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A B S T R A C T   

While the concept of smart shipping is expected to shape the future of the maritime industry, its safety is still a 
major concern. New risks might emerge when shifting from human controllers onboard, to autonomous software 
controllers and remote human controllers. The uncertainties associated with the emerging risks require an 
efficient decision-making methodology to ensure ship safety. This paper proposes a framework for selecting Risk 
Control Options (RCOs) of ships with higher degrees of autonomy in the context of marine risk assessment and 
Formal Safety Assessment (FSA). The framework uses the System Theoretic Process Analysis (STPA) for the 
hazard analysis and the identification of RCOs, while Bayesian Network is employed in the framework for 
estimating the system risk. Integrating STPA and BN offers the possibility to cover most of the steps of both risk 
assessment and FSA and permits the prioritization of the identified RCOs. The proposed method is applied to a 
concept of an autonomous seawater cooling system (SWC) as an illustrative case study. The results indicate that 
the RCOs including sensors health monitoring and software testing should be prioritized to reduce the risk. This 
is unveiled by the STPA analysis which shows the risk contribution of the associated causal scenarios.   

1. Introduction 

Risk assessment has long been practical for the decision-making 
process in different fields due to the successful experience that 
humans have with efficient resource allocation based on the risk 
assessment results (Modarres, 2016; Zhu et al., 2021). In the maritime 
domain, the introduction of ships with higher degrees of autonomy is 
expected to release the ship crew and reduce maritime operation risks 
(de Vos et al., 2021). Several aspects need to be covered before the 
introduction of ships with the highest level of autonomy. As such, the 
ship systems are first expected to be fitted with autonomous control 
capability to release the humans, still with shore-based human super
vision and/or interference at least in the near future (Ramos et al., 
2020). Ship systems with autonomous software controllers are consid
ered complex systems that may introduce unpredicted hazards 
compared to conventional systems (Bolbot et al., 2019). Thus, assessing 
the risks of the future ship systems is necessary to make risk-based de
cisions during their development and design stages (Rolls Royce, 2016). 

Maritime risk and safety are governed by the regulations and codes 

of the International Maritime Organization (IMO), which adopts a goal/ 
risk-based approach to ship design. As a part of the rule-making process, 
IMO provides a risk-based five steps approach called the Formal Safety 
Assessment (FSA) framework to assess the risks of a ship design or 
operation and propose cost-effective options to control these risks 
(Breinholt et al., 2012; Skjong, 2011). In the context of FSA, quantitative 
risk assessment methods are preferred as they allow conducting a 
cost-benefit analysis to select the RCOs (IMO, 2018b). Similarly, in 
marine risk assessment, quantitative techniques are widely used 
(American Bureau of Shipping (ABS), 2020, p. 8). However, existing 
quantitative methods of risk assessment such as FTA, ETA, or FMEA are 
limited in identifying the potential accident scenarios of complex sys
tems, detecting their causes, and effectively informing about the 
adequate controls (Aven, 2016). These methods cannot effectively 
capture the emerging hazards associated with system software and 
nonlinear component interactions (Sulaman et al., 2019). On the other 
hand, system-theoretic methods, notably STPA is designed to identify 
the hazards of complex and software-intensive systems (Leveson, 2011; 
Meng et al., 2018) but is not a part of the common methods used in the 

* Corresponding author. 
E-mail address: meriam.chaal@aalto.fi (M. Chaal).  

Contents lists available at ScienceDirect 

Ocean Engineering 

journal homepage: www.elsevier.com/locate/oceaneng 

https://doi.org/10.1016/j.oceaneng.2022.111797 
Received 3 February 2022; Received in revised form 28 May 2022; Accepted 17 June 2022   

mailto:meriam.chaal@aalto.fi
www.sciencedirect.com/science/journal/00298018
https://www.elsevier.com/locate/oceaneng
https://doi.org/10.1016/j.oceaneng.2022.111797
https://doi.org/10.1016/j.oceaneng.2022.111797
https://doi.org/10.1016/j.oceaneng.2022.111797
http://crossmark.crossref.org/dialog/?doi=10.1016/j.oceaneng.2022.111797&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Ocean Engineering 259 (2022) 111797

2

marine risk assessment techniques (American Bureau of Shipping (ABS), 
2020, p. 8) or in the current FSA guidelines (IMO, 2018b). In addition, 
STPA is a hazard analysis technique in which, risk estimation, one of the 
fundamental elements of risk assessment, has not been taken into ac
count (Bjerga et al., 2016). 

Meanwhile, many researchers emphasized employing system theo
retic methods in the risk assessment of autonomous ships considering 
their complexity and early design stages (Chaal et al., 2020; Montewka 
et al., 2018; Ventikos et al., 2020; Yang et al., 2020; Zhou et al., 2021). 
In a recent review study, Zhou et al. (2020) assessed the applicability of 
hazard analysis methods to autonomous ships and concluded that STPA 
can be considered as the most promising for the autonomous ships’ 
design and operation. Another review study conducted by Thieme et al. 
(2018) argued that an adequate risk model for the Maritime Autono
mous Surface Ships (MASS) should focus on assessing the control and 
software systems of the ship and that system-theoretic methods such as 
STPA and FRAM could be the most appropriate to use in this model. 
Moreover, Thieme et al. (2018) claimed that Bayesian Network (BN) is a 
suitable tool for risk modelling and estimation in the case of autonomous 
ships and should be considered as a part of the risk model of MASS. STPA 
has also been recently applied to autonomous ships in a number of sci
entific articles. Wróbel et al. (2019) presented a preliminary hazard 
identification for autonomous ships using STPA. Valdez Banda et al. 
(2019) proposed an STPA-based process to analyse the hazards of 
autonomous ships operating in the inland waterways and to derive the 
design options. Rokseth et al. (2019) applied STPA to define safety 
verification procedures for autonomous ships. Glomsrud and Xie (2019) 
presented a preparatory safety and security co-analysis of an unmanned 
ship using STPA. Yang et al. (2020) proposed a framework based on 
STPA to identify the unsafe transitions between different autonomy 
levels of marine systems in general. All the above-mentioned studies 
revealed the effectiveness of STPA in capturing the hazards related to 
the system component interaction and component unsafe behaviour in 
autonomous ships. They also demonstrated the use of STPA in guiding 
the design and managing the risks of autonomous ship operations. 
However, neither of these studies considered the risk quantification to 
estimate the level of safety to select adequate RCOs. This is since STPA 
does not cover the risk estimation. STPA has already been criticized for 
being a qualitative approach that does not consider risk quantification 
(Abaei et al., 2021; Ramos et al., 2020). To prioritize the control actions 
resulting from the STPA analysis, Gil et al. (2019) suggested evaluating 
the unsafe control actions identified by STPA based on the historical ship 
accident data. The authors highlighted that more research should be 
conducted to define a structured control action prioritization technique. 
In another recent study aiming to combine quantitative risk estimation 
with STPA, Bolbot et al. (2020) proposed a new safety analysis method 
named Combinatorial Approach for Safety Analysis (CASA) for 
cyber-physical systems. The method consisted of ten different steps and 
was designed by combining three safety analysis techniques: STPA, FTA, 
and ETA. 

