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a b s t r a c t

This paper proposes a novel combined event-based simulation model for assessing the explicit demand
response potential of electric vehicle (EV) charging networks. The model utilizes different multivariate
copulas in generation of realistic artificial charging events that effectively retain the complex de-
pendency structures and parameter distributions of real data important for accurate demand response
simulation. A deterministic model is used to estimate the maximal explicit demand response potential of
individual charging events based on technical requirements of the frequency containment reserve for
disturbance situations (FCR-D) market. The proposed model achieved a mean absolute percentage error
(MAPE) of 3.27% when considering averaged daily dispatchable FCR-D potentials, and a MAPE of 4.65% in
prediction of dispatchable FCR-D potential with one workweek of data. The results and methodology
have been verified and validated with real life data and through comparison with a previous non-copula
application for EV FCR profile estimation which it outperformed. The combined event-based simulation
model can boost active participation of EVs in power network balancing and is suitable for use in various
practical and theoretical applications.
© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The rapidly accelerating electrification of transport, happening
simultaneously with large-scale increase in variable renewable
energy sources, can causemajor technical challenges for power grid
balancing. However, by smart control of electric vehicle (EV)
charging, the negative grid impacts of EV charging can be mini-
mized and the charging loads can even be used to support grid
stability [1]. Smart control of EV charging is one example of de-
mand side flexibility and demand response (DR) [1,2].

Traditionally demand response is defined as end-users’ inten-
tional adjustment of electricity consumption based on external
signals [3]. Implicit, or time-based, demand response programs
encourage consumers to shift their demand based on time-varying
electricity pricing [4]. Explicit, or incentive-based, DR programs are
used to aggregate loads that can be controlled when system sta-
bility is at risk [4]. Participation in explicit demand response is

encouraged through monetary incentives. These incentive-based
DR programs aim to supplement generation resources in
resolving system and local capacity constraints, and are used to
retain system reliability especially during contingency or emer-
gency events [5]. Frequency containment reserves (FCR) are an
example of explicit DR aiming to retain the grid frequency at a
nominal level. FCR markets are generally reasonable marketplaces
for EV charging flexibility due to a focus on capacity availability
rather than utilization [6]. In the Nordics, FCR is further divided into
two types: FCR-N for normal operation, and FCR-D for disturbance
situations [7]. Procured frequency containment reserves can be
further divided into upwards and downwards balancing, where
upwards balancing means either an increase in electricity pro-
duction or a decrease in electricity consumption, and vice versa for
downwards balancing. When considering non-V2G (non-bidirec-
tional) EV charging, upwards balancing entails a decrease in elec-
tricity consumption, that is, a decrease in the EV charging power. In
this case, a maximum upwards activation can be achieved by
decreasing the EV charging power to zero.

The minimum capacity of a single bid on the Nordic FCR-D
market is 1 MW [8]. This implies that multiple EV charging
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events must be aggregated to fulfill the minimum capacity for
participating on the FCR-D marketplace. The reserve market
agreement includes a penalty clause for undelivered reserve ca-
pacity and the hourly bids for the following day must be submitted
before 18:30, making the estimation of dispatchable EV charging
load a predictive modelling problem. That is, in order to effectively
participate on the FCR-D market, the demand response aggregator
will require predictive models that can accurately estimate the
dispatchable load profile of the following day. As the marketplace
operates on the marginal price principle, accurate dispatchable
load modelling is also important when considering the demand
response aggregator bidding strategy, which has been studied, for
instance, in Refs. [9e11]. Different explicit demand response mar-
ketplaces share similar terms and conditions as the Nordic FCR-D
denoting that accurate prediction of dispatchable EV charging
loads is important worldwide. That is, for EVs to actively participate
in power network balancing, accurate simulation models are
needed.

Majority of previous research involving EV charging load
modelling is based on driver behavior and travel survey datasets
[12e21], EV trials [22e24], or theoretical scenarios [25,26]. Esti-
mation of EV charging load profiles is possible based on travel
surveys and driving pattern datasets [27], but these vehicle usage-
based modelling approaches require multiple assumptions and can
be regarded mostly theoretical as the data does not properly cover
EV charging [28]. Some studies also utilize mathematical models
based on fixed hourly EV charging patterns to construct EV
charging load profiles that can be utilized in different modelling
problems [29,30]. Due to methodological restrictions and as the
utilized data does not cover actual EV charging events, these ap-
proaches are unable to fully consider the variability of EV charging
which is important in practical-scale demand response modelling.

Event-based simulationmodels, which utilize EV charging event
data and approach the EV charging demand modelling problem
from the charging point perspective are still less common than the
previous approaches. As these models utilize real charging events,
they can better capture the inherent variability of local charging

behavior and can thus be used in more accurate local charging
demand modelling and prediction. EV load forecasting based on
charging event data has been studied, for instance, in Refs. [31e33].
In EV demand response modelling, it is especially important to
retain all variability connected to EV charging, as matching esti-
mated dispatchable loads with demand response events is very
time-specific and specific to the considered ancillary service
marketplace.

