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A Transactive-Based Control Scheme for Minimizing
Real-Time Energy Imbalance in a Multiagent

Microgrid: A CVaR-Based Model
Sajjad Fattaheian-Dehkordi , Graduate Student Member, IEEE, Mehdi Tavakkoli , Ali Abbaspour ,

Hesam Mazaheri , Mahmud Fotuhi-Firuzabad , Fellow, IEEE, and Matti Lehtonen

Abstract—Power systems are undergoing significant transfor-
mations due to the introduction of microgrids (MGs) and dis-
tributed energy resources (DERs). In this regard, MGs as new
entities in the system facilitate the integration of independently
operated DERs to the power system. In this structure, DERs would
be operated by independent agents, while the microgrid’s control
unit (MCU) would coordinate agents’ resource scheduling to max-
imize social welfare. In this structure, the uncertainty of resources
operated by agents could lead to real-time energy imbalance in
the MG resulting in agents’ loss of profits. Consequently, a novel
transactive-based-scheme is developed in this article to facilitate
flexibility service exchange between the agents to minimize the real-
time energy imbalance in the MG. In this context, MCU provides
independent agents with bonuses as transactive signals to exploit
their operational scheduling while addressing privacy concerns.
The proposed framework increases the overall social welfare as
well as minimizes the dependence of the MG on the upper-level
system to ensure the demand–supply balance in the MG. Finally,
this scheme is implemented on an MG with a multiagent structure
to investigate its effectiveness in minimizing the real-time energy
imbalance in the system.

Index Terms—Distributed energy resources (DERs), microgrid
(MG), multiagent system, real-time energy imbalance, renewable
energy, transactive control.

NOMENCLATURE

Sets

i,ΩAgent Index and set of agents.
n, t Iteration n and the real-time inter-

val.
t′ Index of time.
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Δt Index of time step.
st Scenarios.
k Agents {IDemand, IESS, IDG, IEV}.
Neg/Pos Index of negative/positive.
Ch/Dis Index of charge/discharge.
sell/buy Index of sell/buy.

Parameters

ρ Penalty factor for updating bonus.
λsell
t′ , λ

buy
t′ Price of sell/buy energy at t’.

CLS
k Cost of load shedding for agent k.

τDst , τ
ESS
st , τDG

st , τ
EV
st Probability associated with the st

scenario in the operational man-
agement of demands/ESSs/DGs/
EVs agents.

αD, αESS, αDG, αEV Confidence level considered by
demands/ESSs/DGs/EVs agents.

βD, βESS, βDG, βEV Risk parameter considered by de-
mands/ ESSs/DGs/EVs agents.

ΔP i
n,t Change in operational scheduling

of agent i at t in the iteration n of
running the framework.

ΔP
Min,Pos/Neg,D
k,t′,st , The minimum/maximum possible

ΔP
Max,Pos/Neg,D
k,t′,st increase/decrease in load de-

mands for agent k at t’ in scenario
st.

ΔP
Max,Pos/Neg,Ch/Dis,ESS
k,t′,st Maximum possible increase/de-

crease in charging/discharging of
agent k at t’ in scenario st.

ΔP
Max,Pos/Neg,CDG
i,t′,st Maximum possible increase/de-

crease in power generation of the
conventional distributed genera-
tion units for agent k at t’ in sce-
nario st.

ΔP
Min,Pos/Neg,Ch/Dis,EV
k,t′,st , Minimum/maximum possible

ΔP
Max,Pos/Neg,Ch/Dis,EV
k,t′,st increase/decrease in charging/

discharging of EVs for agent k at
t’ in scenario st.

DSOCMin,ESS/EV
k,t′,st , Minimum/maximum possible

DSOCMax,ESS/EV
k,t′,st change of ESSs’/EVs’ states of

charge for agent k at t’ in scenario
st.
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E
ESS/EV
k Maximum energy level of

ESSs/EVs for agent k.
SOCRequested

k,t′ , SOCArrival
k,t′ State of the charge of EVs when

leaving/arriving the stations/
homes for agent k at t’.

η
Ch,ESS/EV
k , η

Dis,ESS/EV
k Charging/discharging efficiency

associated with ESSs/EVs for
agent k.

CCDG
k Operational cost of the conven-

tional distributed generation units
for agent k.

EDemandRT,EDemandDA Real-time and day-ahead ex-
pected demands.

Variables

bPos
n,t, b

Neg
n,t Announced positive/negative

bonuses in iteration n at t.
ψD
st, ψ

ESS
st , ψDG

st , ψ
EV
st Auxiliary variable to help MPC

modeling in optimization of de-
mands/ESSs/DGs/EVs agents.

ξD, ξESS, ξDG, ξEV Auxiliary variable in MPC
method for detecting the high-cost
scenarios in demands/ESSs/DGs/
EVs agents.

FD/ESS/DG/EV Objective function of operational
management of demands/ESSs/
DG/EVs agents.

ΔP
Neg,D/CDG
k,t′,st , Decrease/increase in power

ΔP
Pos,D/CDG
k,t′,st consumption/generation by de-

mands/CDGs for agent k at t’ in
scenario st.

LSk,t′,st Load shedding for agent k at t’ in
scenario st.

PRT,D
k,t′,st, P

DA,D
k,t′ Scheduled expected flexible de-

mands for agent k at t’ in scenario
st.

