
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Laukkanen, Eero; Lehtinen, Timo; Itkonen, Juha; Paasivaara, Maria; Lassenius, Casper
Bottom-up Adoption of Continuous Delivery in a Stage-Gate Managed Software Organization

Published in:
Proceedings of the ACM/IEEE 10th International Symposium on Empirical Software Engineering and
Measurement

DOI:
10.1145/2961111.2962608

Published: 01/01/2016

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Laukkanen, E., Lehtinen, T., Itkonen, J., Paasivaara, M., & Lassenius, C. (2016). Bottom-up Adoption of
Continuous Delivery in a Stage-Gate Managed Software Organization. In Proceedings of the ACM/IEEE 10th
International Symposium on Empirical Software Engineering and Measurement Article 45 (Proceedings of the
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement). ACM.
https://doi.org/10.1145/2961111.2962608

https://doi.org/10.1145/2961111.2962608
https://doi.org/10.1145/2961111.2962608


Bottom-up Adoption of Continuous Delivery in a
Stage-Gate Managed Software Organization

Eero Laukkanen Timo a.A. Lehtinen Juha Itkonen
Department of Computer Department of Computer Department of Computer

Science Science Science
PO Box 15400 PO Box 15400 PO Box 15400

FI-00076 AALTO, Finland FI-00076 AALTO, Finland FI-00076 AALTO, Finland
eero.laukkanen@aalto.fi timo.o.lehtinen@aalto.fi juha.itkonen@aalto.fi

Maria Paasivaara Casper Lassenius
Department of Computer Department of Computer

Science Science
PO Box 15400 PO Box 15400

FI-00076 AALTO, Finland FI-00076 AALTO, Finland
maria.paasivaara@aalto.fi casper.lassenius@aalto.fi

ABSTRACT
Context: Continuous delivery (CD) is a development prac-
tice for decreasing the time-to-market by keeping software
releasable all the time. Adopting CD within a stage-gate
managed development process might be useful, although sci-
entific evidence of such adoption is not available. In a stage-
gate process, new releases pass through stages and gates
protect low-quality output from progressing. Large organi-
zations with stage-gate processes are often hierarchical and
the adoption can be either top-down, driven by the manage-
ment, or bottom-up, driven by the development unit.
Goal: We investigate the perceived problems of bottom-

up CD adoption in a large global software development unit
at Nokia Networks. Our goal is to understand how the stage-
gate development process used by the unit affects the adop-
tion.
Method: The overall research approach is a qualitative

single case study on one of the several geographical sites of
the development unit. We organized two 2-hour workshops
with altogether 15 participants to discover how the stage-
gate process affected the adoption.
Results: The stage-gate development process caused tight

schedules for development and process overhead because of
the gate requirements. Moreover, the process required us-
ing multiple version control branches for different stages in
the process, which increased development complexity and
caused additional branch overhead. Together, tight sched-
ule, process overhead and branch overhead caused the lack of
time to adopt CD. In addition, the use of multiple branches
limited the available hardware resources and caused delayed
integration.

Permission to make digital or hard copies ofpart or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. Copyrights for third-party components of this work must
be honored.
Copyright is held by the owner/author(s).
ESEM '16, September 08-09,2016, Ciudad Real, Spain
ACM 978-1-4503-4427-2/16/09.
http://dx.doi.org/l0.ll45/2961l11.2962608
[@ Gl:J
Thi s wo r k i s li c en s e d under a Creat i ve Commons At tribution
Int erna tional 4.0 Licen s e .

Conclusions: Adopting CD in a development organiza-
tion that needs to conform to a stage-gate development pro-
cess is challenging. Practitioners should either gain support
from the management to relax the required process or reduce
their expectations on what can be achieved while conform-
ing to the process. To simplify the development process, the
use of multiple version control branches could be replaced
with feature toggles.

CCS Concepts
.Software and its engineering -+ Agile software de-
velopment; Waterfall model; Software testing and
debugging; Software configumtion management and ver-
sion control systems;

Keywords
continuous delivery; stage-gate process; case study

1. INTRODUCTION
High-performing software companies have adopted the de-

velopment practice of continuous delivery (CD) [14] to be
able to execute rapid releases [22]. Traditionally, rapid re-
leases have not been possible due to bottlenecks in the de-
livery process, such as the need for a long code freeze period
before a release, extensive manual testing and error-prone
manual releases. The CD practice is achieved with disci-
pline and by automating the delivery, including building,
testing and deploying the software.
While successful adoptions of CD exist [24], some compa-

nies have found it challenging to adopt [5, 3, 16]. Previous
studies have found many adoption problems, but they have
not investigated the causal mechanisms behind the prob-
lems. Better understanding of the causes of the problems
would make it easier to adopt CD or allow evaluating to
what extent CD adoption is suitable for the adopter.
In this study, we investigate the emergent problems of a

bottom-up CD adoption within a stage-gate [4] managed
development process. We use the term bottom-up to indi-
cate that the adoption was driven by a development unit



Figure 1: Conceptual definitions used in this study.

deployment. Anything that can change in the production
environment is version controlled, including the source code,
the application configuration, the database schema and the
environment configuration. Whenever something needs to
be changed, the change is applied to the version control and
then the change creates an instance of the pipeline to be
executed. During the execution, the change is evaluated
whether it is releasable. Any discovered problem will halt
the pipeline and depending on the issue, it is either fixed or
the change is reverted to keep the software releasable.

2.2 ContinuousDeliveryAdoption Paths
To our knowledge, there are two previous studies that

discuss adoption paths of CD directly.
Holmstrom Olsson et al. [12] propose an adoption path

towards R&D as an experiment system, where "the entire
R&D system responds and acts based on instant customer
feedback". The steps in the path are traditional develop-
ment, agile R&D organization, continuous integration, con-
tinuous deployment and finally R&D as an experiment sys-
tem. Moreover, they suggest that continuous integration
and further steps require changes outside the R&D orga-
nization: in product management, system validation and
customers.
Eck et al. [6] propose that CI adoption consists of three

stages: acceptance, routinization and infusion. However,
they do not discuss the role of different organizational func-
tions or processes in the adoption.