There exists some prior research that utilize event-based
simulation models in estimation of EV demand response poten-
tial. In Ref. [32], the authors developed deterministic models that
can be used to calculate maximum FCR loads providable by indi-
vidual charging events. The deterministic models used in
conjunction with a stochastic bidding strategy to maximize profit
were evaluated with real public EV charging event data [32]. Au-
thors of [34] used historical data of vehicle availability with actual
charging power, battery size and state-of-charge at arrival and
departure, to develop a two-stage stochastic optimization problem
that maximizes the profit of a risk-averse EV aggregator on the day-
ahead FCR market. In Ref. [33], Divshali & Evens developed an
application to estimate the optimum day-ahead bidding profiles for
EV charging stations in FCR markets. This application used deter-
ministic models and historic data from Finnish public EV chargers
to calculate the expected and economically optimal FCR profiles of
the charging network non-continuously one day at a time. These
previous approaches however do not retain the correlation struc-
tures of EV charging events in DR simulation. Disregarding
parameter correlations can lead to substantial estimation errors in
power consumption profile estimation according to Ref. [35].

This study proposes a novel event-based simulation process for
estimating the explicit demand response potential of EV charging
networks. The model utilizes multivariate copulas in EV charging
event generation in a similar manner as introduced in Ref. [36].
Copula functions are especially suitable for modelling problems
involving data with complex non-normal dependencies between
variables and where inclusion of variable dependence is crucial. As
the variables of EV charging events have significant non-normal

Nomenclature

Abbreviations
CPO Charging point operator
DR Demand response
EV Electric vehicle
EVSE Electric vehicle supply equipment
FCR Frequency Containment Reserve
FCR-D Frequency Containment Reserve for Disturbances
FCR-N Frequency Containment Reserve for Normal

Operation
MAPE Mean absolute percentage error
TSO Transmission System Operator
V2G Vehicle-to-Grid, bidirectional power flow

Indices and index sets
i Index for charging events
t Time index (hour), 1, …,T

Symbols: Symbol Unit Description
CFCR�D MW Maintained volume (capacity) of FCR-D
CFCR�N MW Maintained volume of FCR-N

Cprequalification MW Maintained reserve verified by
prequalification test

DEV MWh Maximal FCR-D potential of a single EV
charging event

Dnetwork MWh Maximal FCR-D potential of an EV charging
network

Echarging MWh Energy charged during a charging event
Emax MWh Maximum energy charged during a charging

event
Pmax MW Maximum charging power
Pmin MW Minimum power of a reserve unit
Ppower setting MW Current power setting of the reserve unit
tcharging h Time needed to charge the required energy
tflex hMaximum flexibility activation time of the resource
tplug�in h Overall time the EV is plugged-in to the charging

point
Tcharge hh:mm Time of day of, end of energy transfer/

charging
Tend hh:mm Time of day of, end of a charging event (plug-

out)
Tstart hh:mm Time of day of, start of a charging event

(plug-in)
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dependencies [36], and as ignoring these kinds of correlations can
lead to substantial estimation errors in power consumption profile
estimation [35], the use of copulas in EV charging modelling
problems is justified. Copula functions retain variable correlation
structures very well in data sampling [36], which is important in
accurate event-based EV DRmodelling. Previously copula functions
have, for instance, been used to optimize and model charging
schedules of EVs participating in implicit DR [37,38], to analyze the
impact of EV charging on microgrids [39], to model EV charging in
energy management algorithms [40], and to simulate EV charging
events [36]. However, there exists no previous studies applying
multivariate copulas with real EV charging event data in maximal
FCR-D potential simulation. This study aims to bridge this research
gap between explicit demand response modelling, event-based EV
charging simulation and multivariate copulas.

The proposed combined event-based EV DR simulation model
utilizes different copula functions with different EV charging event
subgroups to retain the distinctness of the groups and to improve
prediction accuracy. Based on Kendall's tau-b coefficients, variable
correlation matrices and the Kolmogorov-Smirnov test, the gener-
ated artificial sample retains the correlation structures and distri-
butions of real input data including event FCR-D potentials very
well. This synthetic EV charging event sample is used in a deter-
ministic model to estimate and predict the aggregated FCR-D po-
tential of the charging network. The combined event-based model
can be modified to function on different explicit demand response
marketplaces by adjusting the equations used in the DR potential
calculation. The proposed methodology is verified and validated
with real charging event data and through comparison with a
previous non-copula application for EV FCR estimation presented in
Ref. [33].

The presentedmethodology introduces important contributions
to the state-of-art research. The novel combination of different
multivariate copulas, event-based EV charging simulation and
explicit demand response modelling enables highly accurate EV DR
simulation. The process can be utilized either with real charging
event datasets or with pre-existing charging event dataset de-
pendency coefficients, and it performs well even with fairly short
historical datasets, such datasets covering one workweek. Accurate
simulation of explicit demand response is important in multiple
practical and theoretical use cases ranging from day-to-day bid
estimation on DR marketplaces to future smart grid planning.
Overall, the proposed methodology can help to boost active
participation of EV fleets in power network balancing through ac-
curate predictive EV DR simulation.

2. Methods

The methodology proposed in this study to simulate the de-
mand response potential of EV charging networks can be divided
into two main parts. In the first part, the multivariate copula pro-
cedure is used to generate artificial EV charging events. The
multivariate copula procedure can use either existing dependency
information or real charging event datasets in this data generation.

The second part of the methodology focuses on assessment of
the demand response potential of the generated charging event
pool. The equations for the DR potential assessment vary between
DR marketplaces. In this study, the Nordic Frequency Containment
Reserve for Disturbances (FCR-D) market and equations provided
by Nordic transmission system operators (TSOs) are used to assess
the DR potential of charging events.