BNs, on the other hand, have been widely used to build risk models in 
different sectors, from process engineering (BahooToroody et al., 2019) 
to nuclear (DeJesus Segarra et al., 2021), aviation (Zhang and Maha
devan, 2021), civil engineering (Khalaj et al., 2020) and also the mari
time field (Antão and Soares, 2019; Baksh et al., 2018). BN is one of the 
recommended methods for risk quantification in the FSA (IMO, 2018b) 
and was applied for the risk assessment and Risk Control Options se
lection when newly introducing substantial ship systems such as the 
Electronic Chart Display and Information System (ECDIS) (IMO and 
IMO, 2006). It was also employed to develop risk models in several 
important studies on maritime safety (Guedes Soares et al., 2009; 
Konovessis et al., 2013; Lu et al., 2019; Vassalos et al., 2010). BN has 
also been employed in a few studies for risk modelling of autonomous 
ships. Zhang et al. (2020) applied BN in integration with Event Trees to 
develop a probabilistic model for assessing human error in the 
shore-based control centres. Chang et al. (2021) applied BN in 

combination with FMEA and experts’ opinions to estimate the risk of a 
set of hazards associated with the autonomous ship operation collected 
from the literature. Gao et al. (2021) mapped a Dynamic Fault Tree to a 
Dynamic Bayesian Network for assessing the reliability of unmanned 
vessels. Meanwhile, building a BN model is still challenging due to the 
lack of a clear foundation for the qualitative step of modelling especially 
in the context of novel technologies like autonomous shipping (Utne 
et al., 2020). The qualitative BN modelling in risk assessment can be 
compensated by integrating a qualitative method such as STPA. This 
integration targeting quantitative risk assessment has not yet been 
exploited; to the best of the authors’ knowledge, only the framework 
presented by Utne et al. (2020) and latterly extended by Johansen and 
Utne (2022), highlighted the possibility of integrating the STPA analysis 
within a BN model where the authors aimed to use the model for the 
qualitative online risk assessment as a part of the autonomous ship 
real-time decision making. More recently Wang et al. (2022) have used 
the STPA control structure of an autonomous vehicle to assess the reli
ability of the vehicle using BN. The authors aimed to only extract the 
functional description from STPA without conducting the complete 
analysis. 

This paper proposes a framework to extend the combination of STPA 
and BN to first, assess the risks of autonomous ship systems and second, 
define and select the RCOs that can mitigate the identified risks at the 
design phase. Doing so aims to remedy the shortcomings of both 
methods and exploit their strengths for a potentially system-theoretic 
quantitative risk assessment of future ship systems. The study also 
aims to provide an approach to extend the use of STPA in the risk-based 
IMO rule making process. The combination of STPA and BN allows the 
prioritization of the RCOs, which can be utilized in marine risk assess
ment and FSA applications when the available resources for controlling 
the risks are limited. The proposed framework is applied to a ship 
seawater cooling system as a case study. This system is substantial for 
the safe operation of the whole ship machinery nowadays and is ex
pected to be onboard ships with higher degrees of autonomy. The main 
aim of this case study is to showcase the application of the proposed 
method for system-theoretic marine risk assessment, which can also be 
aligned for the purpose of FSA. The focus of this case study is to apply the 
methodology to identify the hazards that can arise if the system is 
automated and capable to operate without human intervention onboard. 
The aim is then to identify and prioritize the RCOs for risk mitigation 
and control. 

2. The proposed framework in the context of marine risk 
assessment and FSA 

The marine risk assessment is conducted for a certain marine system 
or operation to support decision-makers and bring the risks down to 
acceptable levels by implementing adequate controls. A marine risk 
assessment can be used either for risk-based design or as an alternative 
to demonstrate that a certain system or operation is compliant with 
prescriptive rules (American Bureau of Shipping (ABS), 2020, p. 1). FSA 
on the other hand is a part of the goal/risk-based regulatory rulemaking 
policy and is conducted for either regulation development or acceptance 
(American Bureau of Shipping (ABS), 2020, p. 1). 

The main steps of a marine risk assessment are as follows (American 
Bureau of Shipping (ABS), 2020, p. 7).  

• Risk identification: Identify the hazards, their causes, and potential 
consequences.  

• Risk analysis: Determine the probabilities and consequences of the 
hazardous events.  

• Risk evaluation: Use the risk analysis results and compare them with 
the risk acceptance criteria to make decisions.  

• Risk treatment: Select one or more options of risk treatment and 
analyse their effectiveness. Risk treatment options may be selected 

M. Chaal et al.                                                                                                                                                                                                                                  



Ocean Engineering 259 (2022) 111797

3

based on a balanced effort and cost of implementation against the 
benefits obtained. 

On the other hand, IMO describes the FSA steps as follows 
(IMO,2018b).  

• Problem definition: the ship system and its functions are represented 
with a generic model description.  

• Hazard identification: the safety specialists investigate accidents and 
incidents data and examine the system model to identify the possible 
hazards leading to the accidents.  

• Risk analysis: the hazards’ causes and consequences are analysed, 
followed by a risk estimation and evaluation.  

• Risk Control Options: the possible safety barriers, or Risk Control 
Measures (RCM) are defined and ranked by their potential to reduce 
the risks. Accordingly, Risk Control Option (RCO) is a set of RCMs 
that can mitigate the risks when implemented together. 

• Cost-Benefit assessment: the cost of implementing each RCO is esti
mated, and the RCOs are ranked by both total cost and risk reduction 
potential. 

While the purposes of marine risk assessment and FSA are different, 
the main steps of these two processes remain the same and are 
approximately the same for the risk assessment process as defined by the 
Society of Risk Analysis (SRA). Correspondingly, and in line with these 
processes, Fig. 1 summarizes the steps of the proposed methodology. As 
a risk assessment can be conducted using different techniques or com
binations of techniques (American Bureau of Shipping (ABS), 2020), the 
proposed methodology can represent a technique of system-theoretic 
risk assessment for different marine applications. In the first part, the 

hazard analysis is conducted using STPA. The outcomes of STPA are then 
used to model the BN and conduct the risk analysis and RCOs steps. The 
outcomes of STPA are the losses, system-level hazards, the control 
structure, the UCAs, the causal scenarios, and the safety constraints or 
requirements (Leveson and Thomas, 2018). All these outcomes, except 
the control structure, are then applied in the qualitative risk analysis 
using BN. The control structure was used only for the STPA analysis. The 
qualitative risk analysis part is then followed by quantitative risk anal
ysis, mainly by filling the Conditional Probability Tables (CPTs) of the 
BN using the available technical data and/or expert judgment data. 
Applying STPA in conjunction with BN covers almost all the steps of the 
marine risk assessment and FSA. However, the Cost-Benefit analysis step 
(with a dashed outline in Fig. 1) is not under the scope of the proposed 
methodology. Nevertheless, this step was partly covered when using the 
BN model to examine the RCOs effect on the likelihood of untoward 
events. Similarly, the uncertainty analysis is not covered by the pro
posed steps of the methodology. In addition, the risk evaluation step, 
which initially compares the identified risks against risk-acceptance 
criteria to treat only high-level risks, is modified in this framework. 
The system-theoretic aspect of the method suggests identifying and 
attempting the treatment of all the risks without an initial prioritization. 
This is because a causal scenario initially viewed with a minor risk 
contribution can cause different UCAs due to the interactions between 
the system components. Thus, the same causal scenario can have a 
higher risk contribution after the completion of the analysis. Therefore, 
the evaluation and prioritization in the proposed framework come after 
the risk treatment step, when all the risks are considered and the cor
responding RCOs are defined. In this step, if the resources are limited, 
then the comparison and prioritization can support the decision-making. 