Othe r
St ages

i..... AcceptanceITest Stage
L-.. Deploy to

Production

Cont inuous Del ivery

Cont inuous Integration

.....-

2.3 ContinuousDeliveryAdoption Problems
We found seven previous studies on CD adoption prob-

lems, shown in Table 1. Some studies focused on CI, but
since it is a prerequisite for CD, they can be considered to
address CD adoption problems, too. One distinct difference
between studies of CI and CD is that only CD studies con-
sider release problems.
Debbiche et al. [5] studied CI adoption challenges at a

Swedish telecommunications company. They found many
challenges synthesized under topics of mindset, tools and
infrastructure, testing, domain applicability, understanding,
code dependencies and software requirements.
Claps et al. [3] studied CD adoption challenges at At-

lassian Software Systems, an Australian software company.
They found 11 social and 9 technical challenges related to
the adoption. The challenges were synthesized to categories
of the need to be Lean, management driven adoption, chang-
ing responsibilities, the risks of adopting CD and the tran-
sition from CI to CD. Thus, their study was not focused on
problems faced, but on the actions needed to succeed with
the adoption.
Leppanen et al. [21] studied CD in the contexts of 15

information and communications technology companies in

In this section, we first explain the concept of continuous
delivery (CD) and how it relates to other similar concepts.
After that, we review previous research on the CD adoption
paths and problems.
We do not know of any previous studies that have studied

the CD adoption within a stage-gate development process.
However, there are several previous studies that have inves-
tigated the usage of agile methods together with traditional
processes. We summarize those studies in the last part of
this section.

2.1 ContinuousDelivery
A succinct definition for CD is given by Martin Fowler:
Continuous Delivery is a software development discipline
where you build software in such a way that the software
can be released to production at any time.

- Martin Fowler [10]
The term was coined by Humble and Farley [14] who intro-
duced an ideal of software delivery practices and tools to
achieve the goal-the software can be released to production
at any time. The definition says can be released instead of
is released; thus the discipline considers only the capability
of the software development organization, while other con-
straints might not actually allow continuous releases. An ex-
treme version of CD is continuous deployment [8], where all
quality-checked changes are automatically released. Some
previous authors have used the term continuous deployment
when actually referring to continuous delivery (e.g. [3, 21]).
One simple reason why companies want to adopt CD is

to shorten the software delivery cycle time. CD takes the
practice of continuous integration (CI) [9] to the extreme
(see Figure 1); each change is integrated all the way until it
has been confirmed to be releasable. Thus, integration prob-
lems are discovered early and fixing them is cheaper. Also
exploratory testing is simple, because the newest changes
can be released to a user testing environment at any time.
Finally, the release process becomes less risky when auto-
mated.
In practice, CD is achieved by developing and maintain-

ing a deployment pipeline [14]. An example pipeline (Fig-
ure 1) consists of a version control system, commit stage,
acceptance test stage and finally other stages or production

2. RELATED WORK

instead of its management. Traditional processes have been
shown to cause problems when adopting CD [2], but the ex-
act mechanisms have not been previously studied. We utilize
root cause analysis [19] to systematically examine the mech-
anisms between the process and CD adoption problems.
We study a large distributed software development unit

at Nokia Networks developing a complex software product
in the telecommunications market. The unit had experi-
enced problems when adopting CD [13] and the stage-gate
process used by the unit was claimed to significantly hinder
the adoption. We conducted two workshops to collect qual-
itative data in order to understand the relationship between
the stage-gate process and CD adoption problems.
This paper is structured as follows: we introduce the ter-

minology used in this study and review previous studies in
Section 2. The case organization and our research methods
are described in Section 3. The results of the study are rep-
resented in Section 4. Finally, the results are discussed in
Section 5 and the study is concluded in Section 6.



Table 1: Summary of previous studies of CD adop-
tion. The lack of studies about process problems is
highlighted.

[5] [3] [21] [2] [11] [16] [13]
Identified Problem Themes
Build design X
Product design X X X X X
Integration X X X X
Testing X X X X X
Release X X
Human and X X X X X X X
Organizational
Process X
Resources X X X X X X
Data Collection Method
Self-report X X
Interviews X X X X
Observation X

Finland. Only one of the companies was reported to have
adopted CD. However, CD was not even the goal for every
company. Again, companies had faced multiple obstacles
when transitioning towards CD: resistance to change, cus-
tomer preferences, domain constraints, developer trust and
confidence, legacy code considerations, duration, size, struc-
ture, different development and production environments
and manual and nonfunctional testing.
Chen [2] reported how Paddy Power PLC, Irish bookmak-

ing company, had adopted CD. He reported that the or-
ganization faced organizational, process and technical chal-
lenges. Of these challenges, organizational challenges were
reported to be the biggest. This study is the only one to
mention process challenges. Still, the connection between
process and CD adoption is mentioned only briefly but not
analyzed in depth.
Gmeiner et al. [11] reported how automated testing is

used in the CD pipeline of an Austrian online business com-
pany. They reported lessons learned when establishing and
operating the pipeline: ensure management commitment,
take collective responsibility, establish test environment man-
agement, improve testability, manage test data provision-
ing, define the ownership of acceptance tests, acceptance
tests should not compensate for missing unit tests, invest in
the maintenance of automated tests and combine automated
and manual testing.
Laukkanen et al. [16] studied CI adoption at an R&D

program at Ericsson, a global telecommunications company.
They found challenges of lack of time, difficult components,
unstable tests, slow tests, insufficient testing environments,
agreement on tools and global distribution of organization.
The largest challenges were the lack of time, architecture of
the product and global distribution of the organization.
Hukkanen [13] studied CI adoption at a software develop-

ment unit at Nokia Networks, a global telecommunications
company. He found challenges of CI practicalities, communi-
cation, testing, infrastructure and dependency management.
In addition, he found out that the challenges were causally
related to each other.
As a summary, previous studies show that similar prob-

lem themes are found in different cases. However, the causal
mechanisms behind the problem themes have not been stud-

ied previously, except in the work by Hukkanen [13]. If the
underlying causal relationships are not known when design-
ing solutions for the problems, the solutions might turn out
to be ineffective, solving only symptoms of the real causes.
In this study, we attempt to reveal the underlying causes
preventing the adoption of CD in a single case study.
In this case study, we study the same case organization

as Hukkanen studied, but with a different research scope.
Hukkanen focused on build failures and their causes. After
Hukkanen had completed his study, we continued studying
the same case by focusing on all CD adoption problems and
by using a different kind of data collection method; Hukka-
nen observed build failure standup meetings, while we ar-
ranged root cause analysis workshops. Continuing studying
the problems was logical, because the results by Hukkanen
showed that the situation in the case did not improve de-
spite multiple months of time passing during the study by
Hukkanen.

