Roscam Abbing, Sylvianne D.C.; Kolkowski, Radoslaw; Zhang, Zhuang Yan; Campi, Filippo; Lötgering, Lars; Koenderink, A. Femius; Kraus, Peter M.

Extreme-Ultraviolet Shaping and Imaging by High-Harmonic Generation from Nanostructured Silica

Published in: Physical Review Letters

DOI: 10.1103/PhysRevLett.128.223902

Published: 03/06/2022

Document Version
Publisher's PDF, also known as Version of record

Published under the following license: CC BY

Please cite the original version:
Extreme-Ultraviolet Shaping and Imaging by High-Harmonic Generation from Nanostructured Silica

Sylvianne D. C. Roscam Abbing,1,* Radoslaw Kolkowski,2,3 Zhuang-Yan Zhang,1 Filippo Campi,1 Lars Lötgering,1, A. Femius Koenderink,2 and Peter M. Kraus1,4,†
1Advanced Research Center for Nanolithography (ARCNL), Science Park 106, 1098XG Amsterdam, Netherlands
2Center for Nanophotonics, AMOLF, Science Park 104, 1098XG Amsterdam, Netherlands
3Optics and Photonics Group, Department of Applied Physics, Aalto University, P.O. Box 13500, FI-00076 Aalto, Finland
4Department of Physics and Astronomy, and LaserLaB, Vrije Universiteit, De Boelelaan 1081, 1081HV Amsterdam, Netherlands

(Received 23 December 2021; accepted 26 April 2022; published 31 May 2022)

Coherent extreme-ultraviolet pulses from high-harmonic generation have ample applications in attosecond science, lensless imaging, and industrial metrology. However, tailoring complex spatial amplitude, phase, and polarization properties of extreme-ultraviolet pulses is made nontrivial by the lack of efficient optical elements. Here, we have overcome this limitation through nanoengineered solid samples, which enable direct control over amplitude and phase patterns of nonlinearly generated extreme-ultraviolet pulses. We demonstrate experimental configurations and emitting structures that yield spatially patterned beam profiles, increased conversion efficiencies, and tailored polarization states. Furthermore, we use the emitted patterns to reconstruct height profiles, probe the near-field confinement in nanostructures below the diffraction limit of the fundamental radiation, and to image complex structures through coherent diffractive emission from these structures. Our results pave the way for introducing sub-fundamental-wavelength resolution imaging, direct manipulation of beams through nanoengineered samples, and metrology of nanostructures into the extreme-ultraviolet spectral range.

DOI: 10.1103/PhysRevLett.128.223902

Attosecond science and strong-field physics are undergoing a revolution through the recently discovered generation of high harmonics in solids [1–3]. Until now, high-harmonic generation (HHG) from dielectrics was shown to generate photon energies well into the extreme ultraviolet (XUV) photon energy range [4–6]. The flexibility associated with solid samples consequently promises achievements beyond those of gas-phase HHG [7], which enabled femto- and attosecond timescale [8–12] studies, and all-optical nanoscale XUV imaging [13,14]. All XUV experiments that rely on post-generation beam shaping are currently challenged by the lack of suitable optical elements: Refractive optics are limited by the high absorption of materials in the XUV and were only recently demonstrated by gas expansions with a spatially varying density profile close to a resonance [15]. Diffractive XUV focusing through binary amplitude shaping has recently been demonstrated for polychromatic HHG pulses [16]. However, binary diffraction elements are challenged by low efficiencies (10% for gratings [17]), whereas purely phase shifting elements would provide higher efficiencies (41% for gratings) but their realization is impractical due to the extremely short attenuation lengths in the XUV.

