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Abstract: We present a position- and time-dependent optical force theory for optomechanics of
dispersive 3D photonic materials and devices. The theory applies to media including material
interfaces, waveguides, and general photonic crystal structures. The theory enables calculation
of the dynamical state of the coupled field-material system and the interference of this state with
other excitations of the material, such as surface acoustic waves or phonons. As an example,
we present computer simulations of energy and momentum flows through a silicon crystal with
anti-reflective structured interfaces. Using commercially available simulation tools, the theory
can be applied to analyze optical forces in complex photonic materials and devices.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The electric and magnetic fields of light in arbitrary 3D photonic materials and devices can
be unambiguously solved from Maxwell’s equations. Considering the interest to develop
optomechanic materials and devices, it is astonishing that no generally applicable time-dependent
optical force theory has been presented for inhomogeneous dispersive materials [1,2]. The optical
force density is ultimately related to the conservation law of momentum. Optical forces having
the same physical origin as those discussed in the present work have already led to important
scientific discoveries and photonic technologies in optical trapping and laser cooling. Optical
forces are also related to the centenary Abraham-Minkowski controversy of the difference of the
momenta of light in a material and in vacuum [3–7]. In previous literature, most works assume the
Maxwell or Helmholtz stress tensor and further take the time average of the resulting optical force
density [1,2,8–12]. Very few works, if any, are studying the exact position- and time-dependent
optical force density in inhomogeneous dispersive materials. However, the knowledge of the
exact position- and time-dependence of the optical force density is of fundamental importance for
quantitative analysis of the interaction of light with elastic waves or other mechanical eigenmodes
of the material.

The recently introduced mass-polariton (MP) theory of light [13–18] considers a light pulse
propagating in a material as a coupled state of the electromagnetic (EM) field and the material
and splits the total momentum of light into the field and material components. The material
component of the momentum is carried by an atomic mass density wave (MDW) driven forward
by optical forces. In this work, we generalize the MP theory for structured interfaces and give a
general expression for the optical force density in an inhomogeneous dispersive dielectric. The
optical force density is derived from the continuity equations of the energy and momentum at
interfaces and from the covariance principle of the special theory of relativity. The optical force
density is tested by computer simulations of energy and momentum flows through a silicon
crystal with anti-reflective structured interfaces [19].
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The exact time-dependent force density enables accurate calculation of the time- and position-
dependent dynamics of the material at structured interfaces and in the bulk, which can also be a
photonic crystal. This provides an interesting possibility to discover eventual coupling of the
field-driven material dynamics in photonic materials and devices with acoustic waves and a
possibility to fine tune this coupling for improved or new operational characteristics of photonic
devices.

This paper is organized as follows. In Sec. 2, we describe the physical foundations for the
separation of the energy density, momentum density, and the stress tensor of the field-material
system unambiguously into the field and material parts. In Sec. 3, the differential forms of the
conservation laws of energy and momentum are briefly presented for the field and the material.
In Sec. 4, we solve for the quantities appearing in the conservation laws in the special case of
the laboratory frame, i.e., in the rest frame of the material. In Sec. 5, we present an example
simulation of a Gaussian plane wave light pulse propagating through a silicon crystal block with
anti-reflective structured interfaces. In Sec. 6, we present the relativistically invariant expressions
of the stress-energy-momentum (SEM) tensors of the field and material parts of the system.
Finally, conclusions are drawn in Sec. 7.

2. Separation of the system into field and material parts

2.1. Separation of the energy density, momentum density, and the stress tensor

To enable unambiguous separation of the energy density, momentum density, and the stress
tensor of the field-material system into the field and material parts, we define the energy density
of the material to include only the classical rest energy density and kinetic energy density of
atoms. All other forms of the energy density, such as the energy density of the polarization field,
are considered to be field energy density. It is well known that under the influence of classical
EM field, the atomic trajectories follow very accurately classical Newtonian dynamics, and
therefore, their rest energy and kinetic energy are strictly unambiguous and equal to their classical
values. Therefore, within our definition of the energy density of the material, there cannot be any
uncertainties in the splitting of the total energy density or momentum density into the field and
material parts. This means that the energy and momentum densities and the stress tensor of the
material in a general inertial frame are uniquely given by the classical formulas Wmat = ρac2,
Gmat = ρava, Tmat = ρava ⊗ va, respectively, where ρa is the mass density, va is the atomic
velocity, c is the speed of light in vacuum, and ⊗ denotes the outer product of vectors [20,21]. The
mass density is given by ρa = γvam0na, where m0 is the rest mass of an atom, na is the number
density of atoms, and γva = 1/