2.1. Multivariate copula procedure for charging event generation

Accurate EV charging event simulation is challenging with

traditional methods assuming independent parameters due to
complicated multivariate dependencies between charging event
variables [41,42]. One efficient way of retaining these complex
dependency structures in modelling and data sampling is the uti-
lization of multivariate copulas [36,43,44]. This paper utilizes and
improves the multivariate copula model, developed in Ref. [36], for
EV charging event generation based on a real charging event
dataset. The multivariate copula procedure can be used in effective
analysis, simulation and generation of synthetic EV charging events
as it retains the inherent variability and parameter dependencies of
real charging events [36].

Copula functions are essentially multivariate cumulative distri-
bution functions with uniform one-dimensional marginal distri-
butions that can be used to capture and describe dependencies
between random variables. In simulation applications, copulas are
especially useful in synthetic data sample generation, as they
enable generation of data points that adhere either to a specified or
observed joint distribution. The resulting data sample preserves the
variable nature of real instances, and can thus be used to model
real-world systems such as EV charging networks accurately
[36,44].

This study utilizes and improves the multivariate copula pro-
cedure and the copulas introduced in Ref. [36] for artificial charging
event generation. The Student-t & Gaussian copulas, from the
elliptical copula family, achieved the best goodness-of-fit statistics
in the multivariate copula comparison conducted in Ref. [36] with
EV charging event data. The five most popular copulas (Gaussian,
Student-t, Clayton, Frank and Gumbel) are compared for each data
subgroup to find the best performing combination for FCR-D
simulation. In this study, the multivariate copula procedure is
improved to utilize different copula functions with different EV
charging event subgroups to better retain the distinctness of the
groups and to improve DR prediction accuracy. Additionally, to
improve the reliability of the model in time-sensitive explicit de-
mand response modelling, the copula charging event sampling is
modified to be conducted separately for each hour of the day. The
inherently distinct subgroups of the EV charging data are presented
in section 2.4. Detailed mathematical formulation of the afore-
mentioned copulas are not presented here due to space constraints,
but can be found, for instance, in Refs. [44,45].

The improved multivariate copula procedure used for data
generation from real-life EV charging datasets is summarized in
Fig. 1. When using the procedure with pre-existing dependency
coefficients, the process begins from the step “Copula coefficients”.
Detailed description of the procedure can be found in Ref. [36].
Differing from Ref. [36], this study conducts the copula sampling
separately for each hour of the day, as this improves the reliability
of the model in time-sensitive FCR-D modelling.

2.2. Equations for explicit demand response potential calculation

2.2.1. Reserve units in the Nordic FCR-D marketplace
The Nordic power system is a highly integrated transnational

system that comprises of Finnish, Swedish, Norwegian and Danish
power systems and has connections to multiple additional power
systems. The Nordic power systems shares a common electricity
market, Nord Pool. Nordic transmission service operators utilize
and procure multiple different ancillary services to maintain the
power system reliability. For instance, Frequency Containment
Reserve for Disturbances (FCR-D) is an active power reserve
currently used to limit grid frequency deviation to 49.5 Hz during
frequency disturbances.

Fingrid, the Finnish TSO, provides the following equation [46]
for ancillary service providers that can be used to solve the main-
tained volume (capacity, MW) of FCR-D, CFCR-D. Here, the Pmax/min of
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the original TSO equation is set as the minimum power, Pmin, of the
reserve unit as we are essentially calculating the FCR-D volume of a
consumption facility, in our case the FCR-D volume of electric
vehicle charging without V2G discharging.

CFCR�D ¼max
h
min

�
abs

�
Pmin � Ppower setting

�
� CFCR�N ;Cprequalification

�
;0

i (1)

As in this study, we are assessing exclusively the potential of
FCR-D, equation (1) can be simplified by setting the volume of the
Frequency Containment Reserve for Normal Operation maintained,
CFCR-N, to zero. When working with EV charging data, the actual
volume of the reserves cannot be verified by prequalification tests,
so we further must simplify the equation by removing Cprequalifica-
tion. Pmin can also be considered as zero if the EV charging can be
interrupted during a demand response event. These simplifications
lead to equation (2), where Ppower setting is the current power setting
of the reserve unit excluding any activated reserve power.

CFCR�D ¼ Ppower setting (2)

That is, the maximum possible FCR-D volume of an interruptible
EV charging event is the actual charging power. When assessing a
fleet of charging EVs, it can be assumed that the maximum
momentary FCR-D potential is the aggregated power of the
charging network.

FCR reserves should be capable of full activation for the entire
delivery period. Exception to this are reserve units with limited
activation capabilities, for instance energy storages which might
become completely empty if needed to activate fully for the entire
delivery period, these resources must be capable to a full activation
of at least 30 min per direction [47]. Non-V2G EV charging on the
FCR-D marketplace does not fulfill the terms of a limited activation
capability reserve unit, and thus the aggregated EV charging load
should be capable of full activation for the entire accepted delivery
period.

2.2.2. Assessing the maximal FCR-D potential of EVs
Currently, Fingrid procures only FCR-D upwards. Upwards

balancingmeaning either an increase in electricity production, or in
non-V2G EV charging case, a decrease in electricity consumption. A
load can be activated as an upwards FCR-D resource after the EV
charging has begun.

