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ABSTRACT The transition to renewable production and smart grids is driving a massive investment to
battery storages, and reinforcement learning (RL) has recently emerged as a potentially disruptive technology
for their control and optimization of battery storage systems. A surge of papers has appeared in the last
two years applying reinforcement learning to the optimization of battery storages in buildings, energy
communities, energy harvesting Internet of Things networks, renewable generation, microgrids, electric
vehicles and plug-in hybrid electric vehicles. This article reviews these applications through 4 different
perspectives. Firstly, the type of optimization problem is analyzed; the literature can be divided to approaches
that optimize either financial targets or energy efficiency. Secondly, the approaches for handling user comfort
are analyzed for applications that may impact a human user. Thirdly, this paper discusses the approach
to model and reduce battery degradation. Fourthly, the articles are categorized by application context and
applications likely to attract a high amount of research are identified. The paper concludes with a list of
unresolved challenges.

INDEX TERMS Battery degradation, battery storage, electric vehicle, microgrid, reinforcement learning.

I. INTRODUCTION

The transition to renewable production and smart grids is
driving a massive investment to battery storages, evidenced
by numerous very recent reviews on the subject (e.g. [1]-[5]).
Reinforcement learning (RL) has recently emerged as a
potentially disruptive technology for the control and opti-
mization of battery storage systems. For example, Lee & Choi
[6] formulate the optimization of a domestic energy storage
system as a mixed-integer linear programming (MILP)
problem as well as a RL problem, reporting significant
performance improvements with the RL approach. In the
energy domain, Perera and Kamalaruban [7] note a dip in
recent publications on model predictive control, mirrored by
a rapid increase in RL publications. Yang et al. [8] note that
RL is well suited for complex problems with nonlinearity and
uncertainty, which is often the case in next generation electric
systems.
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A few reviews on RL applications to intelligent energy sys-
tems include battery storages among the energy resources that
have been studied. Perera and Kamalaruban [7] review RL
applications across six major sectors: building energy man-
agement system (BEMS), dispatch, vehicle energy systems,
energy devices, grid and energy markets. Battery storages
appear as subcategories of some of these. Yang et al. [8]
have an even broader scope including RL applications to
smart grid, microgrids, integrated energy systems and energy
internet. Glavic [9] reviews RL applications for controlling
power grids, so batteries are discussed only for the purpose
of grid support. Vazquez-Canteli & Nagy [10] review RL
applications to demand response and discuss battery storages
to the extent that they are featured in such applications. Wang
and Hong [11] review RL applications for building controls
and note works involving batteries, without analyzing further
the control and optimization problems involving batteries.
Frikha er al. [12] identify significant interest in RL in
Internet of Things (IoT) applications and identify battery
energy consumption and lifetime management as one of
the key challenges. In all of the above-mentioned reviews,
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significant background knowledge of RL theory is required
from the reader. Different RL techniques are discussed and
their application to specific problems is analyzed critically.
Further, none of these reviews has a section dedicated to
battery storages. Rather, batteries are discussed if they appear
in the context of energy systems.

A surge of papers on RL applications for battery storages
has appeared in the last two years, so at the time of
writing, a critical mass of literature exists, meriting a
dedicated review. This review is targeted at researchers and
practitioners applying battery storages in different areas of
green electrification, who wish to understand the disruptive
potential of RL to their field. RL technology consists of
algorithms that are interfaced to real or simulated systems
in such a way, that the algorithms learn to achieve specified
optimization targets as the interact with the system. Since
the great majority of our target audience are not RL experts,
the objective of this paper is to review this research in a
way that is understandable to this audience. The reviewed
works apply batteries to a range of innovative applications
in buildings, energy communities, energy harvesting IoT
networks, renewable generation, microgrids, electric vehicles
(EV), plug-in hybrid electric vehicles (PHEV) as well
as hybrid electric vehicles (HEV). Thus, our presentation
is aimed beyond battery experts to the broader energy
community working on such applications. Key RL concepts
are introduced within a general framework of a RL agent
managing a battery storage system, without assuming prior
knowledge of RL or machine learning from the reader.
The reviewed works are analyzed with reference to this
framework.

This paper is structured as follows. Section 2 introduces
a general conceptual overview for RL agents managing a
battery storage system, without assuming prior knowledge of
RL or machine learning from the reader. Several examples
of systems including batteries are presented in the context
of this framework. Section 3 presents the methodology of
the literature review and an overview of the papers that were
included into the review. The objectives, scope and approach
of each paper is studied through four different aspects in
sections 4-7. Each paper is discussed in each of these
sections to the extent that the relevant aspects were explicitly
discussed in the paper. Section 4 assesses the literature
with respect to the main optimization objective of the RL
application, with three categories emerging: optimization
of energy efficiency, minimization of operational costs and
minimization of investment costs. Section 5 discusses how
user comfort has been handled or ignored in applications
that may impact a human user. Section 6 discusses the
various levels of abstraction used to model the battery
and how battery degradation has been included into the
optimization. Section 7 summarizes the review by discussing
the literature according to specific applications areas, so that
readers interested in a specific area such as electric vehicle
charging will understand the focus of the research and
open challenges in their field. Section 8 discusses our
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proposal for handling the main problem that was encountered
in the literature review: there is a rapidly growing body
of research, but it is difficult to identify the works with
breakthrough performance, due to the great diversity in
problem formulations and experimental setups. Benchmark
RL environments have successfully addressed this problem
in other fields, and the closest such works to the topic
of this paper are identified. Section 9 concludes the paper
with recommendations for overcoming the main unresolved
challenges.

Figure 1 provides a graphical overview of the categoriza-
tion in sections 4-7. Each of the four boxes corresponds to
one of the four main categories analyzed in sections 4.7. Each
of these categories has been indicated as being mandatory or
optional. The optional category is not applicable to all of the
papers selected for the review. The boxes within the main box
are subcategories analyzed in their own subsection.

Il. GENERAL CONCEPTUAL OVERVIEW FOR
REINFORCEMENT LEARNING AGENTS MANAGING A
BATTERY STORAGE

Major categories of machine learning methods include super-
vised, unsupervised and reinforcement learning. Supervised
learning applications can be further categorized as regression
and classification problems. Regression involves predicting a
value based on several input datasets; for example, the price
of an electricity market could be predicted based on weather
and power system data. Classification involves choosing
one out of several possible categories; for example, the
categories could include a normal operating mode and several
failure modes. In all cases, supervised learning methods
require a training set, in which the correct output has been
labelled for each input sample. If such labelled training
data is not available, unsupervised learning can be applied
to some problems. For example, if a time series dataset
is available for a system running in a normal operating
mode, an unsupervised learning algorithm can be trained
to recognize a deviation from that normal operating mode,
but it will not be able to classify the specific failure mode.
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FIGURE 2. General framework of a RL agent managing a battery storage.

In the energy domain, supervised and unsupervised learning
methods are used mainly for time series forecasting and
condition monitoring, rather than decision making. RL differs
from these methods in the sense that it learns to make better
decisions by interacting with an environment and adjusting
its actions according to feedback.

Figure 2 shows a general framework of a RL managing a
battery storage. The figure introduces the key concepts that
are used throughout this paper.

The environment consists of the battery storage and the
system in which the storage is used. A few examples are
presented in the following, to give the reader an idea of
the great diversity of environments that researchers have
developed to support their diverse RL problem formulations.
If RL is used to minimize gasoline consumption of a PHEV,
the gasoline tank and the engine should be modelled in
the environment at a suitable level of abstraction [13]. The
availability of V2G (vehicle-to-grid) needs to be considered
when modelling the possibility to sell energy from the vehicle
batteries to the grid [14], but details such as grid inverters
may be abstracted away at the discretion of the authors [15].
For a wireless EV charging system, the EV characteristics
and the traffic environment need to be considered [16]. For
optimizing revenues of a wind farm with battery storage,
the environment simulates the settlement scheme of the
electricity market [17]. It is noted that the terms PHEV
and HEV are used inconsistently in the literature. In this
paper, all vehicles with an internal combustion engine and
a battery are categorized as PHEVs. Further, EVs and HEVs
are categorized so that the latter has another energy source
such as a hydrogen fuel cell to complement the battery.

The RL agent takes actions, which impact the environment.
The actions are specific to the application. Examples are
bidding on various electricity markets [18], selecting between
battery packs [19] or controlling the power of the engine in a
PHEV [20].