A thorough explanation of the proposed framework steps is provided 

Fig. 1. The proposed STPA-BN framework.  
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in the following sections. 

2.1. Hazard analysis; application of STPA 

The first step of the proposed methodology (Fig. 1) is the hazard 
analysis. Through the application of STPA the losses, the system-level 
hazards, the Unsafe Control Actions (UCAs) (actions that can lead to 
the hazards), as well as the scenarios that might cause the UCAs to occur, 
can be explicitly identified. Given the identified losses, hazards, and 
UCAs, STPA can also provide the safety constraints to secure the safe 
operation and prevent specified scenarios. There are four steps in STPA 
as follows. A detailed discussion on hazard identification using STPA 
with a wide range of engineering applications is presented by (Leveson, 
2011; Leveson and Thomas, 2018):  

a. Define the system and the purpose of the analysis 

In this step, the system and its boundaries need to be defined together 
with its function and the purpose of the analysis. The scope of the whole 
analysis is affected by the system definition and boundaries, which 
specify what is included in the system (components, sub-systems, 
context) and what is part of the environment. The purpose of the anal
ysis must be defined in this step as well. Generally, the purpose of the 
analysis includes the identification of the losses and the system-level 
hazards considering the previously defined system boundaries. The 
losses involve value to the stakeholders and can be considered as the 
consequences of hazards, such as loss of human lives, loss of mission, 
damage to the property, the environment etc. Upon specifying the losses 
and system-level hazards, a safety constraint (aimed to prevent the 
hazard) needs to be determined for each system-level hazard.  

b. Model the control structure of the system 

In this step, a functional model of the system is developed, called 
Control Structure. Depending on the extent of the system, the control 
structure can include several layers to cover the sub-systems and their 
components. A control structure is an ensemble of feedback control 
loops that captures the control relationships and interactions between 
different system components. The controllers and controlled processes 
in each control loop are identified from the available system informa
tion. The system information is also used to define the control actions 
provided by the controllers to the controlled processes and the variables 
that describe the controlled processes’ state. Depending on the 
controlled processes state, the controllers should provide adequate ac
tions to enforce the safety constraints.  

c. Identify Unsafe Control Actions 

In this step, the control structure is analysed to identify how control 
actions could lead to the hazards and losses defined in the first step. A 
control action can be unsafe if it violates the safety constraints. Four 
different ways make a control action unsafe; a control action that, if 
provided, causes hazard, a control action that, if not provided, causes 
hazard, a control action that, if provided too late or too early, causes 
hazard, a control action that, if applied for too long or too short, causes 
hazard.  

d. Identify causal scenarios and safety requirements 

This step identifies the reasons behind the occurrence of unsafe 
control actions and the reasons why safe control actions might not be 
appropriately executed, leading to a hazard or a loss. The causal sce
narios are then used to define the mitigations and create the safety re
quirements of the system. The causal scenarios can be failures related to 
the controller, inadequate control algorithm, missing or unsafe control 
input, inadequate process model, failures of the controlled process, etc.  

A summary of the outputs of the four steps of STPA is given in Fig. 2. 

It should be noted that the first step of the STPA has a major role in 
framing the whole analysis. In the proposed system-theoretic risk 
assessment framework specifically, the first step affects the generation of 
the results that satisfy the aim of the analysis whether it is a marine risk 
assessment or an FSA. In the case of FSA, the generic ship model should 
be defined at the first step of STPA when defining the system. 

2.2. Qualitative risk analysis; modelling the Bayesian Network 

Herein a BN is developed using the outputs of STPA in the previous 
part of the methodology as given in Fig. 2. The STPA outputs used for the 
BN model are the losses (L), the system-level hazards (H), the Unsafe 
Control Actions (UCA), causal scenarios leading to UCAs (Sc), the direct 
causal scenarios leading to hazards (DSc) and the Safety Requirements. 
BN is a method based on the subjective (Bayesian) theory of probability 
and can combine statistical data with experts’ opinions to estimate the 
risk (Kelly and Smith, 2009, 2011). It can quantify different notions of 
uncertainty; aleatoric (randomness) and epistemic (lack of knowledge) 
(BahooToroody et al., 2020; Goerlandt and Montewka, 2015). A BN is a 
Directed Acyclic Graph (DAG) that links different variables to represent 
their dependencies, including the cause-effect relationship (Barber, 
2010; Neapolitan, 2004). It then constitutes a model for reasoning and 
answering various queries about a system (Nielsen and Jensen, 2009). 
The graph is a set of nodes and arcs, where each node represents a 
variable, and each arc represents a conditional dependency between the 
interlinked variables. The BN calculates the joint probability distribu
tion of the variables using equation (1) (Barber, 2010): 

P(U) =
∏n

i=1
P(Xi|pa(Xi)) (1)  

where P(U) is the joint probability distribution, n is the number of 
variables, and pa(Xi) is the parent set of variables for xi. 

The BN is modelled based on the cause-effect relationship between 
the STPA outputs. The outputs of STPA have a causal relationship, where 
losses are caused by system-level hazards, system-level hazards are 
caused by unsafe control actions and unsafe control actions are caused 
by causal scenarios (Antoine, 2013; Puisa et al., 2019). Fig. 3 shows how 
the STPA outputs are mapped into the BN model. In the BN model, the 
losses are accounted to play a pivotal role of consequences, linking to the 
causing system-level hazard as the top node of the network. Similarly, 
the system-level hazard node is linked to its parent nodes of UCAs and 
direct causal scenarios, and finally, the UCAs are linked to their 
respective causal scenarios. The safety requirements represent the Risk 
Control Measures (RCM) in the FSA framework and thus are added to the 

Fig. 2. Outputs of the application of STPA.  
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bottom level of the BN to prevent the occurrence of causal scenarios. As 
the losses are considered the final consequences in the STPA method, the 
probability of loss can define the risk level when the loss is estimated. 
The analysis aims to prevent the losses by design, using the safety re
quirements named RCMs in this study. 