ΔP
Neg,Ch,ESS/EV
k,t′,st , Decrease/increase in charging of

ΔP
Pos,Ch,ESS/EV
k,t′,st ESSs/EVs for agent k at t’ in sce-

nario st.
ΔP

Neg,Dis,ESS/EV
k,t′,st , Decrease/increase in discharging

ΔP
Pos,Dis,ESS/EV
k,t′,st of ESSs/EVs for agent k at t’ in

scenario st.
DSOCESS/EV

k,t′,st Change in the state of the charge
of ESSs for agent k at t’ in scenario
st.

SOCDA,EV
k,t′ State of charge of EVs in day-

ahead scheduling for agent k at t’

in scenario st.

I. INTRODUCTION

LATTERLY, by unprecedented integration of distributed
energy resources (DERs), including renewable energy

sources (RESs) and local flexible resources [i.e., conventional

distributed generations (CDGs), flexible load demands, and elec-
tric vehicles (EVs) along with energy storage systems (ESSs)] in
power systems, significant challenges have been raised in distri-
bution networks. Moreover, due to the power system privatiza-
tion in recent years, DERs are typically operated by independent
agents in local systems [1]. In this regard, the traditional power
designs need to be restructured to facilitate the installation of
the local resources operated by independent agents. As a result,
microgrids (MGs) are introduced as entities responsible for the
efficient management of independently operated DERs in order
to facilitate their integration into power systems [2]. In this
respect, as a new and practical concept in modern grids, MGs
play a significant role to modify the existing systems to future
smart grids that are bounded in a localized area in the distribution
level [2], [3].

Considering these facts, to effectively enable the operation
of an MG composed of independently operated agents, a novel
approach should be developed in which each agent pursues its
own objectives (i.e., agents’ total cost minimization). In this
structure, the MG’s control unit (MCU) would also strive to
efficiently coordinate agents operational scheduling in order to
maximize the overall social welfare. Consequently, in terms
of the utility’s as well as independent agents’ perspectives,
MCU can facilitate the efficient integration of independently
operated local resources into the power system. In this new
structure, agents schedule their local resources in day-ahead
and real-time markets to maximize their profits, whereas MCU
enables flexibility service exchanges between agents. It should
be noted that due to uncertainties associated with local resources
(i.e., RESs and load demands), energy imbalance could exceed-
ingly be imposed on the MG scheduling during the real-time
optimization [4]; therefore, agents could face real-time high
market prices for ensuring demand–supply balance. That is why,
a novel control management framework seems to be required
to enable flexibility exchange among agents in the real-time
operational management. In this vein, new-developed control
management concepts, such as transactive energy (TE) [5], [6],
could be employed to incentivize rescheduling of independently
operated flexible resources in order to decrease the real-time
energy imbalance in the MG.

Liu et al. [7] present a hybrid stochastic/robust bidding strat-
egy in scheduling of MGs considering uncertainties made by
intermittent DERs, load variation, and market prices to minimize
total costs in mixed-integer linear programming (MILP). In this
context, forecasted scenarios are presented to efficiently handle
uncertainties associated with decision parameters in the day-
ahead operational optimization. To minimize the electricity and
dis-satisfaction costs, a multiagent home energy management
is presented in [8] by considering electricity price and solar
photovoltaic (PV) uncertainties. In [2] and [3], a hierarchical
multiagent energy management strategy (EMS) and a distributed
robust EMS are developed for the operational management of
MG systems. In this regard, the provided scheme in [2] strives
to maximize the usage of RESs in the system, while Liu et al.
[3] aim to minimize the total MGs’ cost in the real-time energy
market by considering uncertainties of RESs and load demands,
respectively. Violante et al. [9] present a novel MILP EMS

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



FATTAHEIAN-DEHKORDI et al.: TRANSACTIVE-BASED CONTROL SCHEME FOR MINIMIZING REAL-TIME ENERGY IMBALANCE 3

model based on the predictive control (MPC) for the operational
management of an isolated MG with the aim of considering
uncertainties of thermal units while minimizing fuel costs. To
coordinate the MG’s net-load and mitigate the net-load ramping,
a flexibility-oriented MG optimal scheduling model is presented
in [10]. Furthermore, a coordinated energy dispatch based on
MPC is presented in [11] to enable exchanging energy between
the distribution network operator and MGs as well as improving
RESs utilization. Moreover, to minimize the electricity purchase
costs, the conditional value at risk (CVaR) optimization model is
deployed in [12], which show the application of CVaR concept in
modeling the operational risks associated with the uncertainty
of decision parameters in energy systems. Papadaskalopoulos
et al. [13], [14] have studied the participation of flexible de-
mands in day-ahead market in a decentralized manner using
Lagrangian relaxation principles, which show the importance of
flexible demands in peak demand alleviation and operation of
the system. However, this approach has not studied the energy
imbalance minimization in real-time operation of a multiagent
MG. Moreover, the application of TE as well as the stochastic
programming, CVaR, and MPC technique are not investigated
in the developed approaches in [13] and [14].

In [15], a two-stage robust stochastic programming model
is proposed to maximize expected profits and minimize the
imbalance cost in the real-time balancing market considering
optimal MGs scheduling coupled with RESs’ uncertainties. Li
et al. [16] present a novel bilateral TE trading framework to
handle technical as well as economic issues in energy trading
by considering detailed designs for PV penetration. To minimize
the aggregated MGs’ operational costs, a multiperiod distributed
TE scheme with the aim of preserving information privacy is
proposed in [17]. In [18], a real-time EVs charging optimization
in a TE scheme is suggested to handle the uncertainties of
RESs and maximize the profits. This article merely focuses
on activating EVs’ flexibility by providing the upper control
unit with the changes in their power requests in case of re-
ceiving a TE signal. As other TE research articles, in order
to maximize profits for the residential buildings, a multiagent
TE scheme is presented in [19] to preserve consumers’ privacy
with full decision-making authority. Finally, Tavakkoli et al.
[20] present a bonus-based model to activate the participa-
tion of heat demands to provide flexibility services for wind
power aggregators. In this article, the proposed framework is
dependent on the exchanging information of operational char-
acteristics associated with the heat demands to the aggregator
by the purpose of modeling the Stackelberg game and deter-
mining the bonuses associated with the contribution of each
agent.

