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A B S T R A C T

The Basel credit gap, the difference between a country’s credit-to-GDP ratio and its estimated
long-term trend, is used as a basis for setting countercyclical capital buffers under the Basel
III regulatory framework. Using international data from the BIS, we show that the Basel credit
gap, estimated by a one-sided HP filter, is nearly equivalent to a naive 16-quarter change in
the credit-to-GDP ratio and performs equally well in terms of predicting banking crises. We
demonstrate that the near-equivalence between deviations from trend and simple changes occurs
when the one-sided HP filter is applied to a unit-root process. The goal of this paper is not to
evaluate the performance of the Basel credit gap as an early-warning-indicator, but rather to
demonstrate that its estimation method is unnecessarily complicated.

1. Introduction

The 2008 financial crisis and it aftermath have given rise to increased emphasis on so-called macroprudential policy, aimed
at mitigating systemic risks that affect the stability of the entire financial system rather than risks faced by individual financial
institutions (See Claessens, 2015; Kahou and Lehar, 2017; Galati and Moessner, 2018, for surveys). Basel III, a regulatory
framework agreed upon by the 61 members of the Bank of Settlements (BIS) in 2010, provides guidelines on the implementation
of countercyclical capital buffers, allowing financial regulators to increase capital requirements for banks during periods of excessive
credit growth (Drehmann et al., 2010; Tölö et al., 2018). A key measure considered by regulators when determining countercyclical
buffers is the credit gap, often referred to as ‘Basel gap’: an early warning indicator of financial crises defined as a country’s credit-
to-GDP ratio in deviation of its long-term trend.1 Due to its role in setting banking capital requirements, the methodology underlying
the credit gap has important real implications. As with any actual-minus-trend gap measure, a crucial step in constructing the credit
gap is defining the long-term trend of the credit-to-GDP ratio. The credit gap is calculated following the methodology by Drehmann
et al. (2010), who apply a Hodrick and Prescott (1981, 1997) filter recursively to obtain the trend.

We document that the implementation of the one-sided HP filter causes the credit gap to be nearly equivalent to a simple
time-series change of the underlying credit-to-GDP ratio. The one-sided HP filter differs from the conventional two-sided filter in
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Fig. 1. Credit gap and 16-quarter changes. This figure plots the Basel credit gap (blue line) and the 16-quarter change in the credit-to-GDP ratio (red line)
using data for the United Kingdom. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

the sense that the trend is re-estimated using the HP filter at each point in time, using only data up to that point in time, such that
the recursive (one-sided) trend consists of the endpoints of the real-time trend estimates (Stock and Watson, 1999). We demonstrate
that these endpoints mechanically lag the original credit-to-GDP ratio. Applying the analytical expression for the HP filter trend by
Cornea-Madeira (2017), we find that deviations from the trend endpoints approximate time-series changes of the original series when
applied to an 𝐼(1) process. We also show that the near-equivalence between naive changes and the cyclical component estimated
by a one-sided HP filter does not apply in general when considering time-series that are integrated at order two or higher (𝐼(𝑑),
𝑑 ≥ 2). Earlier studies have also documented concerns regarding the application of the two-sided HP filter to an 𝐼(1) process: Cogley
and Nason (1995) find that the cyclical component extracted from a unit root process can contain spurious cycles, while King and
Rebelo (1993) list second-order integration as one of the necessary conditions for the HP filter to be an optimal linear filter, in the
sense of minimizing the mean square error. We find empirically that the credit-to-GDP ratio in almost all of the 44 countries we
study indeed resembles an 𝐼(1) process, suggesting that the Hodrick–Prescott filter is not the optimal trend estimator in this context.

The close similarity between the estimated credit gap (deviation from trend) and the change in the credit-to-GDP ratio is
illustrated below in Fig. 1, using 195 quarterly observations of the credit-to-GDP ratio in the United Kingdom from 1973 to 2021.2
The credit gap (blue line) is estimated by applying a one-sided HP filter to the credit-to-GDP ratio. The red line shows the simple
16-quarter (4-year) change in the credit-to-GDP ratio. In addition to a high correlation of 0.90, the two series have clearly near-
identical cyclical properties in the sense that their peaks and troughs occur simultaneously. This pattern is not specific to the UK:
throughout a sample of 43 countries and the Euro area, we find a striking similarity between the credit gap and a naive 16-quarter
change in the credit-to-GDP ratio, with an average correlation of 0.91. In addition to our analytical and empirical results, we also
conduct a Monte Carlo simulation exercise to confirm the near-equivalence between a recursively estimated deviation from trend
and a 16-period change.

As the objective is the identification of credit cycles, the credit gap performs as good (or as bad) as a naive 16-quarter change in
the credit-to-GDP ratio. Intuitively, time-series changes and deviations from trend are not necessarily equivalent. It is well possible
for a variable to be below (above) trend, even if the variable recently increased (decreased). The credit gap, however, seems to
identify changes, rather than actual deviations from trend.

We are not the first to criticize the use of the HP filter. Most notably, Hamilton (2018) argues that the HP filter induces spurious
variation into the detrended series and therefore strongly advises against the use of the HP filter in general. Within the context of

2 The data for the credit-to-GDP ratio is obtained from the Bank of International Settlements (BIS) and available at https://www.bis.org/statistics/c_gaps.htm.

https://www.bis.org/statistics/c_gaps.htm
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identifying credit cycles, Edge and Meisenzahl (2011) point out sizeable sensitivities of the estimated credit gap to data revisions.
Further, Repullo and Saurina Salas (2011), Alessi and Detken (2018), and Afanasyeva (2020) point out that Drehmann et al. (2010)
apply the HP filter with a very high value of the smoothing parameter (𝜆) of 400,000, which causes the estimated trend component
to be approximately linear and the resulting credit gap to move too slowly, in particular following periods of negative GDP growth.
When the objective is identification of business cycle fluctuations (approximately 2–8 years in duration), it is a common practice with
quarterly data to apply the HP filter with a smoothing parameter of 1600. The calibration by Drehmann et al. (2010) is motivated
by the observation that credit cycles are approximately four times longer in duration than business cycles. We find, both in actual
data and simulations, that the equivalence between credit gaps estimated recursively by the HP filter and by simple changes in the
credit-to-GDP ratio holds for both smaller and larger values of the smoothing parameter, with the difference that a higher smoothing
parameter generates a gap that approximates a longer difference in the credit-to-GDP ratio.

Drehmann and Juselius (2014) and Drehmann and Yetman (2021) legitimize the use of the credit gap as an early warning
indicator, by demonstrating its superior performance in predicting historical banking crises compared to alternative indicators. Using
the same set of banking crises as Drehmann and Juselius (2014) and Drehmann and Yetman (2021), we find that the predictive
power of the simple 16-quarter change in the credit-to-GDP ratio is nearly equivalent to that of the credit gap. When extending the
set of historical crises by allowing for ‘quiet’ crisis episodes that do not coincide with a bank panic, following Baron et al. (2021),
the performance of both indicators deteriorates considerably. Nevertheless, we continue to find that the predictive power of the
credit gap and simple 16-quarter change are nearly equivalent.

Evaluating whether the Basel credit gap is the optimal early warning indicator is not the ultimate goal of this paper. The
methodology of the credit gap is relevant because it is currently used by financial regulators worldwide as a key input for setting
countercyclical capital buffers. Our paper aims to raise awareness that the current methodology leads to a credit gap that is nearly
equivalent to a 16-quarter change in the credit-to-GDP ratio. The credit gap can thus be calculated in a way that is easier and more
transparent. This is not to say that a gap calculated based on either an HP filter or a 16-quarter change are necessarily optimal
indicators of systemic risk.

This paper proceeds as follows: in Section 2 we describe the methodology underlying the credit gap and provide analytical
results documenting the similarity between the estimated deviation from trend and simple time-series changes. Section 3 provides
simulation results, while empirical results for the 44 countries in our sample are reported in Section 4. Section 5 evaluates the
performance of both measures in terms of predicting banking crises, and Section 6 concludes.