The maximum activation time of the resource, tflex, can be
considered as the maximum time the load can be activated without
influencing the energy transfer to the EV. This available flexibility
time, tflex, can be calculated by subtracting the time needed to fulfill
the energy requirement of the EV, tcharging, from the overall time the
EV is plugged-in to the charger, tplug-in. If the charging power is
presumed constant, the charging time can be calculated by dividing
the energy charged during the event by the charging power as
show in equation (3).

tflex ¼ tplug�in � tcharging ¼ tplug�in �
Echarging

P
(3)

In other words, the EV must begin charging at the latest tflex

after the start time of the charging event Tstart for the EV to charge
an equal amount of energy as in the normal charging case. This
latest time to begin charging can also be denoted with Tcharge. That
is, the maximum FCR-D upwards potential of an EV charging event
occurs when the charging load is decreased to zero right after the
start of the charging event, and when the actual charging is con-
ducted as late in the charging timeframe as possible. Fig. 2 illus-
trates this hypothetical scenario where the Pmax load occurring at
time Tstart indicates that the charging time before demand response
activation is assumed zero to calculate the maximum possible FCR-
D upwards potential. It should be noted that, it is unlikely for the
FCR-D activation to happen immediately after EV plug-in and the
activation rarely happens in full volume. Additionally, in reality, the
charging power does not remain constant when charging an EV
battery to full capacity.

This means that the maximum volume of FCR-D activation is
Pmax before the time Tcharge. If t denotes a time during a charging
event, the maximum volume of FCR-D activation in this time is
defined by equation (4) as,

CFCR�D;iðtÞ¼
�
Pmax;i
0

t � tflex
t > tflex

(4)

Thereby when considering a single EV charging event, the
maximal FCR-D potential, DEV, can be calculated by multiplying the
maximum power of the charging event, Pmax, by the time, tflex, as
expressed in the following equation (5).

DEV ¼ Pmax*tflex (5)

Thus, the theoretical maximum FCR-D potential can be regarded
to be the actual energy charged by the EV subtracted from the
maximum energy that could have been charged during the plug-in
time of the EV, Emax, as show in equation (6).

DEV ¼ Pmaxtflex ¼ Pmax

�
tplug�in � tcharging

�

¼ Pmaxtplug�in � Echarging ¼ Emax � Echarging (6)

It should be noted that if the full maximum FCR-D would be
activated, and if the EV would be unplugged before the end time of
the charging event, the energy demand of the EV would not be
fulfilled. However, the majority of under frequency events where
FCR-D resources are activated have durations of less than 30 min
[48], implying that even if the EV would be unplugged prior to the
end time of the event, the energy demand of the EV would be
fulfilled almost always.

In the case of an aggregated electric vehicle charging network,
the total maximal explicit demand response potential of the
network can be calculated with equation (7) by summing up all DR
potentials of individual charging events, i.

Dnetwork¼
Xi

0

DEV ;i ¼
Xi

0

�
Pmax;i*tplug�in;i � Echarging;i

�
(7)

Fig. 1. Multivariate copula procedure for synthetic charging event generation, adapted from Ref. [36].
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2.3. Charging power estimation

Charging point operators, CPOs, do not always record the real-
ized charging powers of EV charging events. The reason for this can
range from electric vehicle supply equipment, EVSE, hardware
limitations, to the CPO not needing the power time-series for
invoicing, as charging rates are generally either energy or time-
based. For instance, the EV charging event datasets utilized in
Refs. [33,36,49] did not include the realized charging powers of
charging events. This problem is apparent also in open EV charging
event datasets such as in Ref. [50].

From the perspective of the power grid, the realized charging
power is the most important variable of EV charging, as it can be
used, for instance, to predict and simulate the impact EV fleets have
on the grid. Actual charging power is also needed to calculate the
FCR-D potential of EVs with equation (5). To utilize datasets
without recorded charging powers, the charging powers of singular
charging events must be estimated based on known variables. This
can be done by calculating the average charging power based on
the charger power rating, duration and the amount of energy
drawn during a charging event, as in Refs. [33,49,51,52]. However,
this naive method does not consider the power restrictions of EV
onboard chargers occurring when charging on AC-charging points
and can lead to poor reliability.

Electric vehicle charging can be roughly divided to AC and DC
charging based on the EVSE output current type. In DC charging,
the EVSE output can be used directly to charge the EV battery, while
in AC charging the EV onboard charger is needed to convert the
EVSE output AC to DC used to charge the battery. International
standard, IEC 61851e1:2017, refers to DC charging as Mode 4 EV
charging, and to AC charging from a permanently connected AC
charging point as Mode 3 charging. Charging Modes 1 and 2 utilize
standard household socket-outlets, do not utilize dedicated EV
charging points, and are not intended for permanent use. The main
difference between dedicated AC (Mode 3) and DC (Mode 4) EV
charging is illustrated in Fig. 3.

In this study, we utilize the same method, for estimation of
realized charging powers of charging events conducted on different
EV charging Mode EVSE, as in Ref. [36]. That is, for charging events
conducted on Mode 4 DC EVSE, the maximum charging power,
Pmax, can be fixed equal to the chargers’maximum power, as the DC

output can be used directly to charge the EV battery [53]. In Mode 3
(AC) charging, the EV has to utilize its onboard charger to convert
the available AC to DC needed to charge the EV battery. Due to
weight, space and cost-constraints, EV onboard chargers typically
have lower maximum power ratings thanmodernMode 3 charging
points, meaning they act as constraints for the actual charging
power [54]. Thus, for Mode 3 EVSE, the power ratings of the EV
onboard chargers should be taken into account to reach more
reliable results in charging power estimation.