Based on the previous studies in efficient energy management
of an MG, coordination of multiagent systems, and real-time
energy imbalance optimization in power systems, efficient op-
erational coordination of independent agents to minimize the
real-time energy imbalance in an MG has not yet been inves-
tigated in previous research works. It is noteworthy that the
coordination of independent agents in this structure is con-
ducted by MCU, which is a nonprofit entity and just strives
to facilitate exchanging flexibility services among the agents

to minimize energy imbalance in the MG. Therefore, to well
address the above-mentioned research gap, a novel approach is
presented in this article to minimize the energy imbalance in
an MG composed of multiagent components utilizing the TE
concept. In this regard, the developed framework leads to limit
the information exchange between MCU and flexible resources
operated by independent agents to address the increasing privacy
concerns while improving the system flexibility.

In the developed scheme, each agent independently oper-
ates its local resources, while the MCU strives to coordinate
their scheduling by the purpose of maximizing social wel-
fare. In this regard, TE signals are devised to be offered to
independent agents operating flexible resources to minimize
the energy imbalance costs in the real-time operation of the
multiagent MG. The cost of balancing real-time supply and
demand will be minimized under an iterative TE-based approach
in which MCU provides bonuses to flexible resources to incen-
tivize their contribution to energy imbalance minimization. Each
agent would maximize its profits (i.e., minimize its operational
costs) while improving the system flexibility. In this regard,
the real-time scheduling of local resources in each agent is
adjusted by taking into account the MPC concept to consider
the operational conditions of the agent as well as the system
in future time periods. Moreover, the stochastic optimization
and CVaR concept are taken into account to address the un-
certainty of optimization parameters and model the perspective
of each agent toward its respective risk in real-time operational
management.

Note that the proposed algorithm would also enable the
MCU to coordinate the agents’ operation in the case that
the upper-level network could not provide flexibility service to
the agents of the MG for balancing supplies and demands during
the real-time optimization. According to the above discussions,
the proposed framework for energy imbalance minimization in
real-time management would enable the MG to operate indepen-
dently as well as privately by decreasing its dependence on the
upper-level network for ensuring the balance between supplies
and demands during the real-time operation. Furthermore, the
proposed framework could be employed by MCU to incentivize
the contribution of flexible resources in the provision of the
flexibility service to the utility of the main grid. Besides, different
kinds of flexible resources are taken into account in this article to
discuss their contribution to providing flexibility service during
the real-time operation; while, sensitivity analysis is employed
to study the effects of agents’ viewpoints toward the risk on
the operational scheduling, flexibility service exchanges, and
received bonuses.

The rest of this article is organized as follows. In Section II,
the structure of the multiagent MG and the TE-based control
framework to facilitate flexibility service exchange between the
agents are presented. Then, Section III describes the proposed
mathematical formulations of defining TE signals by the MCU
and the real-time operational scheduling optimization conducted
by each agent. The results of implementing the proposed algo-
rithm on a multiagent MG to minimize the energy imbalance
in real-time operation are presented in Section IV. Finally,
Section V concludes this article.
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Fig. 1. Simplified TE-based coordination management of agents in a MG with
a multiagent structure.

II. METHODOLOGY

A. Multiagent Structure

By emerging the new resources in modern power grids,
MGs are developed to manage the independent agents that
operate their respective resources. Therefore, MCUs coordinate
the management of the agents to maximize the social welfare,
whereas each agent aims to maximize its respective profits. In
this regard, Fig. 1 presents a simplified TE-based control model
of an MG with a multiagent structure. In this framework, MCU
plays a vital role in coordinating the agents, which finally results
in facilitating the exchange of flexibility services, improving the
flexibility of the main grid, and engaging TE control signals to
maintain the privacy of independent agents. It is noteworthy that
without the loss of generality, in this article, it is considered that
each agent manages one type of flexible resources, i.e., CDGs,
ESSs, EVs, RESs, and flexible load demands.

B. Proposed TE-Based Framework

Based upon the control structure for an MG with a multiagent
structure, transactive control concept could be deployed by
defining bonuses to exploit the previous scheduling of flexible
resources conducted by each agent. In this vein, MCU could
allocate bonuses to minimize real-time energy imbalance and
facilitate the flexibility exchange among the agents. In detail,
the general objective is to minimize the overall operational costs
by considering maximizing the profits of independent agents
during the real-time operational management. In this regard,
in this article, bonuses as TE signals are employed by MCU to
incentivize the independent agents to reschedule their respective
flexible resources. This scheme facilitates flexibility exchange
between agents and benefits both entities; i.e., agents responsible
for real-time energy imbalance and the agents operating flexible
units. Consequently, the developed framework by minimizing
the real-time energy imbalance, while considering the profit
maximization of independent agents, would result in the im-
provement of the overall social welfare.

According to Fig. 2, the announced bonuses are iteratively
revised by the MCU to minimize the energy imbalance in the

Fig. 2. Proposed framework for minimizing the real-time energy imbalance
in a multiagent MG.

real-time optimization for the current interval. In addition, each
agent takes into account the MPC concept to model future time
periods while optimizing the scheduling of their resources in
the current time interval. In this scheme, stochastic optimization
is employed by each agent to consider uncertainties associated
with parameters, such as real-time prices, in future time peri-
ods. Furthermore, the risk associated with the uncertainty of
operational parameters in the resource scheduling optimization
of each agent is modeled utilizing the CVaR concept. Finally,
the information exchange between each agent and the MCU is
limited to the accumulated power request by each agent and TE
signals, which is a great opportunity to keep the agents’ privacy.

