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A B S T R A C T   

The additive manufacturing (AM) process generates new material challenges with associated features like in-
ternal defects and inherent surface roughness, reducing fatigue performance. This paper introduces a new 
approach to characterizing internal defects and surface irregularities of additively manufactured stainless steel 
316L samples using X-ray computed tomography (XCT). This method overcomes the limitations of previous 
methods and can effectively provide holistic information on the surface topologies of AM components. An 
equivalent defect size, ̅̅̅̅̅̅̅̅̅̅̅̅̅̅areaeff

√ , based on defects’ features and the interaction of internal and surface imper-
fections, is proposed for fatigue life and failure origins prediction.   

1. Introduction 

Metal AM is overgrowing as a disruptive technology with the capa-
bility of revolutionizing how products from different industrial sectors 
such as aerospace, automotive, marine, and biomedical are designed. It 
has developed as an innovative and reliable manufacturing process that 
directly produces the CAD model’s component [1–3]. Despite the ad-
vantages of AM techniques and increasing demands in different in-
dustries, they are still not fully adopted in various engineering practices. 
Diversity in the mechanical performance of metal AM parts due to 
variation in microstructure and defect characteristics is a continuing 
challenge [4,5]. Metal AM components usually undergo complex cyclic 
thermal history consisting of directional heat extraction, repeated 
melting, and rapid solidification [6,7], which would create anisotropic 
microstructures (columnar grains along building direction) and residual 
stress in the manufactured parts [8]. AM internal defects such as lack of 
fusion layers, and gas pores are also generated either due to insufficient 
energy, or excessive energy during metal AM process [9]. The inherent 
repetitive nature of the build process along with the half-fused particles 
attached to the surface and the presence of surface-connected defects 
result in a highly rough surface for metal AM components [10]. 

Internal defects and surface defects or roughness have been recog-
nized as the most critical fatigue damage initiation sites specifically in 
Powder Bed Fusion (PBF) parts. Variations in surface roughness and 
defect characteristics such as size, shape, location, and interactions have 

been identified as the primary sources of scatter and uncertainty in the 
fatigue performance of AM metals [11–18]. Although, for a thorough 
description of the fatigue strength, other secondary factors (micro-
structure and residual stresses) should also be considered. With the 
hypothesis of a nearly homogeneous microstructure and low residual 
stresses, the impact of these variables becomes small to that of the in-
ternal and surface defects. Residual stresses can be relieved by post-heat- 
treatment or sensibly decreased by imposing a controlled cooling by pre- 
heating the platform [19,20]. The role of microstructure is essential for 
crack propagation in the presence of very small defects and energy 
dissipation during fatigue crack propagation. However, the fatigue limit 
is not sensibly influenced by the microstructure when the defect size is 
larger than the grain size, especially in the case of ductile materials [5]. 
Defects exist even in the case of optimized manufacturing parameters 
with prevalent AM technology, and they can effectively result in failures 
of AM parts, particularly in fatigue-critical engineering practices. 
Therefore, standardized test procedures to gain non-destructive insights 
into the quality of AM parts are being developed [21,22]. While surface 
topology has been reliably controlled in traditional manufacturing 
techniques, as-built surfaces in AM fabricated parts are comparatively 
complex, and post-build machining has diminished the business case for 
AM. This has raised an issue for applications in different industries 
where fatigue performance is an essential consideration. Surface or near- 
surface defects cannot be eliminated, and improving the fatigue per-
formance of net-shaped AM parts with minor post-processing is an 
operational challenge. Hence, powerful techniques and analysis 
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approaches are required to detect and characterize AM defects, espe-
cially for the risky-engineering components fabricated by AM. It might 
be challenging to achieve the quantitative characterization of spatial 
distribution and real morphology of AM defects only using traditional 
methods [23–25]. The traditional tools such as tactile and optical pro-
filometers and laser scanners work only on the exterior surfaces of parts 
and often only in lines or on flat surfaces. Thus, it is impossible to 
generally measure the surface topography of internal surfaces of com-
plex AM parts such as struts in lattices [26]. 

XCT is a unique and powerful non-destructive method to evaluate 
heterogeneous material microstructure in 3D [27,28]. XCT is recently 
used in AM to obtain a distinct analysis of internal material imperfec-
tions, especially the porosity and defect of AM specimens [29–31]. For 
this purpose, suitable image analysis methods and sequences are needed 
to characterize porosity and internal defects from XCT reconstructions 
[32,33]. In addition, XCT reconstructions provide valuable data and 
information for the statistical competency of metal AM components 
[34]. As the characteristics of surface defects and surface topography 
significantly influence components’ trustworthiness and fatigue per-
formance [35–37], the XCT technique has also been recently employed 
to thoroughly identify the features of the surface defects of the metal AM 
components [38–42]. However, there is still a gap in the determination 
algorithm to systematically characterize the surface defects of complex 
metal AM parts with low computational cost and minimum possible 
error in image processing. This study is an attempt to fill this gap. 

Plessis and Beretta [42] have presented a notch-based surface 
roughness evaluation method using XCT data. They have proposed to fit 
a cylinder geometry element to the exterior surface of the before scan 
data and create a duplicate of this cylinder. The original surface was 
compared to the best-fit cylinder volume, and the result was analyzed 
using a nominal-actual comparison illustrating maximum deviations 
between the rough surface and the fitted cylinder to define the notches. 
However, their approach presented local information about the surface 
defects, mainly focusing on the killer notches; this method still has two 
limitations. First, the connectivity between surface notches depends on 
the depth of the notches, and therefore a depth criterion for defining the 
notches as defects depends on the surface condition and is a manual step 
that the user detects. Second, this approach is primarily employed to 
visualize and interpret notch geometry relative to crack location. 

However, they have reported that some notches may not be detected 
using this approach. It should be noted that the surface profiles for each 
section have some peaks and valleys, and the deviation from the center 
(mean) axis should be considered a criterion for notch detection. The 
new proposed approach mathematically calculates the center axis and 
then determines the notches and depth of the valleys. All steps have been 
carried out systematically using the determination algorithm applied to 
the XCT data. This proposed method can also provide global and local 
information on the surface roughness using quantitative parameters (e. 
g., Ra and Rz). 