2.4 AdoptingAgileMethods withinTraditional
Development Processes

Adopting CD has not been studied specifically within tra-
ditional development processes. Nevertheless, there has been
previous studies about combining agile methods with tradi-
tional processes. Here, we summarize those studies.
In a stage-gate process [4], new releases pass through stages

and in between there are gates that protect low quality in-
put entering the next stage. Karlstri:im and Runeson [15]
studied how agile software development could be integrated
into stage-gate managed product development. The method
under study was extreme programming (XP). They found it
possible to integrate XP to the stage-gate process, given that
certain success factors are present.
Van Waardenburg and van Vliet [26] studied what chal-

lenges there are when agile methods and plan-driven pro-
cesses coexist. They conclude that they can coexist, but
insist that good communication should be present between
different parts of the organization using different processes.
Theocharis et al. [25] studied whether agile methods re-

place traditional processes altogether when adopted or do
they coexist afterwards. They conclude that agile and tra-
ditional processes are often combined as hybrid approaches.
As a summary, previous studies have concluded that tradi-

tional processes and agile methods can coexist and adopting
agile methods does not usually mean that traditional pro-
cesses are removed. Communication between different peo-
ple using different processes has been considered important.
In this paper, we investigate whether CD can be adopted
within a stage-gate process, when Serum agile method is
being used already.

3. METHOD
In this section, we first introduce the case organization.

Second, we define our research goal and questions. Finally,
we describe our data collection and analysis methods, fol-
lowed by the validation of the results.

3.1 Case Organization
This study is based on a single case study [28] of a Nokia

Networks software development unit developing a telecom-
munications software product. The product is produced by
the unit and sold to the customers who take care of operat-
ing the product. In addition, there is a product management



Figure 2: The research process of this study.

3.3 Case Selection Rationale
While initially the case selection was done for convenience,

it turned out to be revelatory considering CD adoption within
a stage-gate process. The rationale for a revelatory case
study is described by Yin [28] as "when an investigator has
an opportunity to observe and analyze a phenomenon pre-
viously inaccessible to scientific investigation."

..........,<,
..............

Dsta,Ana lysls

: ..
,...:' )"

L1lu G,,:W) ")••.i

Data ccuecuon

• Mechanisms: mechanisms that explain the direct signs.
They are neither leaves nor roots of a cause-effect dia-
gram.

• Root causes: root causes are factors specific to the
case organization that are considered to be the last
relevant mechanisms explaining the direct signs. They
are the roots of a cause-effect diagram.

The overall research process is depicted in Figure 2. Next,
we describe the process steps.

3.4.1 TargetProblem Detection
Ten people from various roles at the studied site, such

as managers, developers and testers, took part in the first
workshop. The participants were invited to first hear results
from a previous study [13] and then continue with the work-
shop. Participation was not mandatory; participants could

3.4 Data Collection
We utilized a root cause analysis method named ARCA

[19] as the data collection method of the study. The ARCA
method is a retrospective method and it was designed to help
developing corrective actions for a target problem, require
low effort, be easy to use and be adaptable for different
kinds of target problems. The method has been successfully
applied for analyzing software project failures [19, 20].
In this study, we used the ARCA method to systematically

collect mechanisms between the direct signs and root causes
perceived by the case organization members. Next, we in-
troduce the details about how ARCA was utilized. Data was
collected between March and June 2015. The data collec-
tion consisted of four steps: target problem detection, target
problem selection, causal analysis and corrective action in-
novation (see Figure 2). First, we arranged the target prob-
lem detection workshop. Then, the target problem selection
step was performed with discussions with a key representa-
tive from the unit. Finally, the second workshop included
the causal analysis and corrective action innovation steps.

Internally, the target would be continuous deployment, de-
ploying to target hardware continuously [...] For continuous
deployment, the management is not needed or changes in the
processes. - Workshop participant

3.2 Research Goal and Questions
The research goal of this study is to understand how the

stage-gate process affected CD adoption in the case organi-
zation. Despite the efforts put into the adoption, there were
direct signs of a dysfunctional CD practice, as shown by
Hukkanen [13]. The research goal is achieved by answering
the following research questions:

• RQ1. What direct signs of a dysfunctional CD practice
did the case organization show?

• RQ2. What caused the direct signs of a dysfunctional
CD practice in the case organization?

• RQ3. How did the stage-gate process used by the case
organization explain the direct signs of a dysfunctional
CD practice?

We identified three types of concepts that we use for describ-
ing the phenomenon in the case organization (see Figure 4):

• Direct signs: direct signs of a dysfunctional CD prac-
tice. They are the leaves of a cause-effect diagram.