III. MATHEMATICAL FORMULATIONS

A. TE Signals Definition

Regarding the operational management of local resources,
one of the primary reasons for real-time energy imbalance
occurrences would be the uncertainties associated with nondis-
patchable local resources, i.e., RESs and load demands. On the
other hand, based on the independent operation of each agent,
agents would have to balance the supply and demand based upon
real-time prices, i.e., price of selling/purchasing power from the
main grid. As a result, the framework strives to enable activating
flexibility service from the flexible resources to minimize the
real-time energy imbalance in the MG. Note that the offered
bonuses would finally be compensated by the agents responsible
for energy imbalance at each time dispatch. Furthermore, TE
signals would be updated in an iterative manner by MCU to
minimize the energy imbalance in the MG.

The mathematical formulation of determining bonuses in the
proposed scheme is presented in (1). It can be seen in the case that
the MG has to purchase power from the main grid to maintain
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the power balance; positive bonuses (i.e., bPos
t ) are defined to in-

centivize agents in order to increase their generation or decrease
their consumption. Opposite to the above condition, the negative
bonuses (i.e.,bNeg

t ) would be announced by the MCU to persuade
agents in order to decrease their power generation or increase
their consumptions. It is noteworthy that when the main grid
could provide the overall real-time energy imbalance in the MG,
bPos
t /bNeg

t would be increased up to the differences between the
real-time purchasing and selling prices, which would also assure
the convergence of the proposed approach in finite steps. In other
words, in this condition, flexibility service exchange between
the agents would benefit both parties, i.e., agents responsible for
energy imbalance and the agents providing flexibility service.
However, in case that the energy provided by the main grid to
address the real-time energy imbalance in the MG is limited, the
proposed scheme could be continued until the step that assures
the supply–demand balance in the MG. See (1a)–(1d), shown at
the bottom of this page.

In case the real-time energy imbalance becomes zero due to
the contribution of flexible resources, by increasing the offered
bonuses, the system would confront with energy imbalance in
a different direction. In other words, by increasing the bonuses,
the increase/decrease in the power generation/consumption of
the resources could again result in the energy imbalance in the
system. In this regard, as the proposed framework is based on
updating bonuses in an iterative discontinuous way, in some
cases, the increase in bonuses could cause real-time energy
imbalance in a different direction. In this condition, in order
to ensure the energy imbalance of the system would be equal
to zero, the permissible change in selling/purchasing power of
agents would be limited as follows:

ΔP i,Allowable
t = ΔP i

n−1,t

+
(
ΔP i

n,t −ΔP i
n−1,t

) ·
( ∑

i∈ΩAgent

ΔP i
0,t

)
( ∑

i∈ΩAgent

ΔP i
0,t −

∑
i∈ΩAgent

ΔP i
n,t

) ,

i ∈ ΩAgent (2)

where ΔP i,Allowable
t shows the permissible amount of change

in the power scheduling of agent i. Note that as the offered
bonus would be equal to the iteration n, the contribution of the
agents would be limited proportionally to ensure the real-time

energy imbalance at time period t

(
i.e.,

∑
i∈ΩAgent

ΔP i,Allowable
t

)
becomes zero. In the following sections, the optimization models
conducted by the agents of the MG are presented. In this regard,
it is noteworthy that the change in the day-ahead operational
scheduling of the flexible resources would be considered in
the operational scheduling models developed for real-time op-
timization of each agent.

B. Scheduling of Flexible Demands

Flexible load demands could revise their scheduling in or-
der to provide the flexibility service based upon the received
bonuses. In this regard, the optimization model associated with
the scheduling of flexible demands in the current time dispatch
utilizing the MPC and CVaR concepts to maximize their respec-
tive profits is presented as follows:

MaxFD (3a)

Subjectto :

FD,3
st = FD,1

st + FD,2
st

(3b)

FD,1
st =

∑
k∈IDemand

⎛
⎜⎜⎝
(
bPos
t′ + λsell

t′
)
ΔPNeg,D

k,t′,st ·Δt
−
(
λ

buy
t′ − bNeg

t′

)
ΔP Pos,D

k,t′,st ·Δt
−LSk,t′,stC

LS
k ·Δt

⎞
⎟⎟⎠
∣∣∣∣∣∣∣∣
t′=t

(3c)

FD,2
st =

∑
t′∈[t+1,t+T ]

∑
k∈IDemand

⎛
⎜⎜⎝
(
λsell
t′,st

)
ΔPNeg,D

k,t′,st ·Δt
−
(
λ

buy
t′,st

)
ΔP Pos,D

k,t′,st ·Δt
−LSk,t′,stC

LS
k ·Δt

⎞
⎟⎟⎠

(3d)

FD,4 =
∑
st

τDstF
D,3
st (3e)

FD,5 = ξD −
(
1/

(1− αD)

)∑
st

τDstψ
D
st (3f)

FD = (1− βD) · FD,4 + βD · FD,5 (3g)

ξD − FD,3
st ≤ ψD

st (3h)

ψD
st ≥ 0 (3i)