2.3. Quantitative risk analysis; filling the CPTs of the BN 

This step aims to define each node’s states and provide quantitative 
information by filling the CPTs. The reasoning process can then be 
achieved by propagating the probabilistic evidence in any direction in 
the model (top-down, down-top). The probabilistic evidence is propa
gated through the model to determine the probability of occurrence of 
each event (remarked by the nodes in BN) and, ultimately, the proba
bility of risk levels. The states assigned to the different nodes of the BN 
are given in Table 1. The states of “high, medium and low” in risk level 
represent different levels of risk given the scope of the analysis and vary 
with the probability of occurrence of the associated hazard. 

Regarding the loss node, the “yes” state means that the system will 
experience that loss. For the nodes of hazard, UCA and causal scenario, 
the state of “uncontrolled” and “occurred” represents the occurrence of a 
hazard, a UCA, or a causal scenario. For the nodes of RCM, the state of 
“implemented” means that the RCM is implemented/fulfilled in the 
system. 

To fill the CPTs, the Boolean Logic with OR gates between UCAs, 
causal scenarios and the hazard was adopted. This is because a loss can 
be caused by one or more hazards, a hazard by one or more UCAs or 
direct causal scenarios, and a UCA by one or more causal scenarios. As 
for the CPTs of the risk level node, both expert judgment and operational 
data are considered to simulate the different levels of the risk. The data 
needed to fill the CPTs consists of two categories. The first category 
includes the probabilities of occurrence of the causal scenarios, which 
can be collected from historical data (literature and/or system manu
facturers), test data, or experts’ opinions. Depending on the nature of the 
causal scenario, the data type may differ, e.g., the probability of failure 
of a certain component or the probability of error of a certain controller. 
In case the data contains a failure rate, the exponential probability 
distribution is recommended by (Pui et al., 2017) to account for the 
randomness of the failure data. The exponential cumulative failure 
probability is given by (Leoni et al., 2021): 

F(t) =

∫t

0

f (t)dt = 1 − e−λt (2)  

where λ is the failure rate in time t. Measuring the changes of variables in 
both sides of Equation (2) with respect to the change of time results in 
Equation (3) as the exponential probability density function represent
ing the reliability of a component or a controller (Pui et al., 2017): 

f (t) = λe−λt (3) 

Accordingly, the reliability of the system and the probability of 
failure can be achieved by equations (4) and (5), respectively (Pui et al., 
2017): 

R(t) =

∫∞

t

f (t)dt = e−λt (4)  

P(t) = 1 − e−λt (5) 

Depending on the analysis aim, the operation time (t) can be one year 

Fig. 3. Mapping STPA outputs into a BN model.  

Table 1 
States of the BN nodes.  

Node States 

Risk level High, Medium, Low 

Loss Yes, No 
Hazard Controlled, Uncontrolled 
UCA Denied, Occurred 
Causal scenario (DSc, Sc) Controlled, Occurred 
Risk Control Measure (RCM) Implemented, Not implemented  

M. Chaal et al.                                                                                                                                                                                                                                  



Ocean Engineering 259 (2022) 111797

6

or five years, as commonly used in FSA (IMO, 2018b). 
The second category of the data covers the risk reduction potential of 

the RCMs. It represents the capability of the RCM to prevent causal 
scenarios. 

As for the CPTs of risk level and RCM nodes, expert opinion and 
operation data are assigned to simulate different levels of the risk 
incorporated in the network as well as the impact of RCM on them. 

3. Illustrative case study 

An illustrative case study of a critical system in a ship machinery 
plant is offered to demonstrate how the developed methodology can be 
applied. The case study is analysing the system assuming that it operates 
fully independent of human intervention while remotely monitored by 
shore-based human controllers. This can be considered a remotely 
operated ship system at autonomy degree 3 as defined by IMO (2018a). 
Given this assumption, and to reflect better the capabilities of the pro
posed method, the seawater cooling system (SWC) has been selected 
since any neglected surge condition of SWC will lead to ship blackout, no 
matter how high the autonomy degree of the ship would be. SWC’s role 
is to dissipate the heat transferred to the freshwater (intermediate 
cooling fluid) when producing the energy. Thus, it avoids damaging the 
machinery system components due to excessive heat. Therefore, daily 
inspections are currently required. While the MASS Concepts are still in 
the pre-study phase, SWC is expected to be onboard such future ships. 
According to the consulted industry experts, the SWC will likely remain 
a critical system from both operational and safety points of view even if 
MASS will run on different energy sources (Hydrogen, Ammonia, Bat
teries …). The SWC for such ships will supposedly be highly automated 
and capable of operation without human intervention while fitted with 
an additional remote operation mode. Considering the IMO definition of 

ship autonomy level 3, SWC should be capable of performing its function 
while shore-based human controllers can intervene only if required. The 
case study aims to showcase how the proposed methodology can define 
(based on the STPA study) and prioritize (based on BN calculations) the 
RCOs to mitigate the risks arising with the assumed mode of operation. 
To this end, GeNie software is used as a tool for modelling the BN of the 
proposed method (BayesFusion, 2020). A detailed discussion on the 
application of each step of the developed methodology in the case study 
is given in the ensuing sections. 

3.1. System description 

A SWC is illustrated in Fig. 4 depicting how the Fresh Water (FW) and 
the Sea Water (SW) cooling systems function together to dissipate the 
heat. 

Fig. 5 shows a complete drawing of the standard ship SWC system 
considered in this study. This system is assumed to operate independent 
of onboard-human intervention and will be monitored by the shore- 
based crew. The components of the system are illustrated using the 
technical documentation of a passenger ship operating in the Mediter
ranean Sea. The SWC in Fig. 5 comprises seawater inlet and outlet 
valves, coolers’ valves, coolers, seawater pumps, seawater pressure 
sensors, and seawater temperature sensors. The pumps circulate the 
seawater in an open circuit from the seawater inlet valves to the coolers 
and then, overboard. The heat is transferred from the fresh cooling water 
(intermediate cooling fluid) to the seawater through the main coolers’ 
plates. The hot seawater is then discharged overboard. This system has 
three redundant pumps and two redundant coolers that can be isolated 
or put in service by switching their corresponding valves. The Differ
ential Pressure (DP) sensor indicates the clogging condition of the cooler 
(if the cooler is dirty). The water pressure sensor and temperature sensor 

Fig. 4. Illustration of FW and SW cooling systems (Zymaris et al., 2016).  
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indicate the current pressure and temperature of the water in the system. 
For the autonomous operation compared to the traditional process, the 
software controller of the system is responsible for the operation, alarm, 
and activation of all the system components. The controller receives the 
information from the system components and sensors. Instead of the 
onboard ship crew, a shore-based crew will monitor the SWC system and 
be able to take over the software controller when needed. 

4. Results 

4.1. Results of step I: Application of STPA to the seawater cooling system  

a The system-level losses, hazards, and safety constraints 

The SWC system as defined in the previous section is the subject of 
this STPA analysis. The operational context is defined as “operation 
during seagoing from Port A to Port B”. Therefore, the analysis focuses 
on the prevention of the losses related to the SWC system and its func
tion, which are three system-level losses as follows:  

➢ Loss: (L1) non-severe damage to the seawater cooling system, (L2) 
loss of cooling mission, (L3) loss of cooling mission with severe 
damage to the SWC system. 

