
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Gjoreski, Martin; Kuzmanovski, Vladimir; Bohanec, Marko
BAG-DSM: A Method for Generating Alternatives for Hierarchical Multi-Attribute Decision
Models Using Bayesian Optimization

Published in:
Algorithms

DOI:
10.3390/a15060197

Published: 01/06/2022

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Gjoreski, M., Kuzmanovski, V., & Bohanec, M. (2022). BAG-DSM: A Method for Generating Alternatives for
Hierarchical Multi-Attribute Decision Models Using Bayesian Optimization. Algorithms, 15(6), 1-22. Article 197.
https://doi.org/10.3390/a15060197

https://doi.org/10.3390/a15060197
https://doi.org/10.3390/a15060197


Citation: Gjoreski, M.; Kuzmanovski,

V.; Bohanec, M. BAG-DSM: A Method

for Generating Alternatives for

Hierarchical Multi-Attribute Decision

Models Using Bayesian Optimization.

Algorithms 2022, 15, 197. https://

doi.org/10.3390/a15060197

Academic Editor: Edward

Rolando Núñez-Valdez

Received: 6 May 2022

Accepted: 3 June 2022

Published: 7 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

BAG-DSM: A Method for Generating Alternatives for
Hierarchical Multi-Attribute Decision Models Using
Bayesian Optimization
Martin Gjoreski 1,* , Vladimir Kuzmanovski 2 and Marko Bohanec 3

1 Faculty of Informatics, Università della Svizzera Italiana (USI), Via Giuseppe Buffi 13,
CH-6900 Lugano, Switzerland

2 Department of Computer Science, Aalto University, FI-00076 Aalto, Finland; vladimir.kuzmanovski@aalto.fi
3 Department of Knowledge Technologies, Jožef Stefan Institute, Jamova Cesta 39, SI-1000 Ljubljana, Slovenia;

marko.bohanec@ijs.si
* Correspondence: martin.gjoreski@usi.ch

Abstract: Multi-attribute decision analysis is an approach to decision support in which decision
alternatives are evaluated by multi-criteria models. An advanced feature of decision support models
is the possibility to search for new alternatives that satisfy certain conditions. This task is important for
practical decision support; however, the related work on generating alternatives for qualitative multi-
attribute decision models is quite scarce. In this paper, we introduce Bayesian Alternative Generator
for Decision Support Models (BAG-DSM), a method to address the problem of generating alternatives.
More specifically, given a multi-attribute hierarchical model and an alternative representing the initial
state, the goal is to generate alternatives that demand the least change in the provided alternative
to obtain a desirable outcome. The brute force approach has exponential time complexity and has
prohibitively long execution times, even for moderately sized models. BAG-DSM avoids these
problems by using a Bayesian optimization approach adapted to qualitative DEX models. BAG-
DSM was extensively evaluated and compared to a baseline method on 43 different DEX decision
models with varying complexity, e.g., different depth and attribute importance. The comparison was
performed with respect to: the time to obtain the first appropriate alternative, the number of generated
alternatives, and the number of attribute changes required to reach the generated alternatives. BAG-
DSM outperforms the baseline in all of the experiments by a large margin. Additionally, the evaluation
confirms BAG-DSM’s suitability for the task, i.e., on average, it generates at least one appropriate
alternative within two seconds. The relation between the depth of the multi-attribute hierarchical
models—a parameter that increases the search space exponentially—and the time to obtaining the
first appropriate alternative was linear and not exponential, by which BAG-DSM’s scalability is
empirically confirmed.

Keywords: multi-attribute models; method DEX; alternatives; decision support; Bayesian
optimization

1. Introduction

Decision support systems (DSSs) are interactive information systems intended to help
decision makers utilize data and models in order to identify and solve problems and make
decisions [1–3]. Typically, decision support models are static and provide the users with an
output for a given input (Step 1 and Step 2 in Figure 1). However, besides the output, users
are often interested in alternatives that are close to their initial input and enable a change,
usually a positive one, in the output of the model (see Step 1 and Step 2—with BAG-DSM
in Figure 1). To solve that specific problem, we developed BAG-DSM, a surrogate-based
stochastic optimization method for searching the decision space and generating alternatives

Algorithms 2022, 15, 197. https://doi.org/10.3390/a15060197 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15060197
https://doi.org/10.3390/a15060197
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-1220-7418
https://orcid.org/0000-0003-4317-2833
https://doi.org/10.3390/a15060197
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15060197?type=check_update&version=2


Algorithms 2022, 15, 197 2 of 22

that fulfill certain criteria with regard to the provided initial state (current alternative) and
that guarantees evaluation of the outcome to the desired level.

Algorithms 2022, 15, x FOR PEER REVIEW 2 of 23 
 

a surrogate-based stochastic optimization method for searching the decision space and 
generating alternatives that fulfill certain criteria with regard to the provided initial state 
(current alternative) and that guarantees evaluation of the outcome to the desired level. 

 
Figure 1. Differences between a typical usage of decision support models (Step 1 and Step 2) and 
augmented usage with BAG-DSM (Step 1 and Step 2—with BAG-DSM). 

Hierarchical multi-attribute models are a type of decision model used in DSSs that 
decompose the problem into smaller and less complex subproblems and represent it by a 
hierarchy of attributes and utility or aggregation functions. Such decision models are es-
pecially useful in solving complex decision problems [4–7]. DEX [8] is a qualitative hier-
archical multi-attribute method whose models are characterized by using qualitative 
(symbolic) attributes and decision rules. The method is supported by DEXi [8], an inter-
active computer program for the development of qualitative multi-attribute decision 
models and the evaluation of alternatives. DEXi has been used to analyze decision prob-
lems in different domains. According to [8], DEXi was used in healthcare for the assess-
ment of breast cancer risk, assessment of basic living activities in community nursing, risk 
assessment in diabetic foot care, and advising about medication therapy for Parkinson’s 
disease. In agriculture, DEXi [8] was used for assessing the impact of cropping systems on 
soil quality, assessing the ecological and the economic impact of genetically modified 
crops, assessing livestock systems, and predicting insect pest damage to crops. Some other 
recent applications were carried out in the fields of electricity production [9], risk 
assessment [10], sustainability development [11], and knowledge management [12]. 

Besides modeling expert knowledge and evaluating existing alternatives, DEXi can 
be used for what-if analysis, i.e., the process of changing the values of certain attributes in 
an existing alternative and analyzing how those changes affect the outcome. The what-if 
analysis has the ability to investigate the differences within a given set of alternatives but 
lacks the ability to generate the alternative set itself. The provided set of alternatives 
comprises alternatives that the decision maker chooses to investigate based on 
corresponding expert knowledge about the underlying decision problem and the set of 
attributes. However, imposing a condition to consider the desired evaluation of the 
outcome, which differs from the actual evaluation, makes the what-if analysis intractable. 

Therefore, a useful extension of such analysis would be to provide the possibility to 
search for new alternatives or to generate them under a certain set of conditions that 
strongly relate to or depend on the initial or current state of the modeled system in order 
to obtain a desirable outcome—an evaluation of the modeled phenomenon. The solutions 
should satisfy the criteria of least deviation from the initial state, where the deviation is 
defined with a geometric or set-based distance measure(s) from a given alternative (initial 
state). This task is important for practical decision support. 

The qualitative nature of DEX models, along with the set of input attributes and their 
domains (sets of nominal values that each attribute receives a value from), defines the 
combinatorial nature of the underlying search task that evolves in a complex 
combinatorial optimization problem, where the dimensionality of its search space affects 
the complexity. A trivial approach to the given search problem is an application of the 
brute-force or exhaustive search algorithm. However, the brute-force approach that 
evaluates all possible alternatives is computationally demanding and not reasonable for 

Figure 1. Differences between a typical usage of decision support models (Step 1 and Step 2) and
augmented usage with BAG-DSM (Step 1 and Step 2—with BAG-DSM).

Hierarchical multi-attribute models are a type of decision model used in DSSs that
decompose the problem into smaller and less complex subproblems and represent it by
a hierarchy of attributes and utility or aggregation functions. Such decision models are
especially useful in solving complex decision problems [4–7]. DEX [8] is a qualitative
hierarchical multi-attribute method whose models are characterized by using qualitative
(symbolic) attributes and decision rules. The method is supported by DEXi [8], an interac-
tive computer program for the development of qualitative multi-attribute decision models
and the evaluation of alternatives. DEXi has been used to analyze decision problems in
different domains. According to [8], DEXi was used in healthcare for the assessment of
breast cancer risk, assessment of basic living activities in community nursing, risk assess-
ment in diabetic foot care, and advising about medication therapy for Parkinson’s disease.
In agriculture, DEXi [8] was used for assessing the impact of cropping systems on soil
quality, assessing the ecological and the economic impact of genetically modified crops,
assessing livestock systems, and predicting insect pest damage to crops. Some other recent
applications were carried out in the fields of electricity production [9], risk assessment [10],
sustainability development [11], and knowledge management [12].

Besides modeling expert knowledge and evaluating existing alternatives, DEXi can be
used for what-if analysis, i.e., the process of changing the values of certain attributes in an
existing alternative and analyzing how those changes affect the outcome. The what-if anal-
ysis has the ability to investigate the differences within a given set of alternatives but lacks
the ability to generate the alternative set itself. The provided set of alternatives comprises
alternatives that the decision maker chooses to investigate based on corresponding expert
knowledge about the underlying decision problem and the set of attributes. However,
imposing a condition to consider the desired evaluation of the outcome, which differs from
the actual evaluation, makes the what-if analysis intractable.

Therefore, a useful extension of such analysis would be to provide the possibility
to search for new alternatives or to generate them under a certain set of conditions that
strongly relate to or depend on the initial or current state of the modeled system in order to
obtain a desirable outcome—an evaluation of the modeled phenomenon. The solutions
should satisfy the criteria of least deviation from the initial state, where the deviation is
defined with a geometric or set-based distance measure(s) from a given alternative (initial
state). This task is important for practical decision support.

The qualitative nature of DEX models, along with the set of input attributes and their
domains (sets of nominal values that each attribute receives a value from), defines the
combinatorial nature of the underlying search task that evolves in a complex combinatorial
optimization problem, where the dimensionality of its search space affects the complexity.
A trivial approach to the given search problem is an application of the brute-force or
exhaustive search algorithm. However, the brute-force approach that evaluates all possible
alternatives is computationally demanding and not reasonable for sufficiently large models.
For example, for a decision model with 20 input attributes and cardinality of their value sets
(scales) equal to three (e.g., “low”, “medium”, “high”), the number of possible alternatives



Algorithms 2022, 15, 197 3 of 22

(candidate solutions) is 320, i.e., close to 3.5 × 109. Consequently, more advanced search
methods in terms of intelligence and efficiency in traversing the search space are required
to avoid the combinatorial explosion.

The contribution that this paper presents is the novel method Bayesian Alternative
Generator for Decision Support Models (BAG-DSM), which aids the search through the
decision space of DEX decision support models. The approach uses Bayesian optimization
and its utility to investigate the tradeoff between exploration and exploitation of unknown
regions and reached discoveries, respectively. BAG-DSM was evaluated on 42 qualitative
multi-attribute models with varying complexity. BAG-DSM’s behavior and performance
are analyzed with respect to several characteristics, including computational time, time to
finding the first appropriate alternative, the number of generated (appropriate) alternatives,
and the number of attribute changes required to reach the generated alternatives.

The rest of the paper is structured as follows: Section 2 presents the related work.
Section 3 presents the theoretical background of multi-criteria decision analysis with a focus
on DEX methodology. Section 4 presents the proposed BAG-DSM, including theoretical and
implementation details. Section 5 presents the experimental setup and the experimental
results. Section 6 discusses the results, including limitations, future work, and implications
related to BAG-DSM. Finally, Section 7 concludes the paper.

2. Related Work

Most of the studies that analyze alternatives in multi-attribute decision models fo-
cus on the development of methods for ranking alternatives [13,14]. These methods are
useful in use cases when the expert needs to choose one alternative from a set of possible
alternatives. However, in use cases where the set of possible alternatives is not predefined,
such methods are not applicable. Furthermore, such ranking methods lack the ability to
generate new alternatives, leading to the desired outcome, which satisfies a set of criteria
strongly related to and dependent on the initial or present state of the modeled system—the
current alternative.

The related work on generating an alternative for multi-attribute decision models,
particularly qualitative models such as DEX, is quite scarce. The only related study known
to the authors was presented by Bergez [15], in which the focus is on attribute scoring (and
not on the alternatives), and a given (current) alternative was not taken into consideration.
More specifically, Bergez developed a genetic algorithm for searching a set of the “worst-
best”, i.e., lowest scores for the input attributes that lead to the highest score for the root
attribute (the decision model’s output), and “best-worst”, i.e., highest scores for the input
attributes that lead to the lowest score for the root attribute. Bergez’s use case involves
a complex model for ex ante assessment of the sustainability of cropping systems and
provides an excellent justification for using such methods in decision support.

Generating candidate alternatives that would change the model’s output is also a
problem faced by the machine learning (ML) community, thanks to the recent changes
related to the EU’s General Data Protection Regulation (GDPR). According to GDPR, the
ML models should offer the possibility to answer/provide an explanation such as: “You
were denied a loan because your annual income was £30,000. If your income had been
£45,000, you would have been offered a loan” [16]. This new regulation prompted the ML
community to explore the explainability of ML models to the extent that some researchers
argue that the model’s accuracy should be sacrificed and interpretable models should be
preferred over black-box ML models for high-stakes decisions [17].