2. Analytical background

2.1. Credit gap

The credit gap is defined as the credit-to-GDP ratio in deviation of its trend, where the trend is estimated following Hodrick and
Prescott (1981, 1997) by minimizing the following objective function:

min
𝜏

{ 𝑇
∑

𝑡=1

(

𝑦𝑡 − 𝜏𝑡
)2 + 𝜆

𝑇−1
∑

𝑡=2

[(

𝜏𝑡+1 − 𝜏𝑡
)

−
(

𝜏𝑡 − 𝜏𝑡−1
)]2

}

(1)

where 𝑦𝑡 and 𝜏𝑡 are the credit-to-GDP ratio and its estimated trend in period 𝑡, and 𝜆 is the smoothing parameter. The objective
function is minimized numerically. The two-sided HP filter applies (1) to a full time-series sample, resulting in an ex-post estimate of
the trend 𝜏𝑡 and gap

(

𝑦𝑡 − 𝜏𝑡
)

. To facilitate real-time identification of the trend, the HP filter is applied recursively, by at each point
𝑇 ′ minimizing the objective function (1) using only data up to point 𝑇 ′ and collecting the endpoint of the estimated trend 𝜏𝑇 ′ and
gap

(

𝑦𝑇 ′ − 𝜏𝑇 ′
)

. This recursive procedure is referred to as the one-sided HP filter (Stock and Watson, 1999). Following Drehmann
et al. (2010), the credit gap is estimated by applying a one-sided HP filter with a smoothing parameter of 𝜆 = 400,000.

Fig. 2 illustrates the estimation of the one-sided HP filter using the UK data on the credit-to-GDP ratio as an example. The black
line in Panel A shows the credit-to-GDP ratio from 1973 to 2021. The red line shows the trend estimated by applying a two-sided
(full-sample) HP filter with 𝜆 equal to 400,000. The estimated full-sample trend runs smoothly through the observed data and
describes accurately long-term non-cyclical development of the credit-to-GDP ratio.

The red line, however, is not the trend used for the calculation of the credit gap. Rather, the trend required for obtaining the
credit gap is estimated by the so-called one-sided HP filter, which is implemented recursively. To illustrate, the red line in Panel B
of Fig. 2 shows the trend component estimated using only data available up to 1989, with the blue dot marking the endpoint. Panel
C displays the endpoints of trends estimated using data up to 1989, 2001, 2013, and 2021. The thin red lines in Panel D show all
the trends estimated using subsamples of data up to each quarterly observation, while the blue line connects the endpoints of these
estimated real-time trend components. This blue line, the recursively-estimated trend, is used for the calculation of the credit gap.
It is clearly visible from the figure that, unlike the full-sample or two-sided trend (Panel A), the recursive or one-sided trend (Panel
D) strongly resembles a smoothed lagged value of the observed data. This is in particular noticeable from Panel C, which shows
clearly that each of the subsample trends crosses the original series close towards the end of the subsample, such that the endpoint
of the trend lags the original series.
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Fig. 2. Two-sided and one-sided trend estimates. Panel A shows the credit-to-GDP ratio (black line) of the United Kingdom and its long-term trend estimated
by the two-sided HP filter (red line). Panel B shows the credit-to-GDP ratio and trend estimated using only data up to 1989. Panel C shows trends estimated
using data up to 1989, 2001, 2013, and 2021. In Panel D, the red lines depict all Hodrick–Prescott trends estimated at different points in time. The blue line
connects the endpoints of the subsample trends, resulting in the recursive or one-sided Hodrick–Prescott trend. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

2.2. Analytical expressions

Several studies (e.g. Mise et al., 2005; De Jong and Sakarya, 2016; Hamilton, 2018) point out that the HP filter behaves differently
at the endpoints of sample. Cornea-Madeira (2017) finds an analytical expression for the endpoints of the trend. The endpoint of
the trend 𝜏𝑇 is defined as a weighted average of the 𝑇 observations of 𝑦:

𝜏𝑇 =
𝑇
∑

𝑡=1
𝑝𝑡𝑦𝑡 (2)

where ∑𝑇
𝑡=1 𝑝𝑡 = 1. Cornea-Madeira (2017) derives analytical expressions for 𝑝𝑡 as a function of 𝜆, 𝑡, and 𝑇 . The weights 𝑝𝑡 do not

depend on the distributional properties of 𝑦𝑡. We apply the results of Cornea-Madeira (2017) to demonstrate that the last observation
of an 𝐼(1) time-series in deviation of its estimated trend is highly correlated with the last observation of the time-series in deviation
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of its own lag.3 Let 𝑦𝑡 be an 𝐼(1) process, such that

𝑦𝑡 = 𝑦𝑡−1 + 𝜉𝑡 =
𝑡

∑

𝑖=1
𝜉𝑖, (3)

where 𝜉𝑡 is a stationary process. (Note that we assume 𝑦0 = 0, without loss of generality). The endpoint of the HP trend (2) can be
expressed as:

𝜏𝑇 =
∑𝑇

𝑡=1
𝑝𝑡
∑𝑡

𝑖=1
𝜉𝑖

= 𝜉1
(

𝑝1 + 𝑝2 +⋯ + 𝑝𝑇
)

+ 𝜉2
(

𝑝2 +⋯ + 𝑝𝑇
)

+⋯ + 𝜉𝑇 𝑝𝑇
=

∑𝑇
𝑡=1

𝜉𝑡
∑𝑇

𝑗=𝑡
𝑝𝑗

=
∑𝑇

𝑡=1
𝜑𝑡𝜉𝑡,

(4)

where 𝜑𝑡 =
∑𝑇

𝑗=𝑡 𝑝𝑗 . Given the estimated trend, the endpoint of the cycle (deviation from trend) is expressed as:

𝑥𝑇 = 𝑦𝑇 − 𝜏𝑇
=

∑𝑇
𝑡=1

𝜉𝑡 −
∑𝑇

𝑡=1
𝜑𝑡𝜉𝑡

=
∑𝑇

𝑡=1

(

1 − 𝜑𝑡
)

𝜉𝑡.

(5)

The 𝑘-period change, 𝑦𝑇 in deviation of its 𝑘-order lag, is defined as:

𝛥𝑘𝑦𝑇 = 𝑦𝑇 − 𝑦𝑇−𝑘
=

∑𝑇
𝑡=1

𝜉𝑡 −
∑𝑇−𝑘

𝑡=1
𝜉𝑡

=
∑𝑇

𝑡=𝑇−𝑘+1
𝜉𝑡.

(6)

Given the weights 𝑝𝑡 (as a function of 𝜆, 𝑡, and 𝑇 ; Cornea-Madeira, 2017) and the distribution of 𝜉𝑡, we can derive 𝑐𝑜𝑟(𝑥𝑇 , 𝛥𝑘𝑦𝑇 ), for
any lag 𝑘. For example, if 𝑦𝑡 follows a random walk, 𝜉𝑡 ∼ 𝑖.𝑖.𝑑.(0, 𝜎2), it can be shown that:4

𝑐𝑜𝑟
(

𝑥𝑇 , 𝛥𝑘𝑦𝑇
)

=
∑𝑇

𝑡=𝑇−𝑘+1
(

1 − 𝜑𝑡
)

√

𝑘
∑𝑇

𝑡=1
(

1 − 𝜑𝑡
)2

. (7)

Fig. 3 illustrates these correlations. The red dots in Panel A plot 𝑐𝑜𝑟(𝑥𝑇 , 𝛥𝑘𝑦𝑇 ) for a random walk 𝑦𝑡, with 𝑇 = 200 and 𝜆 = 400,000,
for 𝑘 = 1…40. The correlation is maximized at 0.83, for 𝑘 = 16.

The blue dots in Fig. 3 are based on the UK data, indicating the correlation coefficients between the credit gap and changes in
the credit-to-GDP ratio, for different lag lengths over which the change is computed.5 The theoretical correlations in red and the
empirical correlations in blue show a very similar pattern, with the correlation between the credit gap and an 𝑘-quarter change in
the credit-to-GDP ratio being maximized around 𝑘 = 16. In general, the empirical sample correlations are higher than the theoretical
population correlations. As we show in Appendix, it is possible to generate higher theoretical correlations when moving beyond
a simple random walk, for example by allowing for time-varying volatility. The correlation being maximized around 𝑘 = 16 holds
nevertheless across different data generating processes and sample sizes, as demonstrated in Appendix.

The theoretical correlations between changes and deviations from trend 𝑐𝑜𝑟(𝑥𝑇 , 𝛥𝑠𝑦𝑇 ) can be derived only when 𝜉𝑡 (the first-order
change in 𝑦𝑡) is stationary. When 𝑦𝑡 is of order of integration two or higher (𝐼(𝑑), 𝑑 ≥ 2), the change 𝛥𝑠𝑦𝑇 is no longer stationary,
meaning that its population covariance with the trend endpoints is in general not defined. We demonstrate in the next section by
simulation that the sample correlations between 𝑥𝑇 and 𝛥𝑠𝑦𝑇 are indeed not converging when 𝑦𝑡 is an 𝐼(2) or 𝐼(3) process.