Indeed, this study introduces a new approach to characterizing 
complex defects and surface topologies using XCT data. This approach 
has precisely studied characteristics of internal defects such as size/ 
volume, shape, location (distance from the surface), and spatial distri-
bution along the sample and around its axis to evaluate and quantify 
their effects on the fatigue performance of these materials. Moreover, it 
has analyzed data from the 3D scan to characterize the surface defects 
(irregularities) and then detect the critical surface roughness profiles 
and potential sites for fatigue crack initiation on the surface. The pro-
posed method also investigates the effect of internal and surface defects 
on the fatigue performance of metal AM samples. Therefore, it can 
describe all of the typical fatigue-critical features introduced by AM 
processes. The stainless steel 316L is frequently used in energy, auto-
motive, and medical industries because of its excellent corrosion prop-
erties, formability, and high strain-hardening rates. Metal AM 
technologies have been substantially developed in the past years to 
evaluate manufacturability and mechanical properties of additively 
manufactured parts [43]. This work studied the fatigue performance of 
stainless steel 316L specimens additively manufactured with different 
processing strategies (layer thicknesses and built directions).The 
roughness of the inclined surface is related to layer thickness [44]. 
Moreover, the total porosity is usually correlated to the average process 
energy applied per volume of material and is described by energy den-
sity, a ratio between laser power, scanning velocity, hatch distance, and 
layer thickness [45]. Indeed, layer thickness influences both internal 
and surface defects, and thus, it has been chosen in this study as a var-
iable of process parameters. 

This paper focuses mainly on the capability to predict the fatigue 
resistance of AM parts as a frequently relevant open issue. Defect-based 
fatigue life prediction models have been of great interest, especially for 
metal AM par. However, most previous studies have only considered the 
internal defect size due to some limitations in surface defect character-
ization [8,46–48]. Recently, Sanaei and Fatemi proposed an equivalent 
parameter (a combination of the maximum prospective internal defect 
size and the maximum prospective equivalent surface defect size) using 
Murakami’s approach [49] for estimation of the initial defect size [50]. 
However, the interaction effect of internal and surface defects has not 
been considered. Moreover, the effective defect size based on the 
roughness profile has been measured using stylus surface profilometry 
results with the limitation in catching some critical features of surface 
profiles [51]. Due to the nature of surfaces produced by AM, the 
maximum prospective equivalent surface defect size parameter may not 
accurately represent the crack-like notches out of reach in the stylus 
method or 3D optical profilometry [52]. Thus, it is necessary to establish 
a more accurate standard definition of the effective defect size based on 
the extended 3D analysis considering the surface effect. In this paper, the 
critical equivalent defect size parameter, ̅̅̅̅̅̅̅̅̅̅̅̅̅̅areaeff

√ , has been introduced 
to consider the influence of internal and surface defects and their in-
teractions on the fatigue performance of metal AM parts using the new 
3D defects (internal and surface) determination algorithm. This paper 
reveals that the proposed defects characterization approach can predict 
specific locations on the surface prone to initiating fatigue failure. Based 
on 3D defects and surface topography analysis of intact specimens 
(before fatigue testing), the predicted multi-fatigue origins are in good 
agreement with those obtained from the experiments and the 

Nomenclature 

Abbreviations 
AM Additive manufacturing 
PBF Powder bed fusion 
XCT X-ray computed tomography 
SEM Scanning electron microscopy 

Symbols 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅areaeff

√ Equivalent defect size 
̅̅̅̅̅̅̅̅̅̅̅̅areaD

√ Prospective internal defect size 
̅̅̅̅̅̅̅̅̅̅̅̅areaR

√ Equivalent surface roughness defect size 
dR−D The shortest distance between two adjacent defects 
Rv The deepest valley of the surface profile 
Ra The roughness average 
Rz The average maximum height of surface profile 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅areaeff ,max
√ The maximum critical effective defect size 
σwl The lower bound of the fatigue limit 
HV Vickers hardness 
Δkth Threshold stress intensity factor range 
areast The size of the stable crack growth zone 
f(x) Frechet distribution function 
α, β Shape and scale parameters  
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fractography. Indeed, anticipating from which defect of the thousands 
detected the failure will originate, would allow estimating the fatigue 
limit of the material without laborious experimental testing. This study 
also assists in the characterization and control of process-related defects 
and irregularities and their influence on component durability. This is 
one of the main areas of concern, and it should be rigorously addressed 
for the qualification and certification of metal AM components. 

2. Material and methods 

2.1. Material and specimen fabrication 

In this paper, the studied material is stainless steel 316L produced by 
metal 3D printing of EOS GmbH (M290) using direct metal laser sin-
tering as a PBF method. Two types of hour-glass-shaped round speci-
mens have been manufactured: (1) samples fabricated with its tensile 
axis parallel to the z-direction (vertical sample), (2) the other samples 
fabricated with its tensile axis perpendicular to the z-direction (hori-
zontal sample). All specimens were made at the 250 W power capability 
of the machine. The scanning speed was approximately 1083 mm/s. The 
hatch distance was 0.09 mm. According to equation Ea = P

vht (Ea.P.v.h.

and t are energy density per unit volume, beam power (W), beam ve-
locity (mm/s), hatch spacing or line offset (mm) which is the spacing 
between melt tracks, and layer thickness (mm)) the volumetric energy 
density was calculated 64.12 J/mm3. The powder is spherical and about 
37 μm in diameter. Two types of specimens with different layer thick-
nesses, 20 μm and 40 μm, were fabricated. The platform was pre-heated 
and retained at a constant 80oC during the print. None of the parts 
received any final heat treatment; however, significant residual stresses 
were not expected owing to the platform pre-heating [53]. This study 
has been carried out with the hypothesis of low residual stresses. All 
fatigue specimens were built to net shape, meaning no post-process 
machining would be performed. The dimensions of horizontal and ver-
tical samples are shown in Fig. 1. 

2.2. Fatigue testing 

Load-controlled uniaxial fatigue testing was performed on the hori-
zontal and vertical samples. A frequency of 10 Hz and an R-ratio of 0.1 
was employed during testing. Samples were tested to be fractured. 
Fracture surface analysis of the failed fatigue samples was performed 
from the top and front view of samples using scanning electron micro-
scopy (SEM). 

2.3. X-ray microtomography and 3D defect characterization 

2.3.1. X-ray microtomography 
The XCT images of the intact specimen before the fatigue test were 

captured using General Electric (GE) phoenix v|tome|x s machine with 5 
μm pixel size. The X-ray tube acceleration voltage and power were set to 
170 kV and 5.1 W, respectively. A 0.5 mm copper filter was used to 
absorb low-energy X-rays unnecessary for imaging. 2000 projection 
images over 3600 of rotation were acquired with 5 s exposure time per 
angular position. The detector first waited for a single exposure time at 
every angle and then took an average of over two or three exposures. 
XCT imaging was carried out from the middle of the specimens with a 
length of 10 mm, as depicted with a red rectangular in Fig. 1. The micro- 
CT scans for horizontally and vertically manufactured samples with 
different layer thicknesses were performed to study the variability 
analysis of defects and surface topographies. 