In the ML domain, this task is referred to as a search for counterfactual explanations.
The idea is that, besides the model’s output, additional counterfactual information should
be provided on how the world would have to be different for a desirable outcome to occur.
Wachter et al. [16] presented examples of how meaningful counterfactuals can be computed
for standard weight-based ML algorithms, e.g., neural networks, support vector machines,
and logistic repressors. The proposed BAG-DSM utilizes the models’ weights and a specific
distance function to search for counterfactuals. Joshi et al. [18] presented a method that



Algorithms 2022, 15, 197 4 of 22

first learns a latent space of the training data using a variational autoencoder based on
neural networks and then uses the latent space to search for the counterfactual explanations.
While quite powerful, both of these methods are weight- and gradient-based and require a
differentiable distance function, which is not always available with multi-attribute decision
models and is especially limited in qualitative domains. Karimi et al. [19] proposed a
general method based on first-order predicate logic to generate the nearest counterfactual
explanations. They evaluated their approach using predictive models such as decision
trees, random forest, logistic regression, and multilayer perceptron. Wexler et al. [20]
presented a method that searches in the training data for the closest sample that flips the
model’s prediction. Tolomei et al. [21] presented an approach that searches for the nearest
counterfactual close to the decision boundary of a random forest model. Ustun et al. [22]
presented a method that solves a mixed-integer linear program to obtain counterfactual
explanations for linear regression models. However, these ML-based studies have limited
ability to handle discrete utility functions, which are a base in our study for qualitative
multi-attribute decision models.

3. Problem Description
3.1. Multi-Criteria Modeling

Multi-criteria decision analysis (MCDM) [6] is an approach to decision support that
explicitly considers multiple and possibly conflicting criteria for assessing decision alterna-
tives. One of the central MCDM concepts is a notion of a multi-criteria (or multi-attribute)
model, which is aimed at capturing the decision maker’s preferences and goals, and even-
tually creating means to evaluate and analyze decision alternatives in a numerical or
qualitative way. At the surface, an MCDM model can be seen as an aggregation function,

U = F(x1, x2, . . . , xn), (1)

that evaluates decision alternatives, which are represented by the values of multiple criteria
xi, i = 1, 2, . . . , n. The variables xi usually represent some observable properties of alterna-
tives that influence the decision, such as cost, performance, or economy. The aggregation
yields an overall evaluation (utility) U, which is used as a measure to rank alternatives
and/or to select the optimal (preferred) one. MCDM provides a multitude of methods that
use different internal representations of F and differ in the ways F is acquired from the
decision maker and how it is used to support various decision-making tasks. Let us also
add that the majority of MCDM methods rely on linear models of the form

U = w1x1 + w2x2 + · · ·+ wnxn (2)

where wi ∈ R, i = 1, 2, . . . , n are weights representing the relative importance of criteria.

3.2. Method DEX

Decision expert (DEX) [8] is an MCDM method that takes the same model aggregation
approach; however, it departs from the mainstream MCDM methods by using qualitative
rather than numeric criteria. Criteria xi in DEX are represented by variables (called
attributes) that take values that are usually represented by words, such as “bad”, “accept-
able”, “high”. The aggregation of such values into an overall U, which is also qualitative,
is in DEX governed by decision rules rather than by the weighted sum or some other form
of numerical aggregation. The DEX method was motivated by the needs of problem do-
mains that involve inaccurate or even missing data and require judgment and qualitative
knowledge-based reasoning. DEX is particularly suitable for supporting sorting decision
problems [23], where the goal is to assign decision alternatives into ordered and predefined
groups, called categories.

Example 1. As an introductory example of DEX, let us use a simple model for the evaluation of
vehicles, which is distributed together with the DEXi software. The model consists of six basic



Algorithms 2022, 15, 197 5 of 22

attributes (BUY.PRICE, MAINT.PRICE, #PERS, #DOORS, LUGGAGE, and SAFETY), which are
used as inputs to the model. The model has a hierarchical structure (Figure 2). Input attributes are
gradually aggregated through three aggregate attributes (PRICE, COMFORT, and TECH.CHAR.).
The root of the tree, called CAR, represents the overall evaluation of decision alternatives—cars.
Figure 3 also shows the value scales of attributes, illustrating the use of words (such as “small”,
“medium”, “big”). These words are generally ordered by preference from “bad” to “good” values,
and the red and green colors denote particularly bad and good individual values, respectively.

Algorithms 2022, 15, x FOR PEER REVIEW 5 of 23 
 

sorting decision problems [23], where the goal is to assign decision alternatives into 
ordered and predefined groups, called categories. 

Example 1. As an introductory example of DEX, let us use a simple model for the evaluation of 
vehicles, which is distributed together with the DEXi software. The model consists of six basic 
attributes (BUY.PRICE, MAINT.PRICE, #PERS, #DOORS, LUGGAGE, and SAFETY), which 
are used as inputs to the model. The model has a hierarchical structure (Figure 2). Input attributes 
are gradually aggregated through three aggregate attributes (PRICE, COMFORT, and 
TECH.CHAR.). The root of the tree, called CAR, represents the overall evaluation of decision 
alternatives—cars. Figure 3 also shows the value scales of attributes, illustrating the use of words 
(such as “small”, “medium”, “big”). These words are generally ordered by preference from “bad” 
to “good” values, and the red and green colors denote particularly bad and good individual values, 
respectively. 

 
Figure 2. Structure and value scales of a DEX decision model for the evaluation of vehicles [8]. 

 
Figure 3. Decision rules for aggregating PRICE and TECH.CHAR. to CAR. 

The aggregation in DEX is defined by decision tables consisting of decision rules. 
Figure 3 shows the topmost table in the CAR model, which aggregates the lower-level 
attributes PRICE and TECH.CHAR. to the final CAR evaluation. Each row in the table 
represents a simple decision rule; for instance, row 4: 

if PRICE = “high” and TECH.CHAR. = “exc” then CAR = “unacc(eptable)”. 
Such decision tables are usually defined by the decision maker and are meant to 

reflect their preferences. In addition to the rules in Figure 2, the CAR model contains three 
more decision tables, not shown here, that correspond to the aggregate attributes PRICE, 
TECH.CHAR., and COMFORT. 

The CAR model, consisting of the attributes (Figure 2) and decision tables (one 
shown in Figure 3), collectively represents the aggregation 

CAR = 𝐹(BUY.PRICE, MAINT.PRICE, #PERS, #DOORS, LUGGAGE, SAFETY), 

where 𝐹 is the aggregation function defined by decision rules. The six arguments of 𝐹 
are variables representing observable properties of cars, and CAR is the overall evaluation 
of a car, represented by categories “unacc”, “acc”, “good”, “exc”. This function can be 
used to evaluate specific vehicles, as illustrated in Figure 4. 

 Attribute Scale
 CAR unacc; acc; good; exc

PRICE high; medium; low
BUY.PRICE high; medium; low
MAINT.PRICE high; medium; low

TECH.CHAR. bad; acc; good; exc
COMFORT small; medium; high

#PERS to_2; 3-4; more
#DOORS 2; 3; 4; more
LUGGAGE small; medium; big

SAFETY small; medium; high

  PRICE TECH.CHAR. CAR
 1 high bad unacc
2 high acc unacc
3 high good unacc
4 high exc unacc
5 medium bad unacc
6 medium acc acc
7 medium good good
8 medium exc exc
9 low bad unacc

10 low acc good
11 low good exc
12 low exc exc

Figure 2. Structure and value scales of a DEX decision model for the evaluation of vehicles [8].

Algorithms 2022, 15, x FOR PEER REVIEW 5 of 23 
 

sorting decision problems [23], where the goal is to assign decision alternatives into 
ordered and predefined groups, called categories. 

Example 1. As an introductory example of DEX, let us use a simple model for the evaluation of 
vehicles, which is distributed together with the DEXi software. The model consists of six basic 
attributes (BUY.PRICE, MAINT.PRICE, #PERS, #DOORS, LUGGAGE, and SAFETY), which 
are used as inputs to the model. The model has a hierarchical structure (Figure 2). Input attributes 
are gradually aggregated through three aggregate attributes (PRICE, COMFORT, and 
TECH.CHAR.). The root of the tree, called CAR, represents the overall evaluation of decision 
alternatives—cars. Figure 3 also shows the value scales of attributes, illustrating the use of words 
(such as “small”, “medium”, “big”). These words are generally ordered by preference from “bad” 
to “good” values, and the red and green colors denote particularly bad and good individual values, 
respectively. 

 
Figure 2. Structure and value scales of a DEX decision model for the evaluation of vehicles [8]. 

 
Figure 3. Decision rules for aggregating PRICE and TECH.CHAR. to CAR. 

The aggregation in DEX is defined by decision tables consisting of decision rules. 
Figure 3 shows the topmost table in the CAR model, which aggregates the lower-level 
attributes PRICE and TECH.CHAR. to the final CAR evaluation. Each row in the table 
represents a simple decision rule; for instance, row 4: 

if PRICE = “high” and TECH.CHAR. = “exc” then CAR = “unacc(eptable)”. 
Such decision tables are usually defined by the decision maker and are meant to 

reflect their preferences. In addition to the rules in Figure 2, the CAR model contains three 
more decision tables, not shown here, that correspond to the aggregate attributes PRICE, 
TECH.CHAR., and COMFORT. 

The CAR model, consisting of the attributes (Figure 2) and decision tables (one 
shown in Figure 3), collectively represents the aggregation 

CAR = 𝐹(BUY.PRICE, MAINT.PRICE, #PERS, #DOORS, LUGGAGE, SAFETY), 

where 𝐹 is the aggregation function defined by decision rules. The six arguments of 𝐹 
are variables representing observable properties of cars, and CAR is the overall evaluation 
of a car, represented by categories “unacc”, “acc”, “good”, “exc”. This function can be 
used to evaluate specific vehicles, as illustrated in Figure 4. 

 Attribute Scale
 CAR unacc; acc; good; exc

PRICE high; medium; low
BUY.PRICE high; medium; low
MAINT.PRICE high; medium; low

TECH.CHAR. bad; acc; good; exc
COMFORT small; medium; high

#PERS to_2; 3-4; more
#DOORS 2; 3; 4; more
LUGGAGE small; medium; big

SAFETY small; medium; high

  PRICE TECH.CHAR. CAR
 1 high bad unacc
2 high acc unacc
3 high good unacc
4 high exc unacc
5 medium bad unacc
6 medium acc acc
7 medium good good
8 medium exc exc
9 low bad unacc

10 low acc good
11 low good exc
12 low exc exc

Figure 3. Decision rules for aggregating PRICE and TECH.CHAR. to CAR.

The aggregation in DEX is defined by decision tables consisting of decision rules.
Figure 3 shows the topmost table in the CAR model, which aggregates the lower-level
attributes PRICE and TECH.CHAR. to the final CAR evaluation. Each row in the table
represents a simple decision rule; for instance, row 4:

if PRICE = “high” and TECH.CHAR. = “exc” then CAR = “unacc(eptable)”.

Such decision tables are usually defined by the decision maker and are meant to
reflect their preferences. In addition to the rules in Figure 2, the CAR model contains three
more decision tables, not shown here, that correspond to the aggregate attributes PRICE,
TECH.CHAR., and COMFORT.

The CAR model, consisting of the attributes (Figure 2) and decision tables (one shown
in Figure 3), collectively represents the aggregation

CAR = F(BUY.PRICE, MAINT.PRICE, #PERS, #DOORS, LUGGAGE, SAFETY),

where F is the aggregation function defined by decision rules. The six arguments of F are
variables representing observable properties of cars, and CAR is the overall evaluation of a
car, represented by categories “unacc”, “acc”, “good”, “exc”. This function can be used to
evaluate specific vehicles, as illustrated in Figure 4.

In this study, we are interested in the following type of question: Consider Car2
in Figure 4. What can we do to improve its overall evaluation from CAR = “good” to
CAR = “exc”? In which way should we change BUY.PRICE, MAINT.PRICE, and/or any
combination of input values in order to achieve that goal? Apparently, this is a combi-
natorial problem, which is not particularly difficult for simple models such as CAR. One
may notice that the inputs to CAR consist of five attributes that can take three qualitative



Algorithms 2022, 15, 197 6 of 22

values and one attribute (#DOORS) that can take four values. In this way, the input space
consists of 3× 3× 3× 3× 3× 4 = 972 possible value combinations, which can all be easily
evaluated by an exhaustive algorithm. However, the latter becomes impossible with larger
and more complex models.

Algorithms 2022, 15, x FOR PEER REVIEW 6 of 23 
 

 

Figure 4. Example evaluation of two cars. 

In this study, we are interested in the following type of question: Consider Car2 in 

Figure 4. What can we do to improve its overall evaluation from CAR = “good” to CAR = 

“exc”? In which way should we change BUY.PRICE, MAINT.PRICE, and/or any 

combination of input values in order to achieve that goal? Apparently, this is a 

combinatorial problem, which is not particularly difficult for simple models such as CAR. 

One may notice that the inputs to CAR consist of five attributes that can take three 

qualitative values and one attribute (#DOORS) that can take four values. In this way, the 

input space consists of 3 × 3 × 3 × 3 × 3 × 4 = 972 possible value combinations, which 

can all be easily evaluated by an exhaustive algorithm. However, the latter becomes 

impossible with larger and more complex models. 