The possibility to nanostructure the emitting medium in solid HHG opens up the path towards tailored emission profiles, and to directly generate XUV patterns inside structures for imaging unknown objects through diffraction with sub-fundamental-wavelength resolution. First steps have been undertaken in HHG from engineered surfaces, albeit at relatively low photon energies and from larger structures [18–25]. In this report, we introduce and demonstrate XUV science of nanostructures by HHG. We show how the diffracted emission patterns can be quantitatively understood and modeled, and use this knowledge for first demonstrations to control the phase, amplitude, and polarization of the emitted XUV pulses at will. Moreover, we introduce XUV generation from complex structures and use the measured patterns to reconstruct the underlying nanoscale structures. Our results demonstrate profile retrieval in all three dimensions, paving the way towards imaging and semiconductor wafer metrology through solid-state HHG from structured materials.

To generate diffractive high harmonics in the XUV we focused 800 nm femtosecond pulses onto a grating-structured (10 μm pitch, 5 μm linewidth, 85 nm height) fused silica sample (112 ± 3 μm thick), as shown in Fig. 1(a). Only odd harmonics orders are observed, because fused
silica appears isotropic to HHG due to its small crystal-domain sizes. The absorption length in silica is less than 20 nm [26], hence domain sizes. The absorption length in silica at the silica appears isotropic to HHG due to its small crystal-domain sizes. The absorption length in silica is less than 20 nm [26], hence domain sizes. The absorption length in silica at the silica appears isotropic to HHG due to its small crystal-domain sizes. The absorption length in silica is less than 20 nm [26], hence domain sizes. The absorption length in silica at the silica appears isotropic to HHG due to its small crystal-domain sizes. The absorption length in silica is less than 20 nm [26], hence domain sizes. The absorption length in silica at the silica appears isotropic to HHG due to its small crystal-domain sizes. The absorption length in silica is less than 20 nm [26], hence domain sizes. The absorption length in silica at the silica appears isotropic to HHG due to its small crystal-domain sizes. The absorption length in silica is less than 20 nm [26], hence domain sizes. The absorption length in silica at the silica appears isotropic to HHG due to its small crystal-domain sizes. The absorption length in silica is less than 20 nm [26], hence domain sizes. The absorption length in silica at the silica appears isotropic to HHG due to its small crystal-domain sizes. The absorption length in silica is less than 20 nm [26], hence domain sizes. The absorption length in silica at the silica appears isotropic to HHG due to its small crystal-domain sizes. The absorption length in silica is less than 20 nm [26], hence domain sizes. The absorption length in silica at the silica appears isotropic to HHG due to its small crystal-domain sizes. The absorption length in silica is less than 20 nm [26], hence domain sizes. The absorption length in silica at the silica appears isotropic to HHG due to its small crystal-domain sizes. The absorption length in silica is less than 20 nm [26], hence domain sizes. The absorption length in silica at the silica appears isotropic to HHG due to its small crystal-domain sizes. The absorption length in silica is less than 20 nm [26], hence domain sizes. The absorption length in silica at the silica appears isotropic to HHG due to its small crystal-domain sizes. The absorption length in silica is less than 20 nm [26], hence domain sizes. The absorption length in silica at the silica appears isotropic to HHG due to its small crystal-domain sizes. The absorption length in silica is less than 20 nm [26], hence domain sizes. The absorption length in silica at the silica appears isotropic to HHG due to its small crystal-domain sizes. The absorption length in silica is less than 20 nm [26], hence domain sizes. The absorption length in silica at the silica appears isotropic to HHG due to its small crystal-domain sizes. The absorption length in silica is less than 20 nm [26], hence domain sizes. The absorption length in silica at the silica appears isotropic to HHG due to its small crystal-domain sizes. The absorption length in silica is less than 20 nm [26], hence domain sizes. The absorption length in silica at the silica appears isotropic to HHG due to its small crystal-domain sizes. The absorption length in silica is less than 20 nm [26], hence domain sizes. The absorption length in silica at the silica appears isotropic to HHG due to its small crystal-domain sizes. The absorption length in silica is less than 20 nm [26], hence domain sizes. The absorption length in silica at the silica appears isotropic to HHG due to its small crystal-domain sizes. The absorption length in silica is less than 20 nm [26], hence domain sizes. The absorption length in silica at the silica appears isotropic to HHG due to its small crystal-domain sizes. The absorption length in silica is less than 20 nm [26], hence domain sizes. The absorption length in silica at the silica appears isotropic to HHG due to its small crystal-domain sizes. The absorption length in silica is less than 20 nm [26], hence domain sizes. The absorption length in silica at the silica appears isotropic to HHG due to its small crystal-domain sizes. The absorption length in silica is less than 20 nm [26], hence domain sizes. The absorption length in silica at the silica appears isotropic to HHG due to its small crystal-domain sizes. The absorption length in silica is less than 20 nm [26], hence domain sizes. The absorption length in silica at the silica appears isotropic to HHG due to its small crystal-domain sizes. The absorption length in silica is less than 20 nm [26], hence domain sizes. The absorption length in silica at the silica appears isotropic to HHG due to its small crystal-domain sizes. The absorption length in silica is less than 20 nm [26], hence domain sizes. The absorption length in silica at the silica appears isotropic to HHG due to its small crystal-domain sizes. The absorption length in silica is less than 20 nm [26], hence domain sizes. The absorption length in silica at the silica appears isotropic to HHG due to its small crystal-domain sizes. The absorption length in silica is less than 20 nm [26], hence domain sizes. The absorption length in silica at the silica appears isotropic to HHG due to its small crystal-domain sizes.
to modulations in the fundamental intensity distribution in addition to the phase grating, causing the emission of even diffraction orders at the flat exit surface due to breaking of the original 50% duty cycle of the grating (Supplemental Material [27]). As before, experimental intensities and simulations [Fig. 1(h)] show good agreement. Additionally, the sinusoidal modulation of the amplitude imparted onto the fundamental field, determined by the geometric parameters of the grating structure and the sample thickness, gives rise to higher local power density, thus enhancing the conversion efficiency of light pulses at the fundamental frequency to HHG by about a factor of 2. Figure 1(i) shows a direct comparison between the divergence-integrated spectra generated in such configuration and spectra generated in a flat bulk material, with equal sample thickness. The enhancement is most pronounced for higher harmonic orders due to the nonlinear HHG process.