Positive Bonus Negative Bonus

bPos
n,t = bPos

n−1,t − ρ×
( ∑

i∈ΩAgent

ΔP i
n−1,t

)
bNeg
n,t = bNeg

n−1,t + ρ×
( ∑

i∈ΩAgent

ΔP i
n−1,t

)
(1a)

where∑
i∈ΩAgent

ΔP i
0,t < 0

∑
i∈ΩAgent

ΔP i
0,t > 0 (1b)

bPos
0,t = 0 bNeg

0,t = 0 (1c)
bPos
n,t ≥ 0 bNeg

n,t ≥ 0 (1d)
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ΔP
Min,Pos/Neg,D
k,t′,st ≤ ΔP

Pos/Neg,D
k,t′,st ≤ ΔP

Max,Pos/Neg,D
k,t′,st

(3j)∑
t′∈[t,t+T ]

(
ΔP Pos,D

k,t′,st−ΔPNeg,D
k,t′,st

)
=EDemandRT−EDemandDA

(3k)

PRT,D
k,t′,st = PDA,D

k,t′ +ΔP Pos,D
k,t′,st −ΔPNeg,D

k,t′,st (3l)

0 ≤ LSk,t′,st ≤ PRT,D
k,t′,st (3m)

ΔP
Pos/Neg,D
k,t′,st =

∑
st

τDstΔP
Pos/Neg,D
k,t′,st

∣∣∣∣∣
t′=t

. (3n)

The objective function of the optimization model is presented
in (3a) and (3g), while (3b)–(3e) model the expected operational
profits associated with the scheduling of flexible load demands
in the current time dispatch (i.e., t) and the future T time intervals.
Moreover, (3f) shows CVaR, which is taken into account to
model the risk of operational scheduling of the flexible load
demands. In this context, αD is a confidence level that indicates
the right tail probability of density function [19]. Moreover,
βD is a risk parameter that defines the perspective of the flexible
load agent toward risk. Similar to αD , βD is bounded 0 to 1 and
the risk significance will be increased when its amount is closer
to 1 [21]. Additionally, (3h) and (3i) are modeled to provide a
linear formulation for CVaR term. Furthermore, the limitation
of flexible demands. variations in each time interval and each
scenario is defined in (3j); while (3k) imposes the energy that
should be provided to the demand in the respective time period.
Finally, (3l) and (3m) define the limitations for load shedding in
each time interval, and (3n) presents that the optimization results
for the real-time interval t are here-and-now decisions.

C. Scheduling of Storage Units

Storage units would play a vital role in MGs to provide
flexibility services to the utilities as well as independently op-
erated agents. In this regard, the stochastic optimization model
employed by ESS agents to schedule their charging/discharging
in the current time dispatch (i.e., t) while considering the T future
time intervals is as follows:

MaxF ESS (4a)

Subjectto :

F ESS,3
st = F ESS,1

st + FESS,2
st

(4b)

F ESS,1
st =

∑
k∈IESS

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(
bPos
t′ + λsell

t′
)
ΔPNeg,Ch,ESS

k,t′,st ·Δt
−
(
λ

buy
t′ − bNeg

t′

)
ΔPPos,Ch,ESS

k,t′,st ·Δt
+
(
bPos
t′ + λsell

t′
)
ΔPPos,Dis,ESS

k,t′,st ·Δt
−
(
λ

buy
t′ − bNeg

t′

)
ΔPNeg,Dis,ESS

k,t′,st ·Δt

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣
t′=t

(4c)

F ESS,2
st =

∑
t′∈[t+1,t+T ]

∑
k∈IESS

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(
λsell
t′,st

) (
ΔPNeg,Ch,ESS

k,t′,st

+ ΔPPos,Dis,ESS
k,t′,st

)
·Δt

−
(
λ

buy
t′,st

)(
ΔPPos,Ch,ESS

k,t′,st

+ ΔPNeg,Dis,ESS
k,t′,st

)
·Δt

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
(4d)

F ESS,4 =
∑
st

τESS
st F ESS,3

st (4e)

F ESS,5 = ξESS −
(
1/

(1− αESS)

)∑
st

τESS
st ψESS

st (4f)

F ESS = (1− βESS) · FESS,4 + βESS · F ESS,5 (4g)

ξESS − F ESS,3
st ≤ ψESS

st (4h)

ψESS
st ≥ 0 (4i)

0 ≤ ΔP
Pos/Neg,Ch/Dis,ESS
k,t′,st ≤ ΔP

Max,Pos/Neg,Ch/Dis,ESS
k,t′,st

(4j)

DSOCESS
k,t′+1,st = DSOCESS

k,t′,st +
1

EESS
k

×

⎛
⎜⎝ ηCh,ESS

k

(
ΔPPos,Ch,ESS

k,t′,st −ΔPNeg,Ch,ESS
k,t′,st

)
·Δt

−
(
ΔPPos,Dis,ESS

k,t′,st −ΔPNeg,Dis,ESS
k,t′,st

)
·Δt/

ηDis,ESS
k

⎞
⎟⎠

(4k)

DSOCMin,ESS
k,t′,st ≤ DSOCESS

k,t′,st ≤ DSOCMax,ESS
k,t′,st (4l)

0 ≤ PDA,Ch,ESS
k,t′ +ΔPPos,Ch,ESS

k,t′,st

−ΔPNeg,Ch,ESS
k,t′,st ≤ PMax,Ch,ESS

k · αCh,ESS
k,t′,st (4m)

0 ≤ PDA,Dis,ESS
k,t′ +ΔPPos,Dis,ESS

k,t′,st

−ΔPNeg,Dis,ESS
k,t′,st ≤ PMax,Dis,ESS

k · αDis,ESS
k,t′,st (4n)

αCh,ESS
k,t′,st + αDis,ESS

k,t′,st ≤ 1 (4o)

ΔP
Pos/Neg,Ch/Dis,ESS
k,t′,st =

∑
st

τESS
st ΔP

Pos/Neg,Ch/Dis,ESS
k,t′,st

∣∣∣∣∣
t′=t

.