√︁
1 − |va |2/c2 is the Lorentz factor. The relations above preserve

Newton’s equation of motion of the material, in all inertial frames, in the form na
d
dt pa = fopt,

where pa = γvam0va is the momentum of an atom and fopt is the optical force density [13,22].
The number density of atoms satisfies the continuity equation ∂

∂t na +∇ · (nava) = 0 [13,22]. Note
that the elastic force density and the electro- and magnetostrictive force densities between atoms,
discussed in Sec. 2.2, can, however, modify the energy and momentum densities and the stress
tensor of the material above as briefly discussed in Sec. 6. The energy density, momentum
density, and the stress tensor of the field in a general inertial frame are denoted by WEM, GEM,
and TEM, respectively.

Note that all quantities in the general inertial frame are unambiguously determined by their
values in the laboratory frame by their respective well-known Lorentz transformations. The
Lorentz transformations needed are collected in Table V of Ref. [13], which also presents
a complete record of the covariant theory of light in dispersive materials. In spite of using
a different expression of the optical force and the SEM tensors, in this work, the covariance
properties presented in Ref. [13] are as is strictly applicable and fulfilled for the theory presented.
Since, in our theory, the energy density, momentum density, and the stress tensor of the material
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are uniquely determined by the classical formulas as explained above, the separations of the
total energy density, momentum density, and the stress tensor of the field-material system into
the field and material parts are also unique. In previous literature, some works claim that the
separation of the momentum density of light into the field and material parts would be arbitrary
[23], while some other works base their separation of the system into the field and material
parts on arguments that are different from those of us [24,25]. The previous challenges in the
unambiguous splitting of the system into the field and material parts may be related to adding
to the energy density of the material, for instance, the energy density of the polarization field,
which has its origin in the field energy.

2.2. Separation of the total field-induced force density into gradient forces and forces
that carry the wave momentum of light

In addition to the optical force density fopt acting between the propagating EM field and the
material atoms along the wave vector of light, there are optically induced intra-material force
densities, called electro- and magnetostriction, which appear in the form of a gradient force
fst acting along optical energy density gradients [26–29]. Very recently, the electrostrictive
force density has also been verified experimentally for an optical field [30]. The splitting of
the total force density into gradient forces and forces associated with the wave propagation has
also been discussed in a recent preprint [31]. The optical electro- and magnetostrictive force
densities fst rise from the dependence of the optical electric and magnetic energy densities on the
atomic density through the permittivity and permeability of the material [26]. The integral of the
gradient force densities over the volume of the material is zero at any time, in particular when a
light pulse is entering the material. Thus, these force densities do not lead to the movement of
the center of mass of the material even though they give rise to local accelerations of the material
atoms. Therefore, fst differs from fopt, which is a topic of the present work. In the present work,
we have preserved the term optical force to mean only forces that carry the wave momentum of
light. Consequently, we focus on the investigation of the dynamical effects of fopt and leave the
detailed time-dependent study of fst in dispersive materials as a topic of a future work.

3. Conservation laws of energy and momentum

We solve the optical force density in an inhomogeneous dispersive material starting from the
conservation laws of energy and momentum for the EM field, written for a general inertial frame
in a differential form as [13,22,26,32,33]

1
c2
∂WEM
∂t

+ ∇ · GEM = −
ϕopt

c2 , (1)

∂GEM
∂t

+ ∇ · TEM = −fopt. (2)

Here ϕopt = fopt · va is the optical power-conversion density of a lossless material. In the rest
frame of lossless materials, i.e., the laboratory frame, the optical power-conversion density can
be approximated to zero as ϕ(L)opt = 0, since it only converts an exceedingly small amount of EM
energy to the kinetic energy of atoms [13]. The conservation laws for the energy and momentum
of the material are, accordingly, given for a general inertial frame in a differential form by [13]

1
c2
∂Wmat
∂t

+ ∇ · Gmat =
ϕopt

c2 , (3)

∂Gmat
∂t

+ ∇ · Tmat = fopt. (4)

Here it is essential to note that the source terms on the right hand side are opposite to those
of the EM field in the conservation laws in Eqs. (1) and (2). Thus, the total quantities of the
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field-material system, i.e., sums of the field and material parts, satisfy the conservation laws
in the form, where the source terms are zero. When the conservation laws in Eqs. (1)–(4) are
satisfied, it is automatically guaranteed that the energy and momentum are conserved at material
interfaces and that the law of constant center of energy velocity is satisfied for an isolated system.