Example 2. Here we take a larger, more complex, but realistic DEX model in the domain of 

agriculture [24]. The model, whose structure is shown in Figure 5, is aimed at assessing the 

primary productivity of agricultural fields by considering soil properties, environmental aspects, 

crop properties, and management options. The description of the model is beyond the scope of this 

paper; however, it is included here to illustrate two important points. First, after evaluating an 

agricultural field and assessing its primary productivity, a caring farmer would ask questions such 

as: What can I do to improve productivity? What can go wrong and degrade productivity? Such 

questions are highly relevant and should be supported by appropriate methods and algorithms. 

Second, this model has 26 input attributes and, consequently, a huge input space: 24 × 318 × 44 ≈

1.59 ×  1012 . The exhaustive search for solutions is clearly unfeasible, and more efficient 

algorithms are needed to solve the problem in a realistic time frame. 

3.3. DEX Models and Their Properties 

This study comprises DEX models that allow investigating performances of the 

proposed BAG-DSM for generating alternatives yet give a clear insight into the 

applicability of the BAG-DSM on decision problems bounded by real-world settings, such 

as the second example above. Therefore, along with the decision model for assessing the 

capacity of primary productivity soil function presented above, the study includes a set 

of artificial (benchmark) DEX multi-attribute decision models. 

The benchmark DEX models are designed by Kuzmanovski et al. [25]. In this study, 

they are used for benchmarking the methods’ performances with respect to varying 

properties of the decision model and, hence, the decision problem. They encompass trivial 

structures, with unified attributes with regard to their value scales (Figure 6a). The set has 

42 DEX models and exhibits variation in three model properties that define the overall 

complexity of a decision problem: (i) distribution of attributes’ aggregation weights 

(weight distribution), (ii) depth of the hierarchical structure (model depth), and (iii) inter-

dependency of input attributes. 

DEXi Car.dxi 2.10.20 Page 1

 
Evaluation results
 
Attribute Car1 Car2
 CAR exc good

PRICE low medium
BUY.PRICE medium medium
MAINT.PRICE low medium

TECH.CHAR. exc good

COMFORT high high
#PERS more more
#DOORS 4 4
LUGGAGE big big

SAFETY high medium
 

Figure 4. Example evaluation of two cars.

Example 2. Here we take a larger, more complex, but realistic DEX model in the domain of
agriculture [24]. The model, whose structure is shown in Figure 5, is aimed at assessing the
primary productivity of agricultural fields by considering soil properties, environmental aspects, crop
properties, and management options. The description of the model is beyond the scope of this paper;
however, it is included here to illustrate two important points. First, after evaluating an agricultural
field and assessing its primary productivity, a caring farmer would ask questions such as: What
can I do to improve productivity? What can go wrong and degrade productivity? Such questions
are highly relevant and should be supported by appropriate methods and algorithms. Second, this
model has 26 input attributes and, consequently, a huge input space: 24 × 318 × 44 ≈ 1.59× 1012.
The exhaustive search for solutions is clearly unfeasible, and more efficient algorithms are needed to
solve the problem in a realistic time frame.

3.3. DEX Models and Their Properties

This study comprises DEX models that allow investigating performances of the pro-
posed BAG-DSM for generating alternatives yet give a clear insight into the applicability of
the BAG-DSM on decision problems bounded by real-world settings, such as the second
example above. Therefore, along with the decision model for assessing the capacity of
primary productivity soil function presented above, the study includes a set of artificial
(benchmark) DEX multi-attribute decision models.

The benchmark DEX models are designed by Kuzmanovski et al. [25]. In this study,
they are used for benchmarking the methods’ performances with respect to varying prop-
erties of the decision model and, hence, the decision problem. They encompass trivial
structures, with unified attributes with regard to their value scales (Figure 6a). The set
has 42 DEX models and exhibits variation in three model properties that define the over-
all complexity of a decision problem: (i) distribution of attributes’ aggregation weights
(weight distribution), (ii) depth of the hierarchical structure (model depth), and (iii) inter-
dependency of input attributes.

The aggregation weights resemble the idea of other MCDA methods that linearly
combine attribute values, but with no explicit definition of such weights. Instead, the
weights in DEX are either defined explicitly by the decision maker or implicitly derived
from the decision rules, which do not necessarily exhibit a linear relation. Following
the paradigm of the linear models, where weights explain the extent of variability in
outcomes, the weights’ distribution considerably influences the ability to quickly generate
a suitable alternative, i.e., determines the bounds of the search space. However, accurately
estimating such weights and their distribution is not trivial. Therefore, for benchmark
models, Kuzmanovski et al. [25] defined three classes of weight distributions: skewed,
normal, and uniform, which express the distribution of weights in terms of dominant and
tailing attributes across all aggregations in the DEX models. The skewed distribution of
weights corresponds to the complete dominance of a single attribute, while the rest of the
attributes have no influence in an aggregation (Figure 6b). Normal distribution resembles



Algorithms 2022, 15, 197 7 of 22

a tailed bell-shaped distribution with one attribute being dominant, while the rest have
fewer (minor) effects in the aggregation (Figure 6c). Uniform distribution, as the name
suggests, equally distributes the effect or influence of input attributes on the outcome of the
aggregation (Figure 6d). The defined classes of skewed, normal, and uniform distributions
of weights translate to small, medium, and large search spaces, respectively.

Algorithms 2022, 15, x FOR PEER REVIEW 7 of 23 
 

 

Figure 5. Structure of a DEX decision model for the assessment of primary productivity of 

agricultural fields [24]. 

The aggregation weights resemble the idea of other MCDA methods that linearly 

combine attribute values, but with no explicit definition of such weights. Instead, the 

weights in DEX are either defined explicitly by the decision maker or implicitly derived 

from the decision rules, which do not necessarily exhibit a linear relation. Following the 

paradigm of the linear models, where weights explain the extent of variability in 

outcomes, the weights’ distribution considerably influences the ability to quickly generate 

a suitable alternative, i.e., determines the bounds of the search space. However, accurately 

estimating such weights and their distribution is not trivial. Therefore, for benchmark 

models, Kuzmanovski et al. [25] defined three classes of weight distributions: skewed, 

normal, and uniform, which express the distribution of weights in terms of dominant and 

tailing attributes across all aggregations in the DEX models. The skewed distribution of 

weights corresponds to the complete dominance of a single attribute, while the rest of the 

attributes have no influence in an aggregation (Figure 6b). Normal distribution resembles 

a tailed bell-shaped distribution with one attribute being dominant, while the rest have 

fewer (minor) effects in the aggregation (Figure 6c). Uniform distribution, as the name 

suggests, equally distributes the effect or influence of input attributes on the outcome of 

the aggregation (Figure 6d). The defined classes of skewed, normal, and uniform 

distributions of weights translate to small, medium, and large search spaces, respectively. 

The depth of the DEX models shows the number of levels in their tree-like 

hierarchical structure, including the level of input attributes. The depth of the model, 

where at each aggregation, at least two attributes are combined, influences the number of 

input attributes. Therefore, depth influences the dimensionality of the search space 

(number of input attributes), and hence, the complexity of the decision problem. The set 

of benchmark DEX models includes models with the depth of 3, 4, and 5 levels. 

DEXi PP_cropland_v5_VK_13102020.dxi 31.5.22 Page 1

 
Attribute tree
 
Attribute Description
 Primary Productivity Capacity of the soil function

Soil Effect of soil properties on variation of the capacity

Biological activity Biological activity of soil
pH Soil pH (pH-CaCl2)
C/N ratio C/N ratio
SOM Soil organic matter (SOM)

Chemical (agg) Chemical soil quality

Macro Elements Presence of macro elements
P Major element contents of soil (P)
K Major element contents of soil (K)
Mg Additional element contents of soil (Mg)

Other Chemical Attributes Other chemical factors
CEC Cation exchange capacity (CEC)
Salinity Salinity

Physical (agg) Physical properties

Structure Soil structure
Bulk Density Soil bulk density
Rooting Depth Rooting depth (depth till limitation of root growth)
Clay content Share of clay in the soil structure

Groundwater Table Depth Groundwater Table Depth
Environment Effect of environmental conditions on variation of the capacity

Climate Climate-related conditions
Precipitation Precipitation: annual cumulative precipitation
Temperature Length of the temperature growing period (degree days)

Orography Orography-related conditions
Altitude Altitude (meters above sea level)
Slope Degree Slope degree

Crop Effect of crop selection on variation of the capacity

Crop Rotation Number of crops in rotation
Number of crops Average number of crops in rotation (last 5 years)
% legumes Share of years when legumes have been sawn (last 5 years)
% CaC,CoC,GM Share of years with catch, cash or genetically-modified crops (last 5 years)

Stocking Rate Stocking rate (LU/ha/year)
Management Effects of crop management on variation of the capacity

Fertilisation Effects of fertilisation
Mineral Mineral nitrogen fertilisation (kg N ha-1 y-1)
Organic Nitrogen Fertilisation Organic nitrogen fertilisation (kg N ha-1)

Pest Management Effects of pest control management
Chemical Pest management with chemical control
Physical Pest management with physical prevention
Biological Pest management with biological control agents

Irrigation Irrigation 
 

Figure 5. Structure of a DEX decision model for the assessment of primary productivity of agricultural
fields [24].

Algorithms 2022, 15, x FOR PEER REVIEW 8 of 23 
 

 

   

(a) (b) (c) (d) 

Figure 6. Examples of the structure and weight distributions of a benchmark DEX decision model. 
(a) The hierarchical structure of a benchmark DEX model with a depth of 3 levels and one linked 
attribute (Input_122); (b–d) examples of skewed (b), normal (c), and uniform (d) distributions of 
aggregation weights [26]. 

The inter-dependency of input attributes in DEX models is represented by the so-
called “links” that represent a copy of an input attribute that appears in other parts of the 
hierarchical structure. The links represent inter-dependency because by varying the 
original input attribute, all its copies vary as well. Therefore, the search for solutions needs 
to focus only on the number of non-linked attributes, whereas the dimensionality of search 
space reduces. However, the covariance between the linked attributes is not necessarily 
reflected in aggregation effects to corresponding aggregation attributes and may thus lead 
to conflicting effects on the topmost aggregated attributes, an effect that increases the 
complexity of finding solutions. In order to investigate the influence of this property on 
the performance of the applied methods, the set of benchmark DEX models contains 
versions of models with and without links. 

For full specification of the decision problems given with the benchmark DEX 
models, it is important to emphasize that all the attributes in the models are defined with 
the same value scale: “low”, “medium”, and “high”. Additionally, it is assumed that all 
value combinations among attributes are allowed, representing feasible alternatives. A 
summary of the benchmark models is given in Table 1, where, among other properties, 
the number of model versions with regard to weight distribution is specified. For example, 
the first row represents seven DEX decision models (3 + 3 + 1). Three of them have skewed 
weight distribution, three have normal distribution, and one has uniform weight 
distribution. All seven models contain links, and they have a depth of three levels and 
have eight leaves. 

Table 1. Properties of the benchmark DEX decision models. 

Leaves Depth Weights’ Distribution Links 
Model Variations per 
Weights’ Distribution 

8 3 skewed, normal, uniform yes 3, 3, 1 
9 3 skewed, normal, uniform no 3, 3, 1 

19 4 skewed, normal, uniform yes 3, 3, 1 
20 4 skewed, normal, uniform no 3, 3, 1 
38 5 skewed, normal, uniform yes 3, 3, 1 
39 5 skewed, normal, uniform no 3, 3, 1 

The DEX model for assessing the capacity of primary productivity soil function is 
characterized by a depth of 5 levels and weight distributions that closely resemble the 

Figure 6. Examples of the structure and weight distributions of a benchmark DEX decision model.
(a) The hierarchical structure of a benchmark DEX model with a depth of 3 levels and one linked
attribute (Input_122); (b–d) examples of skewed (b), normal (c), and uniform (d) distributions of
aggregation weights [26].

The depth of the DEX models shows the number of levels in their tree-like hierarchical
structure, including the level of input attributes. The depth of the model, where at each



Algorithms 2022, 15, 197 8 of 22

aggregation, at least two attributes are combined, influences the number of input attributes.
Therefore, depth influences the dimensionality of the search space (number of input at-
tributes), and hence, the complexity of the decision problem. The set of benchmark DEX
models includes models with the depth of 3, 4, and 5 levels.

The inter-dependency of input attributes in DEX models is represented by the so-
called “links” that represent a copy of an input attribute that appears in other parts of
the hierarchical structure. The links represent inter-dependency because by varying the
original input attribute, all its copies vary as well. Therefore, the search for solutions needs
to focus only on the number of non-linked attributes, whereas the dimensionality of search
space reduces. However, the covariance between the linked attributes is not necessarily
reflected in aggregation effects to corresponding aggregation attributes and may thus lead
to conflicting effects on the topmost aggregated attributes, an effect that increases the
complexity of finding solutions. In order to investigate the influence of this property on the
performance of the applied methods, the set of benchmark DEX models contains versions
of models with and without links.