2.3.2. 3D defect and surface roughness characterization 
Results of micro-CT of specimens and generated data on internal 

defects volume and position using ThermoFisher PerGeos software have 
been used for analysis in this study. The internal defect determination 
algorithm has been extended to characterize internal defects’ projected 
area, sphericity, and distance from the surface. In addition, variabilities 
of the characteristics of the internal defects have been studied 
throughout the specimens with respect to the height of the sample and 
around the sample axis. Defects on the surface usually referred to as 
surface roughness, are the other type of defects that should be charac-
terized. A rough surface is intrinsic to AM due to the layer-by-layer 
nature often the build process and is influenced by various parame-
ters. Thus, surface roughness characterization is imperative in metal AM 
components’ fatigue performance. Note that sometimes the defect 
recognition software cannot recognize the surface defects when they are 
in touch with the external environment, and there is no difference in the 
gray level. The new surface defects determination algorithm has been 
introduced to solve this problem in this study. In this approach, binar-
ization has transformed a gray-level image into a binary image. Then, 
internal defects (pores) have been excluded, and the edge of the sample 
is specified. Using the proposed algorithm, the edge data along the 
height of the sample at different angles can provide the surface rough-
ness profile. 

2.4. Quantitative analysis of the effect of defect size on fatigue life 

A typical representative dimension for a defect is the parameter 

Fig. 1. Configuration of the manufactured fatigue specimen.  
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introduced by Murakami and Endo [52], which has been applied in 
many works to calculate the stress intensity factor, its threshold value, 
and the fatigue strength of parts containing defects including AM parts 
[46–49]. This geometrical parameter reportedly allows calculating the 
maximum stress intensity factor along the front of an internal or surface 
crack with the irregular shape when the crack grows perpendicular to 
the maximum principal stress direction [47]. The lower bound of the 
fatigue limit σwl based on 

̅̅̅̅̅̅̅̅̅
area

√
can be determined by the following 

equation [54]: 

σwl =
1.43(HV + 120)

(
̅̅̅̅̅̅̅̅̅
area

√
)

1/6

[
1 − R

2

]α

(1) 

where HV (kgf/mm2) is Vickers hardness, R = σmin/σmax and α =

0.226 + HV × 10−4. 
In the presence of both internal and surface defects, the interaction 

effect between them should be considered, e.g. Fig. 2. ̅̅̅̅̅̅̅̅̅̅̅̅̅̅areaeff
√ can 

present the incorporation of internal defects and surface roughness as an 
effective initial crack size. If the space between two adjacent defects is 
smaller than the size of the smaller defect, the effective defect size must 
be evaluated by summing the sizes of two defects together and addi-
tionally the space between these two defects [54]. Thus, ̅̅̅̅̅̅̅̅̅̅̅̅̅̅areaeff

√ can be 
defined as bellow: 

̅̅̅̅̅̅̅̅̅̅̅̅̅areaeff
√

=
̅̅̅̅̅̅̅̅̅̅̅̅
areaD

√
+

̅̅̅̅̅̅̅̅̅̅̅̅
areaR

√
+ dR−D (2) 

where ̅̅̅̅̅̅̅̅̅̅̅̅areaD
√ , ̅̅̅̅̅̅̅̅̅̅̅̅areaR

√ are the prospective internal and equivalent 
surface roughness defect size, respectively. dR−D is the shortest distance 
between two adjacent defects. 

Recently, it has been reported that the calculated equivalent surface 
roughness defect size ̅̅̅̅̅̅̅̅̅̅̅̅areaR

√ is very close to the value of the Rv 

parameter which represents the deepest valley of the surface profile 
[49]. It has been also suggested that Rv is an appropriate parameter to be 
used as the initial defect size for fatigue life prediction of as-built surface 
AM metals [15,54]. Thus, the critical equivalent defect size, ̅̅̅̅̅̅̅̅̅̅̅̅̅̅areaeff

√ , 
can be re-written as. 

̅̅̅̅̅̅̅̅̅̅̅̅̅areaeff
√

=
̅̅̅̅̅̅̅̅̅̅̅̅
areaD

√
+ Rv + dR−D (3)  

3. Results and discussion 

This paper focuses on the uniaxial fatigue performance of the spec-
imens with as-built surfaces and its relationship with detrimental fea-
tures, e.g., internal defects (pores) and surface defects (surface 
roughness). Fatigue performances of samples with different processing 
parameters leading to various surface roughness conditions and internal 
pores characteristics have been compared. Fig. 3 depicts the stress-life 
diagram of steel 316L specimens fabricated in different building di-
rections (vertical and horizontal samples) with various layer thicknesses 
(20 μm and 40 μm). It can be seen the horizontal specimens have better 
fatigue performance compared to vertical ones and the smaller layer 
thickness show higher fatigue strengths relative to the bigger layer 
thickness. The differences are noticeable in both short life and long life 
regimes. The detrimental effects of defects and surface topographies 
have been evaluated using the proposed characterization approaches to 
shed more light on the correlation between the differences in the fatigue 
performance of these materials and detrimental features. First, the 

Fig. 2. The combination of internal and surface defects in form of an effective 
initial crack size. 

Fig. 3. Fatigue Stress-Life curve for steel 316L specimens fabricated in different 
building directions with various layer thicknesses. 

a cb

Fig. 4. (a) 3D rendering of internal defects, (b) pores’ volume size distribution along the height of the sample and (c) diameter of the pores as a function of sphericity 
of horizontally fabricated sample with layer thickness 20 μm. 
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variability of internal defects (pores) related to the processing parame-
ters has been studied. Then, the surface roughness characterization 
using the new proposed approach was carried out. In this study, three 
samples with different building directions and layers of thicknesses were 
scanned before fatigue testing. First, defects and surface topographies 
characterization has been performed. Then, they have tested at the same 
stress level. The fatigue results for these three samples have been 
depicted within green rectangular in Fig. 3. It can be seen there is a 
significant difference between horizontal and vertical samples with a 
layer of 20 μm. This is an indication of the anisotropic fatigue resistance 
of metal AM parts. There is also a considerable difference between 
vertical samples with different layers of thicknesses. The comparison of 
fatigue lives shows the impact of the build orientation and layer thick-
ness on the fatigue performance of metal AM parts. The following sec-
tions investigated the correlation between defects (internal and surface) 
characteristics and the fatigue performance of as-built AM parts. 