2.3. The role of 𝜆

Repullo and Saurina Salas (2011) and Alessi and Detken (2018) criticize the credit gap methodology for the large calibrated
value of the smoothing parameter 𝜆. Typically, the HP filter is applied to identify business cycles, with the smoothing parameter
calibrated at 𝜆 = 1600 (Hodrick and Prescott, 1981). Drehmann et al. (2010) find that a smoothing parameter of 𝜆 = 400,000 is
optimal to identify credit cycles, which are generally longer in duration than business cycles. Repullo and Saurina Salas (2011) and
Alessi and Detken (2018) argue that the estimated trend component is approximately linear and the resulting credit gap moves too
slowly, in particular following periods of negative GDP growth. In addition, Phillips and Jin (2021) find that the HP filter with high
value of 𝜆 does not remove stochastic trends when applied to small samples.

Our observation that the one-sided trend mechanically lags the credit-to-GDP ratio is distinct from these concerns regarding the
calibration of 𝜆. In fact, we find that the similarity between credit gaps estimated recursively by the one-sided HP filter and by
simple changes in the credit-to-GDP ratio holds for different values of the smoothing parameter. For lower values of the smoothing

3 Below we show empirically that the credit-to-GDP ratio of most countries resembles an 𝐼(1) process.
4 See Appendix for details.
5 Note that the red dots of Fig. 3 shows the theoretical correlation for a fixed sample size of 𝑇 = 200. The empirical plot is based on a sample of 195

observations, where the endpoints of the trends and the time-series differences are obtained at every observation 𝑡 = 1,… , 195.
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Fig. 3. Correlation between credit gap and simple changes. This figure plots the correlation coefficients between the credit gap (𝑥𝑡 = 𝑦𝑡 − 𝜏𝑡) and changes in
the credit-to-GDP ratio (𝛥𝑘𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−𝑘). The horizontal axis depicts the number of quarters (𝑘 = 1,… , 40) over which the change in the credit-to-GDP ratio
is calculated. The blue dots represent correlations estimated based on credit-to-GDP data for the UK. The red dots represent correlations based on analytical
solutions for random walk credit-to-GDP ratio. The three panels are based on different values of the HP filter smoothing parameter 𝜆. The smoothing parameter
is equal to 400,000 in Panel A, 25,000 in Panel B, and 1600 in Panel C. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

parameter, the gap approximates a shorter difference in the credit-to-GDP ratio. We show in Panels B and C of Fig. 3 that the
correlation between the endpoint of the trend and the 𝑘-period change in a random walk process are also highly correlated when
the trend is estimated with a smoothing parameter of 𝜆 = 1600 or 𝜆 = 25,000. However, a lower smoothing parameter implies a
lower lag 𝑘 at which the correlation is maximized. The correlation is maximized at 𝑘 = 4 for 𝜆 = 1600 and at 𝑘 = 8 for 𝜆 = 25,000.

The blue dots in Fig. 3 show the correlation between changes in the UK credit-to-GDP ratio and deviations from trend estimated
by an HP filter with 𝜆 = 1600 and 𝜆 = 25,000. Similar to the analytical result, the correlation is maximized at 𝑘 = 4 and 𝑘 = 7,
respectively. In Section 3, we conduct a Monte Carlo simulation exercise to further inspect the relation between a gap measure
based on one-sided cycles and simple time-series changes, for different values of 𝜆.

3. Simulation results

We next confirm the above analytical results with simple Monte Carlo simulations. The results of the simulations are presented in
Fig. 4. As a benchmark case, we simulate a random sample (𝑇 = 200) of the credit-to-GDP ratio following a random walk, calculate
the credit gap, and correlate the gap measure with simple time series changes of the credit-to-GDP ratio. We repeat this 1000 times.
Panel A of the figure plots the median as well as the 10th, 25th, 75th, and 90th percentiles of the correlation coefficients between
the credit gaps and the time series changes, for different change periods (𝑘). As the analytical correlations presented in Panel A
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Fig. 4. Simulation results. This figure plots percentiles of the correlation coefficients between the credit gap (𝑥𝑡 = 𝑦𝑡 − 𝜏𝑡) and changes in the credit-to-GDP ratio
(𝛥𝑘𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−𝑘) based on Monte Carlo simulations with 1000 replications. The horizontal axis depicts the number of quarters (𝑘 = 1,… , 40) over which the
change in the credit-to-GDP ratio is calculated. The red dots represent the 10th and the 90th percentile of the correlation coefficients, the blue dots represent
the 25th and the 75th percentiles, and the black dots represent the median. Panel A represents a benchmark where 𝑦𝑡 follows an 𝐼(1) process (𝛥𝑦𝑡 ∼ 𝑁(0, 1)),
𝜆 = 400,000 and sample size equals 𝑛 = 200. The other panels change one of these parameters. Panel B is based on a longer time series (𝑛 = 1000) and Panels C
and D are based on smaller smoothing parameters (𝜆 = 25,000 and 𝜆 = 1600, respectively). In Panel E 𝑦𝑡 follows an 𝐼(2) process (𝛥2𝑦𝑡 ∼ 𝑁(0, 1)) and in Panel F
an 𝐼(3) process (𝛥3𝑦𝑡 ∼ 𝑁(0, 1)). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

of Fig. 3, the median simulation-based correlation reaches its highest value, 0.86, at 𝑘 = 16. Notably, the range of correlations is
narrow: The 10th percentile of the correlation at 𝑘 = 16 is 0.77 and the 90th percentile is 0.90. This narrow range of the correlations
indicates that when the credit-to-GDP ratio follows an 𝐼(1) process, one should expect the correlation between the credit gap and
the changes in the credit ratio to always follow the same pattern.

The remaining panels of Fig. 4 provide variations of the benchmark case. First, in Panel B we simulate 𝑇 = 1000 observations
of the credit ratio, rather than 𝑇 = 200 in Panel A. As the results in Panel B are practically identical to Panel A, we conclude that
the sample size does not affect the correlation between the credit gap and the change in credit-to-GDP ratio. In Panels C and D we
study the effects of changing the HP filter’s smoothing parameter. In Panel C we use 𝜆 = 25,000 and in Panel D 𝜆 = 1600. As in the
analytical results above, a lower 𝜆 results in the credit gap correlating more strongly with a shorter change in the credit-to-GDP
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Table 1
Data. This table presents the quarterly credit-to-GDP ratio data used in the empirical analyses of this paper for 43 countries and
the Euro area. Start gives the date of the first observation, data for all countries ends in 2021-Q3. Obs gives the total number
of quarterly observations per country. The data are from the Bank for International Settlements.
Country Start Obs Country Start Obs

AR Argentina 1984-Q4 148 IL Israel 1990-Q4 124
AT Austria 1960-Q4 244 IN India 1951-Q2 282
AU Australia 1960-Q2 246 IT Italy 1960-Q4 244
BE Belgium 1970-Q4 204 JP Japan 1964-Q4 228
BR Brazil 1996-Q1 103 KR Korea 1962-Q4 236
CA Canada 1955-Q4 264 LU Luxembourg 1995-Q1 107
CH Switzerland 1960-Q4 244 MX Mexico 1980-Q4 164
CL Chile 1983-Q1 155 MY Malaysia 1964-Q2 230
CN China 1985-Q4 144 NL Netherlands 1961-Q1 243
CO Colombia 1996-Q4 100 NO Norway 1960-Q4 244
CZ Czech Republic 1993-Q1 115 NZ New Zealand 1960-Q4 244
DE Germany 1960-Q4 244 PL Poland 1992-Q1 119
DK Denmark 1966-Q4 220 PT Portugal 1960-Q4 244
ES Spain 1970-Q1 207 RU Russia 1995-Q2 106
FI Finland 1970-Q4 204 SA Saudi Arabia 1993-Q1 115
FR France 1969-Q4 208 SE Sweden 1961-Q1 243
GB United Kingdom 1963-Q1 235 SG Singapore 1970-Q4 204
GR Greece 1970-Q4 204 TH Thailand 1970-Q4 204
HK Hong Kong SAR 1978-Q4 172 TR Turkey 1986-Q1 143
HU Hungary 1970-Q4 204 US United States 1947-Q4 296
ID Indonesia 1976-Q1 183 ZA South Africa 1965-Q1 227
IE Ireland 1971-Q2 202 XM Euro area 1999-Q1 91

ratio. The correlation is maximized at 𝑘 = 8 for 𝜆 = 25,000 and at 𝑘 = 4 for 𝜆 = 1600. For the lower smoothing parameters, the range
of simulated correlations is also very narrow.

Finally, Panels E and F show that the close systematic relation between the credit gap and changes in the credit ratio breaks
down when the credit-to-GDP ratio has order of integration higher than one. In Panel E, we let the simulated credit-to-GDP ratio
follow an 𝐼(2) process, such that the change 𝛥𝑠𝑦𝑇 is not stationary. While the simulated sample correlations between the credit gap
and changes in the credit ratio are still relatively high, the range of correlations is very wide compared to Panel A. The median
correlation reaches its maximum, 0.80, at 𝑘 = 10. With 𝑘 = 10, the 10th percentile is 0.35 and the 90th percentile 0.94. This
implies that in some simulation runs based on an 𝐼(2) process, the credit gap is highly correlated with a 10-quarter changes in
the credit-to-GDP ratio and in other runs the correlation is rather low. Panel F shows that similar results are obtained when the
credit-to-GDP follows an 𝐼(3) process.