To align with the vision of the unit, we define CD as
adopted in the unit if the software is built in such a way
that it can be given to the downstream units at any time.
Thus, we exclude the automated deployment to production
from this study, and consider only the capability to deliver
verified software artifacts to the next phase in the stage-gate
process.

unit who is managing the development unit. When we use
the term case organization in this study, we refer to the
development unit only.
The development unit is large and distributed across sev-

eral sites and countries. A more in-depth description of the
case can be found in [13]. Due to availability, we collected
data from only one site of the unit. However, the data col-
lected applies to the whole unit, because the same process
and CD system was used at every site.
The development unit had begun to improve their build,

deploy and test practices in early 2014. The main goals of
the unit were to enable faster time-to-market in a competi-
tive business environment and to reduce the code verification
feedback time to developers. However, in an earlier investi-
gation during 2014 by Hukkanen [13], the unit faced serious
problems during the improvement, e.g. frequently failing
builds and flaky tests. Despite the efforts put into the im-
provement activities, major problems still remained in early
2015 when this study was initiated.
It was believed at the unit that adopting CD would not re-

quire changes in the processes external to the unit, and thus
the unit itself could drive the adoption (bottom-up adop-
tion) . The development unit had a vision of being able to
adopt CD internally, meaning that while the other organi-
zational functions, such as product management, sales and
marketing, were still working with the old processes, the unit
could continuously deploy the product in a releasable con-
dition to a clone of a production environment. The partici-
pants used the term "continuous deployment" when referring
to the vision.



decide whether they wanted to take part in the workshop
or not. The workshop lasted for one hour and 45 minutes
and it was audio recorded. Two researchers also took notes
during the workshop.
During the workshop, results from an unpublished system-

atic literature review (SLR) [17] about CD adoption prob-
lems were first presented to the participants. The results
were presented organized into the categories of design, inte-
gration, testing, release, people, organization, resources and
tools problems when adopting CD. Next, the participants
were asked what current CD adoption problems they were
facing.
The participants were first given five minutes to individu-

ally write down experienced CD adoption problems. Then,
every participant in turn described their problems, and each
problem was placed by the first author on a problem diagram
with the categories found in the SLR. The diagram was pro-
jected to the wall of the workshop room during the whole
workshop.
The participants came up with many problems in all other

categories except release and organization. However, organi-
zational problems were discussed under an emergent "mile-
stone thinking" category, which proved to be a critical prob-
lem in the case. Workshop participants used the term mile-
stone as a synonym for time-based releases.
In retrospective, based on the audio recording of the work-

shop, some problems were categorized incorrectly into the
SLR categories. In further replications, the categorization
of the elicited problems could be done purely inductively,
to avoid similar problems. However, this does not have any
effect on the results of this study, because the results are
based on a qualitative analysis done after the workshops.
After everyone had had a chance to discuss about the

problems, the participants voted on which problems should
be addressed in causal analysis workshop. Everyone had
three votes. We instructed the participants to vote for prob-
lems that had a large impact on the adoption and could be
prevented by the case organization.

3.4.2 Target Problem Selection
The results from the target problem detection were used

in two further discussions to select focus points for the later
parts of the investigation. The votes from the previous work-
shop did not determine the target problems directly, because
the votes were uniformly divided between multiple problems.
The first three authors and a key representative from the

case organization participated in the target problem selec-
tion. In addition, other key stakeholders from the case were
consulted to gain advice, but the decision on how to proceed
was done together by researchers and the key representative.
The selected target problems for causal analysis were sup-
port for multiple branches and milestone release model.

3.4.3 CausalAnalysis
In the causal analysis workshop, there were ten people

present who were mainly software developers and people re-
sponsible for the CD system used by the unit. Again, the
participants could decide themselves whether to take part in
the workshop or not. The causal analysis step lasted for one
hour and 30 minutes and it was audio and video recorded.
In addition, the first author made reflective notes after the
workshop.
Instead of asking for causes of the target problems, we

investigated their effects. The effects proved to be more
interesting to study than the causes. The decisions to do
multiple branches and have milestones were given as granted
to the developers, thus the causes of the decisions were not
fully known for the participants.
During the workshop, the cause-effect diagram was con-

structed. The participants were first given five minutes to
write down effects of the target problems individually. After
that, each participant had a turn to describe their additions
to the cause-effect diagram. The target problems were inves-
tigated individually, first milestone release model and after
that support for multiple branches.

3.4.4 CorrectiveAction Innovation
Corrective action innovation was done during the same

workshop as the causal analysis, except after a short break.
It lasted for one hour and 11 minutes and was also audio
and video recorded. However, only four people remained
to participate the corrective action innovation workshop, so
the results from this part are not that comprehensive. First,
participants developed corrective actions in pairs based on
the cause-effect diagrams. Next, the actions were described
to other participants. Finally, the participants voted about
the feasibility and effectiveness of the actions.

3.4.5 CollectedData
As a summary, we collected multiple kinds of data:

1. Problem and cause-effect diagrams from the workshops
that represented a common understanding of the situ-
ation.

2. Audio recordings from both workshops and a video
recording from the causal analysis workshop.

3. Notes from the target problem selection discussions.
4. Feedback forms that were given at the end of the work-
shops to the participants, see Section 3.6 .

3.5 DataAnalysis
The audio and video recordings were used for transcribing

the workshops as text. The transcription was performed by
the first author. The transcriptions were coded with the
ATLAS.ti [1] qualitative data analysis tool. The codes were
grouped into code groups and the groups were finally used
to construct the narrative results of this study.
We constructed six code groups for the adoption prob-

lems: architecture, branches, distribution, limited hardware,
process and time pressure. In addition, we found quotations
that described why the process did not work in practice and
grouped those codes under the code group why the process
does not work. Those quotations described the tight sched-
ule mechanism (see Section 4.4). After coding, we connected
the identified mechanisms to the direct signs of dysfunctional
CD practice (see Figure 4).
In addition to the data gained with the ARCA method,

we had previously interviewed a member of the unit about
the stage-gate process they used. Moreover, we triangulated
the results of the study by discussing about them by email
with key representatives.

3.6 Validation
The workshop recordings allowed rigorous analysis of the

results. In addition, each workshop was accompanied by
at least two researchers, mitigating single researcher bias.



{; :\ ,
-'t'l

r: -:
-'I"

/- ".. , ./J .. , .',," -', ',

I I 'YO- '--7
Plann ing IGl Gen eral-0 " OeYelopm...nt Availability

Figure 3: The stage-gate development process of the
case organization.