As the EV model conducting the charging event is not recorded,
it is impossible to identify the maximum charging power of the
onboard charger. However, it is possible to estimate the fleet
average onboard charger power based on local registration statis-
tics and manufacturer specifications. This estimated fleet average
power is utilized in this study as the first guess for the EV charging
power, if it is unable to fill the realized charging need, the EV on-
board charger has a higher power rating, and the charging power is
calculated by dividing the charged energy with event duration. If
the calculated power exceeds the maximum power of the EVSE, the
charging event is discarded as erroneous.

In this study, the fleet average onboard charger power is esti-
mated to be around 5.5 kW based on Finnish Transport and Com-
munications Agency Traficoms EV registration statistics [55]. This
estimated value is well below 22 kW, the most common AC charger
power rating of our charging event dataset. The fleet average on-
board charging power differs between market areas and should be
recalculated when utilizing EV charging event data from other lo-
cations. Charging power estimation presented in this subsection
becomes redundant if utilizing charging event data with recorded
charging powers.

2.4. Description of the charging event dataset

The private EV charging event dataset used in this study was
gathered from Finland's largest charging point operator (CPO). The
initial data processing and cleaning of the dataset was conducted
similarly as, for instance, in Ref. [51]. That is, during data cleaning,
the clearly erroneous charging events (events with NULL values,
zero energy transfer and impossible charged energies), events
conducted on bus and test EVSE, and events lasting either less than
1 min or longer than a week were discarded from the dataset. After

Fig. 2. Maximal FCR-D activation, EV charged as late as possible during a charging event.
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data processing and cleaning, the dataset covered around 150,000
real charging events conducted on CPO operated private Mode 3
(AC) and Mode 4 (DC) EVSE between January 2018 and June 2019.
IEC standardized EV charging Mode 3 is commonly referred to as
primary EV charging, and Mode 4 as EV fast charging [53,56]. These
private EVSE are located on private properties, for instance at de-
tached houses and parking lots of apartment and office buildings
and are thus not intended for extensive public use.

The dataset does not contain any slow home charging events
(IEC Modes 1 & 2) made through standard socket-outlets. Due to
their lack of dedicated charger units and a CPO, Mode 1 andMode 2
charging events can be regarded as non-controllable and non-
aggregable and thus their absence does not affect the explicit de-
mand response potential of EV charging. In the future, charging
eventsmadewithout a dedicated charger unit could also be utilized
in demand response, if a CPO or a DR load aggregator could control
the charging event, for instance, through the EV itself. However,
charging Modes 1 and 2 are commonly regarded as temporary
solutions that will fade out as dedicated EVSE become more
common.

The most important variables of the utilized dataset are start
time, end time, charged energy, duration, station id, and the
maximum charging power of the charger. Of these, start time, en-
ergy and duration are used in the multivariate copula procedure to
generate synthetic charging events. Event generation is conducted
separately for AC and DC chargers, and for weekdays and holidays,
to reduce the computational complexity while retaining inherent
distinctness of these four subgroups (ACWeekday, ACHoliday, DCWeek-

day, DCHoliday). Actualized charging powers of charging events are
not recorded by the CPO due to charger hardware restrictions;
these values are estimated based on other known parameters as
discussed in section 2.3.

2.5. Validation & model comparison

The proposed combined event-based simulation model was
validated by building it up incrementally and validating each
component first separately and then together. The methodology for
viable activation powers, flexibility times and the resulting FCR-D
potentials were first tested separately in simple cases where the
optimal operation could be verified. The most suitable multivariate
copula (Gaussian, Student-t, Clayton, Frank or Gumbel) for each of
the four main subgroups (ACWeekday, ACHoliday, DCWeekday, DCHoliday),
was chosen based on Akaike and Bayesian information criteria and
the fit of the dispatchable FCR-D potential curve. The results of the
multiparameter copula procedure were validated by comparing the
dependency information of generated artificial data to the original

datasets, and by the two-sample Kolmogorov-Smirnov test. Addi-
tional verification of the methodology was obtained by comparison
of the averaged dispatchable FCR-D potentials gained with the
original and artificial datasets.

The proposed model was also validated and compared with an
existing non-copula EV FCR profile application presented by Div-
shali & Evans in Ref. [33]. The application of Divshali & Evans was
developed utilizing EV charging event data from the same country,
and addressed the same FCR-D marketplace, and thus presented
the most viable available comparison point for our methodology.
This application is freely available from Ref. [52] and was used to
generate comparable FCR-D profiles with the dataset of our study
used as the input. Due to differing assumptionsmade in themodels,
regarding for instance the AC charging powers, flexibility times and
time-resolution, the correct functioning of the deterministic part of
our model was further validated through trial runs with the same
base assumptions as in Refs. [33,52].

3. Results

The results section is organized as follows. First, we cover the
results of the dependency analysis that was conducted between the
assessed demand response potential and other charging event
parameters on the original real EV charging dataset. These de-
pendencies shed light on which of the parameters affect the de-
mand response potential of EV charging events. The following
subsection concentrates on assessment of the reliability of the
multivariate copula procedure to the EV FCR-D simulation problem,
including dependency analysis of the artificial charging event
dataset and validation of the averaged daily flexibility potentials.
Next, the proposed framework is used to estimate the future FCR-D
demand response potential of an EV charging network. The final
subsection focuses on validation and comparison of the model with
a pre-existing non-copula FCR-D potential estimation model
developed in Ref. [33].