Accordingly, the system-level hazard and system-level safety con
straints were identified. Only one system-level hazard leading to the 
losses was identified.  

➢ System-level hazard: (H) The seawater flow decreases below the safe 
limit.  

➢ System-level safety constraint: The seawater flow shall not decrease 
below the defined safe limit. 

The loss of cooling mission means that the system is no longer 
dissipating the heat coming from the machinery systems. A hazardous 
condition that can lead to this loss is (H), which reflects an insufficient 
seawater flow in the system and, consequently, inadequate heat dissi
pation. The safety constraint is then defined following the STPA pro
cedure. This constraint is meant to prevent the hazard and should be 
respected when modelling the control structure of the system so that the 
flow is monitored and controlled to be consistently above the safe limit. 

In this type of system, the water pressure and temperature indicate that 
there is sufficient water flow.  

b The control structure 

As in this study, the system is supposed to operate without onboard 
human intervention, the control actions given by the humans onboard 
should be added to the control structure under the software controller. 
For this purpose, the control hierarchy and the responsibilities of the 
controllers were identified following Part 3 of the framework proposed 
by Chaal et al. (2020). In the framework, it is proposed that ship ma
chinery operators should answer a questionnaire to identify the control 
structure elements. The answers to the questionnaire in the case of the 
ship SWC system are presented in the Appendix. Fig. 6 presents the 
resulting control structure of the seawater cooling system. In the con
ventional seawater cooling system, the crew onboard open and close the 
seawater inlet valves when the filters are clogged. The crew onboard are 
also responsible for switching between the coolers when required. In the 
autonomous operation, as shown in Fig. 6, the cooling water system 
controller is responsible for these actions instead of the crew. There are 
three levels of hierarchy, the shore-based crew is at the top of the hi
erarchy, the cooling water system controller is at the intermediate level, 
and the physical system processes at the lowest level. The shore-based 
crew as a controller of the system software controller can set the mode 
of operation to autonomous or remote. Under the autonomous mode, the 
system operates autonomously without interaction with the shore-based 
crew. Under the remote mode, the shore-based crew can take over the 
system controller to change setpoints or other actions. The arrows down 
represent the control actions given by the cooling water system 
controller to the cooler valves to switch between the cooler in service 
and the standby one. The controller also sends start/stop and close/open 
control actions to the pumps and the seawater inlet valves. The arrow up 
represents the feedback that the cooling water controller receives about 
the status of the controlled processes. The controller receives feedback 
through the corresponding sensors, such as the pressure and tempera
ture sensors or valve position sensors. The water temperature and 
pressure indicate if the system functions properly; therefore, they should 
be maintained at safe levels by adequate control. The controller sends 
feedback about the system status with the generated alarms to the 
shore-based crew, who monitors the system operation. 

Fig. 5. Seawater cooling system (SWC) diagram of the reference ship.  
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c The Unsafe Control Actions 

The UCAs analysed in this case study are related to the control ac
tions provided by the SWC controller that operates autonomously. 
Table 2 presents the seven UCAs that were identified during the analysis. 
Given this table, one point to be noticed is that the control action to 
open/close the cooler valves is critical because it is also required in case 
a cooler is defective (UCA-2). This was previously detected and handled 
by the crew onboard. In addition, assigning the autonomous control of 
seawater valves to the software controller might cause unsafe control 

actions such as UCA-3, which is critical during operation. Another point 
to notice from Table 2 is about the UCAs that are mainly of the type 
“provided causing a hazard” and “not provided causing a hazard”. These 
two guidewords were sufficient to demonstrate the application of the 
method in this case because most of the control actions sent to the 
physical components of the system, such as valves or pumps, are discrete 
control actions (not continuous in time).  

d The causal scenarios and safety requirements 

There were nine identified causal scenarios belonging to two classes 
of scenarios. Table 3 shows the causal scenarios leading to UCA1 as an 
example. The scenarios are causing the occurrence of the UCAs, and the 

Table 2 
The identified Unsafe Control Actions.  

Controller - Cooling water system controller 

Control action Not providing causes hazard Providing causes hazard 

Open cooler 
valves 

UCA-1: Controller does not open 
the standby cooler valves when 
the differential pressure is high. 
UCA-2: Controller does not open 
the standby cooler valves when 
there is a water leakage due to a 
defective main cooler. 

Not Applicable (NA) 

Close cooler 
valves 

NA UCA-3: Controller closes the 
cooler valves during normal 
operation. 

Open 
seawater 
inlet valve 

UCA-4: Controller does not open 
the standby seawater inlet valve 
when the inlet filter is clogged. 

NA 

Close 
seawater 
inlet valve 

NA UCA-5: Controller closes the 
seawater inlet valve during 
normal operation. 

Start pump UCA-6: Controller does not start 
the standby pump when the pump 
in service fails. 

NA 

stop pump NA UCA-7: Controller stops the 
pump during normal 
operation.  

Table 3 
Identified causal scenarios for UCA1.  

UCA Scenarios related to UCA Direct scenarios leading 
to hazard (not to UCA) 

UCA1: Controller does 
not open the standby 
cooler valves when the 
differential pressure is 
high 

Sc1: Controller does not 
receive feedback about the 
high DP due to a break in 
the feedback line 

DSc1: Controller sends 
“open” command to the 
cooler valves, but the 
command is not 
executed due to valve 
failure 

Sc2: Controller receives 
wrong feedback about the 
DP due to a DP sensor 
problem 

DSc2: Controller sends 
“open” command to the 
valve, but the valve does 
not receive it due to a 
break in the control line 

Sc3: Controller 
misinterprets the correct 
feedback about the DP due 
to a design flaw or change 
in the algorithm  
Sc4: The controller 
hardware fails   

Fig. 6. Control structure of an autonomous seawater cooling system.  
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direct scenarios are driving the improper execution or non-execution of 
safe control actions. 

Table 4 presents a summary of the identified causal scenarios for all 
the UCAs. The scenarios can also be described by their type as 
communication line failure, sensor failure, software error, controller 
hardware failure, or valve failure. Most of the identified causal scenarios 
are software errors due to the SWC controller type. This controller might 
send unsafe control actions to the controlled processes because of the 
wrong process algorithm or process model. 

After identifying the causal scenarios, the possible RCMs that can 
prevent the scenarios are formulated with the help of the experts 
involved in the study. Table 5 presents an example of the RCMs to 
prevent the causal scenarios related to UCA1. As shown in Table 5, a 
causal scenario can be prevented by more than one RCM. In some cases, 
an RCM can prevent more than one causal scenario. In the formulated 
RCMs, the role of the shore-based crew was considered. The crew can act 

using a redundant control module, such as in the case of RCM9 in 
Table 5. 