The environment provides the RL agent with state infor-
mation, which the agent considers when taking an action. The
State of Charge (SoC) is a very commonly used state variable.
Depending on the level of detail chosen by the authors,
additional variables such as the temperature of batteries can
be included [19]. Additional state variables depend on the
specific application. For example, the energy management of
PHEVs, EVs and HEVs is usually formulated in terms of a
power demand state variable, which specifies the momentary
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power demand that must be jointly supplied by the on-board
energy sources (e.g. [21]). As another example, relevant state
information for the electricity management of a building’s
HVAC (Heating, Ventilation and Air Conditioning) includes
indoor temperatures and occupancy [22].

The state may include additional exogenous variables that
the RL agent cannot affect, but which are useful information
for the RL agent as it determines the best action to take
in the present state. For example, relevant market prices or
weather data can be included if they are known at the time of
taking the action, or if a forecast is available [23]. Otherwise,
the price and weather can be treated as an unknown not
included in the state information, but which can be taken
into account in the reward [15]. Some studies use historical
weather observation data instead of forecasts [24], so the
system cannot be deployed as such to an online environment
in which only uncertain weather forecasts are available.

The environment must implement a mapping to a next state
given a current state and an action. The mapping can be
constructed analytically with equations (e.g [15]). Another
approach is to use an energy simulator and implement a
wrapper around it to realize the state, action and reward
interfaces [25]-[27]. In some cases, an energy simulator is not
sufficient. For example, in self-driving vehicles that need to
consider other vehicles and traffic lights, Wegener et al. [28]
include a traffic simulator to the environment.

Finally, the RL agent requires feedback in the form of
rewards to train its machine learning model, which deter-
mines the action based on the state information. The reward is
generated by the environment and should penalize the agent
for disadvantageous actions and reward it for advantageous
actions. Depending on the objective of the paper, the reward
is usually based on electricity costs [15], grid stability [29]
or energy efficiency related criteria [23]. If the RL agent
is allowed to impact the users comfort, for example by
rescheduling appliances, adjusting indoor temperature or
changing the charging behavior of EVs, a discomfort related
penalty can be included to the reward [30]. A penalty for
battery degradation can be included into the reward.

As training progresses, the RL agent learns to take actions
that result in a high reward, but this may result in suboptimal
solutions. To avoid this, the RL practitioner is able to force
the training process to occasionally choose random actions,
in a technique called exploration. Some authors may use
their expertise of the specific battery energy management
application to achieve more intelligent and computationally
effective exploration. For example, in managing a HEV
battery, Lian et al. [31] force the exploration to occur close
to the Brake Specific Fuel Consumption curve, which is
known to be the optimal region of operation for this kind of
application. Zhou et al. [32] achieve a similar result with a
heuristic algorithm developed to constrain the exploration.

The internals of the RL agent involve details understand-
able to machine learning practitioners. As the primary target
audience of this article is energy practitioners, this review
does not focus on these aspects. However, a brief overview
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is provided as follows. The RL agent essentially implements
a mapping from the state space to the action space. An early
approach was Q-learning, in which the mapping was captured
in a table, so the learning process involved updating the values
in this table. More recently, due to increases in computational
power and the resulting progress in deep neural networks,
such networks are now commonly used to implement the
mapping instead of the Q-table. The basic approach involves
a single neural network that is used to make this mapping.
However,, this approach does not always result in stable
training performance. To overcome this, the concept of value
was introduced: the value quantifies how good a particular
state is, so this is a different concept than the reward.
To exploit the value concept, the actor-critic network was
introduced. The actor implements the mapping from the state
space to the action space, and the critic computes the value,
which is used in the training process of the actor. However,
a weakness of actor-critic methods is that a small adjustment
to the weights of the actor network may cause a jump to a
region in which performance is poor, so the training may
not converge, and thus fail to optimize the reward function.
Several variants of the actor critic have been proposed to cope
with issue. In particular, PPO (Proximal Policy Observation)
limits the changes to the actor network parameters at each
training step, improving the stability of the training process.
Further innovations involving several neural networks have
been developed, with Deep Deterministic Policy Gradient
(DDPG) [73], [74] and Twin Delayed DDPG (TD3) being
among the most commonly used. In general, these can be
considered implementation details that are encapsulated in
the “Reinforcement learning agent™ box of Figure 2, so the
choice of implementation method does not directly impact
the formulation of state, action and reward. This is an
encouraging observation, in the sense that battery domain
experts could be more involved in the formulation in the
future. However, there is a notable consideration in the choice
of algorithm that will impact the formulation of state and
action spaces. Some of the algorithms only support discrete
state and action spaces, so if a state or action variable is of
a continuous nature, the practitioner must define a limited
number of discrete values for it.

Batteries are systems with complex chemical phenomena
governing their charging, discharging and aging behavior.
These phenomena are specific to the battery chemistry, and
the development of such chemistries is an active area of
research. However, as will be discussed in more detail in
section VI, RL practitioners either explicitly or tacitly ignore
these phenomena, or model them in a simplified way. For
example, many authors assume that charging or discharging
power can be expressed as the product of the battery capacity,
SoC difference over a time period and a charging/discharging
efficiency constant, so the battery chemistry is not consid-
ered or even mentioned (e.g. [116]). Such equations are
implemented in the reinforcement learning environment, and
they govern how the environment transitions from one state
to the next upon receiving an action from the RL agent.
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Very few authors use more sophisticated models that are
configured for a specific battery chemistry. For example, a
lithium-ion battery model distinguishes between terminal and
open circuit voltage and internal and trainset resistance [91].
In another example, the charge and discharge behavior of a
lead acid battery is specified in the context of the system that
the battery is used in, comprising a diesel generator and an
inverter connected load [96]. The established way to capture
aging in the reviewed articles was to add an aging penalty
term to the reward function. The most common approaches
are to penalize situations in which a minimum or maximum
SoC threshold has been crossed (e.g. [130]), or to penalize
deviations from a reference SoC (e.g. [70]). Unfortunately,
the findings of such studies cannot be expressed in terms of
equivalent full cycle, which is an established metric of battery
lifetime.

TABLE 1. Search results.

Science MDPI IEEEXplore
Direct
Hits 3128 30 359
Manually selected 66 22 56
papers

Ill. LITERATURE REVIEW METHODOLOGY

Various terms for battery storages are used in the literature,
such as energy storage system, battery storage, battery
energy storage system, battery and storage. To capture these
and other variants, the following search string was used:
“reinforcement learning” AND (storage OR battery)

The search string was applied to all fields. The search
results are shown in Table 1. The hits were studied manually
to select the relevant papers to be included in the review.
The “‘storage” term resulted in many irrelevant articles on
data storage or industrial warehouse type of storage; however,
including this term in the search was important to find several
relevant articles not using the word “battery” but rather
“energy storage”’. The Elsevier (Science direct) and IEEE
(IEEEXplore) search engines returned a large number of hits.
These were sorted by relevance and studied in batches of 25.
The search was stopped upon encountering a batch with no
relevant papers. The search was limited to papers published
since 2016. The search in IEEEXplore was limited to journal
articles, including early access.

It is notable that this approach of using a simple search
string resulted in a larger number of articles, many of which
were not considered relevant. Thus, the approach relies
heavily on manual work and judgement on the part of the
authors. An extensive list of criteria for article selection
was developed for this purpose and it is discussed in the
next paragraph. Since this is a new, incipient field, the
number of hits was manageable, and the final number of
papers selected for inclusion in the review was considered
suitable for a review paper. The search was restricted to
the publishers Science Direct, IEEE and MDPI. When the
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FIGURE 3. Papers that were selected manually for the literature review.

search was repeated in the Web of Science database and
limited to journal articles, these publishers emerged as the top
3 publishers.

The following principles were used to guide the manual

selection process:

o Several articles addressed non-battery energy storage
systems such as fuel cells e.g. [33], ultracapacitors [34],
natural gas storage tanks [35] and thermal storages
such as hot water tanks [36], boilers [37], chilled water
tanks [38], [39] and ice storage [40] or by exploiting
the building structures themselves as a passive thermal
energy storage [41]. Such works were not selected,
unless these storages were used in addition to a battery.

o Papers planning to incorporate batteries in future work
(e.g. [42]) were not selected.