3.1. Analysis of variability in internal defect characteristics 

In this study, the internal defect characteristics (volume, diameter, 
sphericity, and projected area) distributions have been compared for 
specimens with various layer thicknesses (20 μm and 40 μm) and 
different building directions (horizontal and vertical). Fig. 4a-c depicts 
the 3D rendering of internal defects (pores), volume size distribution 
along the height of the sample, and diameter of pores as a function of 
sphericity for the horizontal sample with a layer of 20 μm, respectively. 
Fig. 5a-c and 6a-c show the same information for vertical samples with a 

layer of 20 μm and 40 μm, respectively. A clear difference can be 
observed between the vertical and horizontal samples. The variability 
along the build direction shows a specific trend in the scanned height for 
the size and location of the defects. The defects’ population has not been 
distributed uniformly along the height of the sample, and it depends on 
the build direction. For vertically fabricated samples, pores have 
concentrated on the upper side along the build direction; however, they 
have distributed uniformly for the horizontally manufactured sample. 
The pores’ volume size distribution shown in these figures has illustrated 
a relationship between pores’ volume size, build direction, and layer 
thickness. The vertically fabricated samples have higher pores’ volume 
size than the horizontally fabricated sample. Moreover, the vertical 
sample with a layer thickness of 40 μm has internal pores with a higher 
volume size. 

Apart from pores’ volume size and diameter, the shape of internal 
pores is also important to the metal structural behaviour. Defect 
morphology is usually represented by sphericity. These figures show 
that the smaller pores have higher sphericity (closer to 1), while the 
large pores have low sphericity (i.e., high aspect ratio). Low sphericity 
indicates irregularity in pore shape. Therefore, pores with lower sphe-
ricity probably serve as deleterious defects, reducing mechanical per-
formance of metal AM components. The characteristics of internal 
defects such as their type, location, shape, size, orientation, and density 
are greatly influenced by the process parameters. The pore size, shape 
(near-spherical to irregular), and densification can be varied by chang-
ing the melting pool size and overlapping between neighboring melt 
pools [55]. For vertical up deposition direction, due to gravitational 

ba c

Fig. 5. (a) 3D rendering of internal defects, (b) pores’ volume size distribution along the height of the sample and (c) diameter of the pores as a function of sphericity 
of vertically fabricated sample with layer thickness 20 μm. 

a b c

Fig. 6. (a) 3D rendering of internal defects, (b) pores’ volume size distribution along the height of the sample and (c) diameter of the pores as a function of sphericity 
of vertically fabricated sample with layer thickness 40 μm. 
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a b c

Fig. 7. Comparisons of the (a) equivalent pores’ diameter, (b) sphericity, and (c) projected area distributions for horizontal and vertical samples with different layer 
thickness using extreme value probability plots. 

Fig. 8. Comparison of the total volume of pores with respect to the height of the specimen around the specimen axis for (a) horizontal sample with layer thickness 20 
μm, (b) vertical sample with layer thickness 20 μm, and (c) vertical sample with layer thickness 40 μm. 

Fig. 9. Pore density map for (a) horizontal sample with a layer of 20 μm, (b) vertical sample with a layer of 20 μm, and (c) vertical sample with a layer of 40 μm.  
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force the molten material had the potential to flow against the scanning 
direction towards a cooler area or a region which was already solidified. 
This could result in a faster solidification and relatively smaller total 
melt pool volume leading to concentration of pores one the upper side of 
the vertical sample. Moreover, sorting powder near the surface due to 
the tiny vibration of the sample because of the recoater overpass could 
be a reason for pores concentration on the upper side of the vertical 
specimen. The probability of sample vibration increases when sample 
length/width increases. It would be a coincidence that the sample is long 
enough to vibrate at the pore measurement volume layers. 

To predict the size of the largest defects from a 3D defect population, 
extreme value statistics of defects can be adopted. The extreme value 

probability distribution of pores’ diameter, pores’ sphericity, and pores’ 
projected area for different specimens have been shown in Fig. 7a-c, 
respectively. It has three model types, Gumbel distribution, Frechet 
distribution, and Weibull distribution. Type I has no upper or lower 
limits, type II has bounded on the lower end, and type III is bounded on 
the upper end. Frechet distribution is used in this study to demonstrate 
maximum values in a data set as it slowly converges to 1. Frechet dis-
tribution is equivalent to taking the reciprocal of values from a standard 
Weibull distribution. The Type II (Frechet) distribution function is as 
follows [56]: 

Fig. 10. (a) 3D-sample’ surface topologies, (b) the roughness average, Ra, and (c) average maximum height of profile, Rz, distribution around the sample axis with 1◦

angle interval for vertical specimen with a layer of 40 μm. 

Fig. 11. (a) 3D-sample’ surface topologies, (b) the roughness average, Ra, and (c) average maximum height of profile, Rz, distribution around the sample axis with 
10◦ angle interval for vertical specimen with a layer of 40 μm. 
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f (x) =
α
β

(
β
x
)

α+1exp(−(
β
x
)

α
) (4) 

where α, β are shape and scale parameters. 
Fig. 7a-c depicts that the equivalent defects’ diameter and projected 

area have higher values for vertical samples than the horizontal ones. 
Moreover, these values are higher for the vertical sample with a higher 
layer thickness. It can be seen the probability of pores with lower 
sphericity is higher for the horizontal sample in comparison to the 
vertical ones. However, the probability distribution is not different for 
higher sphericity. Moreover, it can be seen that the layer thickness does 
not seriously affect the probability distribution of sphericity. Thus, 
sphericity is more sensitive to the building direction than the layer 
thickness. 

Fig. 8a-c shows the total volume of defects with respect to the height 
of samples around their axis. A clear difference between the vertical and 
horizontal samples can be observed in this figure. The defects’ distri-
bution is not uniform around the specimen axis for vertical samples. As 
depicted in Figs. 4–6, the defects distribution is also not uniform along 
the build direction for vertical samples. 

Another important factor related to the internal defects’ distribution 
is the distance of pores from the surface of the specimen. This factor can 
considerably affect the fatigue performance of the samples. The defects 
closer to the surface create higher stress concentrations than the internal 
defects far from the surface [57]. Fig. 9a-c depicts pore density maps for 
vertical and horizontal specimens with different thickness layers. The 
origin of the plot at zero refers to the exterior surface, and the edge 
distance demonstrates the radial distance from the exterior surface to 
the central axis of the specimen. A height dependence with respect to the 
build orientation is evident in the pore density map for vertical samples, 
with the greatest density near the top of the specimen. However, this 
height dependence is not detected in the pore density map of the hori-
zontal specimen. Since the space between surface defects and internal 
defects as two adjacent defects is important to calculate the effective 
defect size as introduced in Eq. (3), the edge distance of the pores from 
the surface is an important parameter. 