4.2. Step II and step III: BN model 

The structured results of STPA were used to build the BN model 
presented in Fig. 7. The hazard (H – The seawater flow decreases below 
the safe limit) may lead to the three losses (L1 – non-severe damage to 
the seawater cooling system, L2 – loss of cooling mission and L3 – loss of 
cooling mission with severe damage to the seawater cooling system), 
which have been considered for the prediction of risk level associated 
with the system. On the other hand, the incorporated hazard node in the 
network is linked to the nodes of the seven identified UCAs and the three 
direct scenarios (DSc1, DSc2, DSc3). As presented in section 2.3, the first 
category of the data used in this study includes the failure rates of the 
physical components in the system and the software error rate. This data 
is collected from reference sources in the relevant literature, as depicted 
in Table 6. The data was fed into the BN model following the Boolean 
logic described in Section 2.3. 

The data was used to fill the CPTs of the BN model and determine the 
probability of the UCAs, the hazard, the losses, and the risk level node. In 
the BN model shown in Fig. 7, the state of the RCM is set to “not 
implemented” for all the RCMs, which gives the risk picture before 
implementing the RCMs. The estimated risk profile highlights that the 
considered hazard will result in low, medium, and high risk with 
probabilities of 0.62, 0.17, and 0.21, respectively. Besides, the proba
bility of the losses at this state is equal to 0.36, 0.27, and 0.18 for non- 
severe damage, loss of cooling mission, and severe damage to the sys
tem, respectively, which can be considered relatively high compared to 
the results of the traditional risk assessment methods. 

To infer how different nodes’ values affect the target node (system- 
level hazard), a sensitivity analysis was conducted using the GenIe 
software feature. The sensitivity analysis highlights the effect of each 
node on the risk level node (please see Fig. 8). As can be seen, the causal 
scenarios (except for the second scenario) appear in dark red, meaning 

Table 4 
The causal scenario types.  

UCAs Causal Scenario 
numbers 

Causal Scenario types 

UCA1 Sc1, Sc2, Sc3, Sc4, 
DSc1, DSc2 

Software error, Sensor failure, Valve failure, 
controller hardware failure, communication line 
failure 

UCA2 Sc5, DSc1, DSc2 Software error, valve failure, communication line 
failure 

UCA3 Sc4, Sc6 Software error, controller hardware failure 
UCA4 Sc1, Sc2, Sc3, Sc4, 

DSc1, DSc2 
Sensor failure, controller hardware failure, 
Software error, communication line failure 

UCA5 Sc4, Sc6 Software error, controller hardware failure 
UCA6 Sc1, Sc2, Sc4, DSc2, 

DSc3 
Software error, controller hardware failure, Pump 
failure, Communication line failure 

UCA7 Sc4, Sc6 Software error, controller hardware failure  

Table 5 
The risk control measures for UCA1.  

UCA Causal scenarios Safety requirements 

UCA1: Controller does not open the standby 
cooler valves when the differential pressure is 
high 

Sc1: Controller does not receive feedback about the high 
DP due to a break in the feedback line 

RCM1: The cooling water system wirings shall be checked and 
maintained at adequate intervals to limit their failures. 
RCM2: The system shall generate an alarm. 

Sc2: Controller receives wrong feedback about the DP 
due to a DP sensor problem 

RCM3: Two redundant DP sensors shall be installed. 
RCM4: The installed sensor shall have a low failure rate. 
RCM5: The condition of the sensors shall be monitored to anticipate 
their maintenance and prevent their failure. 
RCM6: The cooler shall be fitted with intelligent health monitoring 
features using different sensors (pressure, temperature) input. 

Sc3: Controller misinterprets the correct feedback about 
the DP due to a design flaw or change in the algorithm 

RCM7: The software functionalities must be intensively tested during 
the design. 
RCM8: The controller algorithm functionalities shall be tested for the 
possible errors at adequate operation intervals and generate an alarm. 
RCM9: The shore-based crew shall have a redundant control module 
of the system 

Sc4: Failure of the controller hardware RCM2: The controller shall generate an alarm. 
RCM9: The shore-based crew shall have a redundant control module 
of the system  
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they all have a crucial effect on the given hazard. This quality of in
teractions can be explained through the OR gate logic assigned in the 
network, where any of the scenarios leads to the connected UCAs and 
consequently to the hazard. 

It should be noted that the analysis was conducted without setting 
any specific state for the RCMs to identify which RCMs have a more 
critical impact on the safety of the system. Correspondingly, different 
red colour shades are illustrated for the RCMs nodes, with RCM2, RCM7, 
RCM8, and RCM9 having the most significant contribution to system 
safety. It can be noticed from Table 5 that these critical RCMs are related 

to the system software safety, which is a critical component in the 
autonomous operation as it relies on the software controller. In addition, 
these RCMs prevent more than one scenario, which also explains their 
high impact on system safety. The same sensitivity analysis results show 
that the safety requirements RCM11, RCM12, RCM13, RCM1, RCM3, 
RCM4, and RCM5 have less impact on the system’s safety. 

The developed BN model in this study can prioritize the RCMs using 
sensitivity analysis (see Table 7). As a result, it is expected that a set of 
requirements including (RCM2)&(RCM7)&(RCM8)&(RCM9) can sub
stantially improve the safety of the system if it is implemented. As a Risk 

Fig. 7. The constructed BN model for the analysis of the seawater cooling system.  

Table 6 
Data sources.  

Type of scenario Rate (/h) Source Annual rate (/8760h) Scenario probability 

Communication line failure rate 2,50 × 10−8 Chai et al. (2016) 0,0002190 0,0002190 
Pressure sensor failure rate 6,30 × 10-7 Schüller et al. (1997) 0,0055188 0,0055036 
Error rate for software function 1,00 × 10-5 SINTEF (2006) 0,0876000 0,0838727 
Controller hardware failure rate 1,50 × 10-5 SINTEF (2006) 0,1314000 0,1231330 
Valve failure rate 1,80 × 10-6 Schüller et al. (1997) 0,0157680 0,0156443 
Water pump failure rate 3,02 × 10-5 (OREDA companies, 2015) 0,2645520 0,2324503  
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Control Option (RCO) is a set of RCMs, two sets of RCOs were defined; 
RCM2, RCM7, RCM8, RCM9 assigned to RCO1 and RCM11, RCM12, 
RCM13, R14 given to RCO2. The updating property of BN was applied to 
compare the posterior probability of the top node, assuming that 
different RCOs were implemented. Table 8 presents the results of this 
comparison where RCO1 outperforms RCO2 in reducing the probability 
of hazard as well as increasing the possibility of operation at a minimum 
possible risk level. As remarked in Table 8, the probability of hazard is 
expected to be reduced by 15.2% when applying RCO1 compared to 
2,56% when implementing RCO2. The probability that the risk associ
ated with the system will be at a low level increased by 11.7%, estab
lishing RCO1. In comparison, this probability increases only by 1.5% 
given that RCO2 is hired, highlighting that RCO1 can be more efficient 
considering the safety level of the given system. This striking difference 
in the probability of risk level must draw the attention of designers, 

policymakers, and asset managers to the importance of the prioritization 
of RCOs and their influence on the overall risk profile. 