Overall, the Monte Carlo simulations confirm our analytical results. When the underlying data follows an 𝐼(1) process, an actual-
minus-trend gap measure based on a one-sided HP filter is mechanically highly correlated with a simple change in the underlying
data. This result is independent of the sample size, and the smoothing parameter merely affects how long a change in the underlying
data the gap measure emulates. This relation breaks down when the order of integration of the underlying data is higher than one.

4. Empirical results

In this section, we show that the similarity between the credit gap and the 16-quarter difference in the credit ratio holds for a
large sample of countries. For the empirical analyses we use quarterly credit-to-GDP data for 43 countries and the Euro area from
the Bank for International Settlements.6 The data start at different points in time for different countries with the earliest time series
extending back to the late 1940’s and early 1950’s. Data for all countries ends in 2021-Q3. Table 1 lists the countries in our sample
and the periods for which we observe the quarterly credit-to-GDP ratios.

We begin by analyzing the order of integration of the data. As we show analytically and through simulations above, the close
mechanical similarity between the credit gap and the 16-quarter change in the credit-to-GDP ratio relies on the credit ratio following
an 𝐼(1) process. Hence, we first establish that the real world credit-to-GDP ratios are indeed integrated of order one. In Table 2,
we report for each country the test statistic and 𝑝-value of an Augmented Dickey–Fuller (ADF) test applied to the level of the
credit-to-GDP ratio (𝑦𝑡). For each country, we consider one test where we set the number of lags equal to 4, and one test were
the number of lags is selected by maximizing Akaike’s information criterion (AIC). In both cases, we are not able to reject the null
hypothesis of a unit root, at 5% significance levels for all countries except Argentina. We also report the results of a panel unit root
test, specifically the Z-test by Choi (2001), which pools the observations across all 43 countries (excluding the Euro area aggregate).7
Also utilizing the increased statistical power of the full panel, we cannot reject a unit root in the credit-to-GDP ratio.

6 The data are available for download at https://www.bis.org/statistics/c_gaps.htm.
7 The Z-test by Choi (2001) is implemented as the function ‘‘purtest’’ in the ‘‘PLM’’ package in R (Croissant and Millo, 2008; R Core Team, 2022).

https://www.bis.org/statistics/c_gaps.htm
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Table 2
Level stationarity tests. This table present the results of testing for stationarity of the levels of the credit-to-GDP ratios. Columns marked
𝑘 = 4 present the test statistic (𝐴𝐷𝐹 ) and 𝑝-values (𝑝) of the Augmented Dickey–Fuller test using four lags. The columns marked 𝐴𝐼𝐶
present the test statistic and 𝑝-values for the Augmented Dickey–Fuller test where the lag length is chosen to optimize the Akaike
Information Criterion. The data is on a quarterly frequency, sample periods and sizes are given in Table 1.

𝑘 = 4 𝐴𝐼𝐶 𝑘 = 4 𝐴𝐼𝐶

𝐴𝐷𝐹 𝑝 𝐴𝐷𝐹 𝑝 𝐴𝐷𝐹 𝑝 𝐴𝐷𝐹 𝑝

AR −3.235 0.020 −3.804 0.004 IN −0.853 0.802 −1.044 0.738
AT −1.151 0.696 −1.141 0.700 IT −1.074 0.726 −1.093 0.719
AU −0.873 0.796 −0.686 0.847 JP −1.564 0.499 −1.849 0.356
BE −0.086 0.948 −0.345 0.914 KR −0.333 0.916 −0.494 0.889
BR 0.997 0.996 1.344 0.999 LU −1.247 0.652 −1.204 0.670
CA 1.611 1.000 1.395 0.999 MX −2.805 0.060 −2.093 0.248
CH 1.030 0.997 1.715 1.000 MY −1.331 0.615 −1.390 0.587
CL −0.559 0.875 −0.007 0.956 NL −1.303 0.628 −1.340 0.611
CN 0.384 0.982 0.569 0.988 NO −0.766 0.826 −0.526 0.882
CO −1.063 0.728 −0.804 0.813 NZ −0.846 0.804 −0.962 0.767
CZ −1.246 0.652 −0.873 0.793 PL −1.073 0.725 −1.278 0.638
DE −1.841 0.360 −1.955 0.307 PT −1.700 0.430 −1.523 0.520
DK −0.821 0.811 −0.737 0.834 RU −0.746 0.829 −0.749 0.828
ES −1.237 0.658 −1.073 0.726 SA −0.517 0.883 −0.776 0.821
FI −0.573 0.873 −0.510 0.885 SE 0.374 0.981 0.932 0.996
FR 2.562 1.000 2.531 1.000 SG −0.535 0.880 −0.284 0.924
GB −0.679 0.849 −0.387 0.908 TH −1.702 0.429 −1.626 0.467
GR −0.344 0.915 −0.743 0.832 TR 0.585 0.989 0.171 0.970
HK 1.071 0.997 2.188 1.000 US −1.463 0.551 −1.094 0.719
HU −1.086 0.721 −1.750 0.404 ZA −1.376 0.594 −1.382 0.591
ID −2.094 0.248 −2.777 0.064 XM −2.128 0.234 −2.210 0.204
IE −0.913 0.783 −0.896 0.788
IL −2.411 0.141 −2.837 0.056 Panel 5.633 1.000 5.587 1.000

Table 3
Difference stationarity tests. This table present the results of testing for stationarity of the changes of the credit-to-GDP ratios.
Columns marked 𝐴𝑅(4) present the estimates of the autoregressive terms of 𝐴𝑅(4) models of the changes in credit-to-DGP ratios.
Columns marked 𝑘 = 4 presents the test statistic (𝐴𝐷𝐹 ) and 𝑝-values (𝑝) of the Augmented Dickey–Fuller test using four lags.
The columns marked 𝐴𝐼𝐶 present the test statistic and 𝑝-values for the Augmented Dickey–Fuller test where the lag length is
chosen to optimize the Akaike Information Criterion. The data is on a quarterly frequency, sample periods and sizes are given
in Table 1.

𝑘 = 4 𝐴𝐼𝐶 𝑘 = 4 𝐴𝐼𝐶

𝐴𝐷𝐹 𝑝 𝐴𝐷𝐹 𝑝 𝐴𝐷𝐹 𝑝 𝐴𝐷𝐹 𝑝

AR −6.961 0.000 −6.694 0.000 IN −4.608 0.000 −2.988 0.037
AT −6.119 0.000 −4.265 0.001 IT −4.563 0.000 −2.995 0.037
AU −4.056 0.001 −3.914 0.002 JP −4.403 0.000 −3.023 0.034
BE −5.301 0.000 −6.598 0.000 KR −4.865 0.000 −6.277 0.000
BR −3.918 0.003 −9.508 0.000 LU −4.849 0.000 −6.221 0.000
CA −6.878 0.000 −8.121 0.000 MX −4.211 0.001 −4.634 0.000
CH −5.970 0.000 −8.292 0.000 MY −5.054 0.000 −6.324 0.000
CL −4.714 0.000 −8.349 0.000 NL −4.756 0.000 −3.353 0.014
CN −5.046 0.000 −4.064 0.002 NO −5.500 0.000 −6.245 0.000
CO −3.555 0.009 −4.711 0.000 NZ −4.872 0.000 −3.669 0.005
CZ −4.420 0.000 −8.494 0.000 PL −2.983 0.040 −2.998 0.038
DE −5.698 0.000 −4.042 0.001 PT −3.892 0.002 −3.162 0.024
DK −4.502 0.000 −3.160 0.024 RU −4.508 0.000 −7.737 0.000
ES −3.039 0.033 −2.073 0.256 SA −4.661 0.000 −5.538 0.000
FI −5.052 0.000 −8.096 0.000 SE −5.147 0.000 −5.071 0.000
FR −5.576 0.000 −3.274 0.017 SG −5.416 0.000 −4.853 0.000
GB −4.664 0.000 −4.906 0.000 TH −3.399 0.012 −3.537 0.008
GR −4.587 0.000 −2.170 0.218 TR −5.841 0.000 −2.777 0.064
HK −5.134 0.000 −6.120 0.000 US −5.912 0.000 −4.032 0.001
HU −3.339 0.014 −3.005 0.036 ZA −5.781 0.000 −6.207 0.000
ID −6.296 0.000 −6.280 0.000 XM −4.076 0.002 −7.187 0.000
IE −4.902 0.000 −13.239 0.000
IL −4.264 0.001 −6.125 0.000 Panel −26.403 0.000 −28.962 0.000

To rule out higher order of integration, Table 3 presents the results of ADF tests applied to the first difference of the credit-to-GDP
ratio (𝛥𝑦𝑡). With the exception of Spain and Greece, we are able to reject a unit root in 𝛥𝑦𝑡 at the 10% significance level, and for
most countries even at the 1% level. For Spain and Greece, we do reject a unit root if the lag length is set to 4, rather then selected
by the AIC. For the Euro area (XM) as a whole, as well as for the full panel utilizing Choi’s (2001) Z-test, we clearly reject a unit root
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Table 4
Empirical results. This table reports correlations between credit gaps (𝑦𝑡 − 𝜏𝑡) and simple changes in the credit-to-GDP ratio
(𝑦𝑡 − 𝑦𝑡−𝑖). 𝑘 is the optimal lag length (𝑖) at which the correlation is maximized. 𝐶𝑜𝑟(𝑖) is the correlation between the credit gap
and the 𝑖-quarter change. In addition to the optimal lag length, the correlations are reported also for 4, 8, 16, 24, 32, and 40
quarters. The final rows report the median and average across all 43 countries (excluding the Euro area).