For full specification of the decision problems given with the benchmark DEX models,
it is important to emphasize that all the attributes in the models are defined with the
same value scale: “low”, “medium”, and “high”. Additionally, it is assumed that all value
combinations among attributes are allowed, representing feasible alternatives. A summary
of the benchmark models is given in Table 1, where, among other properties, the number
of model versions with regard to weight distribution is specified. For example, the first
row represents seven DEX decision models (3 + 3 + 1). Three of them have skewed weight
distribution, three have normal distribution, and one has uniform weight distribution. All
seven models contain links, and they have a depth of three levels and have eight leaves.

Table 1. Properties of the benchmark DEX decision models.

Leaves Depth Weights’ Distribution Links Model Variations per Weights’
Distribution

8 3 skewed, normal, uniform yes 3, 3, 1
9 3 skewed, normal, uniform no 3, 3, 1

19 4 skewed, normal, uniform yes 3, 3, 1
20 4 skewed, normal, uniform no 3, 3, 1
38 5 skewed, normal, uniform yes 3, 3, 1
39 5 skewed, normal, uniform no 3, 3, 1

The DEX model for assessing the capacity of primary productivity soil function is
characterized by a depth of 5 levels and weight distributions that closely resemble the
normal distribution. The value scales of the attributes are not unified and vary in size and
value. The average size of the value scales across the whole structure is three values.

4. Bayesian Alternative Generator for Decision Support Models (BAG-DSM)

An efficient search strategy is required to generate alternatives that require the small-
est change in the current alternative to obtain a desirable outcome. A naïve approach
would be to generate all possible alternatives or to iteratively generate random alterna-
tives and evaluate the outcome for each alternative (see Figure 7). However, for reason-
ably complex decision models, the search space can be enormous, rendering the naïve
approaches unsuitable.

A more appropriate approach would be to use an informed search based on the history
of previously generated and evaluated alternatives. The history can be used to estimate
the search space and the behavior of the decision model. Based on that estimation, more
promising alternatives can be acquired. By focusing on the more promising alternatives,
the search space is reduced, and consequently, the time needed to find the appropriate
alternatives is also reduced. Such an informed search is performed stochastically using
Bayesian optimization. The proposed method, BAG-DSM, is depicted in Figure 7 and



Algorithms 2022, 15, 197 9 of 22

described in the following subsections. BAG-DSM assumes that we do not know the
internal rules by which the decision models operate. Thus, it falls into the category of
“black-box” optimization techniques. Knowing and utilizing the decision rules might help
the search algorithm, but this option was not addressed in this study.

Algorithms 2022, 15, x FOR PEER REVIEW 9 of 23 
 

normal distribution. The value scales of the attributes are not unified and vary in size and 
value. The average size of the value scales across the whole structure is three values. 

4. Bayesian Alternative Generator for Decision Support Models (BAG-DSM) 
An efficient search strategy is required to generate alternatives that require the 

smallest change in the current alternative to obtain a desirable outcome. A naïve approach 
would be to generate all possible alternatives or to iteratively generate random 
alternatives and evaluate the outcome for each alternative (see Figure 7). However, for 
reasonably complex decision models, the search space can be enormous, rendering the 
naïve approaches unsuitable. 

 
Figure 7. Proposed BAG-DSM method for generating alternatives (left) vs. naïve approach (right). 

A more appropriate approach would be to use an informed search based on the 
history of previously generated and evaluated alternatives. The history can be used to 
estimate the search space and the behavior of the decision model. Based on that 
estimation, more promising alternatives can be acquired. By focusing on the more 
promising alternatives, the search space is reduced, and consequently, the time needed to 
find the appropriate alternatives is also reduced. Such an informed search is performed 
stochastically using Bayesian optimization. The proposed method, BAG-DSM, is depicted 
in Figure 7 and described in the following subsections. BAG-DSM assumes that we do not 
know the internal rules by which the decision models operate. Thus, it falls into the 
category of “black-box” optimization techniques. Knowing and utilizing the decision 
rules might help the search algorithm, but this option was not addressed in this study.  

4.1. Problem Formulation 
The problem of generating alternatives that require the smallest change in the current 

alternative to obtain a desirable outcome can be defined as an optimization problem with 
two objectives: (1) improved outcome (desired output) of the decision model and (2) 
maximum similarity between the current alternative  𝑐,ഥ  and the new proposed 
alternative �̅�. For each decision model (aggregating function) 𝐹, one alternative �̅� can 
be defined as a tuple of attributes �̅� = (𝑥ଵ, 𝑥ଶ, … , 𝑥), where each attribute can take any 
value of a limited set of values. Usually, that set includes preferentially ordered ordinal 
values (e.g., “low”, “medium”, and “high”), and those values can be encoded with 
integers (e.g., 0, 1, and 2). Based on that encoding, a distance function 𝑑 can be defined. 
The specific distance function used by BAG-DSM is a modified Euclidean distance 
between the candidate alternative �̅�  and the current alternative 𝑐̅ . This distance 

Figure 7. Proposed BAG-DSM method for generating alternatives (left) vs. naïve approach (right).

4.1. Problem Formulation

The problem of generating alternatives that require the smallest change in the current
alternative to obtain a desirable outcome can be defined as an optimization problem with
two objectives: (1) improved outcome (desired output) of the decision model and (2)
maximum similarity between the current alternative c, and the new proposed alternative
x. For each decision model (aggregating function) F, one alternative x can be defined as a
tuple of attributes x = (x1, x2, . . . , xn), where each attribute can take any value of a limited
set of values. Usually, that set includes preferentially ordered ordinal values (e.g., “low”,
“medium”, and “high”), and those values can be encoded with integers (e.g., 0, 1, and 2).
Based on that encoding, a distance function d can be defined. The specific distance function
used by BAG-DSM is a modified Euclidean distance between the candidate alternative
x and the current alternative c. This distance considers only the attributes for which the
candidate alternative has higher (preferentially better) values compared to the current
alternative c.

d(c, x) = ∑
{

xj − cj, i f xj > cj, j = 1, . . . , n
0, i f xj ≤ cj, j = 1, . . . , n

. (3)

From the distance function, a similarity function s can also be defined as one minus the
normalized distance. The distance is normalized using the max_distance, i.e., the maximum
plausible distance for the specific problem. For example, if x has 20 attributes with possible
values between 0 and 2, and if each attribute has the highest possible value (2), and if c has
only attributes with the lowest possible value (0), the maximum distance is 20 * 2.

(c, x,) = 1− d(c, x)
max_distance

. (4)

Finally, the objective function can be defined as:

f (c, x, F) =
{

s(c, x), i f F(x) > F(c)
0, i f F(x) ≤ F(c)

(5)

where F(x) is the output of the model for the specific alternative. By optimizing f , the
method searches for alternatives that are as similar as possible to c and improve the output



Algorithms 2022, 15, 197 10 of 22

of the decision model (F(x) > F(c)). The definitions of d, s, and f are for a scenario where
the desired outcome is an improvement of the current alternative (F(x) > F(c)). For the
opposite scenario, i.e., if one would like to decrease the output of the decision model, d
should be modified to consider only the attributes for which the alternative has lower
values compared to the current alternative c. Additionally, in that scenario, f should be
modified to return the similarity when F(x) < F(c) and 0 otherwise. Such a scenario can
be used to explore the stability of the current alternative c.

Bayes’ theorem describes a way of calculating the conditional probability of an event:

P(A|B) = P(B|A) ∗ P(A)

P(B)
. (6)

This equation can be simplified by removing the normalizing value of P(B) and
describing the conditional probability as a proportional quantity ((A|B) ∝ P(B|A) ∗
P(A)), where P(A|B) is the posterior probability, P(B|A) is the likelihood, and P(A)
is the prior probability (therefore, posterior ∝ likelihood ∗ prior). Following this idea,
we can generate specific alternatives and evaluate them using the objective function
f . By iteratively generating such alternatives, learning data D can be created: D =
{(x1, f (x1)), ( x2, f (x2)), . . . , (xk, f (xk))}, where x1, x2, . . . , xk are k vectors (alternatives),
each of them consisting of n attribute values (e.g., xk = (xk1, xk2, . . . , xkn)), and f (xk) is
the objective function that returns the outcome for each alternative xk. These data define
the prior probability for the specific problem. The likelihood function is defined as the
probability of observing the data given the objective function f P(D| f ). This likelihood
function will change as more alternatives are generated:

P( f |D) = P(D| f ) ∗ P( f ) (7)

where P( f |D) represents the updated expectations about the unknown objective function [27].
This step can also be interpreted as estimating the objective function with a surrogate function.

A surrogate function is a Bayesian approximation of the objective function that can be
sampled efficiently. The surrogate function P( f |D) provides an estimate of the objective
function by summarizing the conditional probability of the objective function f , given the
learning data D. Usually, the surrogate function is learned using regression algorithms,
with the D representing the input and the objective value (the output of the objective func-
tion) representing the output to the model. This is often modeled using a Gaussian process
(GP) [28–30] because regression models based on the GP do not output just a single predicted
value, but rather they output the whole probability distribution. By exploiting the mean and
the standard deviation of the output distribution, one can balance the tradeoff of exploiting
(higher mean) and exploring (higher standard deviation). In Bayesian optimization, that
output distribution also represents the posterior distribution. Since GP models are computa-
tionally expensive with the complexity of O(n3), ensemble models such as random forest
(RF) can also be used [26,28,31,32]. In that case, the mean and the variance are calculated
based on the predictions of all base models available in the ensemble. BAG-DSM uses RF
with 1000 decision trees as base models. The surrogate model (SM) is used to estimate the
objective value of a large number of candidate alternatives from the search space. From
those estimations, one or more candidates can be selected and evaluated with the objective
function. The selection process also involves the use of the posterior (the output of the
surrogate model) in a function known as the acquisition function.

An acquisition function is a function by which the posterior is used to select the
next alternative (sample) from the search space. The acquisition function is used to op-
timize the conditional probability of locations in the search space that are most likely to
generate good alternatives. Example acquisition functions that can be used are: expected
improvement [33], predicted improvement [34], and upper confidence bound [35]. The
acquisition function operates on top of the mean and standard deviation of the SM’s output.
We tested several acquisition functions, and their influence on the overall performance



Algorithms 2022, 15, 197 11 of 22

was minimal. The final version of BAG-DSM uses the expected improvement (EI) as an
acquisition function:

EI(x, xb) =

{
(µ(SM(x))− Sb − ξ) ∗ Φ(Z) + σ(SM(x)) ∗Φ(Z), i f σ(SM(x)) > 0

0, i f σ(SM(x)) = 0
(8)

where,

Z =

{
(µ(SM(x))− Sb − ξ)/σ(SM(x)), i f σ(SM(x)) > 0

0, i f σ(SM(x)) = 0
(9)

where SM(x) is the output of all base models in the SM for the alternative x; Sb is the
maximum predicted value by the SM from all previous observations; Φ(·) is the normal cu-
mulative distribution function, and ξ is a constant that controls the tradeoff between global
search and local optimization (exploration/exploitation). In our experiments, we used
ξ = 0.01 as proposed by Lizotte [36]. In simpler terms, this acquisition function checks the
improvement that each candidate alternative brings with respect to the maximum known
value (µ(SM(x))− xb), and scales those improvements with respect to the uncertainty. The
uncertainty is calculated empirically from the standard deviation of the predictions of the
based models available in the SM. If two alternatives have a similar mean value, the one
with higher uncertainty (σ(SM(x)) will be preferred by the acquisition function.

Finally, we need to define the generator of alternatives. BAG-DSM uses two generators
of alternatives: a neighborhood generator and a random generator. Based on the distance
function d, a neighborhood relation can be defined. Two alternatives x1 and x2 are
considered as neighbors with a degree k, if d(x1, x2) = k. For example, x1 and x2 are
considered neighbors with a degree k = 1, if the distance between x1 and x2 is 1. They are
considered as neighbors with a degree k = 2 if the distance between x1 and x2 is 2. The
distance function d is defined in Equation (3). In scenarios where the desired outcome is
an improvement of the current alternative, d calculates how many attributes in x2 have a
bigger value than the corresponding attributes in x1. In the opposite scenarios, i.e., one
would like to decrease the output of the decision model, d calculates how many attributes
in x2 have a smaller value than the corresponding attributes in x1.

Consequently, for a given alternative x, we can generate a set of neighbors with degree
k, by alternating the value of k different attributes in x. The degree k was set experimentally.
The relation between the computing time and k is exponential and is mostly affected by the
number of input attributes. For the models with a depth of 3, we used k = 5; for the models
with a depth of 4, we used k = 4; and for models with a depth of 5, we used k = 3.

The random generator is a generator of alternatives that: (1) avoids generating known
alternatives; and (2) is conditioned by the best-known (with respect to the objective function)
alternative discovered in the previous iterations. That is implemented by disregarding the
alternatives that have an optimization score lower than a certain threshold. The threshold
was set experimentally to 80% from the best-known optimization score, calculated from the
previous iterations.

4.2. Implementation

Algorithm 1 presents the implementation of BAG-DSM. The algorithm returns a set of
optimally best (optimal) alternatives. In this set, all the alternatives have an equal score
with respect to the objective function. The function check_promising_values runs the SM on
a set of promising alternatives. This set contains all alternatives that have been previously
generated as neighbors to a specific optimal alternative but have not been evaluated with
the DM because the acquisition function has selected other alternatives. This enables one
final check of the most promising solutions, which may have been missed because of an
earlier bad prediction of the SM. Since the SM is retrained at each iteration, it is expected
that its performance improves over time. This step is more computationally expensive as it
checks a larger set of candidate alternatives and is performed only once.