(4p)

The objective function of the optimization model associ-
ated with scheduling of ESSs is presented in (4a) and (4g),
while (4b)–(4e) evaluate the expected operational profits asso-
ciated with the scheduling of ESSs in the current time dispatch
(i.e., t) and the future T time intervals. Furthermore, (4f)–(4i)
model the CVaR index, which is taken into account to model
the operational risk associated with the scheduling of ESSs.
Specifically, the uncertainty associated with the energy price
in the future time intervals could be modeled by a number of
scenarios and so CVaR addresses the operational risk associ-
ated with the developed operational scenario. Moreover, the
constraints over the increase/decrease in charging/discharging
of the ESSs are considered in (4j). The change in the state
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of charge of the ESSs in each time interval as well as their
respective limitations is defined in (4k) and (4l), respectively.
Furthermore, (4m)–(4o) are modeled to impede the simulta-
neous charging/discharging of the storage units at each time
interval. Note that PDA,Dis,ESS

k,t′ /PDA,Dis,ESS
k,t′ are the day-ahead

scheduling of ESS k at t′, while αCh,ESS
k,t′,st /αDis,ESS

k,t′,st are the binary
variables that determine the operational mode of the ESS k at t′

in scenario st. Finally, (4p) ensures that the optimization results
for the current time interval are here-and-now decisions.

D. Scheduling of CDG Units

CDGs are responsive resources that could be rescheduled
corresponding to the received bonuses. In this regard, the MPC-
based stochastic scheduling of the CDG units is developed as
follows:

MaxFDG (5a)

Subject to:
FDG,3
st = FDG,1

st + FDG,2
st

(5b)

FDG,1
st =

∑
k∈IDG

⎛
⎜⎜⎜⎜⎜⎜⎝

(
bPos
t′ + λsell

t′
)
ΔPPos,CDG

k,t′,st ·Δt
−
(
λ

buy
t′ − bNeg

t′

)
ΔPNeg,CDG

k,t′,st ·Δt
+
(
ΔPNeg,CDG

k,t′,st −ΔPPos,CDG
k,t′,st

)
CCDG

k ·Δt

⎞
⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣
t′=t

(5c)

FDG,2
st =

∑
t′∈[t+1,t+T ]

∑
k∈IDemand

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(
λsell
t′
)
ΔPPos,CDG

k,t′,st ·Δt
−
(
λ

buy
t′

)
ΔPNeg,CDG

k,t′,st ·Δt
+
(
ΔPNeg,CDG

k,t′,st

− ΔPPos,CDG
k,t′,st

)
CCDG

k ·Δt

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(5d)

FDG,4 =
∑
st

τDG
st F

DG,3
st (5e)

FDG,5 = ξDG −
(
1/(

1− αDG
))∑

st

τDG
st ψ

DG
st (5f)

FDG = (1− βDG) · FDG,4 + βDG · FDG,5 (5g)

ξDG − FDG,3
st ≤ ψDG

st (5h)

ψDG
st ≥ 0 (5i)

0 ≤ ΔP
Pos/Neg,CDG
i,t′,st ≤ ΔP

Max,Pos/Neg,CDG
i,t′,st (5j)

ΔP
Pos/Neg,CDG
k,t′,st =

∑
st

τDG
st ΔP

Pos/Neg,CDG
k,t′,st

∣∣∣∣∣
t′=t

. (5k)

The objective function of the CDGs scheduling optimization
model is presented in (5a) and (5g), while (5b)–(5e) determine
the expected operational profits of scheduling CDG units at the
current time dispatch (i.e., t) and the future T time intervals.
Furthermore, (5f)–(5i) present the CVaR index. Finally, the

limitations over the increase/decrease in power generation by
CDG units are considered in (5j), and the (5k) presents the
results of the optimization model at the current time interval
as here-and-now decisions.

E. Scheduling of EVs

EVs would become potential sources of flexibility in MGs by
the ongoing trend of increasing their role in transportations. As a
result, EV agents would optimize their scheduling in the current
time dispatch based upon the energy prices and bonuses offered
by the MCU. In this regard, the optimization model associated
with EVs’ agents is developed as follows:

MaxF EV (6a)

Subject to:
F EV,3
st = F EV,1

st + F EV,2
st

(6b)

F EV,1
st =

∑
k∈IEV

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(
bPos
t′ +λsell

t′
)
ΔPNeg,Ch,EV

k,t′,st ·Δt
−
(
λ

buy
t′ − bNeg

t′

)
ΔPPos,Ch,EV

k,t′,st ·Δt
+
(
bPos
t′ +λsell

t′
)
ΔPPos,Dis,EV

k,t′,st ·Δt
−
(
λ

buy
t′ −bNeg

t′

)
ΔPNeg,Dis,EV

k,t′,st ·Δt

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣ t′=t
&t′∈TV2G

(6c)

F EV,2
st =

∑
t′∈[t+1,t+T ]
&t′∈TV2G

∑
k∈IEV

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(
λsell
t′,st

) (
ΔPNeg,Ch,EV

k,t′,st

+ ΔPPos,Dis,EV
k,t′,st

)
·Δt

−
(
λ

buy
t′,st

)(
ΔPPos,Ch,EV

k,t′,st

+ ΔPNeg,Dis,EV
k,t′,st

)
·Δt

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
(6d)

F EV,4 =
∑
st

τEV
st F

EV,3
st (6e)