𝑘 𝐶𝑜𝑟(𝑘) 𝐶𝑜𝑟(4) 𝐶𝑜𝑟(8) 𝐶𝑜𝑟(16) 𝐶𝑜𝑟(24) 𝐶𝑜𝑟(32) 𝐶𝑜𝑟(40)

AR 16 0.839 0.670 0.782 0.839 0.768 0.692 0.610
AT 17 0.941 0.672 0.844 0.937 0.869 0.735 0.645
AU 16 0.898 0.663 0.803 0.898 0.814 0.676 0.570
BE 12 0.811 0.630 0.775 0.796 0.695 0.558 0.473
BR 14 0.898 0.595 0.787 0.877 0.722 0.609 0.448
CA 15 0.922 0.679 0.839 0.921 0.856 0.771 0.670
CH 17 0.915 0.689 0.829 0.914 0.873 0.782 0.714
CL 17 0.864 0.615 0.788 0.864 0.803 0.635 0.413
CN 15 0.913 0.660 0.842 0.912 0.781 0.696 0.480
CO 13 0.936 0.626 0.825 0.890 0.660 0.408 0.272
CZ 13 0.901 0.693 0.852 0.893 0.804 0.579 0.300
DE 17 0.944 0.734 0.875 0.943 0.889 0.775 0.648
DK 18 0.942 0.716 0.842 0.939 0.903 0.793 0.626
ES 16 0.954 0.803 0.904 0.954 0.913 0.821 0.697
FI 17 0.931 0.637 0.811 0.930 0.892 0.774 0.638
FR 15 0.940 0.763 0.897 0.939 0.899 0.801 0.735
GB 17 0.895 0.677 0.814 0.895 0.855 0.742 0.602
GR 14 0.948 0.752 0.900 0.944 0.882 0.768 0.616
HK 17 0.959 0.729 0.880 0.955 0.912 0.904 0.877
HU 18 0.973 0.723 0.865 0.969 0.947 0.849 0.718
ID 17 0.847 0.628 0.768 0.847 0.805 0.748 0.660
IE 15 0.927 0.735 0.875 0.927 0.867 0.771 0.636
IL 15 0.926 0.742 0.884 0.924 0.858 0.731 0.649
IN 18 0.945 0.707 0.848 0.942 0.907 0.815 0.672
IT 15 0.913 0.719 0.843 0.912 0.861 0.745 0.597
JP 13 0.899 0.786 0.875 0.889 0.825 0.728 0.606
KR 15 0.914 0.673 0.834 0.913 0.849 0.690 0.465
LU 28 0.863 0.690 0.799 0.824 0.831 0.837 0.669
MX 15 0.932 0.719 0.854 0.928 0.839 0.692 0.553
MY 15 0.885 0.655 0.805 0.884 0.840 0.769 0.618
NL 14 0.948 0.740 0.884 0.945 0.895 0.812 0.695
NO 14 0.884 0.626 0.794 0.880 0.827 0.722 0.553
NZ 15 0.870 0.654 0.792 0.870 0.803 0.688 0.575
PL 14 0.927 0.715 0.866 0.921 0.851 0.800 0.686
PT 16 0.955 0.766 0.883 0.955 0.915 0.821 0.722
RU 12 0.940 0.676 0.855 0.877 0.570 0.459 0.521
SA 10 0.940 0.776 0.925 0.822 0.719 0.818 0.865
SE 17 0.893 0.643 0.798 0.891 0.847 0.700 0.554
SG 15 0.918 0.668 0.827 0.916 0.861 0.785 0.618
TH 17 0.925 0.710 0.831 0.924 0.893 0.800 0.666
TR 12 0.930 0.692 0.851 0.926 0.839 0.679 0.539
US 18 0.958 0.695 0.845 0.955 0.924 0.807 0.649
ZA 15 0.877 0.637 0.796 0.874 0.736 0.569 0.503
XM 12 0.958 0.713 0.907 0.929 0.845 0.772 0.701

Median 15 0.925 0.690 0.842 0.914 0.851 0.748 0.618
Average 15.56 0.915 0.692 0.839 0.906 0.835 0.729 0.605

in 𝛥𝑦𝑡. Taken together, the results in Tables 2 and 3 suggest that the credit-to-GDP ratio is first-order integrated, or 𝐼(1), such that
these variables are subject to the mechanical correlations between a gap measure based on HP filter trend endpoints and changes,
as documented in Sections 2 and 3 above.

In Table 4, we report the correlation coefficients between the credit gaps and 𝑘-quarter changes in the credit-to-GDP ratio
(𝛥𝑘𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−𝑘) for each country. The first column reports the lag 𝑘 at which the correlation is maximized, while the second
column shows the maximum correlation. This correlation is remarkably high across all countries, ranging from 0.81 (Belgium) to
0.97 (Hungary). On average across all 43 countries (excluding the Euro area), the correlation is 0.92. The lag at which the correlation
is highest is in general close to 16, with a median of 15 and average of 15.6. Table 4 also reports the correlation for other selected
values of 𝑘, showing in general a hump-shaped pattern very similar to the analytical results in Fig. 3 and the simulation results in
Fig. 4.

Table 5 presents the correlation-maximizing lags and the corresponding maximum correlations when the HP filter smoothing
parameter 𝜆 is set to either 1600 or 25,000, instead of 400,000, in the calculation of the credit gap. Consistent with the analytical
and simulation results above, lowering the smoothing parameter simply results in the credit gap measure being correlated with
shorter changes in the credit ratio. The median correlation maximizing lag is 𝑘 = 4 when 𝜆 = 1600, and 𝑘 = 8 when 𝜆 = 25,000.
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Table 5
Different smoothing parameters. This table reports correlations between credit gaps (𝑦𝑡 − 𝜏𝑡) and simple changes
in the credit-to-GDP ratio (𝑦𝑡−𝑦𝑡−𝑖), for different values of the smoothing parameter, 𝜆, used in the HP filter. 𝑘 is
the optimal lag length (𝑖) at which the correlation between the credit gap and the simple change is maximized.
𝐶𝑜𝑟(𝑘) is the correlation between the credit gap and the 𝑘-quarter change. The final rows report the median and
average across all 43 countries (excluding the Euro area).

𝜆 = 1600 𝜆 = 25,000 𝜆 = 400,000

𝑘 𝐶𝑜𝑟(𝑘) 𝑘 𝐶𝑜𝑟(𝑘) 𝑘 𝐶𝑜𝑟(𝑘)