Algorithms 2022, 15, 197 12 of 22

Algorithm 1: Input: Decision model F and current alternative CA; Output: best_alternatives

# parameters and initialization
max_e = 150 # maximum number of epochs
n_candidates = 10 # number of candidates per iteration
objective_jitter = 0.8 # if an alternative is close to the current best (e.g, 80% as good as the
current best, the alternative’s neighbors should be checked)
random_sample_size = 10,000 #number of randomly generated alternatives
best_alternatives = []
surrogate_model = new Random_Forest()
promising_alternatives_pool = []

#initial values
candidate_alternatives = generate_random_alternatives (10)
real_objective_values = objective_function (F, CA, alternatives)
surrogate_model.fit (candidate_alternatives, real_objective_values)
known_alternatives.add (candidate_alternatives, real_objective_values)
best_alternative, best_score = max (candidate_alternatives, real_objective_values)
neighboring_alternatives= generate_neighborhood (best_alternative)
while counter < max_e do:

If size (neighboring_alternatives) > 0:
alternatives_pool = neighboring_alternatives

else:
alternatives_pool = gen_rand_alternatives (best_alternative,

random_sample_size)
# get top ranked (e.g., 10) candidates using the acquisition
function
candidate_alternatives, candidate_scores = perform_acquisition
(alternatives_pool, n_candidates)

#evaluation of candidate alternatives
real_objective_values = objective_function (F, CA, alternatives)
known_alternatives.add (candidate_alternatives,
real_objective_values)

#update current best and promising alternatives
i = 0

while i < size (candidate_scores) do:
if best_score*objective_jitter <= candidate_scores[i] do:

neighboring_alternatives = generate_ neighbourhood
(candidate_alternatives[i])
promising_alternatives_pool.add (neighboring_alternatives)

if best_score < candidate_scores[i] do:
best_alternatives = []
best_alternatives.add (candidate_alternatives[i])

if best_score==candidate_scores[i] do:
best_alternatives.add (candidate_alternatives[i])

i++
#update the surrogate model
surrogate_model.fit (candidate_alternatives, real_objective_values)
counter++

end

#peform final check of the promising alternatives
best_alternatives = check_promising_values(promising_alternatives_pool,best_alternatives)
return best_alternatives



Algorithms 2022, 15, 197 13 of 22

5. Experiments
5.1. Experimental Setup

BAG-DSM was evaluated with 43 decision models: the real-life model depicted in
Figure 5, and the 42 benchmark models summarized in Table 1. The real-life model
demonstrates the utility of BAG-DSM in a real-life scenario. With this model, 23 different
randomly sampled alternatives were used as starting alternatives and for each alternative,
and BAG-DSM was run to find a set of optimal solutions.

On the other hand, the 42 benchmark models allowed for a detailed analysis of
BAG-DSM’s performance under a variety of circumstances. For each benchmark model,
nine different randomly sampled starting alternatives (current alternatives c) were sam-
pled. Three of those alternatives had a final attribute value of “low”, three had a final
attribute value of “medium”, and three had a final attribute value of “high”. For each
current alternative, BAG-DSM generates new alternatives that require the smallest change
in the current alternative to obtain a desirable outcome. The desirable outcome was
also varied:

1. starting with output attribute value “low”, generate alternatives that would improve
the final attribute value to “medium” (positive change),

2. starting with output attribute value “low”, generate alternatives that would improve
the final attribute value to “high” (positive change),

3. starting with output attribute value ‘medium’, generate alternatives that would im-
prove the final attribute value to ‘high (positive change),

4. starting with output attribute value “medium”, generate alternatives that would
change the final attribute value to “low” (negative change),

5. starting with output attribute value “high”, generate alternatives that would change
the final attribute value to “medium” (negative change),

6. starting with output attribute value “high”, generate alternatives that would change
the final attribute value to “low” (negative change).

Each experiment ran for a minimum of 100 epochs, a maximum of 150 epochs, and
was terminated after 50 epochs without improvement (i.e., a better alternative was not
discovered compared to the current best). The experiments were performed on a server
with Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50 GHz and 150 GB RAM. Each experiment was
repeated 10 times to minimize the influence of the randomized steps on the experimental
results. BAG-DSM and the experiments were implemented in Python and are available
online (https://repo.ijs.si/martingjoreski/bag-dsm accessed on 5 May 2022).

All experiments were performed both for the proposed BAG-DSM and for the baseline
method (also depicted in Figure 7), i.e., a method that iteratively evaluates random alterna-
tives and, at each iteration, saves only the alternatives that are equally good or better than
the previous best-ranked alternative. To provide a fair comparison, the random alternatives
were generated by the same random generator used by BAG-DSM.

Additionally, for each experimental run, the baseline method was given an equal
amount of execution time as the BAG-DSM. For example, if the BAG-DSM finished an
experiment in 5 min with a certain setup, the baseline method was given 5 min to perform
a random search for the same experimental setup. The comparisons of performances
undergo statistical analysis of differences in achieved performances by both methods.
For that purpose, the Shapiro–Wilk test is used for testing the normality of performance
distributions, the Kruskal test is used for testing the homoscedasticity, and the Mann–
Whitney U test for testing the significance of differences.

The evaluation metrics used for comparison with the baseline are:

1. distance—as defined in Equation (3). The shorter the distance is, the better the
solutions are;

2. optimal solution set size—the method outputs a set of optimal alternatives that have
an equal score with respect to the objective function (defined in Equation (5)). The
bigger the solution set is, the more options to choose from for the user;

https://repo.ijs.si/martingjoreski/bag-dsm


Algorithms 2022, 15, 197 14 of 22

3. time to first optimal solution—i.e., the time required to generate the first solution in
the optimal solution set.

5.2. Experimental Results

The next two subsections present a comparison of the BAG-DSM with the baseline
method on the real-life model and a comparison of BAG-DSM with the baseline method on
the benchmark models.

5.2.1. Landmark Use Case

The most important metric that presents the quality of the solutions generated by
BAG-DSM is the distance, i.e., the number of attribute changes required to achieve the final
solution starting from the current state of the current alternative (as defined in Equation (3)).
Figure 8 presents the distance required to achieve the final solution with the real-life
model. On the x axis are the 23 randomly generated starting alternatives. The boxplots
were generated using the results from the 10 repetitions for each experiment. Several
observations can be seen from this figure: (i) the boxplots for BAG-DSM are always just
a horizontal line, meaning that BAG-DSM was stable and it always found solutions with
the same quality, i.e., same distance; (ii) the results of BAG-DSM are equally good as the
results of the baseline method, and in the majority of the cases even better; (iii) in all of the
cases, the final solution found by BAG-DSM was at a distance shorter than 5, i.e., only 5 (or
fewer) attributes out of 26 need to be changed to reach the required optimal alternative.

Algorithms 2022, 15, x FOR PEER REVIEW 15 of 23 
 

3. time to first optimal solution—i.e., the time required to generate the first solution in 
the optimal solution set. 

5.2. Experimental Results 
The next two subsections present a comparison of the BAG-DSM with the baseline 

method on the real-life model and a comparison of BAG-DSM with the baseline method 
on the benchmark models. 

5.2.1. Landmark Use Case  
The most important metric that presents the quality of the solutions generated by 

BAG-DSM is the distance, i.e., the number of attribute changes required to achieve the 
final solution starting from the current state of the current alternative (as defined in 
Equation (3)). Figure 8 presents the distance required to achieve the final solution with the 
real-life model. On the 𝑥 axis are the 23 randomly generated starting alternatives. The 
boxplots were generated using the results from the 10 repetitions for each experiment. 
Several observations can be seen from this figure: (i) the boxplots for BAG-DSM are 
always just a horizontal line, meaning that BAG-DSM was stable and it always found 
solutions with the same quality, i.e., same distance; (ii) the results of BAG-DSM are 
equally good as the results of the baseline method, and in the majority of the cases even 
better; (iii) in all of the cases, the final solution found by BAG-DSM was at a distance 
shorter than 5, i.e., only 5 (or fewer) attributes out of 26 need to be changed to reach the 
required optimal alternative. 

 
Figure 8. Boxplots for the distances (shorter is better) between the current alternative and the 
optimal alternative found by BAG-DSM (Bayesian) vs. baseline for the Landmark model. 

For each input starting alternative, the method outputs a set of optimal alternatives 
that have an equal distance to the starting alternative with respect to the objective function 
(defined in Equation (5)). The bigger the solution set is, the more options to choose from 
for the user. Figure 9 presents the size of the solution sets for each of the 23 alternatives. 
It can be seen that BAG-DSM found larger solution sets than the baseline in most of the 
cases. 

Figure 9 shows that the final output of the algorithm can consist of thousands of 
different alternatives. However, from a user perspective, only a few alternatives should 
be enough. For that reason, the time required to generate the first solution is a relevant 
metric to consider. Figure 10 presents the time (in seconds) required to generate the first 
solution for each of the 23 alternatives. From the results, it can be seen that BAG-DSM was 
faster than the baseline in all of the cases, with a difference of close to 500 s on average. 
One more important consideration is that the standard deviation of the boxplots for BAG-
DSM is much smaller than the baseline’s standard deviation, which means that BAG-DSM 
is also stable with respect to the time required to generate the first solution. 

Figure 8. Boxplots for the distances (shorter is better) between the current alternative and the optimal
alternative found by BAG-DSM (Bayesian) vs. baseline for the Landmark model.

For each input starting alternative, the method outputs a set of optimal alternatives
that have an equal distance to the starting alternative with respect to the objective function
(defined in Equation (5)). The bigger the solution set is, the more options to choose from for
the user. Figure 9 presents the size of the solution sets for each of the 23 alternatives. It can
be seen that BAG-DSM found larger solution sets than the baseline in most of the cases.

Algorithms 2022, 15, x FOR PEER REVIEW 16 of 23 
 

BAG-DSM’s dominance has been confirmed with statistical tests of significance. 
Considering both performance measures (time to first solution and number of solutions), 
BAG-DSM stochastically dominates the baseline method (p-value close to 0)—for more 
details, please check Supplementary Materials, Section S2.2. 

 
Figure 9. Boxplots for the size of the solution set (bigger is better) generated by BAG-DSM vs. 
baseline for the Landmark model. 

 
Figure 10. Boxplots for the time (shorter is better) required to find the first optimal alternative by 
BAG-DSM vs. baseline for the Landmark model. 

5.2.2. Benchmark Models 
The same experiments presented in the previous subsection were repeated for the 42 

benchmark models, and the same metrics were used to analyze the results. Thus, the next 
three figures present the distances, time to the first solution, and the number of solutions. 
Different from the previous graphs, the results are presented via paired boxplots. All our 
experiments are paired experiments, i.e., for given experimental conditions (e.g., a 
decision model, a starting alternative, and a desired outcome), a pair of experiments was 
performed, one set of experiments with the proposed method and another set of 
experiments with the baseline. We use the term “set of experiments” because each 
experiment was repeated 10 times to minimize the influence of the randomized steps on 
the experimental results. The lines connect the experimental runs that had the same 
experimental conditions (same model and same starting alternative). The blue line shows 
that our method was better for those specific experimental conditions. The red line shows 
that the baseline was better for those specific experimental conditions. The corresponding 
set of alternatives is compared using: the number of attribute changes required to reach 
the generated alternatives (Figure 11); the time to obtain the first appropriate alternative, 
Figure 12; and the number of generated alternatives (Figure 13).  

Figure 11 presents the distance between the final solution and the starting alternative. 
From the results, it can be seen that in all of these experiments, BAG-DSM found solutions 
with equal or shorter distances compared to the solutions found by the baseline. The dif-
ference is larger for the more complex models (depth 4 and depth 5). 

Figure 9. Boxplots for the size of the solution set (bigger is better) generated by BAG-DSM vs. baseline
for the Landmark model.



Algorithms 2022, 15, 197 15 of 22

Figure 9 shows that the final output of the algorithm can consist of thousands of
different alternatives. However, from a user perspective, only a few alternatives should be
enough. For that reason, the time required to generate the first solution is a relevant metric
to consider. Figure 10 presents the time (in seconds) required to generate the first solution
for each of the 23 alternatives. From the results, it can be seen that BAG-DSM was faster
than the baseline in all of the cases, with a difference of close to 500 s on average. One more
important consideration is that the standard deviation of the boxplots for BAG-DSM is
much smaller than the baseline’s standard deviation, which means that BAG-DSM is also
stable with respect to the time required to generate the first solution.

Algorithms 2022, 15, x FOR PEER REVIEW 16 of 23 
 

BAG-DSM’s dominance has been confirmed with statistical tests of significance. 

Considering both performance measures (time to first solution and number of solutions), 

BAG-DSM stochastically dominates the baseline method (p-value close to 0)—for more 

details, please check Supplementary Materials, Section S2.2. 

 

Figure 9. Boxplots for the size of the solution set (bigger is better) generated by BAG-DSM vs. 

baseline for the Landmark model. 

 

Figure 10. Boxplots for the time (shorter is better) required to find the first optimal alternative by 

BAG-DSM vs. baseline for the Landmark model. 

5.2.2. Benchmark Models 

The same experiments presented in the previous subsection were repeated for the 42 

benchmark models, and the same metrics were used to analyze the results. Thus, the next 

three figures present the distances, time to the first solution, and the number of solutions. 