The workshop participants were allowed to give anonymous
responses by email, in case they did not feel safe to say them
publicly in the group. There were only a few email replies,
and it turned out that the participants were bold enough to
say their opinions in the group.
Feedback was gathered from the participants after each

workshop to evaluate the results from their perspective. The
feedback was positive and the participants agreed that the
workshop results truthfully described their situation, although
the feedback gathered from the causal analysis and correc-
tive action innovation steps was limited due to some partic-
ipants leaving between those steps. Two key representatives
from the case organization have read this paper and agree
that the results are correct.
The selection of invited participants was done by a key

representative in the unit in order to get knowledgeable par-
ticipants. To guide the selection, we instructed that the par-
ticipants' daily work should be related to the CD practice.
Based on the participant feedback, the workshops had been
relevant for the participants.

4. RESULTS
In this section, we present the results of the study. First,

we describe the stage-gate development process used in the
case organization. Second, we describe the direct signs of
a dysfunctional CD practice the case organization was suf-
fering from. Third, we describe why were the direct signs
present by describing the root causes and mechanisms that
explain the direct signs. Finally, we focus on how the stage-
gate process used by the case organization explains the direct
signs.

4.1 Stage-gate Development Process
During the workshops it became evident that the product

development process used by the case organization hindered
the CD adoption significantly. Thus, to understand the re-
sults of this paper, the external stage-gate process is de-
scribed here. The product development was organized as a
stage-gate process, as depicted in Figure 3. The process con-
sisted of multiple stages which had gates between them. To
proceed to a next stage, certain gate requirements needed
to be met depending on the gate in question. The plan-
ning and development stages actually consisted of multiple
stages, but separating them is not relevant for this paper.
The round arrows visualize the iterative nature of different
stages.
During the planning stages, specifications for new features

were created and the features were grouped into content
packs. Resources were then allocated for the content packs
and the packs were scheduled for specific releases.
After the planning stage, the actual development started.

This stage was performed by the case organization. Dur-
ing the development, the content packs were implemented
and continuously tested. The case organization used Serum

Table 2: Summary of the direct signs of a dysfunc-
tional CD practice in the case organization.
Problem Description
Failing builds CD pipeline builds were often failing and

not fixed immediately afterwards.
Flaky tests Some tests were flaky, meaning that they

might fail randomly even when there was
no issue in a code change.

Low test coverage Test coverage was not considered high
enough for having confidence to release
the product after running the tests.

Slow feedback Feedback about the changes made to the
product came slow to the developers.

to organize their development work during the development
stage.
After the development was done, the content packs were

tested as a whole during the system verification stage. This
stage was performed by a unit other than the case organiza-
tion. During the system verification, the product was used
as the customer would install and use it. The system ver-
ification was executed on a production-like environment at
the premises of Nokia Networks.
After the system verification stage, it was decided whether

the content pack was ready for customer trials or not. This
decision point had a specific date which was determined dur-
ing the planning stage. If a content pack was ready, its
source code was in principle frozen, meaning that only crit-
ical bug fixes could be applied to it afterwards, although
in practice the code freeze was not strictly followed. The
content packs were then tested in production-like environ-
ments of specific trial customers. If any bugs were found
during this stage, they could be either fixed immediately or
deferred to a later release.
Finally, if the customer trials were considered to be suc-

cessful, the content packs could be made generally available
for other customers as well.

4.2 RQ1. Direct Signs
The case organization suffered from four direct signs of a

dysfunctional CD practice, listed in Table 2: failing builds,
flaky tests, low test coverage and slow feedback.
Failing Builds. The case organization suffered from fail-

ing builds. The existence of build failures is not necessarily
a problem for the CD practice, but they become problem-
atic if they are common and not fixed immediately. It was
reported that builds were failing for long time periods and
sometimes people had to fix builds that others had broken.
It was suggested that an automatic reverting system could
solve the problem; if a change broke the build, then that
change could be automatically reverted to keep the build
unbroken.
Flaky Tests. Some of the tests used in the CD pipeline

were flaky and could fail randomly even if a software change
did not have any problems in it. This makes it difficult to
trust the build results and increases the build maintenance
effort. The participants were aware that flaky tests should
be fixed, but they did not have the resources required to
make the tests more robust.
Low Test Coverage. Many participants felt that the

test coverage was not high enough for being confident about
that a change did not break anything in the product. This is



Figure 4: Overview of the direct signs, root causes
and mechanisms in between.

problematic because when practicing CD, one should be con-
fident to release the product after running the tests. Raising
the test coverage higher was restricted by the push to de-
velop the product features.
Slow Feedback. The developers received some of the

feedback for their changes slowly. For example, the whole
product was not integrated all the time; only the changes
that would go into a release were integrated together. In
addition, limited hardware resources limited the possibility
to do manual testing, which delayed the feedback. Thus, the
main benefit of CD, fast feedback, was not achieved in all
cases.

4.3 RQ2. Mechanisms and Root Causes
The existence of the direct signs was explained with four

root causes, as shown in Figure 4: distributed organization,
unsuitable architecture, stage-gate process and lack of test-
ing stmtegy. We describe the mechanisms of the stage-gate
process in the next section and the other mechanisms in this
section.
Distributed Organization. The case organization was

distributed to several sites and countries. The participants
thought that the communication was not working between
the sites, especially when there were cultural differences.
The communication problems were shown during the CD
adoption by surprising breaking changes. These included
API changes, version changes of libraries or changes in in-
stallation scripts. The breaking changes caused failing builds.
In order to fix the failing builds, developers needed to

understand the changes made by other people. This was
told to be time-consuming work. It is not known why the
people who made the breaking changes did not fix the failing
builds themselves. This could be again explained by the
insufficient communication caused by the distribution.
Unsuitable Architecture. The participants reported

that the product architecture did not support the adoption
of CD. The architecture was said to be unstable and cause
flaky tests. The instability came from the use of third-party
software that was not robust enough.
Other than that, the architecture required the whole prod-

uct to be released as a whole. It was mentioned that if

Ea-ly PIi::H1S De not HL"-:.J

SameDeadlnee for Dependencies
ant Dependents

Ur.e ven R'1d Urpred icta ble \!'Jori.;load

Plans not Readjusted after Delays

Problem a Hiddan to Paas QUi:llit,
Gates

ecce r roczc notRespected

Figure 5: Different mechanisms why the stage-gate
process caused the tight schedule in practice.

pieces of the architecture could be released independently,
the stage-gate process could be adjusted so that different
sites could work more independently and perhaps cause less
conflicts.
Finally, there were dependencies between subsystems in

the architecture, and the subsystems were developed on dif-
ferent sites. The dependencies caused trouble, because the
API's of the dependencies could change surprisingly.
Lack of Testing Strategy. Participants identified that

there was no common view of how different types of tests
should be used. They had noticed that some tests were
redundant and some things were tested on a wrong level.
The term unit, integration and acceptance tests were used to
differentiate different kinds of tests. However, different sites
used the terms differently. The lack of a testing strategy had
caused duplicate testing in the CD pipeline and the pipeline
was considered slow because of that.

