions. Therefore, targeted models for working well on a single specific
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parameter could also be very valuable. These new methods could be added to the current
harvest time services, e.g., available in Finland and Sweden.
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