F EV,5 = ξEV −
(
1/(

1− αEV
))∑

st

τEV
st ψ

EV
st (6f)

F EV =
(
1− βEV

) · F EV,4 + βEV · F EV,5 (6g)

ξEV − F EV,3
st ≤ ψEV

st (6h)

ψEV
st ≥ 0 (6i)

ΔP
Min,Pos/Neg,Ch/Dis,EV
k,t′,st ≤ ΔP

Pos/Neg,Ch/Dis,EV
k,t′,st

≤ ΔP
Max,Pos/Neg,Ch/Dis,EV
k,t′,st (6j)

DSOCEV
k,t′+1,st = DSOCEV

k,t′,st +
1

EEV
k

×

⎛
⎜⎝ ηCh,EV

k

(
ΔPPos,Ch,EV

k,t′,st −ΔPNeg,Ch,EV
k,t′,st

)
·Δt

−
(
ΔPPos,Dis,EV

k,t′,st −ΔPNeg,Dis,EV
k,t′,st

)
·Δt/

ηDis,EV
k

⎞
⎟⎠

(6k)

DSOCMin,EV
k,t′,st ≤ DSOCEV

k,t′,st ≤ DSOCMax,EV
k,t′,st (6l)
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SOCDA,EV
k,t′ + DSOCEV

k,t′,st = SOCRequested
k,t′ , t′ = tout

k (6m)

SOCDA,EV
k,t′ + DSOCEV

k,t′,st = SOCArrival
k,t′ , t′ = tArrive

k (6n)

0 ≤ PDA,Ch,EV
k,t′ +ΔPPos,Ch,EV

k,t′,st

−ΔPNeg,Ch,EV
k,t′,st ≤ PMax,Ch,EV

k · αCh,EV
k,t′,st (6o)

0 ≤ PDA,Dis,EV
k,t′ +ΔPPos,Dis,EV

k,t′,st

−ΔPNeg,Dis,EV
k,t′,st ≤ PMax,Dis,EV

k · αDis,EV
k,t′,st

(6p)

αCh,EV
k,t′,st + αDis,EV

k,t′,st ≤ 1 (6q)

ΔP
Pos/Neg,Ch/Dis,EV
k,t′,st =

∑
st

τEV
st ΔP

Pos/Neg,Ch/Dis,EV
k,t′,st

∣∣∣∣∣
t′=t

.

(6r)

The objective function of the optimization model utilized by
EVs’ agents to schedule their resources is presented in (6a) and
(6g), while (6b)–(6e) model the expected operational profits
associated with the scheduling of EVs at the current time dis-
patch (i.e., t) and the future T time intervals. Note that TV2G

presents the time periods that the EV unit is connected to the
grid and could be charged/discharged. Equation (6f) represents
CVaR, which is deployed to model the risk of operational
scheduling of the EVs. Additionally, (6h) and (6i) are modeled
to provide a linear formulation for CVaR term. Moreover, the
limitations over the change in the charging/discharging of the
EVs are imposed by (6j). Furthermore, the change in the state of
the charge of the batteries of EVs in each time interval as well as
their respective limitations are defined in (6k)–(6n), respectively.
In addition, (6o)–(6q) are considered to impede the simultaneous
charging/discharging of the EVs at each time interval. Note that
PDA,Dis,EV
k,t′ /PDA,Dis,EV

k,t′ present the day-ahead scheduling of

EV agent, while αCh,ESS
k,t′,st /αDis,ESS

k,t′,st are the binary variables that
determine the operational mode of the EV units in scenario st.
Finally, (6r) ensures that the optimization results at the current
time dispatch are here-and-now decision variables.

IV. RESULTS

The developed scheme is applied on an MG composed of
PV units, wind power units, ESSs, EVs, flexible load demands,
and CDGs, which are operated by independent agents in order
to study the effectiveness of the framework in decreasing the
real-time energy imbalance in the system. Note that the op-
erational data of the system are adapted from [22]–[24] and
presented in [25]. Moreover, it is considered that, similar to the
conventional systems, the main grid could ensure the supply–
demand balance in the MG. Consequently, based on the previous
discussions, the offered bonuses at each time interval would be
limited to the difference between the power selling/purchasing
prices of power from the main grid. The proposed framework
would facilitate the flexibility service exchange among the MG’s
agents in order to decrease their real-time energy imbalance in a
cost-effective way. Respectively, MCU is the responsible entity
for providing transactive signals, while the agents causing the
energy imbalance would finally compensate the offered bonuses.

Fig. 3. Energy imbalance at each real-time period of operating the system.

Fig. 4. Transactive signals (i.e., bonuses) announced by the MCU.

It is noteworthy that the framework aims to optimize the energy
imbalance in the MG at each hour of the real-time operation of
the system. Based on the developed formulation, agents employ
stochastic optimization and CVaR index to model the uncertainty
of optimization parameters (i.e., energy price at future time
periods) and their respective risks. In this case study, it is consid-
ered that the agents would model 20 scenarios associated with
the energy price while participating in the proposed real-time
energy imbalance minimization. Moreover, it is considered that
the developed scenarios would have a similar probability of
occurrences.