4. Energy, momentum, and optical force densities in the laboratory frame

4.1. Energy and momentum densities of the field

The EM contribution to the total momentum density of light is continuous over material interfaces
and given in the laboratory frame by [26,32]

G(L)
EM =

E(L) × H(L)

c2 . (5)

Here E(L) is the electric field and H(L) is the magnetic field solved in the laboratory frame from
Maxwell’s equations with position- and frequency-dependent permittivity and permeability.
Using the EM momentum density in Eq. (5), the exact time-dependent energy density of the EM
field can be solved from the conservation law of energy in Eq. (1) with ϕ(L)opt = 0. For a narrow
frequency band in a locally isotropic lossless dispersive material, where the permittivity and
permeability are real-valued scalars, the EM energy density becomes [13]

W (L)
EM =

1
2

(︂
ε |E(L) |2 + µ|H(L) |2 + ω0

∂ε

∂ω0
⟨|E(L) |2⟩ + ω0

∂µ

∂ω0
⟨|H(L) |2⟩

)︂
. (6)

Here ω0 is the central angular frequency of the narrow frequency band, and ε = ε(ω0) and
µ = µ(ω0) are the permittivity and permeability of the material in the laboratory frame at ω0.
For a narrow frequency band, the permittivity can be approximated by the first two terms of its
Taylor series ε(ω) ≈ ε(ω0) +

∂ε(ω0)
∂ω0

(ω − ω0). A similar expansion is valid for the permeability.
The angle brackets in Eq. (6) are defined by ⟨|E(L) |2⟩ = 1

2 [|E
(L) |2 + | 1

ω0
∂
∂t E

(L) |2] and ⟨|H(L) |2⟩ =
1
2 [|H

(L) |2 + | 1
ω0

∂
∂t H

(L) |2]. The brackets here and below are also equal to the time average of the

pertinent quantities over the harmonic cycle, e.g., ⟨|E(L)(r, t)|2⟩ = 1
T

∫ T/2
−T/2 |E

(L)(r, t + t′)|2dt′,
where T = 2π/ω0 is the length of the harmonic cycle. The EM energy density in Eq. (6) is equal
to that in Ref. [13], but it is expressed here in terms of the permittivity and permeability of the
material and their derivatives. In previous literature, there are some works that add to the EM
momentum density of the field in Eq. (5) additional dispersion related terms [34,35]. In contrast,
in the present work, we rely on the EM momentum density in Eq. (5) and show that it leads to a
consistent theory. In our theory, dispersion dependence appears in the momentum density of the
EM field only in the general inertial frame as presented in Sec. 6.

4.2. Optical force density and stress tensor of the field

Having the energy density of the EM field solved from the conservation law of energy in Eq. (1),
we are left with a problem of determining the EM stress tensor and the optical force density
from the conservation law of momentum, given in Eq. (2). Appriori, if we are only given the
conservation law of momentum in Eq. (2) with the EM momentum density in Eq. (5), both
the EM stress tensor and the optical force density are unknown. Therefore, more information
is needed to determine these quantities and to guarantee their uniqueness. In Ref. [13], we
postulated for the optical force density, in the rest frame of a homogeneous material, a generalized
expression of the Abraham force, given by f(L)opt,A =

npng−1
c2

∂
∂t (E

(L) × H(L)), where np and ng are
the phase and group refractive indices, respectively, defined in the laboratory frame. Then, we
used f(L)opt,A to determine the corresponding EM stress tensor [13]. In Ref. [13], it was proven
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that the force density f(L)opt,A leads to a consistent covariant theory. However, it was also pointed
out that the covariance condition and the continuity equation are not sufficient to quarantee the
uniqueness of the optical force density. In this work, we use a different approach by introducing
an additional constraint to the available EM energy density and the total momentum density of
light. This constraint is shown to lead to unambiguous expressions for the optical force density
and the EM stress tensor.