3.1. Dependencies between demand response potential and
charging event parameters

The most important variables used to calculate the maximum
FCR-D potential of EV charging events with (6) are the charged
energy (Echarging), plug-in duration (tplug-in) andmaximum charging
power (Pmax). The starting time of the charging event, Tstart, would
also be crucial for calculating the value of the DR potential on the
hourly ancillary markets.

The dependencies between the most important charging event
variables and the solved demand response potential were

Fig. 3. IEC EV charging Modes 3 and 4.
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examined via Pearson's, Kendall's and Spearman's correlations.
According to all of the examined correlation coefficients, there
exists significant correlation between the demand response po-
tential, the charging duration and the charged energy amount.
These correlations can be verified from Kendall's correlation matrix
(Fig. 4), where three red stars represent a significant correlation
with p-value being equal or less than 0.001. The Kendall rank cor-
relation coefficient, also known as Kendall's tau, is a measure of
rank correlation that does not assume normal distribution of
variables.

Based on Fig. 4, the duration of the charging event and the FCR-D
potential have a clear monotonic relationship, that is, the longer a
charging event is, the larger the FCR-D potential. The smaller
distinct subgroup with a steeper correlation in this potential-
duration subplot is caused by events made on high power DC-
chargers. There exists a relatively strong positive Kendall's tau-b
correlation between the duration and FCR-D potential, a moder-
ate positive correlation between charged energy and duration, and
a weak positive correlation between energy and FCR-D potential
ranks. These positive rank correlations imply that longer charging
events have more exploitable FCR-D potential and that the amount
of energy charged during these events is greater. The rank corre-
lations between the start time of the charging event and other
variables are quite weak and negative, however, the start time
(within each day) is a cyclic quantity with zero set (arbitrarily) at
midnight, and these correlations could be regarded as somewhat
arbitrary.

Examined Pearson's and Spearman's correlation matrices give
corresponding results to Kendall's correlation matrix, the only
major difference being that according to Pearson's correlation co-
efficients, there exists no significant linear correlation between the
start time and duration variables. The lack of linear correlation is
understandable due to the cyclical nature of time within a day.

Based on these results, the null hypothesis, that there exists no
correlation between the considered variables, can be rejected on a
99.9% confidence level. Additionally, as can be seen from Fig. 4, the
variables do not clearly follow any standard probability distribution
function. The presence of these correlations and the nonstandard
probability distributions substantiates the use of the multivariate
copula procedure in EV explicit demand response potential
simulation.

3.2. Multivariate copula procedure assessment

For assessment and validation purposes, the multivariate copula
procedure was used to generate a synthetic charging event sample
of the size as the original sample. The demand response potentials
for generated events were calculated as described in 2.2. By
comparing the resulting dataset with the original dataset, the
suitability and fit of the multivariate copula procedure for event
generation can be assessed. As discussed in 2.5, multiple copula
functions were tried for each of the four subsamples (ACWeekday,
ACHoliday, DCWeekday, DCHoliday), based on Akaike and Bayesian in-
formation criteria, and averaged daily FCR-D potential shapes, the
Gaussian copula was found to be the best fit for the AC Holiday
subsample, whereas the Student-t copula was found to be most
suitable for the other 3 subsamples. These copulas were used to
generate equal amounts of artificial charging events as in the
original subsample groups. The Kendall's correlation matrix for this
artificial multivariate multicopula EV event sample is presented in
Fig. 5.

As can be seen when comparing Fig. 5 with Fig. 4, the variable
distributions and correlation coefficients are very similar in the
artificial and original datasets. That is, the generated artificial
sample retains the correlation structures and coefficients of the
original dataset very well. For instance, the procedure retains the

Fig. 4. Kendall's tau-b correlation matrix for the dataset (three stars represent p-value � 0.01).
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clear monotonic positive relationship between the FCR-D potential
and the duration of charging events, with only small 2% (0.01)
deviation between the Kendall's tau-b coefficients of the original
dataset and copula sample. There are also no great differences in
the other correlation coefficients and scatter plots between original
data (Fig. 4) and synthetic data (Fig. 5). Pearson's and Spearman's
correlation matrices give similar results to Kendall's correlation
matrix implying good performance of the synthetic data generation
process.

The two-sample Kolmogorov-Smirnov test was further applied
to confirm the similarity of the simulated sample variables with the
original dataset (see Table 1). The null hypothesis of the two-
sample Kolmogorov-Smirnov test is that these samples are drawn
from the same distribution.

The p-values of the variables are all well above the 5% signifi-
cance level, so the null hypothesis cannot be rejected. High p-values
and low values for the KS statistic imply a high probability that the
samples are drawn from similar distributions.

The theoretical maximal FCR-D potentials, maximal volumes
and flexibility times for the original and artificial event samples
were calculated as described in 2.2.2. As described, these values can
also be used to graph the dispatchable FCR-D during a certain time.
Fig. 6 demonstrates the daily averaged dispatchable FCR-D poten-
tial in the assessed private EV charging network on weekdays and
holidays. The figure includes the averagedmomentary dispatchable
FCR-D of both the original data and the artificial event sample

gained with the multivariate copula procedure and can be thus
used to assess the suitability of the multivariate copula procedure
to this use case.