In the first case study, it is considered that the real-time
operation of the MG over 24 h is studied, where the agents
considerβ as the risk factor to be 0.5 in their resource scheduling
optimization. In this regard, the energy imbalance in the MG
before/after implementation of the proposed scheme is presented
in Fig. 3, which shows the ability of the proposed framework
to cost-effectively minimize the real-time energy imbalance in
the system. Note that this would finally result in decreasing
the dependence of the system on the main grid for addressing
real-time energy imbalance; therefore, the framework would
improve the system’s flexibility and reliability. Furthermore, the
offered bonuses to the agents for exploiting the scheduling of
their flexible resources are shown in Fig. 4. It is noticeable that, at
some hours, the offered bonuses are smaller than the maximum
possible amounts, which means that, at these time intervals,
the energy imbalance of the system is merely alleviated by the
flexibility service provided by local responsive resources. In
other words, at these time intervals, the system would not rely on
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Fig. 5. Transactive signals and energy imbalance at hour 3 per iteration of
running the algorithm.

Fig. 6. Transactive signals and energy imbalance at hour 21 per iteration of
running the algorithm.

Fig. 7. Transactive signals and energy imbalance at hour 22 per iteration of
running the algorithm.

the upper-level power network to ensure the supply–demand bal-
ance. It should be noted that the information exchange between
the agents and the MCU is limited to the offered bonuses and
the accumulated change in power request of agents compared
with the day-ahead scheduling, which addresses the privacy
concerns in multiagent systems. In this regard, the MCU would
update the offered bonuses, while agents independently optimize
the scheduling of their flexible resources during the real-time
operation. The announced transactive signals and the energy
imbalance per iteration of running the algorithm at hours 3,
21, and 22 are presented in Figs. 5–7. According to (1), the
negative/positive value of the energy imbalance at each time in-
terval would determine that the positive/negative bonuses would
announce to the agents. In other words, based on the operational
condition of the system, the MCU would merely announce bPos

t

or bNeg
t , which is presented as the announced transactive control

Fig. 8. Flexibility service provided by each flexible resources in the MG.

Fig. 9. Share of each of the resources in the MG in providing real-time energy
imbalance.

Fig. 10. Bonuses received by each flexible resource for collaboration in
minimizing the real-time energy imbalance.

signal. Moreover, the MCU could increase the penalty factor ρ
in (1a) to increase its convergence speed based on the responses
of the agents.

The change in day-ahead power scheduling of flexible re-
sources (i.e., provided flexibility service) is presented in Fig. 8,
while the share of each type of flexible resources in supplying
the real-time energy imbalance at each hour is demonstrated
in Fig. 9. It is conceivable that the flexible resources play a
significant role in addressing the real-time energy imbalance
engendered by RESs’ uncertainties. Finally, flexible resources
receive the bonus (i.e., ΔP · b), as shown in Fig. 10, for their
contribution to minimizing the real-time energy imbalance at
each time period.

In the second case study, the operational condition of the sys-
tem in case that the agents employ different amounts of the risk
factor (i.e.,β) in their real-time resource scheduling optimization
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Fig. 11. Total amount of bonuses received by each kind of flexible resources
in different case studies.

Fig. 12. Total benefits and the proportion of the benefit to the offered bonuses
in different case studies.

is analyzed. In this respect, the total amount of bonuses received
by each kind of flexible resources over the 24 h for collaboration
in minimizing the real-time energy imbalance is presented in
Fig. 11. Furthermore, the benefit of the system (i.e., the decrease
in operational cost of providing real-time energy imbalance from
the main grid) over 24 h and its proportion to the total amount
of received bonuses by flexible resources for contribution in
minimizing the real-time energy imbalance are demonstrated in
Fig. 12. Note that, at time periods, the offered bonuses are less
than the maximum range of bonuses, as presented in Fig. 4; the
real-time energy imbalance of the system is alleviated without
exchanging power with the main grid and so the operational cost
of the system is decreased. In addition, the ratio of the benefit to
the total amount of bonuses received by the agents is decreased
as the β increases, which means as the agents become more
risk-averse, their benefit would be decreased. This is based on
the fact that as the agents become more risk-averse, they would
be less incentivized to reschedule their resources due to the
uncertainties of decision parameters. Fig. 13 shows the real-time
energy imbalance in the system after the implementation of the
proposed framework. Similar to the previous discussion, the total
amount of energy imbalance of the system over the 24 h (i.e.,∑

T

∑
i∈ΩAgent

|ΔP i
t |) is increased as the agents become more

risk-averse. In this regard, the total amount of energy imbalance
over 24 hours from 111 MWh before implementing the proposed
framework is, respectively, decreased to about 61, 62, 72, and
73 MWh for case studies that β equals to 0, 0.2, 0.6, and 1.

Fig. 13. Energy imbalance in the system after the implementation of the
proposed framework in different case studies.

V. CONCLUSION

This article proposes an efficient decentralized mechanism
in order to manage the real-time energy imbalance in an MG
composed of independently operated agents. In this regard,
transactive control signals are designated to incentivize agents
operating flexible resources to reschedule their resources to
minimize the energy imbalance in the MG. Respectively, the
provided scheme facilitates flexibility service exchange among
agents while addressing their privacy concerns. Moreover, the
proposed approach benefits the MG by maximizing the social
welfare of the system as well as decreasing its dependence on
the main grid to ensure supply–demand balance. The interaction
between MCU and agents is limited to accumulated power
requests and transactive signals in order to address the privacy
concerns.

The proposed mechanism is applied on an MG consisting of
independent agents scheduling CDGs, RESs, EVs, ESSs, and
flexible demands, which demonstrates the effectiveness and sig-
nificance of the developed approach in minimizing the real-time
energy imbalance in the system. Moreover, the impacts of risk-
averse/risk-seeker preferences of agents on their collaboration
in minimizing the real-time energy imbalance and so the sys-
tem benefits are thoroughly investigated. Finally, the presented
results indicate that the proposed approach would minimize the
real-time energy imbalance in the MG in a cost-effective way.
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