To obtain the necessary constraint, we argue that, for a light pulse propagating in a homogeneous
material, for every differential volume element, the total momentum density of light must have
the same constant proportionality to the EM energy density. Without this local property, if an
arbitrarily small amount of energy is absorbed from the EM field, the absorbed momentum
would depend on the space-time point, where the absorption takes place. This would imply that
the energy-momentum ratio of the non-absorbed part of the light pulse also changes, which
is not physically meaningful. The constant of proportionality is required to be np/c, which
agrees with the high-precision experimental results for the radiation pressure in dispersive liquids
by Jones et al. [36]. Thus, the total momentum of light G(L)

EM + G(L)
mat is required to satisfy

G(L)
EM +G(L)

mat = npW (L)
EMv̂(L)g /c, where v̂g is a unit vector in the direction of the group velocity of

light. Using Newton’s equation of motion, we can write G(L)
mat = ρ

(L)
a v(L)a =

∫ t
−∞

f(L)optdt′, which
relates the given condition unambiguously to the expression of the optical force density. After
some algebra, the optical force density is given by

f(L)opt =
∂

∂t

[︂n2
p − 1
c2 E(L) × H(L) +

np(ng − np)

c2 ⟨E(L) × H(L)⟩
]︂
−

1
2
|E(L) |2∇ε −

1
2
|H(L) |2∇µ. (7)

Here the angle bracket expression is given by ⟨E(L) × H(L)⟩ = 1
2 [E

(L) × H(L) + ( 1
ω0

∂
∂t E

(L)) ×

( 1
ω0

∂
∂t H

(L))]. This time- and position-dependent quantity is also equal to the time average of the
Poynting vector over the harmonic cycle. In Eq. (7), we have added the last two well-known
gradient terms [26] to conform with the conservation law of momentum in Eq. (2) at material
interfaces. The EM stress tensor corresponding to the optical force density in Eq. (7) is found to
be given by

T(L)
EM =

1
2

[︂
(E(L) ·D(L)+H(L) ·B(L))I−E(L) ⊗D(L)−D(L) ⊗E(L)−H(L) ⊗B(L)−B(L) ⊗H(L)

]︂
. (8)

Here I is the 3 × 3 unit matrix. Equation (8) is the symmetrized form of the conventional
Abraham stress tensor [13,23,37]. The symmetrization is essential in birefringent materials,
where the electric and magnetic flux densities D(L) and B(L) are not parallel to the electric and
magnetic fields E(L) and H(L), respectively [26]. The optical force density in Eq. (7) and the
EM stress tensor in Eq. (8) lead to a theory that fulfills the same covariance conditions as the
theory presented in Ref. [13]. Accordingly, the integrated value of the momentum density of
a homogeneous material over the volume of the light pulse following from f(L)opt is equal to that
obtained using f(L)opt,A.

4.3. Atomic mass density wave

We next consider the implications of the optical force density to the dynamical state of the
material. We define the energy and momentum densities of the atomic MDW as differences
between the energy densities and momentum densities of the material under the influence
of the EM field and in the absence of it as WMDW = Wmat − Wmat,0 = ρac2 − ρa0c2 and
GMDW = Gmat − Gmat,0 = ρava − ρa0va0. Here ρa0 is the atomic mass density in the absence of
light and va0 is correspondingly the atomic velocity in the absence of light, i.e., v(L)a0 = 0 in the
laboratory frame. The momentum density of the material atoms, G(L)

mat = ρ
(L)
a v(L)a =

∫ t
−∞

f(L)optdt′,
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resulting from the optical force density, is obtained as a solution of Newton’s equation of motion.
Using the expression of the optical force density in Eq. (7) then gives the momentum density of
the atomic MDW in the laboratory frame as

G(L)
MDW = (n2

p − 1)G(L)
EM + np(ng − np)⟨G(L)

EM⟩. (9)

The excess energy density of the material, W (L)
MDW, can be solved from the continuity equation

of energy of the material, which is equivalent to Eq. (3) for ϕ(L)opt = 0. Using Eq. (9) and
W (L)

MDW = ρ
(L)
MDWc2 = ρ

(L)
a c2 − ρ

(L)
a0 c2, we obtain the excess mass density ρ(L)MDW = ρ

(L)
a − ρ

(L)
a0 in a

homogeneous region of space, given by

ρ
(L)
MDW =

n2
p − 1
c2 W (L)

EM +
np(ng − np)

c2 ⟨W (L)
EM⟩. (10)

Other dynamical quantities of the material, such as the strain, are also obtained from the solution
of Newton’s equation of motion.