We have thus far shown the generation of structured XUV light and explained the underlying mechanism in periodic structures larger than the wavelength of the fundamental driving laser. We also demonstrated the ability to use the emitted harmonics to sense the amplitude distribution of the fundamental field at the generation interface and to reconstruct height profiles. We now turn to investigating light-matter interaction of intense femtosecond pulses with periodic structures with characteristic sizes smaller than the driving wavelength, in which the fundamental near field will be shaped by the geometry of the structure, which provides opportunities for controlling not only amplitude and phase, but also the polarization state of the emitted XUV light.

Generation inside a nanostructured fused-silica grating with sub-fundamental-wavelength dimensions [400 nm pitch, 200 nm linewidth, 85 nm height, Fig. 2(a)] is shown in Fig. 2. We observed first-order diffraction of the harmonics, when emission occurred on the structured side [Fig. 2(b)]. This demonstrates that also with these sub-fundamental-wavelength dimensions a phase grating can be imprinted onto the XUV wavefront, similar as in Fig. 1(b). The signal was absent when the structure was facing the incoming pulses, thus the mechanism of imprinting amplitude modulation on the fundamental wavefront [Fig. 1(f)] does not apply here, since the structural features are too small for the fundamental wavefront to diffract from. For 400-nm pulses, diffractive harmonic emission at both the flat and at the structured side is possible (Supplemental Material [27]). The diffractive XUV generation is caused not only by phase modification, but also by the near-field amplitude of the 800-nm pulses at the structured exit surface, which represents a powerful new control mechanism over XUV emission.