As can be seen from Fig. 6, the procedure can be used to model
the momentary dispatchable FCR-D with a high reliability. The
mean absolute percentage error (MAPE) of weekdays is 3.03% and
of holidays 3.78%, resulting in an average MAPE of 3.27%. The total
FCR-D potentials of average weekdays and holidays with the syn-
thetic copula sample were respectively 1.78% and 1.74% less than
with the original dataset.

The predictive ability of the proposed simulation procedure can
be demonstrated by utilizing one workweeks data to predict the
following weeks momentary dispatchable FCR-D potential. In Fig. 7,
the charging events of the weekdays of the week 21/2019 were
used to predict the dispatchable FCR-D potential of the following
week without any public holidays. As can be seen, the momentary
dispatchable FCR-D of the artificial copula sample correlates well,
MAPE 4.65%, with the curve of the following week plotted with real
data. That is, the model can be used to estimate future dispatchable
FCR-D, and the model performs quite well with as little data as five
days.

The predictive ability was verified with randomly picked
workweeks from every month of the year in order to dismiss
possible seasonal variation and bias. The dispatchable FCR-D po-
tential curves from the copula model were compared with the
curves of the following real weeks. This resulted in prediction
MAPEs ranging from 4.65% to 23.8%, with an average of 13.38%.
There exists a strong linear dependence between MAPE and the
number of events in the input week dataset, that is, the procedure
performs distinctly better with more input data. The model per-
forms similarly with holidays and weekends, with similar-sized
input datasets. Prediction performance can be improved by utiliz-
ing more input data, for instance, data from multiple previous
weeks. However, as the number of EVs is currently growing sharply,

Fig. 5. Kendall's tau-b correlation matrix for the copula sample (three stars represent p-value � 0.01).

Table 1
Kolmogorov-Smirnov test results.

Start time Energy Duration

KS statistic 0.00095 0.00341 0.00226
p-value 0.99999 0.39550 0.87182
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there is more and more EV charging data to be used in the pre-
dictive model and the prediction accuracy of the model should
continue to improve.

3.3. Estimating future demand response potential

When estimating the future FCR-D potential of EV charging
networks with the proposed method, an estimation of the future
charging demand is required. When the future charging energy
demand is known, we can use the multivariate copula procedure to
generate a large enough artificial charging event sample to fulfill
the charging demand and use equation (7) to calculate the FCR-D
potential of this charging network.

As an example of this use case of the methodology, we esti-
mated the FCR-D potential of Finland in the year 2030. The charging
demand of the Finland in 2030 case, is calculated based on the
assumption that Finnish government's goal of 250,000 EVs by 2030
is fulfilled, and that the average yearly vehicle travel distances
would not change considerably from the present. If this whole fleet
would run only on electricity, that is, include only full EV's and

plug-in hybrid EV's utilizing no other fuels than electricity, the
demand would be around 750 GWh per year in 2030.

Almost 88.1 million charging events simulated with the
Student-t copula were needed to fulfill this future EV energy de-
mand. For this event population, the aggregated theoretical
maximum demand response potential would be around 1.63 TWh.
For an average weekday, this would mean an FCR-D potential of
around 5.3 GWh, and for an average holiday 2.6 GWh. The yearly
value of this dispatchable FCR-D potential on the yearly market-
place would be around 2.8 million V, assuming the same yearly
market price as in 2021 (1.80 V/MW,h). The averaged dispatchable
FCR-D potential for weekdays and holidays in 2030 is presented in
Fig. 8. It can be seen that the largest dispatchable volume coincides
with office hours of weekdays. It should be noted that the charging
powers are assumed similar to the original dataset, and the tech-
nological advances in EV charging can cause significant alterations
to the shape of the future dispatchable FCR-D curve and to the FCR-
D potential estimations.

Fig. 6. Averaged dispatchable FCR-D potential, weekdays and holidays.

Fig. 7. Prediction of dispatchable FCR-D potential, one workweek of data.
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3.4. Model comparison

There exist no previous studies utilizing multivariate copulas in
event-based EV FCR-D estimation which complicates valid bench-
marking of our model. However, as discussed in chapter 2.5, it is
possible to use the application proposed by Divshali & Evens
[33,52] to validate the correct functioning of the deterministic part
of our model and as a reasonable comparison point for our meth-
odology. Direct comparison between the results of [33] and results
presented in this paper is debatable due to differing input data.
With the dataset of our study used as the input, the Divshali
application produced an expected FCR-D potential of approxi-
mately 3.5 MWh for a given day. This value is 27% less than the
generic daily averaged dispatchable FCR-D potential of the copula
model presented in Figs. 6, and 28% less thanwhen calculated with
the original data. The differences are even larger in near-term
prediction with the one workweek dataset used in Fig. 7. The re-
sults of the application [52], do not differ between weekdays and
holidays, so the generic daily averaged FCR-D can be used as a valid
reference point.

The differences in simulated FCR-D potentials are partly
explainable by differing base assumptionsmade in this study and in
Refs. [33,52]. For instance, the authors of [33] utilize a minimum
flexibility time of 30 min, a time-resolution of 15 min, calculate
maximum charging powers for AC charging events naively based
on charged energy and duration per customer ID, and do not
consider the differing charging behavior between weekdays and
holidays. Additionally, the application [33,52] does not properly
consider charging events continuing over midnight, leading the
FCR potentials reset to zero every midnight.