« Approaches that were generally applicable to distributed
energy resources, including batteries, were not selected
if they did not explicitly consider battery energy
management (e.g. [43], [44]).

o Papers only indirectly related to battery management
were not selected. A few examples of such indirectly
related works are as follows. Biemann et al. [45] opti-
mize the temperature in a data center to ensure desirable
operating temperature for batteries; Wang et al. [46]
use a lightweight RL approach on IoT sensor nodes
with limited battery capacity; Bing et al. [47] design an
energy efficient gait for a battery powered mobile robot,
but do not consider battery energy management.

o If the same authors published several highly similar
papers, only one was selected.

o Although our search string covered all applications of
RL to batteries, no recycling related application was
encountered within the search results

Figure 3 plots the papers that were manually selected for

the review according to the year of publication. An expo-
nential growth in publications is observed, indicating that
RL has good potential to become a disruptive technology
in battery management. It is notable that the review was
performed in the summer of 2021, so the numbers for 2021 in
Figure 3 are expected to be significantly higher by the end
of the 2021.
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IV. PROFITABILITY AND ENERGY EFFICIENCY

In this section, each of the papers in Figure 3 is categorized
either under ““optimization of energy efficiency”, “optimiza-
tion of operational costs” or ‘“‘optimization of investment

cost”.

A. OPTIMIZATION OF ENERGY-EFFICIENCY

A significant portion of the reviewed works aimed to
optimize energy efficiency without considering financial
objectives. Energy efficiency is understood in different
ways depending on the application, and the applications
attracting significant amounts of research as summarized
as follows. In case of PHEVs, HEVs and EVs, many
authors use RL to split the demand for driving power
between different battery packs or between the battery and
other power sources such as a fuel cell, ultracapacitor or
internal combustion engine. The power split optimization is
an instantaneous problem, but RL has also been used for
energy optimization of EVs, including flying ones, over the
course of a single trip. In built environments, batteries are
optimized in conjunction with other energy resources such
as PV, domestic loads and EV chargers, either in the scope
of a single building or a microgrid. IoT sensor networks
consist of potentially large numbers of battery-powered IoT
nodes with no grid connection and limited or non-existent
battery recharging possibilities. In such cases, electricity
cost is not considered relevant, and most authors focus on
minimizing energy consumption to maximize the battery
lifetime. Table 2 summarizes all of the papers according to the
4 aspects around which this review is structured: profitability
& energy efficiency, management of user discomfort, battery
losses & degradation and context of use of the battery. Each of
these aspects is discussed further in the text of the sections 4,
5, 6 and 7 respectively. The table summarizes these aspects
for each paper, and the works are ordered according to the
publication year.

B. OPTIMIZATION OF OPERATIONAL COSTS

The optimization of operational costs of systems with
batteries is a popular objective for RL; however, since
RL is capable of multi-objective optimization, the financial
objectives are often complemented by other application
specific objectives or battery degradation related objectives.
Several authors are not explicit about what kind of electricity
market is being considered, but an analysis of the papers that
did specify this reveals the following list of markets against
which optimizations have been performed: day-ahead, intra-
day, real-time pricing, time-of-use pricing and frequency
reserve markets. Using the battery storage to increase self-
consumption of renewable generation and to reduce purchase
of grid power is a common theme for RL applications to
buildings, energy communities and microgrids. Such works
have been included in Section IV A if there was no financial
element to the optimization Otherwise, they have been
included in this section. The charging of EVs and fleets of
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TABLE 2. Papers primarily aiming at optimizing energy-efficiency.

Paper Profitability & energy efficiency Management of user ~ Battery losses & degradation Context of use of the battery
discomfort
[48] Minimize gasoline consumption Not relevant Min/max SoC limits Tracked PHEV driving
[49] Optimal control of heterogeneous battery Not relevant Hard constraints on SoC and Microgrid with HVAC loads and
types: vanadium redox and lead-acid charge/discharge power. heterogeneous batteries
[23] Maximize PV self-consumption Not relevant Inverter efficiency Building with PV
[50] Minimize energy losses Not relevant Avoid high discharge current HEV with battery and ultracapacitor
[51] Maximize PV generation Not relevant Not considered PV + load + battery
[52] Optimize fog node’s energy storage to Not relevant Charge/discharge efficiency Fog-computing node
reduce job loss probability
[53] Optimize battery discharge time. Maintain an Not considered Road side off-grid unit in vehicular
acceptable Quality network
of Service
[54] Minimize gasoline consumption Not relevant Penalize deviations from PHEV bus driving
reference SoC
[13] Minimize gasoline consumption Not relevant Limit discharge power PHEV driving
[55] Minimize energy losses Not relevant State-of-health is an HEV with battery and ultracapacitor
optimization criterion
[56] Minimize gasoline consumption Not relevant Penalize deviations from PHEV driving
ideal SoC
[57] Minimize gasoline consumption Not relevant Penalty when SoC under PHEV driving
reference value
[58] Minimize gasoline consumption and Not relevant Min/max SoC limits PHEV driving
tailpipe NOx emissions
[59] Minimize fuel consumption Not relevant Penalize deviation from PHEV bus driving
reference SoC
[60] Minimize fuel consumption Not relevant Different reward functions PHEV driving
for different SoC ranges
[61] Minimize the battery prediction loss for Not considered Not considered Small cell loT
intelligent energy harvesting
[62] Optimal scheduling of power transfer and Not relevant Not considered Wireless energy harvesting for
data transmission sensor network
[63] Optimal policy for access and power Not relevant Not considered Energy harvesting user equipment
control.
[64] Optimal power control policy Not relevant Not considered Large energy harvesting networks
[65] Real-time energy management of hybrid Not relevant Min/max limits for SoC Wave energy conversion system with
storage hybrid storage
[66] Optimal policy allocation for ensuring Not relevant Min/Max battery capacity Energy harvesting in underwater
quality of data transmission relay network
[67] Optimize online policy for wireless energy Not relevant Not Considered Energy harvesting RF-powered
transfer communication systems
[68] Graceful degradation when grid connection Not relevant Not considered Islanded microgrid
is lost
[69] Maximize PV self-consumption Not affected Charge/discharge House with PV, buffered heat pump
efficiencies & battery
[70] Select between power sources to minimize Not relevant Penalize deviations of PHEV with fuel cell, ultracapacitor &
consumption (hydrogen equivalent) battery SoC from reference battery
[71] Minimize fuel consumption Not relevant Charge/discharge efficiency PHEV driving
& min/max SoC
[72] Minimize use of diesel generator Not relevant Detailed lead-acid battery Isolated microgrid with battery and
model fuel cell
[21] Minimize gasoline consumption and SoC Not relevant Sophisticated battery model PHEV driving
variations
[73] Minimize flight time Not relevant Not considered Aerial crop scouting
[31] Minimize gasoline consumption and SoC Not relevant Penalize deviations from HEV driving
variations reference SoC
[74] Minimize gasoline consumption and Not relevant Charge/discharge losses PHEV driving
battery losses converted to gasoline
equivalent
[75] Optimize loT node battery charging based Not relevant Not considered Drone fleet for charging loT sensor

on bandwidth need at the node and
available wind power

nodes
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TABLE 2. (Continued.) Papers primarily aiming at optimizing energy-efficiency.