4.4 RQ3. Stage-gate ProcessMechanisms
The stage-gate process explains the direct signs through

three primary mechanisms: multiple branches, process over-
head and tight schedule, as illustrated in Figure 4. In partic-
ular the tight schedule mechanism proved to be caused by
other minor mechanisms, shown in Figure 5.
Multiple Branches. The process required that after

the code freeze, the product should be developed in a new
branch. The branch needed its own testing environment
and CD pipeline. This took some of the limited hardware
resources away from other uses. In addition, working with
multiple branches was described to cause complexity during
development. Different people were working with different
branches, which made communication difficult . Bug fixes
and even new features sometimes had to be applied to mul-
tiple branches, taking additional effort.
In addition to the code freeze and development branches,

the process required that a third branch was created for
an upcoming release, even before development had started
for that release. Also this branch was required to have its
own CD pipeline and testing environment. This limited the
available hardware resources even more.
Process Overhead. The process demanded that cer-

tain kind of tasks were performed during different stages
and gates. For example, it was reported that large amounts
of manual tests were performed before each release. Some
participants thought that the manual tests were not always
necessary considering the changes that had been made, but



they were nevertheless executed because it was mandated by
the process. Other process overhead was caused by reporting
and documentation work that was not considered necessary
by the participants. For example, new documentation had
to be created for some parts that had not changed during
the development of a release.
Tight Schedule. The process caused a tight schedule for

development, leaving no organizational slack [18] for improv-
ing the CD adoption. The tight schedule was itself caused
by other minor mechanisms, shown in see Figure 5 and dis-
cussed next.
Early Plans Do not Hold. The content planned early in

the stage-gate process was not fixed; instead, it kept chang-
ing during development. Thus, the estimates used during
planning turned to be too optimistic, because more work
was performed during the actual development. This caused
time pressure, especially near the deadlines.
Same Deadlines for Dependencies and Dependents. Differ-

ent teams were developing different subsystems of the prod-
uct architecture. Participants described that another team
developing a subsystem that others depend on might finish
their work very near to a deadline. Thus, there would be
little time for solving integration problems in the dependent
subsystems. One suggestion was that the dependent sub-
systems would use a version of the subsystem they depend
on that was developed one release earlier, so there would be
more time to solve the integration problems.
Uneven and Unpredictable Workload. Because the plans

kept changing during development, the workload near the
deadlines was high, with people having to work weekends
and feeling mental stress due to the time pressure. If a
deadline could not be met, there was a possibility that the
deadline was delayed for the whole product and developers
would receive extra time to finish development. However,
it was not known beforehand whether a deadline would be
delayed or not and thus the developers could not predict how
much time they would have for finishing the features. The
conclusion was that sometimes developers were rushing their
work and sometimes they had to wait for the possibility to
release completed work.
Finally, we figure it out [that} we have to delay [the release}
for two weeks and then we have lost time and this two weeks
we could have used for some effective development. If we
would have known that early enough.

- Workshop participant

Plans not Readjusted after Delays. Sometimes deadlines
could not be met and thus they were delayed. However, this
did not have an effect on the content in the future releases or
deadlines. Thus, delays in early releases would cause more
time pressure during the future releases. This was said to
be a vicious cycle.
It causes problems if a fixed deadline is not reached. The next
fixed deadline will suffer. [...} If one deadline is delayed, the
next one is not. So we have less time there.

- Workshop participant

Problems Hidden to Pass Quality Gates. Sometimes prod-
uct problems were hidden in order to meet the gate require-
ments in time. Some participants even reported that prod-
uct managers would get bonuses for meeting the deadlines
and therefore were distorting the real situation in reports.
After the gate had been passed, the problems were fixed
during later stages. However, this took time from the next
release development and increased the time pressure.

There is a lot of this kind of work not done before release.
There might come another release where fixes are delivered.

- Workshop participant

Code Freeze not Respected. In principle, after the cus-
tomer trials had started, there should not have been any
new feature development. However, in practice this was not
the case. The hidden problems that had silently passed the
gate requirements were being fixed during the customer tri-
als. Also, it was reported that urgent customer requests
were often done after the code freeze, because it was the
fastest way to get them done and released. If they had to
go through the normal planning process, it would take too
long for the customers.
We don't support fast release cycles, so new features required
by customers can only be done [after the code freeze]. [...}
And it causes a vicious cycle that we are even more late with
a newer release. - Workshop participant