In FCR-D prediction with one workweek of data used as the
input, the Divshali application produces a 1.9% larger expected daily
FCR-D flexibility potential than our deterministic model with
similar flexibility time, AC charging power, and time-resolution
assumptions as in Ref. [33]. That is, the deterministic model pro-
duces quite similar results as the application of [33,52] with similar
base assumptions. However, due to other differing assumptions and
calculation methods in the hard-coded application [52], there still
exists differences between the FCR-D potential curve shapes, for
instance, the potential with [52] unrealistically resets to zero every
midnight.

4. Discussion and conclusions

This study introduced a novel event-based EV FCR-D simulation
model that utilizes multivariate copulas in synthetic charging event
generation. Based on our results, the model performs highly accu-
rately in both charging event generation and FCR-D potential pre-
diction. The proposed methodology reaches a MAPE (mean
absolute percentage error) of 3.27% when comparing the averaged
daily dispatchable FCR-D potentials of the original dataset and
artificial copula data. The MAPE of our model is less than 10% so it
can be regarded as highly accurate based on [57], and it is well
below the maximum allowable MAPE threshold of 8% utilized in
Ref. [38] for EV load profile simulation.

Applicability of the proposed methodology to different predic-
tive modelling tasks was demonstrated with two examples, First,
the method performed well when utilizing only data from one
week's working days to estimate the momentary dispatchable FCR-
D of the following week reaching a MAPE of 4.65% when using the
data from the week with most charging events as the input. There
existed an almost linear correlation between prediction MAPE and
the number of events in the input week dataset, that is, the pro-
cedure performed distinctly better with more input data. In the
second example, the model was used to estimate the FCR-D po-
tential of the Finnish EV charging network in the year 2030. Based
on the results, the aggregated theoretical maximum demand
response potential could be asmuch as 1.63 TWh in 2030, assuming
similar driving and charging behavior as today. This estimation is
intrinsically prone to advances and changes in i.e., the EV charging
technology and ancillary power markets. It should be emphasized
that the maximal FCR-D potentials estimated in this study are
theoretical maxima, and the realistically exploitable potentials can
be significantly lower due to, for instance, actual driver and
marketplace behavior.

The proposed simulation model was verified and validated with
real data and through comparison with a previous non-copula
application for EV FCR simulation. Based on the Kolmogorov-
Smirnov test, Kendall's tau-b coefficients and FCR-D potential
MAPEs, the model performs highly accurately in both charging
event generation and FCR-D potential prediction. Comparison with
the non-copula application for EV FCR simulation [33] validated the
deterministic part of our model. However, based on this model
comparison, it can be noted that the modelling assumptions,
especially regarding AC charging power estimation, have a signifi-
cant impact on estimated FCR potential.

Fig. 8. Averaged daily dispatchable FCR-D potential in the year 2030.
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The main source of uncertainty in this study arises from the
quality and quantity of the input data. For instance, the absence of
realized charging powers in the charging event dataset has a
considerable impact on explicit demand response potential
assessment. As the CPOs do not log realized EV charging powers,
these must be assessed based on other variables and external in-
formation to estimate dispatchable demand response potential of
EVs, which naturally induces uncertainty to the results. In our
study, this uncertainty was curtailed by utilizing the average EV
fleet onboard charger power in AC charging power estimation
process. The weakness could be remedied completely if the CPOs
implemented a way to log the realized charging powers of EV
charging events. Additionally, as the dataset used in this study
contains only charging events conducted on one CPOs private
charging points, and thus lacks public charging and the most
common charging method (household socket), there exists
considerable uncertainty in the future FCR-D potential estimation
scenario. These shortcomings could be overcome with larger and
more extensive EV charging event datasets.

It should be noted that the aforementioned shortcomings and
uncertainties arise mainly from input data and modelling as-
sumptions. That is, the multivariate copula procedure used to
generate artificial charging events based on real input data retains
accurately the correlation structures and distributions of the orig-
inal data crucial for accurate explicit demand response estimation.
The proposed combined event-basedmodel can also bemodified to
function on different explicit demand response marketplaces by
adjusting the equations and assumptions used in the demand
response potential calculation. These notions support the general-
izability of this study, as the proposed methodology can be used in
any location with adequate amount of input data available.

In future research, the methodology proposed in this study
should be refined to consider the bidding andmarket aspects of the
FCR trade more thoroughly, as has been done for instance in
Refs. [32,34]. Subsequently, the model can be adapted to utilize the
methodology in estimation of practically exploitable DR. To provide
more pragmatic benefits for possible demand response aggregators
and EV owners, the refined simulation model should also be able to
simulate the FCR-D prices and activation periods. Additionally, it
would be useful to utilize more extensive datasets in future studies,
especially useful would be the inclusion of charging events con-
ducted at non-CPO controlled household chargers. To further verify
the operation, control and exploitable DR potential of aggregated
EV charging on DRmarketplaces, it would be important to carry out
experimental studies in co-operation with TSOs, CPOs, demand
response aggregators and EV owners.

Overall, this study has shown that the novel combination of
multivariate copulas and event-based deterministic demand
response estimation models provides a highly accurate method for
explicit EV demand response simulation. Accurate explicit demand
response simulation models are essential to facilitate large-scale
active participation of EVs in power network balancing. The pro-
posed methodology can be utilized in various practical and theo-
retical applications ranging from the demonstrated maximal FCR-D
potential estimation to future smart grid planning.
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