[76] Minimize acceleration/ deceleration cycles Smoother traffic due Smoother acceleration Connected and automated electric
to less stop-and-go should reduce degradation vehicles
traffic waves
[77] Energy efficient acceleration Slower accelerations Not considered Self-driving EV
[78] Minimize transmission power through Not relevant Not considered Heterogeneous network of loT
selection of base station & subchannel devices
[79] Minimize path length to cover the area Not relevant Not considered Cleaning robot
[80] Deactivate selected loT nodes to minimize Not relevant Not considered Outdoor IoT sensor network
adverse effects of high ambient
temperature and direct sunlight
[81] Optimize Discharge Efficiency with Improves the Not considered Reconfigurable battery consisting of
algorithm toggling cells on/off hardware safety by several cells
restricting the use of
bypass circuits
[82] Coordinated charge of grid-support Not relevant Charge/discharge Decreasing Overvoltage during high
batteries during PV peak efficiencies PV generation
[83] Optimal power split between battery and Not relevant Equivalent circuit model in Unmanned aerial vehicle
supercapacitor simulation package
[84] Optimal power split between battery and Not relevant Charge and Discharge All-electric ferry boat
fuel cell coefficients
[85] Storage operation strategy to manage wind Not relevant Charging and discharging Wind power forecast uncertainty
power forecast uncertainty power constraints.
[86] Optimal SoC management while Not relevant Sophisticated battery model Flywheel, battery and ultracapacitor
participating on frequency reserves for grid support
[87] Decide which battery will charge/discharge Not relevant Min/max limits for SoC Urban rail energy storage system
when train breaks/drives with multiple batteries
[88] Minimize grid energy consumption at the Not relevant Battery state is considered Energy harvesting virtualized small
base station cells with batteries
[89] Minimize fuel consumption Not relevant Equivalent circuit model PHEV driving
captures losses
[90] Energy saving & voltage stabilization for Not relevant Battery equivalent circuit Urban rail energy storage system
supercapacitor energy storage model captures losses with supercapacitor
[91] Minimize energy consumption for a route Not relevant Detailed lithium ion battery EV route planning
model
[32] Maintain SoC close to reference & minimize Not relevant Penalties when SoC out of PHEV driving
fuel consumption ideal range
[92] Maximize reward of one tour of the mobile Not relevant Not considered loT sensor network with mobile
charger wireless charger
[93] Maintain quality-of-service while avoid Not relevant Not considered Energy harvesting device-to-device
battery depletion loT
[94] Minimize race time so that total energy Not relevant Battery thermal model for Formula-E
from battery to motor is under 52kWh fast moving vehicle
[20] Minimize gasoline consumption and limit Not relevant Minimize charge/discharge PHEV driving
wear to battery and engine cycles
[29] Reschedule EV charging to load valleys Drivers are not Linear charging losses Scalable EV charging
required to give
input
[95] Short and long-term battery optimization in Supply to load is Charge/discharge Isolated microgrid
microgrid ensured efficiencies, power limits
and degradation
[96] Optimize operating cost and pollution cost Not relevant Detailed charge/ discharge Microgrid with battery+PV+ diesel
model of lead-acid battery
[97] Minimize wind power variance Not relevant Maximum depth of Wind farm
discharge
[19] Energy-efficient operation of hybrid battery Not relevant Focus on battery EV with high-energy and high-power
packin EV temperature battery packs
[98] Battery lifetime for 5G loT sensors Not relevant Not considered loT application for target tracking
[99] Activate loT nodes with best energy- Not relevant Not considered Wireless energy harvesting for loT
efficiency for a tracking task nodes
[100] Minimize energy loss and battery aging cost Not relevant Each battery pack has min/ EV with high-energy and high-power
max temperature battery packs
constraints
[101] Transfer computing tasks to loT nodes Not relevant Not considered Wireless energy harvesting for loT
closer to the access point nodes
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TABLE 2. (Continued.) Papers primarily aiming at optimizing energy-efficiency.

[28] Energy efficient pedal control Safety logic can Not considered Self-driving collaborative PHEV

override the RL to

prevent crashes or

going against red

lights

[102] Minimize fuel consumption Safety logic can Not considered Self-driving collaborative PHEV

override the RL to

prevent crashes or

going against red

lights
[103] Thermal and health-conscious energy Not considered Overtemperature penalty Hybrid electric bus
management and multistress-driven
degradation
[104] Minimize hydrogen fuel consumption Not considered Min/max limits for SoC EV with fuel cell & battery
[105] Reduce energy consumption of the UAV Not relevant Limits for battery threshold Unmanned aerial vehicle network in
batteries the presence of jammer
[106] Minimize the overall data packet loss Not relevant Battery levels are Unmanned aerial vehicle flight
considered. control in wireless sensor networks

[107] Minimize use of gasoline Not relevant Min/max limits for SoC PHEV energy management
[108] Reduce frequency disturbance caused by Not relevant Min/max limits for SoC Interconnected power grid with

renewable sources

renewable energy

%,

2
%
&

ENITTES

FIGURE 4. Reviewed articles primarily aiming at optimizing
energy-efficiency.

EVs is another topic of interest; however, a wide variety of
formulations for the optimization problem were encountered
in the literature. Finally, a few authors propose a new market
for prosumers, energy communities or microgrids, and
perform their optimization against that market. The analyzed
papers are summarized in Table 3, sorted by the year of
publication.
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Micro grid

Power spijy

FIGURE 5. Reviewed articles primarily aiming at optimizing operational
costs.

C. OPTIMIZATION OF INVESTMENT COST

Whereas most works focus on real-time operation or short-
term planning of the operation of an existing system,
a minority of works seek to minimize investment cost.
The dimensioning or placement of the battery storages is
a common optimization problem shared by these works.
However, most authors do this optimization in the context
of a larger problem that also considers investments to other
kinds of energy storages. Another kind of investment cost
optimization involves optimizing the lifespan of the battery
by limiting the battery degradation. Such considerations have
been incorporated as additional optimization criteria to sev-
eral of the short-term optimization works in Section IV.A and
Section IV.B. Works that have battery lifetime maximization
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TABLE 3. Papers primarily aiming at optimizing operational costs.
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Paper Profitability & energy efficiency Management of Battery losses & Context of use of the battery
user discomfort degradation
[109] Minimize the electricity cost over a billing Not affected Charge/discharge Residential PV with battery
period efficiencies
[15] Minimize electricity cost Not relevant Explicitly not considered Building with PV & V2G charger
[110] Optimize charging to maximize revenue Not relevant Maximize SoC after EV taxi fleet
from carrying passengers delivering passenger
[111] Balance the loads among generation Not relevant Charge and Discharge Microgrid with distributed
units and batteries. Reduce electricity coefficients generation and battery
bills
[112] Minimize peak load of the power plant Not relevant Min/Max battery capacity Microgrids with PV, wind, battery &
load
[113] Minimize electricity cost and maximize Not relevant Operation and Uninterrupted manufacturing in
manufacturing throughput maintenance cost grid outages
[114] Maximize self-sufficiency of microgrids & Not relevant Penalize RL agent for Energy internet
minimize cost of fuels deviations from reference
SoC
[115] Minimize diesel + electricity cost Not relevant Charge/discharge efficiency PHEV bus driving
[6] Minimize electricity cost Included in Penalize RL agent for Building with appliances & EV
optimization exceeding min/max SoC charger
[116] New auction-based market Not relevant Charge/discharge efficiency Community of microgrids
[117] Minimize diesel + electricity cost Not relevant Charge/discharge efficiency PHEV bus driving
[118] Maximize PV self-consumption and Ensure users Charge/discharge Smart energy community with P2P
minimize electricity costs electricity demand efficiencies trading
is satisfied.
[119] Minimize energy costs & avoid Follow consumer Reward for keeping SoC in Fleet EV charging management
transformer overloads preferences 20-80% range
[120] Minimize electricity cost of the charging User dissatisfaction Penalty when outside Autonomous Electric Vehicles
station & degradation cost of the AEV is considered min/max SoC charge scheduling
[121] Minimize the electricity cost Priority to Non- Not considered Home energy management for
Shiftable appliances
Appliances
[122] Maximize profit of battery agent Not relevant Min/max SoC limits Independent agents trading
generation, battery and load
resources
[123] Optimal bidding strategy for EV owners Minimize waiting Not considered EV charging station
time of EV owner
[124] Minimize vehicle travel and charging cost Customer waiting Not considered Automated EV taxi fleet
cost and abandon
penalty
[17] Maximize revenue under uncertain Not relevant Charge/discharge Wind farm
generation and price efficiencies & power limits
[24] New market (similar to stock market) Not relevant Battery efficiency Building with PV
[30] Minimize electricity cost Included in Penalize RL agent for Building with appliances and EV
optimization exceeding min/max SoC charger
[125] Minimize electricity cost Not considered Sophisticated degradation Factory production
model
[126] Minimize charging cost under real-time Not relevant Not considered General
electricity price
[127] Exploit Time-of-Use tariffs in microgrid Not relevant Consider operating cycles Microgrid with load, PV, EV
and SoC in each cycle charging, renewables
[128] Energy arbitrage Not relevant Semi-empirical battery Standalone battery
degradation model
[129] Minimize the operating cost of the Not relevant Ignored battery capacity Electric bus battery swapping
battery swapping station degradation station
[130] Minimize consumption of power from Considers penalties Penalty for battery A community of smart Homes
grid for the consumer overcharging
thermal and undercharging.
discomfort
[131] Minimize the operation costs of EV Not relevant Charge/discharge Vehicle charging stations with PV
charging stations efficiencies system
[132] Minimize the charging cost under real- Satisfy charging Charge/discharge EV charging station
time pricing demand efficiencies
[133] Trade surplus residential battery capacity Supply to Charge/discharge Residential PV + battery
on spot market residential load is efficiencies
guaranteed
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TABLE 3. (Continued.) Papers primarily aiming at optimizing operational costs.