Different from the previous graphs, the results are presented via paired boxplots. All our 

experiments are paired experiments, i.e., for given experimental conditions (e.g., a 

decision model, a starting alternative, and a desired outcome), a pair of experiments was 

performed, one set of experiments with the proposed method and another set of 

experiments with the baseline. We use the term “set of experiments” because each 

experiment was repeated 10 times to minimize the influence of the randomized steps on 

the experimental results. The lines connect the experimental runs that had the same 

experimental conditions (same model and same starting alternative). The blue line shows 

that our method was better for those specific experimental conditions. The red line shows 

that the baseline was better for those specific experimental conditions. The corresponding 

set of alternatives is compared using: the number of attribute changes required to reach 

the generated alternatives (Figure 11); the time to obtain the first appropriate alternative, 

Figure 12; and the number of generated alternatives (Figure 13). 

Figure 11 presents the distance between the final solution and the starting alternative. 

From the results, it can be seen that in all of these experiments, BAG-DSM found solutions 

with equal or shorter distances compared to the solutions found by the baseline. The 

difference is larger for the more complex models (depth 4 and depth 5). 

Figure 10. Boxplots for the time (shorter is better) required to find the first optimal alternative by
BAG-DSM vs. baseline for the Landmark model.

BAG-DSM’s dominance has been confirmed with statistical tests of significance. Con-
sidering both performance measures (time to first solution and number of solutions),
BAG-DSM stochastically dominates the baseline method (p-value close to 0)—for more
details, please check Supplementary Materials, Section S2.2.

5.2.2. Benchmark Models

The same experiments presented in the previous subsection were repeated for the
42 benchmark models, and the same metrics were used to analyze the results. Thus, the next
three figures present the distances, time to the first solution, and the number of solutions.
Different from the previous graphs, the results are presented via paired boxplots. All our
experiments are paired experiments, i.e., for given experimental conditions (e.g., a decision
model, a starting alternative, and a desired outcome), a pair of experiments was performed,
one set of experiments with the proposed method and another set of experiments with
the baseline. We use the term “set of experiments” because each experiment was repeated
10 times to minimize the influence of the randomized steps on the experimental results. The
lines connect the experimental runs that had the same experimental conditions (same model
and same starting alternative). The blue line shows that our method was better for those
specific experimental conditions. The red line shows that the baseline was better for those
specific experimental conditions. The corresponding set of alternatives is compared using:
the number of attribute changes required to reach the generated alternatives (Figure 11);
the time to obtain the first appropriate alternative, Figure 12; and the number of generated
alternatives (Figure 13).

Figure 11 presents the distance between the final solution and the starting alternative.
From the results, it can be seen that in all of these experiments, BAG-DSM found solutions
with equal or shorter distances compared to the solutions found by the baseline. The
difference is larger for the more complex models (depth 4 and depth 5).



Algorithms 2022, 15, 197 16 of 22Algorithms 2022, 15, x FOR PEER REVIEW 17 of 23 
 

 
Figure 11. Paired boxplots for the distances (shorter is better) between the current alternative and 
the optimal alternative found by BAG-DSM (Bayesian) vs. baseline for decision support models 
with a depth of 3, 4, and 5. The horizontal lines connect two experimental runs with the same 
experimental setup. 

Figure 12 presents the time (in seconds) required to find a first solution. The blue 
horizontal line represents the experimental runs where BAG-DSM found the first solution 
faster than the baseline. Red horizontal lines represent the experimental runs where the 
baseline method was faster. From the results, it can be seen that for the more complex 
models (depth 4 and depth 5), BAG-DSM was much faster by finding the first solutions in 
the first few seconds, while the baseline method required more than 100 s in some of the 
cases. The only experiments in which the baseline performed better than BAG-DSM were 
those for the models with depth 3. However, the difference is smaller than 3 s.  

The observations have been statistically confirmed with statistical tests. BAG-DSM 
significantly dominates the baseline across all models (p-value very close to 0), as well as 
with respect to individual model types (e.g., models with normal, skewed, or uniform 
distribution or various depths). However, BAG-DSM has a less significant dominance in 
the problems with uniform distribution of attributes’ weights compared to the other two 
(Supplementary Materials—Section S2.1.1). 

  

Figure 12. Paired boxplots for the time (shorter is better) required to find the first optimal alternative 
by BAG-DSM vs. baseline for decision support models with a depth of 3, 4, and 5. The horizontal 
lines connect two experimental runs with the same experimental setup. The red lines represent the 
experimental setups in which the baseline performed better. 

Figure 13 presents the size of the solution set (bigger is better) generated by the two 
methods. From the results, it can be seen that for the more complex models (depth 4 and 
depth 5), BAG-DSM found many more solutions than the baseline. There were some cases 
where the baseline found larger solution sets, especially for the models with depth 3. 
However, it should be noted that here we compare only the size of the solution set and 
not the quality of the solution sets. This means that the baseline approach might have 
found 100 solutions with a distance of 5, i.e., require 5 attribute changes, compared to 
BAG-DSM with 10 solutions with a distance of 3. Figure 11 already showed that the 
quality of the solutions generated by the Bayesian is better than those generated by the 
baseline in the majority of the cases.  

Figure 11. Paired boxplots for the distances (shorter is better) between the current alternative and the
optimal alternative found by BAG-DSM (Bayesian) vs. baseline for decision support models with a depth
of 3, 4, and 5. The horizontal lines connect two experimental runs with the same experimental setup.

Algorithms 2022, 15, x FOR PEER REVIEW 17 of 23 
 

 
Figure 11. Paired boxplots for the distances (shorter is better) between the current alternative and 
the optimal alternative found by BAG-DSM (Bayesian) vs. baseline for decision support models 
with a depth of 3, 4, and 5. The horizontal lines connect two experimental runs with the same 
experimental setup. 

Figure 12 presents the time (in seconds) required to find a first solution. The blue 
horizontal line represents the experimental runs where BAG-DSM found the first solution 
faster than the baseline. Red horizontal lines represent the experimental runs where the 
baseline method was faster. From the results, it can be seen that for the more complex 
models (depth 4 and depth 5), BAG-DSM was much faster by finding the first solutions in 
the first few seconds, while the baseline method required more than 100 s in some of the 
cases. The only experiments in which the baseline performed better than BAG-DSM were 
those for the models with depth 3. However, the difference is smaller than 3 s.  

The observations have been statistically confirmed with statistical tests. BAG-DSM 
significantly dominates the baseline across all models (p-value very close to 0), as well as 
with respect to individual model types (e.g., models with normal, skewed, or uniform 
distribution or various depths). However, BAG-DSM has a less significant dominance in 
the problems with uniform distribution of attributes’ weights compared to the other two 
(Supplementary Materials—Section S2.1.1). 

  

Figure 12. Paired boxplots for the time (shorter is better) required to find the first optimal alternative 
by BAG-DSM vs. baseline for decision support models with a depth of 3, 4, and 5. The horizontal 
lines connect two experimental runs with the same experimental setup. The red lines represent the 
experimental setups in which the baseline performed better. 

Figure 13 presents the size of the solution set (bigger is better) generated by the two 
methods. From the results, it can be seen that for the more complex models (depth 4 and 
depth 5), BAG-DSM found many more solutions than the baseline. There were some cases 
where the baseline found larger solution sets, especially for the models with depth 3. 
However, it should be noted that here we compare only the size of the solution set and 
not the quality of the solution sets. This means that the baseline approach might have 
found 100 solutions with a distance of 5, i.e., require 5 attribute changes, compared to 
BAG-DSM with 10 solutions with a distance of 3. Figure 11 already showed that the 
quality of the solutions generated by the Bayesian is better than those generated by the 
baseline in the majority of the cases.  

Figure 12. Paired boxplots for the time (shorter is better) required to find the first optimal alternative
by BAG-DSM vs. baseline for decision support models with a depth of 3, 4, and 5. The horizontal
lines connect two experimental runs with the same experimental setup. The red lines represent the
experimental setups in which the baseline performed better.

Algorithms 2022, 15, x FOR PEER REVIEW 18 of 23 
 

Statistical tests have been performed for equally distant solutions found by both 

methods, and similar findings, as above, are confirmed (Supplementary Materials—

Section S2.1.2). Namely, an overall significant stochastic dominance is observed, while 

such dominance is lacking over models with uniformly distributed weights (p-value is 

0.07) and models with a depth of 3 (p-value is 0.6). 

   
 

Figure 13. Paired boxplots for the size of the solution set (bigger is better) generated by BAG-DSM 

vs. baseline for decision support models with a depth of 3, 4, and 5. The horizontal lines connect 

two experimental runs with the same experimental setup. The red horizontal lines represent the 

experimental setups in which the baseline performed better. 

5.2.3. Performance Analysis 

The experimental results from the previous subsections showed that BAG_DSM 

outperformed the baseline in all of the experiments. The following results present how 

the method’s performance depends on the complexity of the decision model, which was 

expressed through the depth of the decision model and the distribution attributes’ 

weights (attributes’ importance). 

Figure 14 presents the time (in seconds) required to find a first solution of the final 

set of solutions for the benchmark models. The overall median of the time to the first 

solution is 1.67 s. Additionally, the figure contains three sets of boxplots (depth 3, depth 

4, and depth 5), where the boxplots are color-coded with respect to the distribution of the 

attributes’ weights. The x-axis presents the direction of the search. For example, the search 

direction would be positive (positive target) if the starting alternative has an output 

attribute value of “medium”, and the method generates alternatives that would improve 

the final attribute value to “high”. On the other hand, the search direction would be 

negative if the starting alternative has an output attribute value of “medium”, and the 

method generates alternatives that would decrease the final attribute value to “low”. From 

the figure, it can be noticed that the time to the first solution increases as the depth of the 

models increases. However, even though the depth of the model is a parameter that 

increases the search exponentially, the increase in time (seconds) is rather linear, which is 

an experimental proof of the method’s scalability. Additionally, from the figure, it can be 

seen that the decision models with a skewed distribution of the attributes’ weights require 

the smallest amount of time to find the first solution. Regarding the direction of the search 

(positive vs. negative target), it seems that BAG-DSM finds first solutions faster when the 

direction is negative. This is probably because the size of the solution set is bigger when 

the direction is negative, i.e., it is easier to decrease the value of the output attribute (e.g., 

from “medium” to “low”), than to increase it (e.g., from “medium” to “high”). 

In each epoch, BAG-DSM selects the top 10 alternatives ranked by the estimated 

optimization score. The higher the score, the better the alternatives are. The selected 

alternatives depend on the acquisition function, which in turn depends on the predictions 

of the surrogate model. Figure 15 presents the average optimization score in each epoch 

for the four different model types: benchmark model with a depth of 3, benchmark model 

with a depth of 4, benchmark model with a depth of 5, and the real-life model (Landmark). 

For comparison, the average optimization score of 10 randomly sampled alternatives at 

Figure 13. Paired boxplots for the size of the solution set (bigger is better) generated by BAG-DSM
vs. baseline for decision support models with a depth of 3, 4, and 5. The horizontal lines connect
two experimental runs with the same experimental setup. The red horizontal lines represent the
experimental setups in which the baseline performed better.

Figure 12 presents the time (in seconds) required to find a first solution. The blue
horizontal line represents the experimental runs where BAG-DSM found the first solution
faster than the baseline. Red horizontal lines represent the experimental runs where the
baseline method was faster. From the results, it can be seen that for the more complex
models (depth 4 and depth 5), BAG-DSM was much faster by finding the first solutions in
the first few seconds, while the baseline method required more than 100 s in some of the
cases. The only experiments in which the baseline performed better than BAG-DSM were
those for the models with depth 3. However, the difference is smaller than 3 s.

The observations have been statistically confirmed with statistical tests. BAG-DSM
significantly dominates the baseline across all models (p-value very close to 0), as well



Algorithms 2022, 15, 197 17 of 22

as with respect to individual model types (e.g., models with normal, skewed, or uniform
distribution or various depths). However, BAG-DSM has a less significant dominance in
the problems with uniform distribution of attributes’ weights compared to the other two
(Supplementary Materials—Section S2.1.1).

Figure 13 presents the size of the solution set (bigger is better) generated by the two
methods. From the results, it can be seen that for the more complex models (depth 4
and depth 5), BAG-DSM found many more solutions than the baseline. There were some
cases where the baseline found larger solution sets, especially for the models with depth 3.
However, it should be noted that here we compare only the size of the solution set and not
the quality of the solution sets. This means that the baseline approach might have found
100 solutions with a distance of 5, i.e., require 5 attribute changes, compared to BAG-DSM
with 10 solutions with a distance of 3. Figure 11 already showed that the quality of the
solutions generated by the Bayesian is better than those generated by the baseline in the
majority of the cases.

Statistical tests have been performed for equally distant solutions found by both methods,
and similar findings, as above, are confirmed (Supplementary Materials—Section S2.1.2).
Namely, an overall significant stochastic dominance is observed, while such dominance is
lacking over models with uniformly distributed weights (p-value is 0.07) and models with a
depth of 3 (p-value is 0.6).

5.2.3. Performance Analysis

The experimental results from the previous subsections showed that BAG_DSM out-
performed the baseline in all of the experiments. The following results present how the
method’s performance depends on the complexity of the decision model, which was ex-
pressed through the depth of the decision model and the distribution attributes’ weights
(attributes’ importance).