5. Simulation of force and momentum densities

To investigate the physical implications of the unified optical force theory presented above, we
have simulated light in various geometries including several material interfaces. All of these
studies support the expression of the optical force density in Eq. (7). As an example, we present
numerical simulations of the propagation of a Gaussian plane wave light pulse through a silicon
crystal block with anti-reflective structured interfaces illustrated in Fig. 1. Minimizing reflection
with structured interfaces has been discussed more extensively in Ref. [19].

Fig. 1. We have tested our unified optical force theory by simulating the fulfillment of the
energy and momentum conservation laws when a light pulse propagates through a silicon
crystal block with anti-reflective structured interfaces.

In the simulations, we assume an incident Gaussian plane wave light pulse with a central
vacuum wavelength λ0 = 1310 nm. For this wavelength, the phase refractive index profile of
silicon, based on a linear fit to the experimental data from Ref. [38], is np = 3.5039 and the
group refractive index is ng = 3.6840. The electric field of the Gaussian plane wave light pulse
propagating in vacuum in the direction of the positive x axis and polarized along the y axis is
given by

E(L)(r, t) = E0 cos
[︂
k0

(︂
x − ct

)︂]︂
e−(∆k0)

2(x−ct)2/2ŷ. (11)

Here k0 = ω0/c is the wave number in vacuum, ∆k0 is the standard deviation of the wave number
in vacuum, and E0 is the normalization factor corresponding to the peak value of the electric
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field of the incident Gaussian light pulse. In the simulations, we use ∆k0 = 0.025k0 and E0 = 30
kV/m. The electric flux density, magnetic field, and magnetic flux density follow unambiguously
from the electric field in Eq. (11) through Maxwell’s equations. The simulations are carried out
using Comsol Multiphysics simulation tool [39]. Periodic boundary conditions are applied in the
direction of the y axis in Fig. 1. The periodicity of λ0/4 is determined by the periodicity of the
structured vacuum-silicon interface.

Figure 2 presents the optical volume and interface force densities due to the Gaussian light
pulse (see Visualization 1). The snapshot is taken at the instance of time when the center of the
light pulse is at the position of the entry interface of the silicon crystal. The volume force density
in Fig. 2(a) and the interface force density in Fig. 2(b) have both x and y components that vary
as a function of the position. The force density maxima are around positions where the field is
focused by the local lensing effect of the vacuum-silicon interface. However, after the interface,
the focusing fades out and the force density follows the plane wave form of the field.

Fig. 2. Simulated (a) volume force density and (b) interface force density at an instance of
time when the center of the light pulse is at the position of the entry interface of the silicon
crystal (see Visualization 1). The light pulse is incident from vacuum on the left. The colors
show the magnitudes, and the logarithmically scaled arrows show the directions.

Figures 3(a)–(d) show the position dependencies of the EM momentum density, MDW
momentum density, interface momentum density, and the MDW mass density, respectively, at
the instance of time when the center of the light pulse is at the position of the entry interface
of the silicon crystal corresponding to the force densities in Fig. 2 (see Visualization 2). The
EM momentum density in Fig. 3(a) consists of the incident and transmitted contributions. The
reflection is close to zero due to the anti-reflection property of the structured interface. The
atomic MDW momentum density in Fig. 3(b) reminds the EM momentum density inside silicon
on the right and there is no MDW in vacuum on the left. The interface momentum density at all
positions in Fig. 3(c) is directed toward vacuum. Figure 3(d) presents the mass density of the
atomic MDW, which is driven forward by the optical volume force density. This transfer of mass
and the related rest energy is crucial for the fulfillment of the covariance principle of the special
theory of relativity [14,15].