[134] Optimize fuel cells and battery pack to Not relevant Charge/discharge Ship powered with fuel cells and
minimize voyage cost efficiencies and batteries
degradation
[135] Minimize EV charging cost for the Not relevant Min/Max battery capacity EV charging aggregators
aggregators
[136] Minimize the energy cost Thermal comfort Charge/discharge Smart home energy management
limits are defined efficiencies
[137] Minimize electricity cost Not relevant Min/max limits for SoC House energy management with
PV and EV
[138] Maximize the profits from trading Not relevant Min/max limits for SoC Interconnected microgrids energy
aggregated battery capacity on several trading platform
microgrid markets
[139] Exploit variable prices to reduce charging Not relevant Min/max limits for SoC EV charge scheduling
cost
[140] Minimize operating cost of DSO & Not relevant Hard limits on min and max Microgrids connected to a
microgrids SoC and charge/ discharge distribution network
power
[141] Minimize cost of electricity on real-time Not relevant Nonlinear charging Centrally managed microgrid
markets for PV+battery+load efficiency functions
[18] Participate on frequency reserve markets Not relevant Soft limits on min and max Grid support
SoC
[142] Minimize electricity bill of microgrid Price-responsive Charge/discharge Microgrid with wind, battery &
household loads efficiencies & power limits residential
[22] Minimize HVAC electricity bills under ToU Penalize indoor Penalize violation of Community of buildings with
pricing temperature limit min/max SoC shared battery
violations
[143] Maximize profits of a community battery Not relevant Financial benefit is Community of buildings with
on a local market afterwards compared to shared battery
aging cost
[144] Minimize cost of electricity from grid Not relevant Not considered Household with PV & battery
[145] Minimize electricity bills Avoid any need for Penalize violation of Community of end users & one
demand response min/max SoC battery
[146] Minimize electricity cost Not relevant Degradation considered Building with PV
comprehensively
[147] Passenger throughput Penalty if the taxi Not modelled Aerial drone taxi
collides
[14] Minimize electricity bills Not affected Charge/discharge Community of buildings in same
efficiencies for battery and low voltage grid
V2G
[148] Minimize operating cost of microgrid Not considered Charge/discharge Multi-energy microgrid with power,
efficiencies heating, cooling & gas
[149] Minimize operating cost of microgrid Not affected Battery deprecation cost is Multi-energy system with power,
included to the multi- heating, renewables & gas
objective optimization
[150] Minimize the cost of the power loss Not relevant Penalty when SoC out of Distribution network with battery
bounds store & wind power
[151] Minimize storage maintenance cost Not affected Degradation considered General
[152] Maximize the net profit on spot and Not affected Degradation is considered Photovoltaic-battery storage
frequency reserve markets as cost. systems
[153] Minimize charging expense Satisfy user Min/Max battery capacity EV charging control
requirement of
battery energy
[154] Minimize EV charging cost Adaptively adjust to Charge/discharge EV charging management
EV owners different efficiencies
requirements
[155] Reduce operating cost Not relevant Charge/discharge EV charging station with renewable
efficiencies generation
[156] Scheduling to minimize cost & driver Driver’s anxiety is Charge/discharge EV charging control under variable
anxiety modeled efficiencies price
[157] Minimize the daily voltage regulation Not relevant Min/max limits for SoC Distribution grid with PVs and
cost batteries
[158] Minimize grid power purchase with peer- Meet the load Min/max limits for SoC Energy community with domestic

to-peer trading

demand of the
user.

PV and storage
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TABLE 3. (Continued.) Papers primarily aiming at optimizing operational costs.

[159] Minimize operating cost of microgrid Not relevant Min/max limits for SoC Microgrid with multiple distributed
with PV, wind, diesel and battery storages
[160] Minimize maintenance cost Not relevant Gaussian process of Battery maintenance
degradation
[161] Maximize revenue and minimize Not relevant Min/max limits for SoC Primary frequency reserve market

penalties from the market

TABLE 4. Papers primarily aiming at optimizing investment cost.

Paper Profitability & energy efficiency Management of user Battery losses & degradation Context of use of the battery
discomfort
[162] Maximize the battery lifespan Not relevant Thermal and SoH degradation Portable systems with battery
model & supercapacitor
[163] Minimize the operating energy cost & Not relevant Degradation is considered by Telecom base station with PV
identify the optimal battery sizing usage & storage aging & battery
[6] Minimize cost of wireless bus charging Not relevant Not considered Wireless charging of EV
infrastructure
[164] Minimize cost of wireless tram Not relevant Not considered Wireless charging of tram
charging infrastructure
[165] Optimize battery lifespan Not relevant Optimize the charge/discharge Microgrid with PV, diesel,
profile battery and ultracapacitor
[166] Maximize day-ahead market revenue Not relevant Manufacturer’s guaranteed Timing and sizing of battery
& minimize capital expenditure energy capacity retention limit is investment
used as worst case assumption
for degradation
[167] Minimize battery capacity to cope Not relevant Hard limits on min and max SoC Wind farm
with errors in wind generation
forecasts
[168] Motivate investment to connecting Not relevant Not relevant Off-grid microgrids
microgrids
[169] Minimize investment to battery, Not relevant Note relevant Isolated microgrid
inverter, wind turbine, fuel cell,
electrolyzer, diesel & PV
[170] Optimize battery lifespan Not relevant Impact of overheating on General
degradation
[171] Reduce the battery investment cost Not relevant Min/max limits for SoC Energy Harvesting Machine-
and data transmission delay cost Type Communication
[172] Minimize sensor data communication Not relevant Not considered Distributed energy system
needs across subsystems cybersecurity
[173] Minimize cost for electricity, heat and Not relevant Limits to charge/discharge power  Multi-carrier water and energy
fresh water system
[174] Optimal battery investment strategy Failure to supply loads is Not considered Microgrid
over the lifetime of a microgrid penalized
[175] Optimal battery sizing with lowest Not relevant Empirical battery degradation Fuel Cell — PHEV powertrain

cost

model

as the main optimization criterion are covered in this section.
The reviewed works are listed in Table 4, sorted by the year
of publication.

V. MANAGEMENT OF USER DISCOMFORT

The reviewed papers can be categorized under three
approaches for considering a human user. The first approach
is to ignore the user, since the nature of the system and
goals of the optimization problem are such that users are
not impacted. The majority of the reviewed papers use this
approach. The second approach is to impose constraints
on the RL agent to ensure that users are not impacted.
The third approach is to permit the RL agent to take
actions that cause some inconvenience or discomfort to the
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users, and to penalize the agent for such impacts. In this
analysis, all such impacts are referred to with the term user
comfort.

For optimizing the battery usage of EVs and PHEVs as
they are being driven, RL applications are concerned with
energy efficiency. Most works are concerned with battery
management decisions that do not impact passengers (e.g.
[13], [19], [71]). However, a minority of works do consider
the driving experience. The acceleration of the vehicle may be
limited for reasons of energy efficiency [77] or safety [28],
[102]. For traffic flow management with self-driving EVs,
Qu et al. [76] aim to reduce stop-and-go traffic waves. In an
autonomous flying taxi system, Yun et al. [147] penalize the
RL system for any in-flight collisions.
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FIGURE 6. Reviewed articles primarily aiming at optimizing investment
cost.

EV charging systems have the potential to disrupt the lives
of EV drivers. Tuchnitz et al. [29] define user comfort as
avoiding the trouble to give input to a system that coordinates
EV charging — this benefit is questionable since the EVs are
not compensated. In an autonomous EV, Cao et al. [120]
find a tradeoff between the total electricity cost and the
waiting time to charge the vehicle. Zhang et al. [123] aim
to minimize the time that the EV owner spends getting
access to the charging point and waiting for the EV to
charge. Yan et al. [156] propose a driver anxiety concept
that captures the likelihood of the EV not having sufficient
SoC for making an unexpected trip. For an EV taxi fleet,
Tang et al. [124] define user comfort as customer waiting
times. Reference [119], [153], [154], Li and Wan [132] define
a user requirement for the SoC and minimize the charging
cost within this constraint.