Figure 14 presents the time (in seconds) required to find a first solution of the final
set of solutions for the benchmark models. The overall median of the time to the first
solution is 1.67 s. Additionally, the figure contains three sets of boxplots (depth 3, depth 4,
and depth 5), where the boxplots are color-coded with respect to the distribution of the
attributes’ weights. The x-axis presents the direction of the search. For example, the
search direction would be positive (positive target) if the starting alternative has an output
attribute value of “medium”, and the method generates alternatives that would improve
the final attribute value to “high”. On the other hand, the search direction would be
negative if the starting alternative has an output attribute value of “medium”, and the
method generates alternatives that would decrease the final attribute value to “low”. From
the figure, it can be noticed that the time to the first solution increases as the depth of
the models increases. However, even though the depth of the model is a parameter that
increases the search exponentially, the increase in time (seconds) is rather linear, which is
an experimental proof of the method’s scalability. Additionally, from the figure, it can be
seen that the decision models with a skewed distribution of the attributes’ weights require
the smallest amount of time to find the first solution. Regarding the direction of the search
(positive vs. negative target), it seems that BAG-DSM finds first solutions faster when
the direction is negative. This is probably because the size of the solution set is bigger
when the direction is negative, i.e., it is easier to decrease the value of the output attribute
(e.g., from “medium” to “low”), than to increase it (e.g., from “medium” to “high”).



Algorithms 2022, 15, 197 18 of 22

Algorithms 2022, 15, x FOR PEER REVIEW 19 of 23 
 

each epoch is also presented (dashed line). From the figures, it can be seen that the 
optimization score of the random samples is significantly lower than the optimization 
score of the samples selected using the surrogate model. Additionally, it can be seen that 
the optimization score stays high throughout all the epochs. This indicates that the 
generator of alternatives generates good candidates, and BAG-DSM discovers new 
alternatives continuously.  

 
Figure 14. Boxplots for the time in seconds (smaller is better), required to find the first optimal 
alternative for different benchmark models. 

 
Figure 15. Mean optimization score for different decision models. The full line represents the 
average optimization score of the alternatives generated by the surrogate model. The dashed line 
represents the average optimization score of the random alternatives. 

In addition, for some of the experiments, the algorithm stopped after 100 epochs 
because there was no improvement in the last 50 learning epochs. This can be noticed as 
a sudden increase in the average optimization score in the figure. That is because the 
average of the first 100 epochs is calculated over all the experimental runs, and the average 
of the last 50 epochs is calculated over a smaller number of experimental runs, i.e., those 
that did not finish in the first 100 epochs. 

Figure 16 presents the average mean absolute error (MAE) of the surrogate model, 
i.e., estimated optimization score calculated using the surrogate model vs. true 
optimization score calculated using the objective function. The shaded part presents one 
standard deviation in each direction. It can be noticed that the MAE gradually decreases. 
This is because, at each epoch, the training dataset for the surrogate model increases, and 
the surrogate model improves after each retraining. In addition to the MAE, the standard 
deviation of the MAE also decreases, showing that the stability of the surrogate models 
also improves over time.  

In summary, these results indicate that: (i) BAG-DSM is suitable for the task—on 
average, it generates at least one appropriate alternative within two seconds (Figure 14); 
(ii) BAG-DSM is scalable—the relation between the depth of the multi-attribute 
hierarchical models (a parameter which increases the search space exponentially) and the 

Figure 14. Boxplots for the time in seconds (smaller is better), required to find the first optimal
alternative for different benchmark models.

In each epoch, BAG-DSM selects the top 10 alternatives ranked by the estimated
optimization score. The higher the score, the better the alternatives are. The selected
alternatives depend on the acquisition function, which in turn depends on the predictions
of the surrogate model. Figure 15 presents the average optimization score in each epoch
for the four different model types: benchmark model with a depth of 3, benchmark model
with a depth of 4, benchmark model with a depth of 5, and the real-life model (Landmark).
For comparison, the average optimization score of 10 randomly sampled alternatives
at each epoch is also presented (dashed line). From the figures, it can be seen that the
optimization score of the random samples is significantly lower than the optimization
score of the samples selected using the surrogate model. Additionally, it can be seen
that the optimization score stays high throughout all the epochs. This indicates that
the generator of alternatives generates good candidates, and BAG-DSM discovers new
alternatives continuously.

Algorithms 2022, 15, x FOR PEER REVIEW 19 of 23 
 

each epoch is also presented (dashed line). From the figures, it can be seen that the 
optimization score of the random samples is significantly lower than the optimization 
score of the samples selected using the surrogate model. Additionally, it can be seen that 
the optimization score stays high throughout all the epochs. This indicates that the 
generator of alternatives generates good candidates, and BAG-DSM discovers new 
alternatives continuously.  

 
Figure 14. Boxplots for the time in seconds (smaller is better), required to find the first optimal 
alternative for different benchmark models. 

 
Figure 15. Mean optimization score for different decision models. The full line represents the 
average optimization score of the alternatives generated by the surrogate model. The dashed line 
represents the average optimization score of the random alternatives. 

In addition, for some of the experiments, the algorithm stopped after 100 epochs 
because there was no improvement in the last 50 learning epochs. This can be noticed as 
a sudden increase in the average optimization score in the figure. That is because the 
average of the first 100 epochs is calculated over all the experimental runs, and the average 
of the last 50 epochs is calculated over a smaller number of experimental runs, i.e., those 
that did not finish in the first 100 epochs. 

Figure 16 presents the average mean absolute error (MAE) of the surrogate model, 
i.e., estimated optimization score calculated using the surrogate model vs. true 
optimization score calculated using the objective function. The shaded part presents one 
standard deviation in each direction. It can be noticed that the MAE gradually decreases. 
This is because, at each epoch, the training dataset for the surrogate model increases, and 
the surrogate model improves after each retraining. In addition to the MAE, the standard 
deviation of the MAE also decreases, showing that the stability of the surrogate models 
also improves over time.  

In summary, these results indicate that: (i) BAG-DSM is suitable for the task—on 
average, it generates at least one appropriate alternative within two seconds (Figure 14); 
(ii) BAG-DSM is scalable—the relation between the depth of the multi-attribute 
hierarchical models (a parameter which increases the search space exponentially) and the 

Figure 15. Mean optimization score for different decision models. The full line represents the average
optimization score of the alternatives generated by the surrogate model. The dashed line represents
the average optimization score of the random alternatives.

In addition, for some of the experiments, the algorithm stopped after 100 epochs
because there was no improvement in the last 50 learning epochs. This can be noticed as a
sudden increase in the average optimization score in the figure. That is because the average
of the first 100 epochs is calculated over all the experimental runs, and the average of the
last 50 epochs is calculated over a smaller number of experimental runs, i.e., those that did
not finish in the first 100 epochs.

Figure 16 presents the average mean absolute error (MAE) of the surrogate model,
i.e., estimated optimization score calculated using the surrogate model vs. true optimization
score calculated using the objective function. The shaded part presents one standard
deviation in each direction. It can be noticed that the MAE gradually decreases. This is
because, at each epoch, the training dataset for the surrogate model increases, and the



Algorithms 2022, 15, 197 19 of 22

surrogate model improves after each retraining. In addition to the MAE, the standard
deviation of the MAE also decreases, showing that the stability of the surrogate models
also improves over time.

Algorithms 2022, 15, x FOR PEER REVIEW 20 of 23 
 

time to obtaining the first appropriate alternative was linear and not exponential (Figure 
14); (iii) BAG-DSM’s generator of alternatives generates good alternatives (better than 
random sampling) and BAG-DSM discovers good alternatives continuously (Figure 15); 
(iv) the BAG-DSM surrogate model (random forest, RF) is appropriate for the task—RF’s 
MAE and standard deviation of the MAE decrease at each epoch (Figure 16). 

 
Figure 16. Mean absolute error for the surrogate model calculated as the absolute difference between 
the estimated optimization score and true optimization value. The shaded part presents one 
standard deviation in each direction. 

6. Discussion 
6.1. Results Discussion 

The experimental results showed that BAG-DSM outperformed the baseline in all of 
the experiments. However, a close examination of the performances of the methods per 
characteristic of the solution and search spaces (and their ratio), i.e., the complexity of the 
decision models, is necessary in order to understand the situation where one or another 
method is more suitable. For that purpose, we investigated how BAG-DSM’s performance 
depends on the depth of the decision model and the distribution of the attribute weights 
(attributes’ importance). 

As observed through the empirical and statistical analysis, BAG-DSM significantly 
outperforms the baseline method with respect to the time needed to find the first optimal 
alternative, and this is particularly true for the larger models represented with normal and 
skewed distributions of the attributes’ weights. The dominance is less significant with the 
models with uniformly distributed weights. Such behavior can be explained by the size 
of the solution space (i.e., the set of possible solutions) and its ratio to the overall search 
space, which is largest for the uniformly distributed weights, and smallest in the case of 
skewed distributions of the models’ weights. Similarly, methods with the shallower 
models tend to have comparable performance in terms of the time to first solution 
(Supplementary Materials—Section S2.1.1). 

The complexity of the decision models, in terms of size and dimensionality of the 
search space, affects the size of the generated (optimal) solution set. Namely, overall, 
BAG-DSM significantly outperforms the baseline method, but less significance is 
observed for models with uniformly distributed weights and models with a depth of 3. 
The former is explained by the solution-to-search space ratio, which is largest in the case 
of uniformly distributed weights, and the fact that with the given number of iterations, 
the baseline can find many options/solutions. This is particularly true for models of depth 
3 that are characterized by relatively small alternative spaces, and hence, with those 
models, both methods achieve comparable results. 

  

Figure 16. Mean absolute error for the surrogate model calculated as the absolute difference between
the estimated optimization score and true optimization value. The shaded part presents one standard
deviation in each direction.

In summary, these results indicate that: (i) BAG-DSM is suitable for the task—on
average, it generates at least one appropriate alternative within two seconds (Figure 14);
(ii) BAG-DSM is scalable—the relation between the depth of the multi-attribute hierarchical
models (a parameter which increases the search space exponentially) and the time to
obtaining the first appropriate alternative was linear and not exponential (Figure 14);
(iii) BAG-DSM’s generator of alternatives generates good alternatives (better than random
sampling) and BAG-DSM discovers good alternatives continuously (Figure 15); (iv) the
BAG-DSM surrogate model (random forest, RF) is appropriate for the task—RF’s MAE and
standard deviation of the MAE decrease at each epoch (Figure 16).

6. Discussion
6.1. Results Discussion

The experimental results showed that BAG-DSM outperformed the baseline in all of
the experiments. However, a close examination of the performances of the methods per
characteristic of the solution and search spaces (and their ratio), i.e., the complexity of the
decision models, is necessary in order to understand the situation where one or another
method is more suitable. For that purpose, we investigated how BAG-DSM’s performance
depends on the depth of the decision model and the distribution of the attribute weights
(attributes’ importance).

As observed through the empirical and statistical analysis, BAG-DSM significantly
outperforms the baseline method with respect to the time needed to find the first optimal
alternative, and this is particularly true for the larger models represented with normal and
skewed distributions of the attributes’ weights. The dominance is less significant with the
models with uniformly distributed weights. Such behavior can be explained by the size
of the solution space (i.e., the set of possible solutions) and its ratio to the overall search
space, which is largest for the uniformly distributed weights, and smallest in the case of
skewed distributions of the models’ weights. Similarly, methods with the shallower models
tend to have comparable performance in terms of the time to first solution (Supplementary
Materials—Section S2.1.1).

The complexity of the decision models, in terms of size and dimensionality of the
search space, affects the size of the generated (optimal) solution set. Namely, overall,
BAG-DSM significantly outperforms the baseline method, but less significance is observed
for models with uniformly distributed weights and models with a depth of 3. The former
is explained by the solution-to-search space ratio, which is largest in the case of uniformly
distributed weights, and the fact that with the given number of iterations, the baseline



Algorithms 2022, 15, 197 20 of 22

can find many options/solutions. This is particularly true for models of depth 3 that are
characterized by relatively small alternative spaces, and hence, with those models, both
methods achieve comparable results.

6.2. Limitations and Future Work

One assumption in all experiments was that all attributes could be changed. In reality,
this is not always true. For example, if we had a decision model for assessing soil quality,
the type of the soil at a given location cannot be changed. In the future, this condition
can be easily addressed by providing as input only the attributes that can be changed.
Additionally, the method implementation is restricted to preferentially ordered ordinal
attributes. However, there is a possibility of considering other types of distance measures
that would work in nominal settings (e.g., Levenshtein distance).

BAG-DSM is a “black-box” method; given a decision support model, BAG-DSM con-
siders only its input and output attributes but is oblivious to its internal structure. This is
both an advantage and a limitation. As an advantage, BAG-DSM is not limited to DEX
models but can, in principle, work with any qualitative models that employ preferentially
ordered ordinal attributes. As a limitation, BAG-DSM does not use information about inter-
nal attribute structure and decision rules; employing this information might considerably
reduce the search space but also restrict the method to DEX models only.

Regarding future work, BAG-DSM is stochastic, and the optimality of the final solution
cannot be guaranteed. In order to do that, BAG-DSM needs to be additionally validated.
Promising options include a comparison of BAG-DSM with deterministic methods and
methods that utilize internal rules by which the decision models operate. Finally, BAG-
DSM could also be validated on real decision models in order to examine the validity of
the output solutions.