We demonstrate this by changing the near-field of the 800-nm pulses in the nanostructures at will by changing the polarization of the incoming pulses with respect to the grating grooves. We measured the polarization dependence of HHG through detecting both the first and zeroth-order diffracted harmonics, as shown in Fig. 2(b), left and right panel, respectively. The yield of the first diffraction orders [Fig. 2(c)] for three different polarization angles [0° (parallel with grooves), 45°, and 90° (perpendicular to grooves)] shows a significant dependence for each harmonic, demonstrating that the polarization indeed acts as a control parameter for XUV generation. In more detail, we observe that all harmonic intensities maximize at 0°, except for the zeroth-order of H7 and the first-order of H5, which minimize at this angle [see Figs. 2(d) and 2(e)].
among the polarization dependent intensities of the harmonics can be attributed to the effect of the sub-wavelength structure on the fundamental field distribution, which we simulated (Supplemental Material [27]) for parallel and perpendicular orientations, as shown in Figs. 2(f) and 2(g), respectively. For a perpendicular orientation the field is localized between the grooves, whereas for parallel orientation the field is concentrated inside the grooves. Consequently, the minimum signal for intermediate polarization angles around 45° in Figs. 2(d) and 2(e) arises from a less efficient generation of the harmonics, which is caused by the splitting of the fundamental field amplitude between the top and bottom grooves. Based on the near-field simulations in Figs. 2(f) and 2(g), we simulated the zeroth and first order diffracted harmonic signals, which are shown in Figs. 2(h) and 2(i). The simulations accurately capture the increased XUV generation at 0° and 90° and a minimum signal for intermediate polarization angles around 45°. A convergence study (Supplemental Material [27]) further demonstrates fully converged simulations. Thus, we have shown that HHG can indeed be controlled by modifying the fundamental near-field distribution by changing the incoming polarization, and inversely this distribution can be probed using diffracted HHG.

Some intensity dependencies in Figs. 2(d) and 2(e) stand out and require deeper analysis: We observed a relatively weaker modulation of H5, which is below the band gap of silica and thus generated over a much longer interaction length than other harmonics. This leads to greater contributions from the unstructured bulk of the silica as compared to generation in the vicinity of the structured surface, thus reducing the overall intensity modulations as a function of angle between polarization and grooves, as reproduced by the simulations in Figs. 2(h) and 2(i). Another intensity dependence that requires further analysis is that of H7, which minimizes at 0°. H7 is just above the band gap of silica, so the cascaded frequency conversion steps and their interference may become relevant [28], as intermediate lower harmonics can be generated over the entire interaction length of the solid medium. We modeled H7 as interference between the direct upconversion of seven 800 nm photons, sum frequency generation of the fundamental and twice H3 for the first cascaded step, and H5 and twice the fundamental for the second cascade (Supplemental Material [27]), which reproduces the experimental data well. Inclusion of cascaded processes could possibly resolve discrepancies between experiments and simulations for other harmonics too, e.g., H9. Such a simulation would be challenged by the larger number of cascaded processes, and goes beyond the scope of our study, but may stimulate new theories.

The redistribution of field amplitudes along parallel and perpendicular components is reminiscent of a form birefringence of the nanostructured grating, which thus acts as a wave plate for the generated XUV pulses. The agreement between our simulations in Figs. 2(h) and 2(i) and experimental data in Figs. 2(d) and 2(e) lends confidence to ascribing polarization states to the emitted harmonics, which are extracted from the simulations. Table I summarizes the Stokes parameters of the zeroth and first diffraction order for all harmonics for the incident fundamental polarization angle of 45°. Different harmonics exhibit various degrees of elliptical polarization. For example, the zeroth-order of H5 is almost purely linearly polarized at 45° (Stokes parameter U), and intuitively expected as H5 is emitted over the unstructured bulk where no form birefringence occurs. On the other hand, the contribution of the circular polarization component (Stokes parameter V) exceeds 70% in the first order of H9 and H11. As the nonlinear susceptibility tensors for HHG in amorphous silica represents an isotropic medium, the elliptical polarization can only be attributed to structurally induced phase retardation between polarization components parallel and perpendicular with respect to the grating. These experiments and simulations have shown that HHG is sensitive to the geometry of the structure, and therefore can be used to investigate near-field effects. We foresee that using HHG to directly image the near-field distributions would allow us to further characterize the effects of strong field confinement [19,23], offering a new platform for ultrafast physics in nanostructured solids.