Residential sector applications require careful considera-
tion of potential user comfort issues. When the battery is
used to shift electricity purchases and sales, user comfort is
not impacted [15], [24], [121]. This remains true if local PV
generation is added to the mix [23], [146], [158]. Lee and
Choi [6] and Lee and Choi [30] consider a smart home with a
capability to reschedule appliances and EV battery charging,
and penalize for dissatisfaction resulting from rescheduling.
Nakabi and Toivanen [142] consider household loads that
respond to a dynamic price signal, and assume that user
comfort is incorporated to the load controllers as a price
elasticity parameter. Lee et al. [22] optimize a HVAC system
and minimize of the deviations of the indoor environment
outside an ideal range. Lee and Choi [130] and Yu et al. [136]
considers appliance agents for home energy management
systems which are optimized against two criteria: reducing
electricity bills while satisfying the consumer comfort level
for heating and the consumer preferences for appliances.
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VI. BATTERY LOSSES AND DEGRADATION

Some works assume that no loss occurs during the charging,
discharging, and idling of the battery. The battery aging and
degradation is also not considered by many works. In some
case the authors state this explicitly (e.g. [15], [144]). In some
kinds of applications, ignoring these effects can be justified,
as they are not directly related to the optimization problem.
For example, Sultan er al. [98] optimize the selection of
active sensors in an IoT sensor network to achieve the
required data communication task so that the total energy
consumption at the IoT nodes is minimized. As another
example, Sangoleye et al. [99] find the optimal base station
for each IoT node to connect to. In both of these examples,
authors assume that these optimizations achieve the ultimate
goal of the research, which is to prolong the battery lifetime at
the sensor nodes through reducing the energy consumption.
Diverse approaches are used by the authors that do consider
energy losses and degradation. With respect to the RL
problem formulation, these approaches can be categorized as
capturing losses in the environment, imposing constraints on
the RL agent to avoid degradation, or including minimization
of degradation as an optimization criterion in the reward
function. These approaches are not mutually exclusive, and
ideally authors capture charging and discharging inefficien-
cies in the environment and additionally consider degradation
in the reward function (e.g. [18]).

A. CAPTURING BATTERY LOSSES IN THE
REINFORCEMENT LEARNING ENVIRONMENT

The RL environment usually uses a set of equations that
define how the SoC is impacted by the control action
taken by the RL agent. The SoC is often a state variable
and may in some cases be used in the reward function,
for example in formulas that capture battery degradation.
A common battery modelling approach in the environment
of the RL agent is to capture energy losses resulting from
battery operations with factors for charging and discharging
efficiency, and to impose limits to charging and discharging
power (e.g. [22], [24], [29],[116], [133], [142]). Whereas
most authors capture losses as a simple coefficient for
charging and discharging efficiency, a few authors use
more detailed models. Chen et al. [71] use a non-linear
battery model and Zhang et al. [96] model the charging and
discharging dynamics in detail for a specific type of battery,
the lead-acid battery. Kolodziejczyk et al. [141] model the
maximum charging and discharging power as non-linear
functions of SoC. Totaro et al. [95] model how charging and
discharging efficiencies as well as the battery storage capacity
degrade over time. For problem formulations that permit
selling battery energy to the grid, the inverter efficiency
as a function of discharging power is a significant factor
taken into account only in the minority of the works [23].
Aljohani et al. [91] include temperature in their battery model
to ensure an accurate tracking of SoC over the duration of
a trip. Liu et al. [94] consider energy management in the
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specific application of Formula-E races, and carefully model
the impact of ambient temperature and vehicle speed on
battery temperature.

In general, the battery is captured in the environment
of the RL agent by a set of equations defined by the
authors. An alternative approach would be to use a battery
simulation [83]. A few authors use RL to improve such
simulation models. Unagar et al. [176] use machine learning
to infer the battery model’s parameters. RL is used to avoid
the need for labelled training data, as would be the case for
supervised learning methods. Kim et al. [177] use RL to
obtain a more accurate method for estimating the SoC of
lithium-ion batteries than what has been possible with model-
based methods.

B. IMPOSING CONSTRAINTS ON THE AGENT TO PREVENT
BATTERY DEGRADATION

One approach for limiting battery degradation is to impose
constraints, so that an external logic overrides the actions
taken by the RL agent in case these constraints are violated.
A simple approach is to define minimum and maximum
SoC and charging and discharging power thresholds as hard
constraints [49], [58], [140], [167]. Nyong-Bassey et al. [72]
take this constraint as the starting point for power pinch
analysis, which anticipates SoC threshold violations and
takes actions ahead of time to ensure that the violations will
not occur. For self-driving EVs, Tang et al. [124] implement
a constraint that the vehicle must reach a charging station
before its SoC drops below a minimum threshold.

C. INCORPORATING BATTERY DEGRADATION INTO THE
REWARD FUNCTION

Reducing battery degradation is included to the multi-
objective optimization problem by adding a penalty term
to the reward function. A simple approach is to penalize
situations in which the battery SoC exceeds a minimum or
maximum threshold (e.g. [6], [18], [30], [130], [145]). Other
authors penalize SoC deviations from a reference value [31],
[54], [56], [59], [70], [89], [114]. Zhou et al. [32] do this
only when the SoC is out of an ideal operating range of
60-85%, and Zhou et al. [57] do this only when the SoC
is under the reference value. Qi e al. [60] add a penalty
term to the reward function when the SoC is out of the
20-80% range. Cao et al. [150] is similar for the range
20-90% and Silva et al. [119] penalize when the SoC is less
than 20%. Yang et al. [149] include a battery deprecation
cost that is proportional to the charge/discharge power at
each timestep. Chen et al. [13] include the minimization
of the maximum battery discharge power as one of the
optimization criteria. Cao et al. [128] determined that battery
degradation is a linear function of charge/discharge cycles
in the short term, and incorporate this penalty to the
reward function. Shang et al. [127] consider the number
of operating cycles and the SoC in individual cycles.
Muriithi and Chowdhury [146] capture the degradation of
a lithium-ion battery in terms of depth of discharge.
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Roesch et al. [125] use a sophisticated battery degradation
model to capture the impacts of irregular charging and
discharging cycles on battery degradation. Yang et al. [17]
penalize the number of switches between charging, idle and
discharging modes. Cao and Xiong [50] do not explicitly
consider degradation, but formulate the RL problem to
avoid energy losses by avoiding high discharge currents,
an approach which will have side benefits related to
mitigating degradation.

A minority of works considers the impact of temperature
on aging and degradation. Sui and Song [170] consider
a battery pack and propose an intelligent controller to
select between batteries to avoid overheating caused by
excessively frequent charging and discharging of any single
battery. Li et al. [19] go further and consider diverse ‘high
energy’ and ‘high power’ battery packs [100]. The above-
mentioned approaches include temperature as an aspect of
the optimization problem by incorporating the temperature
effects into the reward function. Xie et al. [162] use a thermal
model and SoH degradation for the aging of a lithium-ion
battery.

The majority of works uses SoC in their reward formu-
lations, but SoH (State of Health) is used in some papers.
Xiong et al. [55] define SoH as the ratio between the present
and rated battery capacity. Wu et al. [151] define SoH in terms
of capacity fade. Mendil et al. [163] define the battery state
jointly described by SoC and SoH.

VII. CATEGORIZATION BY APPLICATION

This section categorizes the reviewed works by application.
Each paper is categorized under only one application, unless
it strongly fits under several categories. Generic works that do
not mention any application are not discussed in this section.
The pie chart in Figure 7 categorizes the reviewed articles
by application and gives an indication of which kinds of RL
battery management applications are expected to receive a
high number of publications in a future. However, in addition
to the information in Figure 7, the following insights from the
analysis of individual papers should be considered:

e The problem of managing the power split of one or
more battery packs and other sources of power has
become a well-established line of research, in which
the RL problem formulation was quite similar across
all the works in the ‘EV & HEV driving’ and ‘PHEV
driving’ categories.

e Additional ‘EV charging’ applications are included in
the ‘Buildings’ category.

e No works were found addressing stand-alone PV
plants, so PV does not appear as a separate category.
However, PVs are a central element in many of
the works in the categories ‘Buildings’, ‘Energy
communities, ‘Grid-connected microgrids’, ‘Isolated
microgrids’ and ‘Multi-carrier systems’.

o A few works address wind farms. Wind power was also
covered by works in some of the other categories, but to
amuch lesser extent than PV. This is unsurprising, since
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rooftop PV is becoming increasingly common, whereas
windmills are usually not welcomed in the vicinity of
buildings.

e A huge body of research was encountered related to
IoT, but only a small minority addressed battery man-
agement. As the IoT community begins to address the
practical issues related to deploying and maintaining
IoT systems, it is possible that there is a significant
growth of research in this category.

Wind & tidal Factory
loT battery lifetime

Power split

loT energy harvesting

Energy community

Building Charging

Grid support

Aerial & marine
Microgrid vehicle

FIGURE 7. Reviewed articles per application.

Microgrid Building
Factory loT

Drive time Isolated

optimization

Energy
community microgrid

FIGURE 8. Applications overview.