AR 4 0.892 7 0.843 16 0.839
AT 5 0.826 7 0.903 17 0.941
AU 4 0.837 9 0.909 16 0.898
BE 4 0.867 7 0.832 12 0.811
BR 4 0.793 7 0.735 14 0.898
CA 4 0.860 9 0.879 15 0.922
CH 4 0.850 9 0.869 17 0.915
CL 4 0.880 8 0.880 17 0.864
CN 4 0.845 8 0.844 15 0.913
CO 4 0.817 8 0.779 13 0.936
CZ 3 0.641 6 0.824 13 0.901
DE 3 0.778 7 0.846 17 0.944
DK 3 0.737 8 0.879 18 0.942
ES 3 0.645 5 0.878 16 0.954
FI 4 0.842 9 0.898 17 0.931
FR 3 0.866 8 0.865 15 0.940
GB 4 0.731 7 0.864 17 0.895
GR 3 0.695 6 0.804 14 0.948
HK 4 0.811 6 0.851 17 0.959
HU 3 0.718 7 0.892 18 0.973
ID 4 0.886 7 0.843 17 0.847
IE 3 0.803 7 0.853 15 0.927
IL 3 0.760 5 0.737 15 0.926
IN 3 0.724 7 0.857 18 0.945
IT 3 0.720 7 0.833 15 0.913
JP 3 0.703 6 0.774 13 0.899
KR 4 0.880 9 0.933 15 0.914
LU 4 0.903 8 0.883 28 0.863
MX 3 0.826 9 0.940 15 0.932
MY 4 0.838 8 0.856 15 0.885
NL 3 0.853 9 0.956 14 0.948
NO 4 0.890 8 0.879 14 0.884
NZ 4 0.798 8 0.864 15 0.870
PL 4 0.880 9 0.942 14 0.927
PT 3 0.734 6 0.870 16 0.955
RU 5 0.942 10 0.927 12 0.940
SA 4 0.951 9 0.953 10 0.940
SE 4 0.814 8 0.855 17 0.893
SG 4 0.862 9 0.919 15 0.918
TH 3 0.775 8 0.871 17 0.925
TR 4 0.828 9 0.790 12 0.930
US 3 0.786 7 0.921 18 0.958
ZA 4 0.883 9 0.905 15 0.877
XM 4 0.862 6 0.944 12 0.958

Median 4 0.826 8 0.869 15 0.925
Average 3.65 0.813 7.67 0.866 15.56 0.915

On average, the maximum correlations are high: 0.83 for 𝜆 = 1600 and 0.88 for 𝜆 = 25,000. These values are very similar to the
analytical and simulation results presented in Figs. 3 and 4.

While the patterns of correlations between the credit gap and changes in the credit-to-GDP ratio are similar across countries,
the historical developments of the credit ratio itself differ widely. Fig. 5 visually illustrates how the high correlations arise for three
selected countries with very different patterns of the credit ratio: Italy, Japan, and Finland. The left panels of the figure show the
credit-to-GDP ratio (black line) and the one-sided HP filter trend estimates (blue line), similar to Panel D of Fig. 2 for the UK. The
right panels show the resulting credit gap (blue line) and the simple 16-quarter change in the credit-to-GDP ratio (red line). Similar
to the case of the UK, the one-sided trend estimates are clearly lagging the original credit-to-GDP ratio for each country. This is
particularly visible for Italy and Japan, which both experience prolonged periods of growth and decline in the credit ratio. The
right panels show, similar to Fig. 1, that the credit gaps and naive changes are not only highly correlated, but experience peaks
and troughs simultaneously. This continues to be the case during more extreme cyclical movements, such as in Finland during the
early 1990’s. The credit cycles identified by the simple 16-quarter changes are thus nearly identical to the credit gaps estimated by
a one-sided HP filter.
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Fig. 5. Other countries. This figure presents the empirical results for Italy, Japan, and Finland. The left panels show the credit-to-GDP ratios (𝑦𝑡, black line)
and the one-sided HP filter trends (𝜏𝑡, blue line). The right panels show the resulting credit gaps (𝑥𝑡 = 𝑦𝑡 − 𝜏𝑡, blue line) and the simple 16-quarter changes in
the credit-to-GDP ratio (𝛥16𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−16, red line). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

5. Predicting banking crises

In this section, we compare the credit gap to the 16-quarter change in the credit-to-GDP ratio in terms of their ability to predict
banking crises. Drehmann and Juselius (2014) justify the use of the credit gap as an early warning indicator, by demonstrating
its superior predictive power for banking crises. Drehmann and Juselius (2014) treat the prediction of crisis episodes as a binary
classification problem, by evaluating whether the level of the indicator predicts the start of a crisis within the next ℎ quarters,
applying the Receiver Operating Characteristic (ROC) curve. The ROC curve plots the true positive rate against the false positive
rate, for all possible threshold levels of the indicator. The Area Under the Curve (AUC) is a convenient summary statistic of the
predictive power of an indicator: A fully informative indicator (implying no false positives) has an AUC of 1, while a fully inaccurate
indicator (implying no true positives) has an AUC of 0. An uninformative indicator (e.g., the flip of a coin) is expected to have an
AUC of 0.5.8

Using a sample of 19 banking crises, Drehmann and Juselius (2014) obtain the AUCs of various potential early warning indicators
and find that the credit gap performs best (i.e., has the highest AUC) at prediction horizons ℎ exceeding 6 quarters. We use the
same sample of crises and the same ROC-AUC methodology to compare the credit gap to the 16-quarter change in the credit-to-GDP

8 See Robin et al. (2011) for details on the ROC methodology and on the ‘‘pROC’’ package in R (R Core Team, 2022). Recent applications in economics
include Berge and Jordà (2011) and Costa et al. (2019).
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Fig. 6. Predicting banking crises. This figure presents the area under the ROC curve (AUC) for the credit gap (𝑥𝑡 = 𝑦𝑡 − 𝜏𝑡, blue line) and the simple 16-quarter
changes in the credit-to-GDP ratio (𝛥16𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−16, red line). In Panel A, the AUCs are obtained with quarterly observations of both indicators, predicting
banking crises from one up to 12 quarters ahead, using a sample of 19 banking crises (Drehmann and Juselius, 2014). In Panel B, the AUCs are obtained with
quarterly observations using a sample of 59 banking crises (Drehmann and Yetman, 2021). In Panel C, the AUCs are obtained with annual (Q4) observations
of both indicators, predicting banking crises from one up to 3 years ahead, using a broader sample of 95 banking crises (Baron et al., 2021). The dashed lines
represent bootstrapped 95% confidence intervals. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

ratio.9 The blue line in Panel A of Fig. 6 reports the AUC for the credit gap at horizons of one up to twelve quarters. The red line,
showing the AUC for the 16-quarter change in the credit-to-GDP ratio almost fully overlaps with the credit gap’s AUC. Based on the
bootstrapped 95% confidence bounds, the differences are clearly not significant. Thus, in line with our earlier results that the credit
gap and 16-quarter change are highly similar, we now also document that these measures are nearly equivalent when it comes to
predicting banking crises.

In response to Hamilton’s (2018) critique on the use of the HP filter and recommendation to apply local projections, Drehmann
and Yetman (2021) consider an extended sample and show that linear projections do not outperform the credit gap based on HP
filter in term of predicting crises. In panel B of Fig. 6, we report the AUC for the credit gap (blue line) and for the 16-quarter change
(red line), using a sample of 59 crises. Similar to Panel A, there is no significant difference between the two measures in terms of
predicting banking crises.

In a recent article, Baron et al. (2021) argue that prior literature on banking distress focuses primarily on salient episodes
of distress coinciding with banking panics, while banking crises have severe economic consequences even in the absence of a
simultaneous panic. By defining banking crises as declines in bank equity of at least 30%, Baron et al. (2021) build a novel database
of banking crises that includes several ‘‘quiet’’ episodes that are not accounted for in earlier studies.

Using this broader sample of 95 banking crises, we repeat our prediction exercise comparing the credit gap to the 16-quarter
change in the credit-to-GDP ratio.10 As the crisis dates are documented at annual frequency by Baron et al. (2021), we only use
the end-of-year (Q4) observations of the credit gap and 16-quarter change, and evaluate predictive power from one up to three
years ahead. Panel C of Fig. 6 reports the AUC for the credit gap (blue line) and the 16-quarter change in the credit-to-GDP ratio
(red line). The AUCs of both indicators are around 0.6, which is considerably lower than in Panel A. Both the credit gap and the
16-quarter change thus clearly perform worse as an early warning indicator, when applied to a broader sample of banking crises. As
before, the credit gap and 16-quarter change behave in a highly similar manner, with the difference in predictive power not being
statistically significant.

Finally, we use the sample by Baron et al. (2021) to evaluate the predictability of banking crises in a regression context. Following
Candelon et al. (2014), we apply the following four dynamic probit regressions, introduced by Kauppi and Saikkonen (2008):

Model 1 ∶ 𝑃𝑟(𝑑𝑖,𝑡 = 1) = 𝐹 (𝜋𝑖,𝑡) = 𝐹 (𝛼 + 𝛽𝑥𝑖,𝑡−1)
Model 2 ∶ 𝑃𝑟(𝑑𝑖,𝑡 = 1) = 𝐹 (𝜋𝑖,𝑡) = 𝐹 (𝛼 + 𝛽𝑥𝑖,𝑡−1 + 𝜌𝑑𝑖,𝑡−1)
Model 3 ∶ 𝑃𝑟(𝑑𝑖,𝑡 = 1) = 𝐹 (𝜋𝑖,𝑡) = 𝐹 (𝛼 + 𝛽𝑥𝑖,𝑡−1 + 𝛾𝜋𝑖,𝑡−1)
Model 4 ∶ 𝑃𝑟(𝑑𝑖,𝑡 = 1) = 𝐹 (𝜋𝑖,𝑡) = 𝐹 (𝛼 + 𝛽𝑥𝑖,𝑡−1 + 𝜌𝑑𝑖,𝑡−1 + 𝛾𝜋𝑖,𝑡−1, )

(8)

in which the probability of a crisis in country 𝑖 at time 𝑡 (𝑑𝑖,𝑡 = 1) is modeled as a function of a lagged predictor 𝑥𝑖,𝑡−1, supplemented
with a lagged crisis indicator 𝑑𝑖,𝑡−1 and/or an autoregressive term 𝜋𝑖,𝑡−1. We apply these four specifications to the set of crises
identified by Baron et al. (2021), using both the credit gap and 16-quarter change as predictors.11

9 The sample of 19 banking crises comprises the ‘balanced sample’ listed in Table A.1 of Drehmann and Juselius (2014). Using their ‘unbalanced sample’ of
34 crises, we obtain qualitatively similar results.