To certify the system operates at a low-risk level, backward propa
gation through the developed risk-based STPA-BN model is used to es
timate the critical probability values of the root nodes. The risk level was 
set at “low risk”, and the backward propagation gave the estimations 
outlined in Table 9. The same approach is also practical if the system’s 
strategy accepts more risks (medium or high level). As shown, the 
probability of the losses (L1, L2 and L3) had increased dramatically 
when the higher level of risk was assigned to the network. The proba
bility of all nodes has been updated given that the system was exposed to 
a medium and high level of risks. This posterior probability of nodes can 
be accounted as the safe operational limit since experiencing a high level 
of risk through the system would not necessarily require all Scenarios, 
UCAs, and hazards to occur; rather, exceeding the predicted threshold 
assigned for each node will result in operating at the high level of risk. 

The present study can also specify the UCAs and scenarios that have 
remarkable deviation through different levels of risk. This deviation 
informs the designers and other decision-makers about the UCAs and 
scenarios that can potentially lead to severe damage to the system. As 
shown in Fig. 9, DSc2, Sc1, and Sc2 have minimum deviation as the 
system is experiencing a higher level of risk, and on the contrary, DSc3, 
UCA4, and UCA1 have the maximum deviation. 

Fig. 8. Sensitivity analysis to identify the effect of the BN nodes on the risk level.  

Table 7 
Ranking of the risk control measures (RCMs).  

Rank Risk Control Measures 

1 RCM1, RCM3, RCM4, RCM5, RCM11, RCM12, RCM13 
2 RCM6, RCM10, RCM14, RCM15, RCM16 
3 RCM2, RCM7, RCM8, RCM9  

Table 8 
Impact of the implemented RCOs.  

Node Prior probability Updated probability given RCO1 Updated probability given RCO2 

Hazard 0.33 0.18 0.31  

Low 0,0520 0,0597 0,0527 
Risk level Medium 0.11 0.06 0.01  

High 0.15 0.08 0.14  
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5. Discussion 

The methodology proposed in this paper uses the STPA analysis re
sults in developing a BN model to assess the risks of a ship with higher 
degrees of autonomy and offers an efficient RCOs selection process. The 
proposed combination of STPA and BN is an approach towards a system- 
theoretic framework for marine risk assessment applications and FSA for 
new maritime technologies such as ship systems without onboard 
human intervention. Although autonomous ship concepts are nowadays 
at the development phases, using STPA to analyse the safety of ship 
systems with autonomous and remote-control capabilities can support 
the design of safer future ships. Transferring all the system control ac
tions to the system software controller gives rise to new hazardous 
scenarios that should be identified and mitigated with adequate RCOs. 
STPA demonstrated the outstanding capability to identify the inade
quate controls that might lead to the identified hazards of the automated 

SWC system. It also allowed identifying the causal scenarios that are 
related to the software control problems and the failure of physical 
components in the system. With STPA, it is possible to analyse the sys
tem as a whole and identify all the hazards leading to the losses and their 
respective causes. This is done without an initial prioritization based on 
accident data as followed in traditional hazard analysis methods. The 
proposed approach is proactive and aims at avoiding the hazardous 
conditions and their possible causes identified during the analysis by 
implementing the effective RCOs. In STPA the safety requirements are 
defined in parallel during the analysis to mitigate the identified causal 
scenarios, which makes it an appropriate method to generate the RCOs. 
An RCO can suggest a change in the control algorithm, a backup by the 
human remote controller, or other different measures. In any case, the 
RCO can be less/more or equally effective than other RCOs in mitigating 
the system risk. Therefore, the prioritization of the RCOs in this 
approach came after the STPA analysis when setting the desired risk 

Table 9 
Critical probability values of nodes.  

Node (state) Prior probability 100% low risk level 100% medium risk level 100% high risk level 

Posterior probability Posterior probability Posterior probability 

L1 (Yes) 0.2624 0.0663 0.6215 0.8611 
L2 (Yes) 0.1968 0.0167 0.4661 0.7998 
L3 (Yes) 0.1312 0.0002 0.2428 0.6448 
H (Uncontrolled) 0.3280 0.1040 0.8010 0.9559 
UCA1 (Occurred) 0.1278 0.0405 0.3122 0.3726 
UCA2 (Occurred) 0.0509 0.0161 0.1244 0.1484 
UCA3 (Occurred) 0.1167 0.0370 0.2849 0.3400 
UCA4 (Occurred) 0.1278 0.0405 0.3122 0.3726 
UCA5 (Occurred) 0.1167 0.0370 0.2849 0.3400 
UCA6 (Occurred) 0.0790 0.0250 0.1931 0.2304 
UCA7 (Occurred) 0.1167 0.0370 0.2849 0.3400 
DSc1 (Occurred) 0.0110 0.0035 0.0269 0.0321 
DSc2 (Occurred) 0.0001 4.4169e-005 0.0003 0.0004 
DSc3 (Occurred) 0.1412 0.04480 0.3448 0.4114 
Sc1 (Occurred) 0.0009 0.0002 0.0022 0.0027 
Sc2 (Occurred) 0.0037 0.0011 0.0090 0.0108 
Sc3 (Occurred) 0.0533 0.0169 0.1301 0.1553 
Sc4 (Occurred) 0.0748 0.0237 0.1826 0.2179 
Sc5 (Occurred) 0.0509 0.0161 0.1244 0.1484 
Sc6 (Occurred) 0.0452 0.0143 0.1105 0.1319  

Fig. 9. Critical probability values of nodes.  
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level and selecting the RCOs that prevent the causal scenarios with the 
highest contribution to risk. This was possible by combining STPA with 
BN, which helped explore the causal scenarios’ impact on the risk pic
ture. The BN development after STPA analysis was simple and system
atic, due to the traceability and cause-effect relationship of the STPA 
outcomes, which was also highlighted by Utne et al. (2020). This rep
resents one of the strengths of the developed BN model compared with 
other BN applications for the risk-based design of autonomous ships. For 
instance, Chang et al. (2021) identified the nodes of the BN and their 
interdependencies directly from literature and experts’ opinions, which 
is a common approach in modelling the qualitative part of BN in the 
maritime field applications. 

Another strength of the proposed framework is the advantage BN 
offers to map the interdependencies between the nodes and update the 
whole model whenever new data or evidence is available. This is one of 
the strengths of the BN compared to FTA. The same strength was 
highlighted by Bolbot et al. (2020) in their application of STPA in 
conjunction with FTA to ship scrubber systems as part of the new safety 
analysis method CASA. The authors concluded that BN would poten
tially replace FTA in future research (Bolbot et al., 2020). Once the CPTs 
are filled with the data, the developed BN supports the reasoning about 
the hazard analysis results, which is the aim of FSA in the marine 
risk-based design approach to estimate the uncertainties about the un
desired events and provide insights that can be useful and meaningful 
for the decision making. The results of FSA have been usually commu
nicated to the stakeholders to help them make risk-informed decisions. 
With the utilization of BN, it was possible to achieve this aim by first 
feeding the data into the model using probabilities to estimate the un
certainty about the likelihood of the causal scenarios identified with 
STPA. In addition, with the sensitivity analysis, it was possible to 
identify the input uncertainties that dominate the uncertainties about 
the output (the risk level) and compare the effectiveness of different 
RCOs in reducing these uncertainties. The developed BN model can also 
suggest the prioritization of recognized RCMs using backward and for
ward propagations. Given that the network can update features in light 
of new evidence, different combinations of RCMs can be deemed to be 
implemented through forward propagation. The model can estimate the 
updated probability of a hazard and its associated risk level. On the 
other hand, using backward propagation, it is possible to set the risk 
level at the minimum level, and BN can determine the critical proba
bility values of the root nodes. Either way, risk managers, maintenance 
engineers, and policymakers can exploit the proposed framework to 
specify the sequence of RCMs to be implemented to ensure the system is 
operating at a minimum possible risk level. The backward propagation 
also offers safety engineers the possibility to identify the threshold for 
the UCAs and causal scenarios to respect a predefined safety level. 