A. VEHICLE
1) LAND
a: POWER SPLIT

i)PHEV
In contrast to EVs, the battery management of PHEVs has the
additional consideration of switching between battery power
and fuel. Most authors minimize fuel consumption [13], [32],
[71], [107]. Other authors additionally penalize actions that
wear down the battery [20], [31], [54], [56], [57], [60], [74]
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and the engine [21], [89]. RL formulations for optimizing
the driving performance of PHEVs have power demand and
SoC as the state variables. Some authors add velocity [71]
and road slope [59]. The action involves controlling either
the engine power (e.g. [20], [31], [56], [115]) or the battery
power (e.g. [13], [71]). The problem is usually framed as
a question of satisfying the power demand for moving the
vehicle forward (heading demand) with the engine and the
battery, but in case of a tracked vehicle, the power demand
consists of the heading demand as well as the steering demand
[48], [56]. In contrast to the majority of the research, Wu et
al. [117] and Tan et al. [115] perform their optimization
based on cost, taking into account the price of electricity
and diesel. The above-mentioned authors consider emissions
only indirectly through minimizing gasoline consumption.
However, Hofstetter er al. [58] add tailpipe NOx emissions
as a constraint to the optimization problem. For a Fuel Cell -
PHEYV hybrid powertrain, Li et al. [175] propose a framework
for achieving optimal battery sizing parameters with minimal
operation cost and component degradation.

ii) EVAND HEV

Most works on EVs and HEVs that do not have a gasoline
engine involve selections between different types of battery
packs [19], [100] or selections between the battery and
other on-board power sources such as fuel cells [104] and
ultracapacitors [70]. Cao & Xiong [50] aiming to reduce
energy losses by avoiding high discharge currents and
Xiong et al. [55] optimize the state of health of HEV batteries.
Whereas most works assume a human driver, He et al. [77]
and Wegener et al. [28] consider self-driving vehicles, with
which it is possible to include energy efficient acceleration
into the optimization.

b: CHARGING
i) CAR

EV charging optimization targets include the following:
reducing peak load [29], reducing charging costs for the EV
[119], [132], [139], [153], [154], reducing both charging cost
and waiting time [123], reducing charging cost based on
knowledge of user behavior [156], minimizing the cost for
the charging station with a PV and battery storage [155],
minimizing the cost of several such stations [131], and
aggregating several stations within a local market operated
by an aggregator [135].

ii) EV FLEET
For fleets of self-driving EVs, minimization targets include
charging costs [124], charging times [120], time spent not
carrying passengers [110] and battery exhaustion [147].

iif) RAIL
For rail applications, stationary batteries are a viable alter-
native to wireless charging. Regenerative breaking by the
train can be used to charge the batteries, which are then
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used to power the train when it drives. Zhu et al. [87] and
Yang et al. [90] optimize such a system by minimizing power
consumption from the grid and minimizing the losses from
regenerative breaking.

Wireless charging is generally not investigated for rail
transport, since established solutions for connecting to the
grid are available. However, Ko [164] propose a wireless
charging infrastructure for trams.

iv) BUS

Gao et al. [129] optimize the charging/discharging schedules
of electric buses in battery swapping stations with V2G capa-
bility. The objective is to minimize the station’s electricity
bill. Wu er al. [103] optimize the energy management of
hybrid electric buses by penalizing for overtemperature and
degradation of the battery. Lee er al. [6] design a wireless
charging system and minimize the battery size and charging
times.

¢: SELF-DRIVING VEHICLES

Self-driving vehicles could be coordinated to achieve
smoother traffic flow than what is possible with human
drivers. One goal formulation is to reduce stop-and-go traffic
waves or other abrupt velocity changes, since this reduces
acceleration/deceleration cycles and thus battery degradation
[28], [76]. Guo et al. [102] minimize fuel consumption and
travel time while having safety overrides to avoid hazardous
actions.

d: TRIP PLANNING

RL has been applied for the trip planning of human driven
EVs, HEVs or PHEVs [91], [94] and mobile robots [79]. This
can include either route planning [79], [91] or optimizations
made for a predetermined route [94].

2) AERIAL

Batteries in unmanned aerial vehicles (UAV) are used for
flying and data transmission. Flying applications include the
minimization of flight path length [73], maximizing flight
time [83] and using only locally generated wind power for
charging the fleet [75]. The following data transmission
applications were encountered. Wang et al. [105] propose
a framework for the UAVs to independently select their
transmit power in the presence of a jammer. Li et al. [106]
propose an RL-based flight resource allocation framework
to minimize the overall data packet loss to avoid additional
energy consumption from retransmission.

3) MARINE

Battery management for short distance electric ships involves
optimization of decision making for battery usage and
charging. The on-board energy storages include a battery and
a fuel cell. When the ship is in port, on-shore power can be
used to charge the battery, while when it is at sea only the fuel
cell can be used to charge the battery. The authors minimize
the total cost, which consists of hydrogen fuel cost, fuel cell
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degradation, battery degradation and on-shore electricity cost
[84], [134].

B. GRID
1) MICROGRID
a: GRID CONNECTED

i) ELECTRIC
With respect to the RL applications reviewed in this
article, grid-connected microgrids are very similar to the
energy communities discussed in Section VII.C.2. The main
difference is that a microgrid operates in a geographically
constrained area, all energy resources must be physical
connected to the microgrid, and power flow limits must be
observed at the point of common coupling with the utility grid
[127]. Nakabi and Toivanen [142] run a market for household
loads within the microgrid, in which loads participate in
microgrid-level demand response. Kolodziejczyk et al. [141]
consider an aggregated load without specifying the type of
load. Liu et al. [111] introduce a distributed framework to
coordinate loads, distributed generation units and storage.
Shuai et al. [159] perform a multi-objective optimization to
minimize the operating cost of a microgrid with PV, wind
and diesel, considering fuel prices, power exchange costs
of the utility grid and curtailment costs of PV and wind.
Nunna et al. [138] trade aggregated battery capacity on
intra-microgrid markets as well as inter-microgrid markets.
Lu et al. [112] minimize grid peak power consumption.
Wang et al. [116] envision new auction-based markets in
which microgrids can participate. Guo et al. [140] propose
a new market to balance cost minimization objectives of
the microgrids and the utility. Hua ef al. [114] maximize
self-sufficiency, minimize cost of non-renewable generation
and minimize battery degradation. Qiu et al. [49] exploit
the operational difference between batteries with different
chemistries to achieve better efficiency. Duan efr al. [165]
optimize battery lifetime.

if) MULTI-CARRIER

Multi-carrier systems involve the use of electricity along
other forms of energy and, in some cases, freshwater
production. Variants of a multi-energy microgrid involve
electricity, heat and freshwater production [173], electricity
and heat [122] and electricity, gas and heat [148], [149].
Nyong-Bassey et al. [72] designed an isolated microgrid with
a battery, fuel cell and diesel generator, so that an electrolyzer
can use excess PV to replenish the fuel cell, aiming to
minimize the need for the diesel generator.

b: ISOLATED

In the case of isolated microgrids, purchases from an external
electricity market are either not possible [95], [168] or a
last resort to complement local fossil-fuel based emergency
generation [96]. Phan and Lai [169] and Zhang et al. [96]
note that the trend towards a decentralized electric power
system should in some seashore regions be complemented
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with a move to decentralized freshwater production, so a
desalination plant is added to the microgrid. Nie et al. [68]
curtail loads to keep the microgrid operational for as long as
possible.

2) GRID SUPPORT

Applications for grid support can be categorized to market
driven applications and to other applications in which the
financial incentive has not been specified. Market driven
applications include energy arbitrage [128] and frequency
reserves participation [86], [152], [161]. Other applications
include PV generation peak shaving [82], loss minimization
in distribution networks [150], mitigating voltage deviations
in low voltage distribution networks with high PV penetration
[157] and frequency instability reduction not related to
frequency reserve market participation [108].

C. BUILDING

1) SINGLE BUILDING

Buildings are a common context for RL agents managing
battery storages in coordination with other energy resources.
The main difference is the types of other energy resources
available and their flexibility in terms of possibilities for
rescheduling or curtailment. Only PV is considered in [24],
[23], [69], [109], [133], [136], [144], [146].. Liu et al. [137]
and Kim and Lim [15] consider EV chargers along with PV.
Lee and Choi [6] and Lee and Choi [30] include reschedulable
appliances and an EV charger; Alfaverh et al. [121] only
consider appliances. The optimization objectives for PV
related works can be categorized either as maximizing the
PV generation through Maximum Power Point Tracking [51],
maximizing PV self-consumption [23], [69] or minimizing
electricity bills. The latter requires assuming a specific type
of electricity contract, such as real-time pricing [144], [146],
day-ahead markets [133] or Time-of-Use pricing [15].