5. DISCUSSION
In this section we answer the research questions and dis-

cuss the limitations of our conclusions.
RQl. What direct signs of a dysfunctional CD

practice did the case organization have? The identi-
fied direct signs of a dysfunctional CD practice were failing
builds, flaky tests, low test coverage and slow feedback. All
of these are known in the literature and our results support
their existence. Similar problems were found by Hukkanen
[13], who studied the same case. The signs of low test cov-
erage and slow feedback were not identified by Hukkanen,
mainly because the focus of his study was on CI instead of
CD, and branching issues were not discussed in his study.
RQ2. What caused the direct signs of a dysfunc-

tional CD practice in the case organization? The
identified root causes for the direct signs were the distributed
organization, unsuitable architecture, lack of testing strategy
and the stage-gate process. In our previous study at Eric-
sson [16], we identified and studied the root causes of dis-
tribution, unsuitable architecture and lack of testing strat-
egy. Our case study supports the existence of the previously
found root causes. The investigation of stage-gate process is
a major contribution of this study, because it has not been
studied elsewhere.
Distribution, unsuitable architecture and the lack of test-

ing strategy played a significant role hindering the CD adop-
tion in the case organization, too. It is difficult to quantify
the proportional effects of different root causes, because they
usually have relationships with each other in real-life organi-
zations. For example, it seems that combining distribution
of the organization with an unsuitable product architecture
causes problems if there are architectural dependencies be-
tween the distributed sites.
RQ3. How does the stage-gate process used by the

case organization explain the direct signs of a dys-
functional CD practice? The stage-gate process of the
case organization explains the direct signs with the mecha-
nisms of tight schedule, process overhead and use of multiple
branches. These mechanisms caused lack of time to improve
the CD practice, limited hardware resources and delayed in-
tegration. Especially the mechanisms leading to lack of time
to improve the CD practice were most emphasized by the
participants. All of the mechanisms have been previously
known to hinder CD adoption, e.g, in our Ericsson study
[16] and SLR [17], and this study supports their existence.



An additional contribution of this study is the explicit links
from the stage-gate process to the direct signs.
Previous research has identified that integrating agile meth-

ods with traditional processes is possible and common [15,
26, 25]. This is verified also by our case study, because the
case was using Serum to organize their development work.
However, generalizing this to CD does not seem to be valid
based on our case study. One possible explanation is given
by van Waardenburg and van Vliet [26] who emphasize the
need for good communication between the traditional and
agile processes. This was not achieved in the case because
of the global distribution. Vuori and Huy [27] also had dis-
covered communication problems at Nokia even when dis-
tribution was not an issue.
Our results show that adopting CD within a stage-gate

process was not working as intended. This could be ex-
plained with the Stairway to Heaven model [12]. The model
describes that while adopting agile methods require changes
only in the R&D organization, further adoptions of CI and
CD require changes in the other organizational functions,
too. Thus, our contribution provides evidence for the Stair-
way to Heaven model as a hypothesis that adopting CD
requires changes in the traditional processes external to the
R&D organization.
Tight scheduling seemed to be a particular problem in the

case organization because the process design did not prop-
erly take real-life constraints into account. Perhaps a more
agile process with enough organizational slack [18] would
have suited this product better, because the product was
developed for an emerging market and the needed features
were not known clearly enough beforehand. The product
management who was managing the case organization was
not included in this study and it could be fruitful to in-
vestigate the interface between product management and
development in future studies.
It was briefly suggested that feature toggles could allow

removing the multiple branches altogether. Literature sup-
ports this suggestion [7, 23]. However, implementing a fea-
ture toggle architecture is a challenge on its own. It might
be difficult to adopt it considering the other problems the
organization was facing.
Finally, the process demanded that branches were cre-

ated at specific times, even if the developers did not think it
necessary. Thus, stakeholders in the case organization who
had knowledge of the consequences of the branches could
not make the decision not to branch. Branching decisions
were made outside the development unit. Perhaps giving
more decision-making power to the developers would have
prevented some of the adoption problems.

5.1 Limitations
Workshop participants were from a single site of the devel-

opment unit only. Thus, the results represent only a partial
view of the whole unit. Some of the results are directly re-
lated to the relationship between the development unit and
product management. To gain a more holistic view of the
situation, the whole organization should participate in the
root cause analysis. However, in an organization this size,
it can prove to be impossible to get specific people to meet
on a certain time, especially when there might not be other
incentive than participating in a research project.
Unfortunately the time reserved for corrective action inno-

vation was shorter than expected and there were not many

participants in the session. This inherently limited the out-
put of the corrective action innovation. However, this does
not reduce the validity of the conclusions, because most of
the data was gathered during other steps in the research
process. In addition, because feedback was collected only
after corrective action innovation, there were participants in
the causal analysis workshop from who we did not receive
feedback.
The conclusions of the study can be analytically general-

ized to similar organizations. We do not attempt to gener-
alize the results statistically. Instead, we claim that these
mechanisms existed in this case study and thus can exist in
other similar cases, too.

6. CONCLUSIONS
Adopting agile practices within a stage-gate process has

been considered successful in the previous studies. However,
CD adoption has not been studied previously in the context
of a stage-gate process. Our case study results give indi-
cations that the stage-gate process can significantly hinder
CD adoption and the adoption might not be possible with-
out changes to the process.
The direct signs of a dysfunctional CD practice in the case

organization were failing builds, flaky tests, low test coverage
and slow feedback. These signs were caused by four major
root causes hindering CD adoption: distributed organiza-
tion, unsuitable architecture, stage-gate process and lack of
testing strategy. Previous research supports the existence of
other root causes except stage-gate process.
Stage-gate process hindered CD adoption by three mecha-

nisms that limited the time available for the adoption: tight
schedule, process overhead and the use of multiple branches
for different process stages. Tight scheduling was partially
caused by the process-unsuitability to the nature of the
product. In addition, the process limited the available hard-
ware resources and caused delayed integration.
We contribute to the previous research by the following

ways. We identified previously undocumented mechanisms
from stage-gate process to direct signs of a dysfunctional CD
practice. We also constructed a hypothesis that it might
not be possible to adopt CD in the context of a stage-gate
process if the process is not changed to allow more organi-
zational slack and decision-making power to the developers.
We provide the following implications for practice. Branch-

ing causes additional complexity for CD adoption and it
should be avoided. Similar stage-gate processes might not
be suitable for similar products which are made for emerg-
ing markets. Giving more organizational slack and decision-
making power to developers might make the adoption pos-
sible.
We propose following future work. Stage-gate processes

could be investigated in other organizations to see whether
they have similar effects. Moreover, studying the interface
between product management and development could be
fruitful for understanding CD adoption.

7. ACKNOWLEDGMENTS
The authors would like to thank Nokia Networks and in

particular the participants of the workshops in this study.
This work was supported by TEKES as part of the Need
for Speed research program of DIGILE (Finnish Strategic
Center for Science, Technology and Innovation in the field



of ICT and digital business).