Here we take the first step in this direction and demonstrate direct imaging of periodic and aperiodic structures through harmonic emission. We chose a complex aperiodic structure (“smiley”) patterned in silica by e-beam lithography shown in Fig. 3(a). We generated with 400 nm, for which the third harmonic dominates the diffracted signal. If HHG was more polychromatic, spectral filters would be needed to select a certain harmonic, or Fourier-transform imaging [14,37] could resolve the HHG spectrum pixel by pixel. The main beam is blocked out with a beam block, leading to the diffraction pattern of the smiley structure as shown in Fig. 3(b). The calculated diffraction pattern [Fig. 3(c)] matches well with the experimentally measured one, showing the same significant features of the diffraction pattern. In Fig. 3(d), the diffracted pattern is...
generated from an array of micron-sized pillars, with $2 \mu m$ dimensions, spaced four micrometers apart. In this particular diffraction pattern, the beam block will not block out any other diffraction signal, except the zeroth order, easing the reconstruction of the structure. The image reconstruction through a phase retrieval algorithm [38,39] in Fig. 3(e) correctly captures the orientation of the array, and the dimension as well as the spacing of the micron pillars. As a comparison, a microscope image of the pillar array is shown in Fig. 3(f). Compared to other HHG-based imaging techniques [40], here we can generate diffractive HHG directly from the structure of interest, which offers a new imaging tool for the inspection of patterned surfaces in the XUV.

The control of phase, amplitude, and polarization in solid HHG from nanostructures will allow sensing and even imaging femtosecond-resolved [41] electric near-field distributions in dielectric metasurfaces [19] and nanostructures. Moreover, the opportunity to shape XUV pulse properties at will opens new perspectives for pulse shaping that are otherwise challenging to achieve by modifications after generation. In particular, the demonstrated phase control can inspire the design of new highly efficient phase diffractive elements, such as zone plates, which will be more efficient than the typically used binary elements. This approach of combined generation and shaping in a single element may soon compete with postgeneration XUV shaping given the high efficiencies of XUV phase control [17] and the ongoing efforts to increase the efficiency of solid HHG [42,43].

Part of this work has been carried out at the Advanced Research Center for Nanolithography (ARCNL), a public-private partnership of the University of Amsterdam (UvA), the Vrije Universiteit Amsterdam (VU), the Dutch Research Council (NWO), and the semiconductor equipment manufacturer ASML, and was partly financed by Toeslag voor Topconsortia voor Kennis en Innovatie (TKI) from the Dutch Ministry of Economic Affairs and Climate Policy. We thank Reinout Jaarsma for technical support, and the mechanical workshop and the design, electronic, and software departments of ARCNL for support in constructing the setup. P.M.K. acknowledges support from NWO Veni Grant 016.Veni.192.254. Numerical simulations were performed at the research institute AMOLF, as part of the research programs Hybrid Nanophotonic Architectures for Ultrafast Quantum Optics (Project No. 680.47.621) and Nanophotonics for Solid-State Lighting (Project FOM-i33/680.93.33), both partly financed by NWO. Parts of the simulations were performed within the Aalto University School of Science Science-IT project, and were funded by the Academy of Finland Flagship Programme, Photonics Research and Innovation (PREIN), decision number: 320167.

To whom all correspondence should be addressed. roscam@arcnl.nl
To whom all correspondence should be addressed. kraus@arcnl.nl