Applying the method to the autonomous SWC system showed that 
many causal scenarios were related to software errors. This is due to the 
nature of the autonomous ship systems where the control is shifting from 
human operator onboard to software controllers. Furthermore, the 
application demonstrated the importance of testing the software func
tionalities, which was one of the effective RCMs in reducing the risk of 
the system. Moreover, some of the causal scenarios, such as the sensor 
failure, appeared to be critical to the safety of the software-controlled 
ship system. For the mitigation of some unsafe scenarios, the health of 
the sensors appeared to be more effective than the full redundancy of 
other physical components of the system. This is due to the STPA 
analysis results which unveiled the importance of the sensors providing 
feedback to the software controller and their real contribution to the risk 
of the system. With the STPA analysis, it was possible to map the in
teractions of the sensor and the software components of the analysed 
system, which was also reflected in the relatively high probability of the 
hazard node. In addition to the initial aim of the analysis, the application 
of the proposed methodology can reveal when the shore-based control 
operators are needed. This was identified, for example, when the SWC 
system controller was the cause of the UCA. Such information can 

support the system designers in defining the role of humans in the 
autonomous ship systems operation and when their supervisory role 
should switch to control role. In the case study, the experts involved in 
the analysis suggested that a redundant control module should be 
available as a means of controlling the SWC system when the main 
controller has an error. 

Although the proposed framework has been effective in meeting the 
objectives of this study, it showed some limitations. Finding the data to 
feed the model was challenging. The failure rates data that was 
employed in this study is conventional system data. However, using the 
data of the conventional ship system at this point is a realistic approach 
to support the decisions about the reliability and control of the future 
ship systems. In addition, an autonomous ship concept will require a 
cooling system that is most probably going to be similar to the current 
systems but with a different control setup. On the other hand, simulation 
data of the SWC system components can be also used when available to 
tackle the issue of data availability. It is also worth mentioning that the 
techniques combined in the framework do not cover all the steps of a 
complete marine risk assessment or FSA. Nevertheless, the proposed 
approach combines the strengths of STPA and BNs, which are widely 
considered good methods for hazard analysis and risk analysis. The 
uncertainty analysis for example, which is an important part of the risk 
assessment, was not covered in the proposed framework. Such analysis 
usually considers the assessment of the strength of evidence. Some 
published research work proposed generic approaches for the assess
ment of these uncertainties (Aven, 2013; Goerlandt and Reniers, 2016). 
Other studies suggested approaches that are tailored to STPA and BN (Lu 
et al., 2022; Wróbel et al., 2018).A similar approach can be considered 
to assess the strength of evidence when applying the method proposed in 
this work. Additionally, the cost of implementing the RCOs was not 
estimated and thus the CBA was not complete. Therefore, a potential 
future research can focus on investigating the possible integration of the 
RCM cost of implementation to the BN model since the cost analysis was 
beyond the scope of this work. This would then cover the cost-benefit 
analysis, thus provide a holistic ranking of the RCOs. In future 
research, applying the framework to a generic autonomous ship model 
for FSA can also be considered when adequate data becomes available. 
In this case, the unavailability of the SWC system due to an accident can 
be examined. Another future research topic can focus on analysing 
systems with multiple hazards to explore the effectiveness of the method 
with multiple interrelated hazards. This was not the case in the analysis 
of the SWC system because only one hazard was identified. 

6. Conclusion 

This paper presents an integration of STPA and BN through a risk- 
based model to identify and specify the priority order of RCOs. The 
proposed framework is applicable for the purpose of marine risk 
assessment and FSA. A case study of SWC in the machinery plant of a 
ship is considered to verify the applicability of the proposed framework. 
The system was assumed to operate without onboard-human interven
tion while monitored by the shore-based crew. The first part of the 
proposed methodology starts with the application of STPA steps. The 
outcomes of STPA then constitute the basis for the qualitative modelling 
of the BN in the second part. Lastly, the CPTs of the developed BN model 
are filled with the data to enable the reasoning process and extract useful 
information to make risk-informed design decisions. The application of 
the framework was systematic and straightforward due to the structured 
outcomes of STPA, which has been considered as a support for modelling 
the BN. 

The methodology allowed estimating the probabilities of different 
nodes incorporated in the BN model and predicting the probability of 
different risk levels specified for the system. In addition, the proposed 
framework allowed the identification of the safety-critical aspects of the 
analysed system and the effective RCMs to control the risks of these 
aspects. The intensive testing of the software controller functionalities 
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and the sensor health monitoring techniques appeared to be substantial 
for reducing the risks associated with the autonomous SWC system. 

To ensure the system operates at a minimum possible risk level (low), 
backward analysis is carried out in the BN model to determine the 
critical probability values of the root nodes. This STPA-BN model can 
also suggest the prioritization of recognized RCOs using backward and 
forward propagations that can be exploited by ship designers, safety 
engineers, and policymakers to analyse any target systems of the 
autonomous ship. 
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Appendix  

Control the seawater cooling system 

Element type Main question Answer to the main question Additional question Answer to additional 
question 

A-Feedback 1-What information does the operator need 
for controlling the seawater cooling system  

- The actual seawater 
temperature.  

- The actual seawater 
pressure.  

- The differential water 
pressure at the coolers.  

- The pumps status (running/ 
stopped).  

- The valves status (open/ 
closed).  

- The active alarms. 

2-From where is the information 
provided?  

- The system components 
sensors.  

- The interface of the 
software controller. 

B-Control actions 3-What are the actions taken as output of the 
specified function?  

- Set the mode of operation 
(automatic/manual).  

- Set the setpoint of alarms.  
- Set the setpoint for standby 

pumps operation.  
- Start/stop the pumps.  
- Open/Close seawater inlet 

valves.  
- Open/close valves to switch 

between coolers.  

4-To which function, sub-function or 
component is the output given?  

- The system software 
controller.  

- To the system 
components (pumps, 
valves). 

C-Controlled process 5-To which function, sub-function, or 
component is the output given? 

Given in the previous answer NA  

D-Other inputs to, outputs 
from components 

6-What other information can influence the 
operator actions 

No more answers NA   
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