10 Our initial sample consists of all crises listed in Table 6 of Baron et al. (2021) for which ‘bank equity crisis’ = 1. After matching this sample to the BIS data
(See Section 4) and dropping crises that are preceded within the same country by another crisis during the previous two years (following Laeven and Valencia,
2013), we end up with a final sample of 95 crises.

11 We estimate the models using the dynamic panel probit estimator by Candelon et al. (2014), which is implemented in the ‘‘EWS’’ package in R (Hasse and
Lajaunie, 2021; R Core Team, 2022). Our sample differs in two ways from the sample used for the ROC analysis presented in Fig. 6 (Panel C). First, given the
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Table 6
Dynamic probit regressions. This table reports the results from regressing a dummy variable 𝑑𝑖,𝑡, indicating whether country 𝑖 in
year 𝑡 is experiencing a banking crisis, on a lagged predictor 𝑥𝑖,𝑡−1, a lagged crisis dummy 𝑑𝑖,𝑡−1 and/or an autoregressive term
𝜋𝑖,𝑡−1 . The four model specifications, following Kauppi and Saikkonen (2008) and Candelon et al. (2014) are listed in Eq. (8).
The predictor 𝑥𝑖,𝑡−1 is either the previous year (quarter 4) credit gap (𝑦𝑡 − 𝜏𝑡) or a simple 16-quarter change in the credit-to-GDP
ratio (𝑦𝑡 − 𝑦𝑡−16). The crises episodes are from the database by Baron et al. (2021). The balanced sample includes 28 countries
with 36 annual observations each (1984–2019). Z-statistics are reported in parentheses.
𝑥𝑡−1 Model 1 Model 2 Model 3 Model 4

Gap Change Gap Change Gap Change Gap Change

Intercept −2.06 −2.76 −3.40 −3.71 −0.56 −0.73 −3.98 −4.43
(−2.26) (−2.15) (−4.89) (−4.91) (−3.21) (−4.19) (−4.35) (−4.32)

𝑥𝑡−1 0.06 0.05 0.05 0.03 0.04 0.03 0.06 0.04
(4.78) (5.99) (4.57) (4.16) (7.77) (9.33) (4.03) (3.81)

𝑦𝑡−1 3.59 3.52 4.15 4.13
(19.77) (19.85) (16.36) (15.89)

𝜋𝑡−1 −0.74 −0.60 −0.23 −0.10
(−2.42) (−2.32) (−0.17) (−0.08)

Observations 1008 1008 1008 1008 1008 1008 1008 1008
Pseudo-𝑅2 0.090 0.112 0.383 0.380 0.112 0.128 0.390 0.392
AIC 708.6 691.4 470.4 473.1 692.4 679.0 465.3 463.9

The results, reported in Table 6, demonstrate again near equivalence between the credit gap and the 16-quarter change in
terms of predicting banking crises one year forward. Based on the reported AIC and Pseudo-𝑅2, the 16-quarter change performs
marginally better in Models 1, 3 and 4, while the credit gap performs marginally better in Model 2. For both predictors, the full
dynamic autoregressive specification (Model 4) performs best. Utilizing three sets of crises and two distinct forecasting approaches,
the results in this section demonstrate that there is no meaningful difference in the predictive power of the credit gap and the
16-quarter change in terms of predicting systemic risk over short to intermediate horizons.

6. Conclusion

We document that the credit gap or ‘Basel gap’ is nearly equivalent to a simple 16-quarter change in the credit-to-GDP ratio. This
similarity is the result of the recursive trend-estimation underlying the credit gap, using the one-sided HP filter, which results in a
trend component that is mechanically lagging the original credit-to-GDP ratio. We illustrate this finding using data from the UK and
document similar results using data from other countries. For each of the 44 countries we investigate, the correlation between the
credit gap and the 16-quarter change in the credit-to-GDP ratio is between 0.80 and 0.97. We also conduct a Monte Carlo exercise
and find similar results when applying one-sided HP filtration to simulated time series. When evaluating the performance of the
credit gap and the 16-quarter change as early warning indicators, we find that their performance in terms of predicting banking
crises are nearly identical. This holds both within samples of crises used earlier to evaluate the credit gap, as well as in a larger
sample of more broadly defined banking crises.

Whether the credit gap is the optimal indicator for identifying credit cycles and setting countercyclical regulatory capital buffers
remains an open question that we do not aim to answer in this paper. Several studies have warned explicitly against the use of
the Basel credit gap as an early warning indicator (e.g. Edge and Meisenzahl, 2011; Repullo and Saurina Salas, 2011; Alessi and
Detken, 2018; Geršl and Jašová, 2018; Afanasyeva, 2020), while Tölö et al. (2018) recommend to consider other early warning
indicators (including stock market volatility, credit spreads and real estate prices) in addition to the credit gap. Jokipii et al. (2021)
acknowledge its methodological concerns, but consider the credit gap nevertheless a reliable measure of excess credit in Switzerland.
Rather than taking a stance on whether or not the Basel credit gap is an appropriate measure of systemic risk, our objective is to
demonstrate its equivalence to a naive 16-quarter change. This implies that the estimation procedure underlying the credit gap
is unnecessarily complicated and obscure. There is ultimately no need to use complicated methods when simple changes suffice.
Compared to applying a one-sided HP filter, taking a simple change is undoubtedly easier to communicate, both to policy makers
and to the broader public. Although the credit gap has the appealing and intuitive interpretation of indicating a deviation from the
long-term trend, this interpretation is potentially highly misleading when the ‘trend’ is effectively the lag of the credit-to-GDP ratio.
We therefore recommend estimating the credit gap more transparently by a simple 16-quarter change in the credit-to-GDP ratio.

Of course, it is possible that a lag length different than 16 quarters could lead to better performance in terms of predicting
systemic risk. For example, Hamilton (2018, 2021) proposes a two-year difference as a robust approach to identify cycles from
many monthly economic time series. Adjusting the lag-structure to improve the credit gap as an early warning indicator is a possible
avenue for future research.

dynamic autoregressive specification of the model, we do not need to adopt the procedure by Laeven and Valencia (2013) to exclude crises that are preceded
within the same country by another crisis during the previous two years. Second, since the data needs to be in a balanced panel format, we choose the number
of countries 𝑁 and time periods 𝑇 such that 𝑁 × 𝑇 is maximized. We end up with a sample of 𝑁 = 28 countries, for which we use 𝑇 = 36 annual observations
of data (1984–2019), yielding a total of 1008 observations.
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Our results have broader implications for the application of the one-sided HP filter. We find in general that the cyclical component
of an 𝐼(1) process, estimated by a one-sided HP filter, is highly correlated with the 𝑘-period change in the process. This result holds for
different values of the smoothing parameter 𝜆. When the smoothing parameter is decreased, the deviation from trend approximates
a shorter change in the credit-to-GDP ratio. Calibrating the smoothing parameter is thus effectively equivalent to calibrating the lag
length 𝑘 over which changes are calculated. We thus conclude that the one-sided HP filter does not succeed in identifying cycles
from a process that has order of integration less than two.
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Appendix. Supplementary analytical results

Cornea-Madeira (2017, Theorem 1, p. 315) finds analytical solutions of the HP filter that are valid for an entire sample, including
the endpoints. Specifically, the 𝑖th observation of the trend of a time series of length 𝑇 is specified as: 𝜏𝑖 =

∑𝑇
𝑡=1 𝑝𝑖,𝑡𝑦𝑡, where the

weights 𝑝𝑖,𝑡 are a function of the smoothing parameter 𝜆, 𝑡, 𝑖 and 𝑇 , but do not depend on the distribution of 𝑦𝑡 (See Corollary 1,
Cornea-Madeira, 2017). As we are solely interested in the last observation of the trend, we can simplify notation to

𝜏𝑇 =
𝑇
∑

𝑡=1
𝑝𝑡𝑦𝑡,

as in Eq. (2).
Table A.1 tabulates selected weights 𝑝𝑡, calculated using the expressions provided by Cornea-Madeira (2017), for different values

of 𝑇 and 𝜆. The table shows that the endpoint of the trend is a weighted average of past observations, with most weight given to
the most recent observations. A lower smoothing parameter 𝜆 implies relatively higher weights for the most recent observations. It
is also clear that the weights of the observations towards the end of the sample do not strongly depend on the sample size 𝑇 .