3.2. Characterization and analysis of surface roughness 

Fig. 10a shows the 3D-sample’ surface topologies for vertical spec-
imen with a layer of 40 μm using the proposed surface determination 

algorithm as an example. In this figure, the angle interval showing the 
surface profiles is 1◦. Depending on the needed accuracy, this value can 
be varied. Fig. 11a depicts the 3D-sample surface topologies with a 10◦

angle interval for the same sample. The roughness average, Ra, and the 
average maximum height of profile, Rz, have been calculated for all 
surface profiles of different samples as depicted in Fig. 10b and 10c with 
a 1◦ angle interval. Fig. 10c shows an exemplary surface profile at a 
specific angle (119◦) for the vertical sample with a layer of 40 μm. It is 
observed that the introduced approach can effectively provide holistic 
information on the surface topologies of AM parts without any 
limitations. 

Recently, Schneller et al. have studied the effects of as-built surface 
layers on the fatigue strength of metal AM parts [51]. Representative 
areal surface texture parameters have been determined using 3D optical 
topography scans. But, a sharp notch where radii converging zero 
resulted in limitations as optical capturing and subsequent evaluation 
might not be acceptable for characterizing the notch geometry. Indeed, 
the thin and deep defects are systematically overlooked by optical pro-
filometry. Moreover, Persenot et al. have reported the Ra value of as- 
built Ti-6Al-4 V alloy AM sample based on tomography scans where 
crack-like notches are detected, is 16% bigger than the average value of 
Ra obtained by profilometry [58]. Thus, these methods are not suitable 
for detecting notches, and only X-ray tomography-based roughness 
measurements might be used for surface roughness characterization and 
fatigue life prediction. Few studies have utilized this technique; how-
ever, they have some limitations due to the lack of a suitable surface 
roughness determination algorithm for specimens with curved shapes at 
any angle around the axis [10,59]. The roughness was measured based 
on tomographic images following the method initially suggested by 
Suard et al. [10]. A series of surface profiles was extracted from a radial 
slice every 10◦ around the cylindrical sample circumference. Thus, 36 
profiles have been analyzed for each sample. Persenot et al. have 
employed the same approach and discussed the shortcoming of the 
method [58]. This approach can be applied only for cylindrical speci-
mens, and very local surface irregularities such as notch-like defects are 
thus more probably to be neglected. Figure 10b-c shows Ra and Rz for the 
vertical sample with a layer of 40 μm with a 10◦ angle interval. It can be 
observed the local maximum values in this figure are different from 
what was detected in Fig. 10b-c, e.g., Rz value at the specific angle, 119◦, 
in Fig. 10b and 10c. This is one of the most critical surface profiles 

Fig. 12. Critical surface roughness profiles with the biggest Rz values at different angles around the sample axis for (a) horizontal specimen with a layer of 20 μm and 
(b), (c) vertical specimen with a layer of 20 μm and 40 μm. 

J. Nafar Dastgerdi et al.                                                                                                                                                                                                                       



International Journal of Fatigue 163 (2022) 107025

9

containing a fatigue origin, see Figs. 16 and 17. However, with 10◦ angle 
interval analysis, it has been ignored. The proposed surface roughness 
characterization approach using the XCT data has comprehensively 
recognized the local surface irregularities of the dog-bone (curved) 
shaped sample without any limitations in comparison to the other ap-
proaches applied for simple cylindrical shape [38]. It should be noted 
that the resolution does not allow for roughness measurements near or 
below the resolution of the scan. The practical limitation for XCT-based 
surface characterization is the resolution and part size: the voxel size is 
confined by the part size, and there might be a doubt that this method is 
suitable for reasonably rough surfaces or small parts. However, this 
limitation can be handled by determining the critical regions of big parts 
and carrying out XCT from these specific regions with high enough 
resolutions. 

Using this approach, surface roughness parameters (e.g., Ra and Rz) 
can be determined for each surface profile around the sample, and the 
most critical ones can be recognized. In this study, surface profiles with 
maximum Rz values have been considered as the critical ones. The 
interaction effect of internal defects and surface roughness at critical 
locations is important, and Ra cannot be applied to determine this effect. 
This means that despite the apparent correlation reported in Fig. 10b, 
11b, Ra cannot be the relevant parameter for predicting the critical 
equivalent defect size and fatigue life in the case of as-built AM samples. 
Fig. 12a-c shows critical surface roughness profiles for samples fabri-
cated with different building directions and layer thicknesses. Five to ten 
surface profiles of different samples with the biggest Rz values are 
depicted in this figure as critical surface profiles for each sample. It can 
be seen the surface roughness values are bigger for the vertical sample 
with a thicker layer (40 μm) in comparison to the horizontal sample or 
the vertical one with a thinner layer (20 μm). Fig. 13a-c shows the 
roughness of the whole surface around the specimen axis with respect to 
the height of samples with different building directions and layer 
thicknesses. A homogeneously distributed roughness profile is observed 
for the horizontal sample. In contrast, the roughness profile distribution 
is not homogeneous for vertical samples, and the maximum pit depth is 
concentrated on the upper side of the specimen along the build direc-
tion. These results indicate the roughness profile distribution depends 
on the building direction and the layer thickness parameter. As the 

building inclination increases from 0◦ in the horizontal sample to 90◦ in 
the vertical one, surfaces get more complex along the height of the 
specimen. Moreover, the surface roughness of the thinner layer tends to 
be better than that of the thicker ones. 

The reduced layer thickness led to decreased gaps and consequently 
less geometric inaccuracy. This has resulted in decreased areal notch 
valley depth values, as shown in Fig. 12a-c and 13a-c. Previous studies 
have found that a small layer thickness ensures finer particle sizes and 
facilitates a more complete melting process due to the higher surface-to- 
volume ratio than a larger layer thickness [60,61]. 

It should be noted the obtained results in sections 3.1 and 3.2 may 
explain the correlation between defects (internal and surface) charac-
teristics and the anisotropic fatigue performance of metal AM parts, as 
indicated in Fig. 3. Indeed, the thermal history experienced by parts 
fabricated in different build orientations is not necessarily identical. And 
this can result in anisotropic characteristics of defects and microstruc-
ture, leading to anisotropic fatigue resistance of metal AM materials 
[62,63].The anisotropic characteristics of the internal defects’ popula-
tion and surface defects as non-homogeneous roughness profile distri-
bution of metal AM parts have been investigated using the proposed 
characterization approach. However, further study is still required to 
investigate the combined effects of anisotropic defects (internal and 
surface) and microstructure characteristics on the fatigue performance 
of metal AM material. This information can thoroughly describe the 
anisotropic fatigue damage mechanism in metal AM materials. 