References
[1] ATLAS.ti GmbH. ATLAS.ti, 2016. URL http://atlasti.

cous] ,

[2] L. Chen. Continuous Delivery: Huge Benefits, But
Challenges Too. Software, IEEE, 32(2):50-54, 2015.

[3] G. G. Claps, R. B. Svensson, and A. Aurum. On the
journey to continuous deployment: Technical and social
challenges along the way. Information and Software
Technology, 57(0):21 - 31, 2015.

[4] R. G. Cooper. Stage-gate systems: a new tool for man-
aging new products. Business horizons, 33(3):44-54,
1990.

[5] A. Debbiche, M. Diener, and R. Berntsson Svensson.
Challenges When Adopting Continuous Integration: A
Case Study. In Product-Focused Software Process Im-
provement, volume 8892 of Lecture Notes in Computer
Science, pages 17-32. Springer International Publish-
ing, 2014.

[6] A. Eck, F. Uebernickel, and W. Brenner. Fit for Con-
tinuous Integration: How Organizations Assimilate an
Agile Practice. In Twentieth Americas Conference on
Information Systems, Savannah, Georgia, USA, 2014.

[7] D. Feitelson, E. Frachtenberg, and K. Beck. Devel-
opment and Deployment at Facebook. IEEE Internet
Computing, 2013.

[8] T. Fitz. Continuous Deployment, 2009. URL http://
timothyfitz.com/2009/02/08/continuous-deployment./ .

[9] M. Fowler. Continuous Integration, 2006. URL http://
martinfowler.com/articles/ continuouslntegration.html.

[10] M. Fowler. ContinuousDelivery, 2013. URL http://
martinfowler.corri/bliki/ContinuousDelivery.html.

[11] J. Gmeiner, R. Ramler, and J. Haslinger. Automated
testing in the continuous delivery pipeline: A case study
of an online company. In 2015 IEEE Eighth Interna-
tional Conference on Software Testing, Verification and
Validation Workshops (ICSTW), pages 1--6, 2015.

[12] H. Holmstrom Olsson, H. Alahyari, and J. Bosch.
Climbing the "Stairway to Heaven" - A Multiple-Case
Study Exploring Barriers in the Transition from Agile
Development Towards Continuous Deployment of Soft-
ware. In Proceedings of the 2012 38th Euromicro Con-
ference on Software Engineering and Advanced Appli-
cations, pages 392-399, Washington, DC, USA, 2012.

[13] L. Hukkanen. Adopting Continuous Integration - A
Case Study. M.Sc. thesis, Aalto University, 2015.

[14] J. Humble and D. Farley. Continuous Delivery: Reliable
Software Releases through Build, Test, and Deployment
Automation. Addison-Wesley Professional, Upper Sad-
dle River, NJ, 1 edition edition, 2010.

[15] D. Karlstrom and P. Runeson. Integrating agile soft-
ware development into stage-gate managed product de-
velopment. Empirical Software Engineering, 11(2):203-
225,2006.

[16] E. Laukkanen, M. Paasivaara, and T. Arvonen. Stake-
holder Perceptions of the Adoption of Continuous In-

tegration - A Case Study. In 2015 Agile Conference,
pages 11-20, Washington, DC, USA, 2015.

[17] E. Laukkanen, J. Itkonen, and C. Lassenius. Problems,
Causes and Solutions When Adopting Continuous De-
livery - A Systematic Literature Review. Submitted to
Information and Software Technology, 2016.

[18] M. B. Lawson. In praise of slack: Time is of the essence.
The Academy ofManagement Executive, 15(3):125-135,
200l.

[19] T. O. A. Lehtinen, M. V. Mantyla, and J. Vanhanen.
Development and evaluation of a lightweight root cause
analysis method (ARCA method)-field studies at four
software companies. Information and Software Tech-
nology, 53(10):1045-1061, 201l.

[20] T. O. A. Lehtinen, M. V. Mantyld, J. Vanhanen, J. Itko-
nen, and C. Lassenius. Perceived Causes of Software
Project Failures-An Analysis of their Relationships.
Information and Software Technology, 56(6):623--643,
2014.

[21] M. Leppanen, S. Makinen, M. Pagels, V.-P. Eloranta,
J. Itkonen, M. V. Mantyla, and T. Mannisto. The High-
ways and Country Roads to Continuous Deployment.
Software, IEEE, 32(2):64-72, 2015.

[22] M. V. Mantyla, B. Adams, F. Khomh, E. Engstrom,
and K. Petersen. On rapid releases and software test-
ing: a case study and a semi-systematic literature
review. Empirical Software Engineering, 20(5):1384-
1425,2015.

[23] S. Neely and S. Stolt. Continuous Delivery? Easy! Just
Change Everything (Well, Maybe It Is Not That Easy).
In Proceedings of the 2013 Agile Conference, AGILE
'13, pages 121-128, Washington, DC, USA, 2013. IEEE
Computer Society.

[24] A. A. U. Rahman, E. Helms, L. Williams, and
C. Parnin. Synthesizing Continuous Deployment Prac-
tices Used in Software Development. In Agile Confer-
ence (AGILE), 2015, pages 1-10, 2015.

[25] G. Theocharis, M. Kuhrmann, J. Munch, and
P. Diebold. Is Water-Serum-Fall Reality? On the
Use of Agile and Traditional Development Practices.
In Product-Focused Software Process Improvement, vol-
ume 9459, pages 149-166. Springer International Pub-
lishing, Cham, 2015.

[26] G. van Waardenburg and H. van Vliet. When agile
meets the enterprise. Information and Software Tech-
nology, 55(12):2154-2171, 2013.

[27] T. O. Vuori and Q. N. Huy. Distributed Attention and
Shared Emotions in the Innovation Process: How Nokia
Lost the Smartphone Battle. Administrative Science
Quarterly, pages 1-43, 2015.

[28] R. K. Yin. Case study research: Design and methods,
volume 5. Sage publications, second edition, 1994.