Given the weights of each observation, we can derive the correlation between 𝑦𝑇 in deviation from trend, and 𝑦𝑇 in deviation
from its 𝑘-order lag, for any 𝐼(1) time-series process 𝑦𝑡, such that 𝛥𝑦𝑡 = 𝜉𝑡 is a stationary process. For example, when 𝑦𝑡 is a random
walk: 𝜉𝑡 ∼ 𝑖.𝑖.𝑑.(0, 𝜎2), it follows that:

𝑣𝑎𝑟
(
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)
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where 𝜑𝑡 =
∑𝑇

𝑗=𝑡 𝑝𝑗 . In general, for any 𝐼(1) process 𝐲 of length 𝑇 , such that ∆𝐲 = 𝜉 =
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. The second-order moments of 𝑥𝑇 and 𝛥𝑘𝑦𝑇 are:

𝑣𝑎𝑟
(

𝑥𝑇
)

= 𝑣𝑎𝑟
(

(𝟏 − 𝜑)′ 𝜉
)

= (𝟏 − 𝜑)′Σ(𝟏 − 𝜑)
𝑣𝑎𝑟
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𝛿(𝐤)′𝜉
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= (𝟏 − 𝜑)′Σ𝛿(𝐤)

Table A.2 reports the correlations between 𝑥𝑇 and 𝛥𝑘𝑦𝑇 for 𝑘 = 1,… , 20, for different specification of 𝑦𝑡 and different values of 𝜆 and
𝑇 . In the first three columns, 𝑦𝑡 is a random walk and 𝑇 = 200, as in Fig. 3. The next three columns show that the correlations are
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Table A.1
Weights. This table reports the weights 𝑝𝑡 in 𝜏𝑇 =

∑𝑇
𝑡=1 𝑝𝑡𝑦𝑡 (Eq. (2)), calculated using the expressions provided by Cornea-Madeira

(2017), for selected 𝑡 and for different values of the smoothing parameter 𝜆 and sample size 𝑇 .
𝜆 = 400,000 𝜆 = 25,000 𝜆 = 1,600

𝑡 𝑇 = 100 𝑇 = 200 𝑇 = 1,000 𝑇 = 100 𝑇 = 200 𝑇 = 1,000 𝑇 = 100 𝑇 = 200 𝑇 = 1,000

𝑇 0.0554 0.0547 0.0547 0.1064 0.1064 0.1064 0.2006 0.2006 0.2006
𝑇 − 1 0.0539 0.0532 0.0531 0.1004 0.1004 0.1004 0.1782 0.1782 0.1782
𝑇 − 2 0.0523 0.0516 0.0516 0.0945 0.0945 0.0945 0.1564 0.1564 0.1564
𝑇 − 3 0.0508 0.0501 0.0501 0.0886 0.0886 0.0886 0.1354 0.1354 0.1354
𝑇 − 4 0.0493 0.0486 0.0486 0.0828 0.0828 0.0828 0.1156 0.1156 0.1156
𝑇 − 5 0.0478 0.0470 0.0470 0.0772 0.0772 0.0772 0.0972 0.0972 0.0972
𝑇 − 6 0.0463 0.0455 0.0455 0.0717 0.0716 0.0716 0.0803 0.0803 0.0803
𝑇 − 7 0.0448 0.0441 0.0440 0.0663 0.0663 0.0663 0.0650 0.0650 0.0650
𝑇 − 8 0.0433 0.0426 0.0426 0.0611 0.0611 0.0611 0.0513 0.0513 0.0513
𝑇 − 9 0.0418 0.0411 0.0411 0.0561 0.0561 0.0561 0.0393 0.0393 0.0393
𝑇 − 10 0.0404 0.0397 0.0397 0.0513 0.0513 0.0513 0.0287 0.0287 0.0287
𝑇 − 20 0.0270 0.0264 0.0264 0.0149 0.0149 0.0149 −0.0132 −0.0132 −0.0132
𝑇 − 50 0.0022 0.0022 0.0022 −0.0061 −0.0060 −0.0060 0.0006 0.0006 0.0006
𝑇 − 99 −0.0085 −0.0032 −0.0032 0.0011 0.0003 0.0003 0.0000 0.0000 0.0000

Table A.2
Correlations. This table reports 𝑐𝑜𝑟

(

𝑥𝑇 , 𝛥𝑘𝑦𝑇
)

, the correlation between the endpoint of a time-series 𝑦𝑇 in deviation from
trend and in deviation from its 𝑘-order lag, for 𝑘 = 1,… , 20. The correlation is derived using the weights calculated following
Cornea-Madeira (2017), for different values of the smoothing parameter 𝜆 and sample size 𝑇 , see Table A.1. The first 6 columns
consider a random walk process (𝛥𝑦𝑡 = 𝜉𝑡 ∼ 𝑖.𝑖.𝑑.(0, 𝜎2)). In the last three columns, 𝑦𝑡 is a random walk with time-varying variance:
𝑣𝑎𝑟(𝜉𝑡) = 1 + cos

(

𝑡
2𝜋

)

.

Random walk Random walk Time-varying variance
𝑇 = 200 𝑇 = 1,000 𝑇 = 200

𝜆 400,000 25,000 1,600 400,000 25,000 1,600 400,000 25,000 1,600

𝑘 = 1 0.3261 0.4485 0.5989 0.3261 0.4485 0.5989 0.3602 0.4761 0.6389
2 0.4483 0.5987 0.7525 0.4482 0.5987 0.7525 0.4982 0.6393 0.8069
3 0.5334 0.6913 0.8155 0.5334 0.6913 0.8155 0.5954 0.741 0.8767
4 0.5983 0.7518 0.8297 0.5982 0.7518 0.8297 0.6693 0.8074 0.8929
5 0.6496 0.7907 0.8137 0.6495 0.7907 0.8137 0.7270 0.8497 0.8761
6 0.6909 0.8141 0.7785 0.6908 0.8141 0.7785 0.7723 0.8744 0.8390
7 0.7243 0.8255 0.7311 0.7242 0.8255 0.7311 0.8077 0.8859 0.7904
8 0.7514 0.8276 0.6763 0.7513 0.8276 0.6763 0.8350 0.8877 0.7363
9 0.7731 0.8222 0.6176 0.7730 0.8222 0.6176 0.8555 0.8823 0.6812
10 0.7903 0.8110 0.5577 0.7902 0.8110 0.5577 0.8704 0.8718 0.6283
11 0.8037 0.7950 0.4983 0.8036 0.7950 0.4983 0.8808 0.8582 0.5796
12 0.8136 0.7752 0.4409 0.8136 0.7752 0.4409 0.8875 0.8429 0.5366
13 0.8207 0.7524 0.3863 0.8206 0.7524 0.3863 0.8914 0.8271 0.4998
14 0.8250 0.7273 0.3352 0.8250 0.7273 0.3352 0.8930 0.8118 0.4695
15 0.8271 0.7003 0.2880 0.8270 0.7003 0.2880 0.8932 0.7977 0.4454
16 0.8271 0.6720 0.2448 0.8271 0.6720 0.2448 0.8923 0.7855 0.4269
17 0.8253 0.6429 0.2058 0.8252 0.6429 0.2058 0.8910 0.7754 0.4135
18 0.8218 0.6131 0.1710 0.8217 0.6131 0.1710 0.8895 0.7676 0.4043
19 0.8168 0.5830 0.1401 0.8168 0.5830 0.1401 0.8882 0.7621 0.3984
20 0.8106 0.5529 0.1129 0.8105 0.5529 0.1129 0.8872 0.7586 0.3951

nearly identical when the sample size is increased to 𝑇 = 1,000. This result is expected, since the weights as reported in Table A.1 are
not sensitive to 𝑇 . The final columns of Table A.2 show the correlations for a random walk process 𝑦𝑡 with time-varying variance:
𝑣𝑎𝑟(𝜉𝑡) = 1 + cos

(

𝑡
2𝜋

)

, generating cycles of approximately 20 periods (7 years with quarterly data) in the level of volatility. These
correlations peak at the same lag 𝑘 as for the random walks. Introducing time-varying volatility increases the correlations, which
get closer to the empirically observed correlations (Table 4).
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