3.3. Critical equivalent defect size using 3D pores and surface roughness 
characterization 

Using the proposed characterization approach for internal and sur-
face defects, it is possible to calculate the critical equivalent defect size 
as introduced in Eq. (3). For this purpose, first, the XCT data has been 
analyzed using the proposed surface roughness characterization 
approach, and 5–10 critical surface profiles with the biggest Rz values at 
different angles around the sample axis have been detected. Then, these 
critical surface profiles have been separately checked to find the deepest 
valleys (Rv). At the corresponding height of the deepest valleys along the 
sample, the presence of the internal defect, its projected area ( ̅̅̅̅̅̅̅̅̅̅̅̅areaD

√ ), 

Fig. 13. The roughness of the whole surface around the specimen axis with respect to the height for (a) horizontal specimen with a layer of 20 μm and (b), (c) vertical 
specimen with a layer of 20 μm and 40 μm. 
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Fig. 14. Polar distribution of projected internal defects’ areas (
̅̅̅̅̅̅̅̅̅̅̅̅
areaD

√
), and their distances from the edge, (dR−D), at the specific height of the sample related to the 

deepest valleys on critical surface profiles for the vertical sample with a layer of 40 μm. 

Fig. 15. Polar distribution of the critical equivalent defect at the specific height of the sample related to the deepest valleys on critical surface profiles for the vertical 
sample with a layer of 40 μm. 

Fig. 16. Schematics of different specimens (horizontal with a layer of 20 μm and vertical with a layer of 20 μm and 40 μm) fractures at different heights.  
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and its distance from the edge or deep valley as a surface defect (dR−D) 
have been determined. If dR−D is smaller than the size of the smaller 
defect ( ̅̅̅̅̅̅̅̅̅̅̅̅areaD

√ or Rv), the space between these two defects has been 
considered in the calculation of the critical equivalent defect size. 
Otherwise, only the larger defect was taken into account in the fatigue 
limit prediction process. Thus, the interaction effect of both internal and 
surface defects has been considered using the introduced approach. 
Moreover, the surface defects size has been calculated without any 
limitation in catching some critical features of surface profiles as dis-
cussed in Refs [49,51]. Besides overcoming this limitation and consid-
ering the internal and surface defects interaction in calculating the 
critical equivalent defect size, the proposed approach can effectively 
predict fatigue failures’ critical locations before testing at specific angles 
around the sample axis and heights along the sample. The proposed 
defects determination algorithm, including characterization of internal 
and surface defects, has overcome the limitations of the previous studies. 
Fig. 14 shows the polar distribution of projected internal defects’ areas 
( ̅̅̅̅̅̅̅̅̅̅̅̅areaD
√ ) and their distances from the edge, (dR−D), at the specific height 

of the sample that the deepest valleys have been recognized using 

surface roughness characterization for the vertical sample with a layer of 
40 μm. In the next step, distances of the projected areas from the surface 
defects (valleys) have been checked whether they are smaller than the 
smaller defects or not, and the critical values, ̅̅̅̅̅̅̅̅̅̅̅̅areaD

√
+ dR−D, have been 

calculated. Then, the deepest valley value, Rv, has been added to these 
critical values as proposed in Eq. (3) to calculate the critical equivalent 

Fig. 17. SEM top views of the fracture surfaces of the vertical sample with a layer of 40 μm that failed due to volumetric defects and surface features. Sample tested at 
stress amplitude of 170 MPa. Higher magnification images showing the crack initiation sites. 

Table 1 
The critical equivalent defect at the specific height of the sample related to the 
deepest valleys on critical surface profiles around the sample axis for the vertical 
specimen with a layer of 40 μm.  

θ(deg) Height(z)(mm) Rv(μm)
̅̅̅̅̅̅̅̅̅̅̅̅areaD

√
+

dR−D(μm)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅areaeff.max
√

(μm)

80  7.56  75.1538 80 155.1538 
(Maximum value) 

119  6.39  112.538 0 112.538 
147  7.24  84.3455 0 84.3455 
164  6.24  105.151 38 143.151 
190  6.07  65.594 23.5 89.094 
238  6.49  74.0119 43.5 117.5119 
310  6.48  75.1741 14.4 89.5741  

Table 2 
The critical equivalent defect at the specific height of the sample related to the 
deepest valleys on critical surface profiles around the sample axis for the vertical 
specimen with a layer of 20 μm.  

θ(deg) Height(z)(mm) Rv(μm)
̅̅̅̅̅̅̅̅̅̅̅̅areaD

√
+ dR−D(μm)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅areaeff.max
√

(μm)

18  5.62  60.1603 0  60.1603 
50  7.39  73.6546 62  135.6546 

(Maximum value) 
68  7.88  88.2481 0  88.2481 
86  7.56  53.7007 36  89.7007 
154  6.95  74.3783 34  108.3783 
177  7.42  56.1794 18.7  74.8794 
193  5.95  73.5126 25  98.5126 
317  6.14  79.2052 0  79.2052 
347  7.32  71.0451 0  71.0451  

Table 3 
The critical equivalent defect at the specific height of the sample related to the 
deepest valleys on critical surface profiles around the sample axis for the hori-
zontal specimen with a layer of 20 μm.  

θ(deg) Height(z)(mm) Rv(μm)
̅̅̅̅̅̅̅̅̅̅̅̅areaD

√
+ dR−D(μm)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅areaeff.max
√

(μm)

52  5.53 59.2134 0 59.2134 
(Maximum value) 

59  5.45 44.4948 0 44.4948 
73  6.20 26.9116 0 26.9116 
178  4.12 10 0 10 
299  5.79 36.8841 0 36.8841 
329  5.34 24.8288 0 24.8288  

J. Nafar Dastgerdi et al.                                                                                                                                                                                                                       



International Journal of Fatigue 163 (2022) 107025

12

defect size, ̅̅̅̅̅̅̅̅̅̅̅̅̅̅areaeff
√ . Fig. 15 depicts the polar distribution of the critical 

equivalent defect at specific heights of the sample based on the location 
of the deepest valleys in the critical surface profile for the vertical 
sample with a layer of 40 μm. This figure demonstrates that the most 
critical defect at the specific height around the sample axis takes place at 
the predicted location. Thus, ̅̅̅̅̅̅̅̅̅̅̅̅̅̅areaeff

√ can effectively represent the 
critical equivalent defect. Table 1 presents the value and location (spe-
cific angle round the sample axis and specific height along the sample) of 
the critical equivalent defects for the vertical sample with a layer of 40 
μm based on the proposed method. The same approach has been applied 
for XCT data of intact vertical and horizontal samples with a layer of 20 
μm. Results have been presented in Table 2 and Table 3, respectively. 
Results predict before the fatigue testing that fatigue failures will orig-
inate from several locations with respect to the height of the sample 
around its axis. Table 1 and Table 2 foresee that fatigue failures in 
vertical samples may cause by both volumetric defects and surface- 
related features; however, Table 3 does not predict any volumetric de-
fects for the horizontal sample. Volumetric defects present the interac-
tion effect between surface and internal defects. The next section will 
validate the results using fracture surface analysis for different samples. 