The propagation of the Gaussian light pulse through the silicon crystal is illustrated in Fig. 4,
where the EM momentum density is plotted at three instances of time: first, before the crystal
(t = 197 fs), second, inside the crystal (t = 393 fs), and third, after the crystal (t = 590 fs). The
very small reflections from the first and the second interface are not visible because of their
smallness. The EM energy reflected from the first interface is 0.14% of the total incident EM
energy, and the EM energy reflected from the second interface is also 0.14% of the total incident
EM energy. Thus, the total EM energy lost from the incident pulse in the full transmission
process is 0.28%. One can conclude that the antireflection property of the interfaces is relatively
well optimized. Inside the crystal the pulse in Fig. 4 is spatially much narrower than in vacuum.
This is due to the lower group velocity of light in the crystal compared to that in vacuum. We can

https://doi.org/10.6084/m9.figshare.19337888
https://doi.org/10.6084/m9.figshare.19337888
https://doi.org/10.6084/m9.figshare.19337903
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Fig. 3. Simulated (a) momentum density of the EM field, (b) momentum density of the
atomic MDW, (c) momentum density of interface atoms, and (d) mass density of the atomic
MDW at an instance of time when the center of the light pulse is at the position of the entry
interface of the silicon crystal (see Visualization 2). The light pulse is incident from vacuum
on the left. The colors show the magnitudes, and the logarithmically scaled arrows show the
directions.

also see that the largest magnitudes of the EM momentum density in the crystal and in vacuum
are equal. This follows from the continuity of the Poynting vector.

Fig. 4. Position dependence of the EM momentum density at three instances of time during
the propagation of a Gaussian light pulse through a silicon crystal. First, the field is incident
from the left. Second, the field is inside the crystal. Third, the field has left the crystal. The
vertical dashed lines show the positions of the two interfaces of the crystal. The momentum
densities reflected from the first and second interfaces are very small and not shown in the
figure.

The total EM momentum of the pulse is the volume integral of the EM momentum density.
Neglecting the small reflection, the ratio of these integrals in the crystal and in vacuum is equal
to the ratio of the corresponding group velocities. Thus, the EM momentum in the crystal is
pEM = p0/ng, where p0 is the momentum of the incident EM field. The momentum of the

https://doi.org/10.6084/m9.figshare.19337903
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atomic MDW is equal to pMDW = (np − 1/ng)p0. Thus, the total momentum of the coupled MP
state of light in the crystal becomes pMP = npp0. This phase index proportionality of the total
momentum of light is in agreement with the high-precision measurements of radiation pressure
in liquids by Jones et al. [36] and the measurements of the recoil momentum of atoms in a dilute
Bose-Einstein condensate gas by Campbell et al. [40].

6. SEM tensors and their relativistic invariance

The SEM tensor of a physical system collects the energy and momentum densities and the stress
tensor in a single physical quantity. The general contravariant form of an arbitrary SEM tensor
in the Minkowski space-time is defined by T = Tαβeα ⊗ eβ , where the Einstein summation
convention is used, and eα and eβ are unit vectors of the space-time. The Greek indices range over
the four components of the space-time, i.e., (ct, x, y, z). The corresponding matrix representation
of T is given by [21,32,41]

T =
⎡⎢⎢⎢⎢⎣

W cGT

cG T

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W cGx cGy cGz

cGx T xx T xy T xz

cGy T yx T yy T yz

cGz T zx T zy T zz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (12)

Here the superscript T denotes the transpose. Since the SEM tensor of the material, made from
the quantities discussed in Sec. 2, is symmetric by definition, so is also the EM SEM tensor since
the total SEM tensor of the system must be symmetric. Therefore, all of our SEM tensors are
symmetric and strictly based on the classical definition in Eq. (12).

The SEM tensor Tmat of the material can be formed by substituting the energy density,
momentum density, and the stress tensor of the material from Sec. 2. into Eq. (12). Even more
compactly, Tmat can be written using the four-velocity of the material, given by Ua = γva (c, va).
The resulting compact form of Tmat is given by [20,21]

Tmat =
ρa

γ2
va

Ua ⊗ Ua. (13)

Consequently, the SEM tensor of the field is also unambiguously determined in all inertial frames.
Note that accounting for the elastic force density and the electro- and magnetostriction will
modify the SEM tensor of the material in Eq. (13). The resulting modified SEM tensor of the
material is expected to be of the form presented in Ref. [42]. Its detailed dynamical study under
the influence of the optical field is left as a topic of a future work.