6.3. Implications

A typical use case of the proposed method can be presented via the decision support
model depicted in Figure 5. The model has 26 input attributes and, consequently, a huge
input space (1.59 × 1012). Using this model, the end users for whom this model was
initially developed can evaluate the primary productivity of their agricultural fields. In
scenarios where the output of the model is, for example, “low productivity”, a natural
question would be, “What can I do to improve the productivity of my field?”. BAG-DSM
answers that question by providing alternatives that lead to the improvement of primary
productivity. In another scenario where the output of the model is “high productivity”,
a possible question could be, “What can go wrong and degrade the productivity of my
field?”. This question is also answered by BAG-DSM by providing alternatives that lead to
decreased productivity. The answers are, according to our experiments, of good quality
and provided in a short time.

This study demonstrated that BAG-DSM is model agnostic, i.e., it is a general method
that works with any DEX decision support model. Furthermore, the mathematical and
theoretical background presented in this paper should enable the application of BAG-DSM
to any other decision support models using qualitative inputs and outputs. Furthermore,
the same approach can be used for generating counterfactual explanations for machine
learning models.

Thus, we envision BAG-DSM being used as a plug-in for future decision support
models where the end users would receive, besides the output of the decision support
models, a list of alternatives that require a minimal number of changes in the input space
and yet would cause a change in the output of the decision support model.

7. Conclusions

We presented BAG-DSM, a method for generating alternatives for multi-attribute DEX
decision models based on Bayesian optimization. The main goal of BAG-DSM was to
generate alternatives that require the smallest change in the current alternative to obtain a



Algorithms 2022, 15, 197 21 of 22

desirable outcome. BAG-DSM was extensively evaluated on 42 different benchmark models
and one real-life model. The benchmark models were of variable complexity, i.e., variable
depth and variable attribute weight distributions. BAG-DSM’s behavior was analyzed with
respect to several characteristics: time to find the first appropriate alternative, the number
of generated (appropriate) alternatives, and the number of attribute changes required to
reach the generated alternatives.

The experimental results confirmed that BAG-DSM is suitable for the task, i.e., it gen-
erates at least one appropriate alternative in less than a minute, even for the most complex
decision models. In the majority of the cases, the computing time was shorter than that.
The discovery of alternatives was equally distributed throughout the overall runtime. An
exception to this is the final check performed by the algorithm (see check_promising_values
in Algorithm 1), which generates the majority of the alternatives for the more complex
models (depth 4 and depth 5). The quality of the alternatives was also appropriate, as
in the majority of the cases. The generated alternatives could be reached by fewer than
five attribute changes. Finally, the relation between the decision model’s depth and the
computing time in the experiments was linear and not exponential, which implies that
BAG-DSM is scalable.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/a15060197/s1.

Author Contributions: Conceptualization, M.G., V.K. and M.B; methodology, M.G., V.K. and M.B.;
software, M.G., V.K. and M.B.; validation, M.G. and V.K.; formal analysis, M.G., V.K. and M.B.; inves-
tigation, M.G.; resources, M.G., V.K. and M.B.; data curation, M.G. and V.K.; writing—original draft
preparation, M.G., V.K. and M.B.; writing—review and editing, M.G., V.K. and M.B.; visualization,
M.G., V.K. and M.B.; supervision, V.K. and M.B.; project administration, M.B.; funding acquisition,
M.B. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially funded by the Slovenian Research Agency (ARRS) under research
core funding Knowledge Technologies No. P2-0103 (B), and by the Slovenian Ministry of Education,
Science and Sport (funding agreement No. C3330-17-529020).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: https://repo.ijs.si/martingjoreski/bag-dsm (accessed on 4 May 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Power, D.J. Decision Support Systems: Concepts and Resources for Managers; Quorum Books: Westport, CT, USA, 2002.
2. Turban, E.; Aronson, J.E.; Liang, T.-P. Decision Support Systems and Intelligent Systems; Prentice-Hall: Hoboken, NJ, USA, 2005.
3. Mallach, E. Decision Support and Data Warehouse Systems; Irwin Profesional Publishing: Burr Ridge, IL, USA, 2000.
4. Sadok, W.; Angevin, F.; Bergez, J.-É.; Bockstaller, C.; Colomb, B.; Guichard, L.; Reau, R.; Doré, T. Ex ante assessment of the

sustainability of alternative cropping systems: Implications for using multi-criteria decision-aid methods. A review. Agron.
Sustain. Dev. 2008, 28, 163–174. [CrossRef]

5. Sadok, W.; Angevin, F.; Bergez, J.-É.; Bockstaller, C.; Colomb, B.; Guichard, L.; Reau, R.; Messean, A.; Doré, T. MASC, a qual-itative
multi-attribute decision model for ex ante assessment of the sustainability of cropping systems. Agron. Sustain. Dev. 2009, 29,
447–461. [CrossRef]

6. Martel, J.-M.; Matarazzo, B. Multiple Criteria Decision Analysis: State of the Art Surveys; Springer: New York, NY, USA, 2016.
7. Dogliotti, S.; Rossing, W.; van Ittersum, M. Systematic design and evaluation of crop rotations enhancing soil conservation, soil

fertility and farm income: A case study for vegetable farms in South Uruguay. Agric. Syst. 2004, 80, 277–302. [CrossRef]
8. Bohanec, M. DEX (Decision EXpert): A Qualitative Hierarchical Multi-Criteria Method; Kulkarni, A.J., Ed.; Multiple Criteria Decision

Making, Studies in Systems, Decision and Control 407; Springer: Singapore, 2022.
9. Kontić, B.; Bohanec, M.; Kontić, D.; Trdin, N.; Matko, M. Improving appraisal of sustainability of energy options—A view from

Slovenia. Energy Policy 2016, 90, 154–171. [CrossRef]
10. Erdogan, G.; Refsdal, A. A Method for Developing Qualitative Security Risk Assessment Algorithms. In Risks and Security of

Internet and Systems; Springer International Publishing: Dinard, France, 2018; pp. 244–259.

https://www.mdpi.com/article/10.3390/a15060197/s1
https://www.mdpi.com/article/10.3390/a15060197/s1
https://repo.ijs.si/martingjoreski/bag-dsm
http://doi.org/10.1051/agro:2007043
http://doi.org/10.1051/agro/2009006
http://doi.org/10.1016/j.agsy.2003.08.001
http://doi.org/10.1016/j.enpol.2015.12.022


Algorithms 2022, 15, 197 22 of 22

11. Prevolšek, B.; Maksimović, A.; Puška, A.; Pažek, K.; Žibert, M.; Rozman, Č. Sustainable Development of Ethno-Villages in Bosnia
and Herzegovina—A Multi Criteria Assessment. Sustainability 2020, 12, 1399. [CrossRef]

12. Bampa, F.; O’Sullivan, L.; Madena, K.; Sanden, T.; Spiegel, H.; Henriksen, C.B.; Ghaley, B.B.; Jones, A.; Staes, J.; Sturel, S.; et al.
Harvesting European knowledge on soil functions and land manage-ment using multi-criteria decision analysis. Soil Use Manag.
2019, 35, 6–20. [CrossRef]

13. Lotfi, F.H.; Rostamy-Malkhalifeh, M.; Aghayi, N.; Beigi, Z.G.; Gholami, K. An improved method for ranking alternatives in
multiple criteria decision analysis. Appl. Math. Model. 2013, 37, 25–33. [CrossRef]

14. Contreras, I. A DEA-inspired procedure for the aggregation of preferences. Expert Syst. Appl. 2011, 38, 564–570. [CrossRef]
15. Bergez, J.-E. Using a genetic algorithm to define worst-best and best-worst options of a DEXi-type model: Application to the

MASC model of cropping-system sustainability. Comput. Electron. Agric. 2012, 90, 93–98. [CrossRef]
16. Wachter, S.; Mittelstadt, B.; Russell, C. Counterfactual Explanations Without Opening The Black Box: Automated Decisions And

The Gdpr. Harv. J. Law Technol. 2018, 31, 842–887. [CrossRef]
17. Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat.

Mach. Intell. 2019, 1, 206–215. [CrossRef] [PubMed]
18. Joshi, S.; Koyejo, O.; Vijitbenjaronk, W.; Kim, B.; Ghosh, J. Towards Realistic Individual Recourse and Actionable Explanations in

Black-Box Decision Making Systems. 24 July 2019. Available online: https://arxiv.org/abs/1907.09615 (accessed on 4 May 2022).
19. Karimi, A.-H.; Barthe, G.; Balle, B.; Valera, I. Model-Agnostic Counterfactual Explanations for Consequential Decisions. 27 May

2019. Available online: https://arxiv.org/abs/1905.11190 (accessed on 4 May 2022).
20. Wexler, J.; Pushkarna, M.; Bolukbasi, T.; Wattenberg, M.; Viegas, F.; Wilson, J. The What-If Tool: Interactive Probing of Machine

Learning Models. IEEE Trans. Vis. Comput. Graph. 2019, 26, 56–65. [CrossRef] [PubMed]
21. Tolomei, G.; Silvestri, F.; Haines, A.; Lalmas, M. Interpretable Predictions of Tree-based Ensembles via Actionable Feature

Tweaking. 20 June 2017. Available online: https://arxiv.org/abs/1706.06691 (accessed on 4 May 2022).
22. Ustun, B.; Spangher, A.; Liu, Y. Actionable Recourse in Linear Classification. In Proceedings of the Conference on Fairness,

Accountability, and Transparency, Atlanta, GA, USA, 29–31 January 2019; pp. 10–19. [CrossRef]
23. Roy, B. The Optimisation Problem Formulation: Criticism and Overstepping. J. Oper. Res. Soc. 1981, 32, 427. [CrossRef]
24. Sanden, T.; Trajanov, A.; Spiegel, H.; Kuzmanovski, V.; Saby, N.P.A.; Picaud, C.; Henriksen, C.B.; Debeljak, M. Development of an

Agricultural Primary Productivity Decision Support Model: A Case Study in France. Front. Environ. Sci. 2019, 58. [CrossRef]
25. Kuzmanovski, V.; Trajanov, A.; Džeroski, S.; Debeljak, M. Cascading constructive heuristic for optimization problems over

hierarchically decomposed qualitative decision space. 2021, submitted.
26. Rezende, D.J.; Mohamed, S.; Wierstra, D. Stochastic Back-Propagation and Variational Inference in Deep Latent Gaussian Models.

16 January 2014. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.753.7469&rep=rep1&type=pdf
(accessed on 4 May 2022).

27. Brochu, E.; Cora, V.M.; de Freitas, N. A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active
User Modeling and Hierarchical Reinforcement Learning. 14 December 2010. Available online: https://arxiv.org/abs/1012.2599
(accessed on 4 May 2022).

28. Snoek, J.; Rippel, O.; Swersky, K.; Kiros, R.; Satish, N.; Sundaram, N.; Patwary, M.; Prabhat, M.; Adams, R. Scalable Bayesian
Optimization Using Deep Neural Networks. In Proceedings of the International Conference on Machine Learning, Lille, France,
6–11 July 2015.

29. de Freitas, J.F.G. Bayesian Methods for Neural Networks. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2003.
30. Hutter, F.; Hoos, H.H.; Leyton-Brown, K. Sequential Model-Based Optimization for General Algorithm Configuration. In

International Conference on Learning and Intelligent Optimization; Springer: Berlin/Heidelberg, Germany, 2011; pp. 507–523.
31. Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; MIT Press: Cambridge, MA, USA, 2006.
32. Hutter, F.; Hoos, H.H.; Leyton-Brown, K. Sequential Model-Based Optimization for General Algorithm Configuration (Extended Version);

Technical Report TR-2010–10; University of British Columbia, Computer Science: Endowment Lands, BC, Canada, 2010.
33. Močkus, J. On bayesian methods for seeking the extremum. In Proceedings of the IFIP Technical Conference on Optimization

Techniques, Novosibirsk, Ruassia, 1–7 July 1974.
34. Kushner, H.J. A New Method of Locating the Maximum Point of an Arbitrary Multipeak Curve in the Presence of Noise. J. Basic

Eng. 1964, 86, 97–106. [CrossRef]
35. Srinivas, N.; Krause, A.; Kakade, S.; Seeger, M. Gaussian process optimization in the bandit setting: No regret and exper-imental

design. In Proceedings of the International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010.
36. Lizotte, D.J. Practical Bayesian Optimization. Ph.D. Thesis, University of Albert, Edmonton, AB, Canada, 2008.

http://doi.org/10.3390/su12041399
http://doi.org/10.1111/sum.12506
http://doi.org/10.1016/j.apm.2011.09.074
http://doi.org/10.1016/j.eswa.2010.07.002
http://doi.org/10.1016/j.compag.2012.08.010
http://doi.org/10.2139/ssrn.3063289
http://doi.org/10.1038/s42256-019-0048-x
http://www.ncbi.nlm.nih.gov/pubmed/35603010
https://arxiv.org/abs/1907.09615
https://arxiv.org/abs/1905.11190
http://doi.org/10.1109/TVCG.2019.2934619
http://www.ncbi.nlm.nih.gov/pubmed/31442996
https://arxiv.org/abs/1706.06691
http://doi.org/10.1145/3287560.3287566
http://doi.org/10.1057/jors.1981.93
http://doi.org/10.3389/fenvs.2019.00058
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.753.7469&rep=rep1&type=pdf
https://arxiv.org/abs/1012.2599
http://doi.org/10.1115/1.3653121