It should be noted although Rz has a big value for the surface profile 
of the horizontal sample at 178◦ as depicted in Fig. 10c, this profile does 
not contain any deep valley as a critical location along the sample for 
fatigue failure, as presented in Table 3. The big value of Rz for this 

surface profile is related to the higher peak values at this profile and not 
due to the deep valleys, as shown in Fig. 12a. Thus, it is not appropriate 
to only consider the surface roughness effect in fatigue performance of 
metal AM specimen using Rz or Ra value as presented in Ref. [11]. The 
proposed approach in this study precisely checks the surface roughness 
effect on the fatigue life of metal AM parts and predicts the potential 
sites for fatigue failure. It can be seen that these predicted potential sites 
correlated to ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅areaeff.max

√ , as presented in Tables 1, 2, and 3, are located 
at different heights which are not in the middle of the sample where 
theoretically, the stress is the maximum. Experiments illustrate that 
samples have been fractured with good agreement at the predicted 
height corresponding to the maximum ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅areaeff.max

√ , as shown in Fig. 16. 
Therefore, the stress amplitude of the specimen can be recomputed, 
according to the cross-sectional area at these height. Chen et al. [64] 
have recently proposed to substitute the local stress for the net loading 
stress, to investigate the effect of metallurgical defects and stress levels 
on high cycle fatigue properties using stress recalculation according to 
the cross-sectional area of the fracture head. 

3.4. Fracture surface analysis 

To identify the failure mechanisms, the fracture surfaces of samples 
with different build orientations and layer thickness have been sys-
tematically examined by SEM. As said earlier, all detailed studied 

Fig. 18. Radial slices obtained by X-ray tomography of a sample before and after fatigue failure at specific angles as exemplary cases from the critical surface profiles.  

Fig. 19. Fractography of the vertical sample with a layer of 40 μm, (a) front view of the damage locations on the surface, and (b) front view of the fatigue origins.  
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Fig. 20. SEM views of the fracture surfaces of the vertical sample with a layer of 20 μm. Sample tested at stress amplitude of 170 MPa. Higher magnification images 
showing fatigue origins. 

Fig. 21. SEM views of the fracture surfaces of the horizontal sample with a layer of 20 μm. Sample tested at stress amplitude of 170 MPa. Higher magnification 
images showing fatigue origins. 
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samples have been tested at the same stress amplitude with a nominal 
stress range of 170 MPa, and then fractographic analyses of SEM images 
have been carried out. Fig. 16 shows the fracture surface of the vertical 
sample with a layer of 40 μm at stress amplitude 170 MPa. Post-mortem 
fractographic analyses of SEM images depict the nucleation sites and 
extent of the crack growth region. It can be observed that cracks initiate 
at many locations on the surface in the presence of high surface 
roughness and volumetric defects. The fatigue origins have been located 
at almost the same angles that the proposed surface characterization 
approach predicts critical surface profiles as potential sites for crack 
initiation using XCT data from the sample before fatigue testing, see 
Fig. 10c. Moreover, it can be seen fatigue origins are mainly located on 
the side that the overall concentration of internal pores is higher, see 
Fig. 8c. In this sample, the failures were caused by volumetric defects 
and surface-related features (Fig. 17) with almost equal probability. 
Fig. 18a-c depicts three radial slices obtained by X-ray tomography of a 
sample before and after fatigue failure at specific angles. These angles 
have been selected as exemplary cases from the critical surface profiles, 
see Fig. 12c. It can be seen on each critical surface profile there might be 
several deep valleys at different heights. 

One of the most important advantages of the proposed character-
ization approach for defects and surface topographies is the possibility 
to predict the fatigue origins at different locations around the sample (at 
specified heights and angles). Using this approach, it is possible by 
performing a CT scan before the fatigue testing to predict from which 
defect of the thousands detected the failure would originate. The ob-
tained results using the proposed determination defects algorithm 
employed for XCT data before the fatigue testing in section 3.3 indicate 
there would be several critical locations for fatigue failure around the 
sample’s axis at different heights. These results have been validated with 

experiments as depicted in Fig. 17 and Fig. 19a-b. Besides the top view of 
the fractures surface (Fig. 17), Fig. 19a-b shows the front view of the 
fractured vertical sample with a layer of 40 μm. The fatigue origins have 
been located at different heights around the sample axis (different an-
gles), as predicted in Table 1 before fatigue testing. The higher magni-
fication of these locations is depicted in Fig. 19b. Moreover, it can be 
observed there are other critical sites on the surface of the specimen in 
which damage initiated from surface irregularities (Fig. 19a-1, Fig. 19a- 
3) or the volumetric defect (Fig. 19a-2). It can be seen there is a good 
correlation between the predicted results and the experiment. Figs. 20 
and 21 depict the fracture surfaces of the horizontal and vertical sample 
with a layer of 20 μm. In the horizontal sample, the crack leading to 
failure initiates from a surface defect. However, in the vertical sample, 
the failures were caused by both volumetric defects and surface-related 
features. The relatively large flat zone corresponding to the stable crack 
propagation regime can be observed for the horizontal sample. The size 
of the stable crack growth zone, areast, scales with the fatigue lives 
(areast |vertical < areast |horizontal). It is worth mentioning the comparison 
between Table 2 and Fig. 20 and Table 3 and Fig. 21 demonstrates the 
accuracy of the proposed approach to predict fatigue origins before fa-
tigue testing. 

3.5. Effect of defect size on fatigue life 

The lower bound of the fatigue limit, σwl, can be determined by the 
defect size parameter (

̅̅̅̅̅̅̅̅̅
area

√
) as introduced in Eq. (1). Using the pro-

posed defect characterization approach, this parameter can be replaced 
with ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅areaeff ,max

√ for fatigue limit prediction. The maximum critical 
effective defect size value has been obtained from Table 1, Table 2, and 
Table 3 for different samples. Table 4 shows the fatigue limits normal-
ized by prediction values for vertical and horizontal samples with 
different layers of thicknesses. As demonstrated in this table, the fatigue 
limit of the horizontal sample with a layer of 20 μm is in good agreement 
with the prediction by the ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅areaeff ,max

√ parameter model (i.e., σwl,exp
σwl,Pred

=

0.84). However, the fatigue limit of vertical samples with larger defect 
sizes is well below the predicted ones. 