Following the approach presented in Sec. IVB of Ref. [13] to use the Lorentz transformation
to determine the SEM tensor of the field in an arbitrary inertial frame once the SEM tensor of the
field in the laboratory frame is known, in the present case, we obtain

TEM =
ρEM,disp

γ2
va0

Ua0 ⊗ Ua0 +
1
2
(FgD +DgF) − 1

4
gTr(FgDg)

−
1

2c2

[︂
(FgD −DgF)g(Ua0 ⊗ Ua0) + (Ua0 ⊗ Ua0)g(DgF − FgD)

]︂
.

(14)

Here Ua0 = γva0 (c, va0) is the four-velocity of the rest frame of the material, Tr(x) is the trace
of a matrix, and g = gαβeα ⊗ eβ , with g00 = 1, g11 = g22 = g33 = −1, is the diagonal matrix
representation of the Minkowski metric tensor. The EM field tensor F and the EM displacement
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tensor D in Eq. (14) are given in contravariant forms F = Fαβeα ⊗ eβ and D = Dαβeα ⊗ eβ as

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −Dxc −Dyc −Dzc

Dxc 0 −Hz Hy

Dyc Hz 0 −Hx

Dzc −Hy Hx 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (15)

The term ρEM,disp appearing in Eq. (14) is an effective EM mass density term associated with
dispersion. In the special case of the laboratory frame, it is defined through the last two terms of
the EM energy density in Eq. (6) as

ρ
(L)
EM,disp =

ω0

2c2

(︂ ∂ε
∂ω0

⟨|E(L) |2⟩ +
∂µ

∂ω0
⟨|H(L) |2⟩

)︂
. (16)

This quantity transforms between inertial frames as a mass density and it is very convenient in
expressing the relativistically invariant SEM tensor of the EM field in Eq. (14).

The SEM tensor Tmat,0 of the material in the absence of light is given by a similar form as the
instantaneous SEM tensor Tmat of the material under the influence of the EM field in Eq. (13).
Thus, Tmat,0 is given by

Tmat,0 =
ρa0

γ2
va0

Ua0 ⊗ Ua0. (17)

The SEM tensor of the atomic MDW is defined as the difference TMDW = Tmat − Tmat,0.
Substituting the expressions of the tensors Tmat and Tmat,0 into this difference then gives

TMDW =
ρa

γ2
va

Ua ⊗ Ua −
ρa0

γ2
va0

Ua0 ⊗ Ua0. (18)

Being given in terms of the EM field and displacement tensors, four-velocities, and Lorentz scalar
factors, all SEM tensors presented in this section are transparently covariant, i.e., they have the
same expressions in all inertial frames, thus, satisfying the conditions of relativistic invariance.

Note that the sum of the last three terms of TEM in Eq. (14) can be viewed as a relativistically
consistent generalization of the Abraham SEM tensor, where the Abraham SEM tensor is allowed
to depend on Ua0. This has been discussed in previous literature, see, e.g., Eq. (42) of Ref. [43],
Eq. (2.10) of Ref. [44], and Eq. (41) of Ref. [13]. Consequently, for this generalization of the
Abraham SEM tensor, the previous claim [24,37,45–47] that the Abraham SEM tensor would be
relativistically invalid is no longer true.

7. Conclusions

In conclusion, we have presented an unambiguous position- and time-dependent optical force
theory applicable to simulations of the propagation of light pulses in inhomogeneous dispersive
materials. With existing simulation tools, the theory enables detailed modeling of the optome-
chanics of 3D photonic materials and devices. For example, the present theory has been applied
to negative-index metamaterials in Ref. [48]. For absorbing materials, the well-known Lorentz
force density should be added to the force density of the present work to describe also forces
related to absorption. In the nonlinear optics regime, other phenomena, such as the Kerr effect,
contribute and, accordingly, one must separately consider effects like electrostriction. The present
classical field theory must be extended to the quantum domain to describe also the local torque
originating from the interaction of the spin of light with the atoms.
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