2) ENERGY COMMUNITY

Communities of buildings offer further optimization oppor-
tunities with shared batteries. An aggregator can trade the
capacity of the batteries and other flexible energy resources
on utility markets [22], [130], [145]. Alternatively, a local
market can be established to avoiding buying and selling from
the grid [14], [118], [143], [158]. Recent regulation such as
the EU Directive on Common Rules for the Internal Energy
Market (EU Directive 2019/944 [178]), and its Article 16 in
particular, indicate a change in the regulatory environment
that is favorable to such local markets.

D. loT

1) BATTERY LIFETIME MANAGEMENT

IoT sensor networks are a field of research with diverse
applications. Maximizing battery lifetime is generally impor-
tant in such applications. RL approaches indirectly achieve
this by innovative and often application specific solutions
for minimizing power consumption. Sultan et al. [98] track
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several targets and activate a minimal number of nearby
sensors that can perform the tracking energy-efficiently.
Ding et al. [78] reduce transmission power by optimizing the
selection of the base station and subchannel. Huang et al. [93]
take battery management as one criterion in a multi-objective
optimization that aims to reduce the latencies and dropped
packets for the IoT computation tasks. Banerjee et al. [80]
selectively activate 10T nodes in an outdoor network to
minimize the increased energy requirement for data transmis-
sion when the node is exposed to high outdoor temperature
and direct sunlight. Teng er al. [171] reduce both the
battery investment cost and data transmission delay with an
intelligent power transmission policy. Conti et al. [52] allow
IoT nodes to offload computation to a fog-computing node.

2) ENERGY HARVESTING

If minimizing energy consumption is not sufficient or
practical for prolonging the battery lifetime, energy har-
vesting approaches are used to recharge the battery.
Sangoleye et al. [99] identify the best base station to
connect to for energy harvesting, whereas Chen et al [101]
migrate computation tasks to nodes that are best positioned
for harvesting. Elmagid et al. [67] schedule packet trans-
missions in a way that is optimal for energy harvesting.
Chu et al. [61] use battery forecasts to optimize access of
IoT nodes to energy harvesting. Chu ef al. [63] optimize
the access and power control policies. Li et al. [62] perform
simultaneous energy harvesting and data transfer by finding
a transmission scheduling strategy to minimize data loss. For
maximizing the throughput of large multiple-access channel
energy harvesting networks, Sharma et al. [64] propose
an optimal power control policy. Temesgene et al. [88]
perform an optimization at virtual small cells that jointly
minimizes harvested energy and the volume of dropped
traffic. Cao et al. [120] minimize the distance travelled, and
thus the energy consumption, of a battery powered mobile
wireless sensor charger. Faraci et al. [75] go further, using
a fleet of drones as the mobile wireless charger, and using
only locally generated wind power for charging the drones.
In a V2I (vehicle-to-infrastructure) roadside unit, a battery
is periodically recharged and RL can be used to optimize the
quality of service of the communication link without draining
the battery before the next recharging period [53]. For energy
harvesting in an underwater relay network, Wang et al. [66]
propose an optimal online power allocation policy to ensure
the quality of data transmission.

E. WIND FARM AND TIDAL

Power production from wind and tidal needs to be traded
ahead of time, based on forecasts. RL applications to
batteries in this context include management of uncertain
generation forecasts [85], [167], management of uncertain
generation and market forecasts (Yang et al., [17]) smoothing
fluctuations in generation [65], [97] and optimizing the
revenue of a wind farm with other generation resources on
site [140].
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F. FACTORY

Batteries are emerging as an element of factory energy
systems, either for rescheduling production tasks to lower
electricity price periods [125] or to ensure the continuity of
production during outages [113].

VIil. DISCUSSION

Comparisons between original research works and attempts
to synthesize them are hindered by the fact that each author
has a unique formulation of the RL problem, resulting in
unique environments, state and action spaces and reward
formulations. This field could greatly benefit from the avail-
ability of benchmark environments for the different applica-
tions of batteries identified in section 7. The OpenAl Gym
is an open-source project for creating such environments that
implement a standard interface for the RL agent to connect to
[179]. A range of benchmark environments implementing the
OpenAlinterface are available for video games [180]. Similar
benchmarks are not available for the energy domain, although
a few works in the energy domain implement the OpenAl
interface for the following applications: maximum power
point tracking of PV installations [181], building energy
management [25]-[27], microgrid energy management [142],
demand response for building cooling [182]. Building on
such works, the emergence of a range of open-source
benchmark environments for diverse battery applications
could greatly speed up the research on RL applications
for battery management and improve the possibilities to
comparatively assess similar works and identify the superior
RL designs. The closest work to this direction that was found
is by Henry & Ernst [183], who published precisely such an
environment for electricity distribution systems, but it does
not involve batteries.

Specific areas of research that are expected to see
significant numbers of publications in the future have been
discussed in conjunction with Figure 7. The following
unsolved challenges have been identified for further research:

e A number of solutions exist for the problem of manag-
ing a battery in conjunction with diverse local energy
resources in a building or microgrid. Approaches
are split into two bodies of research: optimizing
energy efficiency goals and minimizing electricity
bills. As any deployments will require financial
investments, proponents of the former approach should
consider adjusting their research targets to obtain
benefits that can serve as the basis for a return-on-
investment calculation. Further research challenge:
a cost-benefit perspective should be included in RL
problem formulations motivated by energy efficiency.

e The battery is modelled as part of the environment used
in the RL agent’s training process. Various levels of
abstraction have been used in the modelling, and only
a minority of works try to capture the characteristics
of a specific type of battery, such as a lithium ion or
lead-acid battery. The chosen level of abstraction can
cause a significant difference between the performance
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of the RL agent that has been reported in a scientific
publication, and the performance of the same agent
when it is deployed to manage a physical battery.
Further research challenge: the trained agents should
be deployed to physical batteries and the performance
should be compared to the performance achieved
against the battery model.

e Long term battery degradation is captured in a minority
of works, which use diverse ways to define the
degradation and to incorporate it to a multi-objective
optimization problem. This issue, in combination with
the varying levels of abstraction in modelling the
battery, prevents direct comparisons between the per-
formance reported in different works. Thus, researchers
will have difficulties in identifying the most promising
lines of research. Developers and implementers cannot
be expected to assess how these issues will impact
the performance of a RL agent, should it be deployed.
Further research challenge: a benchmark battery
model is needed to assess the efficacy of RL solutions
aiming to mitigate battery degradation.

e Innovative battery management solutions can cause
inconvenience or discomfort to human users of the
system that contains the battery. The identification
and resolution of these issues remains largely an
unsolved issue. Some authors ignore these issues, some
define constraints on user comfort, and some include
comfort as one aspect of a multi-objective optimization
problem. As these issues receive more attention from
researchers, it is possible that original and unique
formulations of user comfort will further complicate
the comparisons between the performance of different
research works. Further research challenge: the end
user of the system that contains the battery needs to
be identified and standard approaches for quantifying
user comfort are needed; for example, if the battery
is used in conjunction with smart building loads,
established standard metrics for indoor air quality and
thermal comfort should be identified and adapted to the
RL problem formulation.

IX. CONCLUSION

The objective of this manuscript has been to provide an
application-oriented review of RL applications to battery
systems. In particular, this review aims to introduce energy
domain experts to RL and to describe the diverse applications
that have been recently published involving batteries. A four-
fold approach has been undertaken for this purpose. Firstly,
the motivations of the RL research have been analyzed either
from an energy-efficiency or financial perspective. Secondly,
any efforts to identify and mitigate impacts on end users
were analyze. Thirdly, approaches for modelling charging
and discharging losses as well as battery degradation were
analyzed. Fourthly, the reviewed literature was categorized
according to the application.
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One key finding is that the batteries are modelled at
a high level of abstraction. The great majority of works
do not specify the battery chemistry. The RL solutions
are trained and validated against these simplified battery
models, and there is a lack of further validation against
high fidelity models or physical batteries. Further multi-
disciplinary research involving battery experts is needed.
This article intends to provide such experts with necessary
background knowledge and an understanding of the state-of-
the-art.

Our literature search was general and thus covered all
lifecycle phases of the battery. The great majority of articles
addressed real-time control or short-term optimizations.
Thus, the focus of the research is on the operation phase of the
battery lifecycle. A few works addressed the planning phase,
in order to optimize the battery investment cost. None of the
reviewed works addressed second-life battery applications,
decommissioning or recycling.
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