This phenomenon can be explained as follows. First, it should be 
noted that the fracture mechanics-based 

̅̅̅̅̅̅̅̅̅
area

√
model is applicable to 

Table 4 
Comparison of the predicted and experimental fatigue 
limits for different samples.  

Sample σwl,exp/σwl,pred 

Horizontal, 20 μm  0.84 
Vertical, 20 μm  0.7 
Vertical, 40 μm  0.56  

Fig. 22. Δkth and determination of transition point of 
̅̅̅̅̅̅̅̅̅
area

√
for small and long crack.  
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the small crack, but not to the large crack, and it is important to check 
the small/large crack-transition size [65,66]. The crack-transition size 
for different samples has been determined using Δkth as depicted in 
Fig. 22. The threshold value has been used from Ref [67] corresponding 
to the studied material. It can be seen that the maximum critical effec-
tive defect size for horizontal sample ( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅areaeff ,max

√
= 59.2 μm, see 

Table 3) is in the region that small crack and linear elastic fracture 
mechanics conditions hold; thus 

̅̅̅̅̅̅̅̅̅
area

√
parameter model can be applied, 

and the result is in good agreement with the experiment. However, 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅areaeff ,max

√ values for vertical samples and the corresponding Δkth are 
bigger than the transition point of 

̅̅̅̅̅̅̅̅̅
area

√
and crack growth threshold 

value for non– propagative crack growth region. Therefore, this model 

overestimates the fatigue limit of these samples in comparison to ex-
periments. Second, the higher surface roughness of as-built vertical 
samples and surface and internal defects interaction result in a multi- 
origins fatigue failure mechanism as predicted using the proposed 
characterization approach and confirmed by fractography (see Figs. 17 
and 20). The synergic deteriorative influence of these different imper-
fections may affect these specimens’ fatigue life and overestimate their 
fatigue limit. Figs. 23 and 24 depict the fracture surfaces of the hori-
zontal sample with a layer of 20 μm and vertical sample with a layer of 
40 μm in the high cycle region at stress amplitude, 157.5 MPa, and 85.5 
MPa, respectively. In Fig. 23, it can be seen the surface and internal 
defects interaction at different locations around the sample and the 
multi-origins fatigue failure mechanism are active in the high cycle re-
gion for the vertical sample. However, this mechanism cannot be 
observed for the horizontal sample (see Fig. 24). 

Results indicate that defects with larger sizes (the surface roughness 
of as-built specimen and its interaction with internal defects) cannot be 
considered small crack-like defects anymore, highlighting the impor-
tance of checking the applicability limit of the 

̅̅̅̅̅̅̅̅̅
area

√
parameter model 

before its application to AM defects. Instead, the large defect should be 
considered as a long crack or notch, depending on the defect shape. 
However, further studies are still required to find the best solution and 
thus this topic is left as future work. 

4. Conclusions 

This paper has proposed an innovative approach to characterize 
metal AM components’ complex defects and surface topologies using 
XCT. Variability in defect characteristics, including size/volume, sphe-
ricity, location (distance from the surface), and surface roughness ir-
regularities, has been investigated using the proposed approach to 
evaluate and quantify their effects on the fatigue performance of these 
materials. Furthermore, the impact of different processing strategies 
(layer thicknesses and built directions) on the fatigue performance of 
stainless steel 316L specimens has been investigated using the proposed 
method. The main findings of this study can be concluded as follows: 

The fatigue performance of specimens fabricated horizontally is 

Fig. 23. SEM top views of the fracture surfaces of the vertical sample with a 
layer of 40 μm. Sample tested at stress of 85.5 MPa (Nf = 1396166). 

Fig. 24. SEM top views of the fracture surfaces of the horizontal sample with a layer of 20 μm. Sample tested at stress of 157.5 MPa (Nf = 864631).  
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higher than those fabricated vertically with different thicknesses of 
layers due to various internal defect sizes and surface roughness. 3D 
(internal and surface) defects analysis provides effectively further in-
formation about the reasons for these differences. 

Internal defect characterization cannot include all detrimental fea-
tures on the fatigue strength of the metal AM parts. Surface defects are 
more harmful to fatigue life than internal ones. The interaction effect of 
internal defects and surface roughness is essential, and therefore, the 
defects’ proximity to the surface is necessary and should be studied. 

The proposed surface determination algorithm applied for XCT data 
overcomes the limitations of previous methods and can effectively 
provide holistic information on the surface topologies of metal AM 
components. Using this approach, the surface roughness parameters can 
be determined for all surface roughness profiles around the sample, and 
the most critical one can be recognized. 

The most crucial advantage of the proposed characterization 
approach for defects and surface topographies is the possibility to pre-
dict the fatigue origins at different locations around the sample axis (at 
specified heights and angles). Using this approach, it is possible by 
performing a CT scan before the fatigue testing to predict from which 
defect of the thousands detected the failure would originate. 

The defect-based life prediction method cannot deal with all cases 
where surface defects and their interaction with internal defects lead to 
the larger equivalent defect size. Therefore, the concept of small defects 
should be considered in 

̅̅̅̅̅̅̅̅̅
area

√
parameter model.  

• The obtained results in this study can lay a basis for considering how 
the processing parameters can be optimized to maximize the fatigue 
life for a given loading cycle. 
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2014;120:15–25. https://doi.org/10.1016/j.engfracmech.2014.03.008. 

J. Nafar Dastgerdi et al.                                                                                                                                                                                                                       

https://doi.org/10.1016/j.cirp.2007.10.004
https://doi.org/10.1016/j.addma.2016.10.010
https://doi.org/10.1016/j.addma.2016.10.010
http://refhub.elsevier.com/S0142-1123(22)00290-0/h0315
http://refhub.elsevier.com/S0142-1123(22)00290-0/h0315
http://refhub.elsevier.com/S0142-1123(22)00290-0/h0315
http://refhub.elsevier.com/S0142-1123(22)00290-0/h0320
http://refhub.elsevier.com/S0142-1123(22)00290-0/h0320
http://refhub.elsevier.com/S0142-1123(22)00290-0/h0320
https://doi.org/10.1016/j.engfracmech.2022.108264
https://doi.org/10.1016/j.engfracmech.2022.108264
https://doi.org/10.1016/j.ijfatigue.2020.105560
https://doi.org/10.1016/S0921-5093(03)00136-9
https://doi.org/10.1016/j.engfracmech.2014.03.008

