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ABSTRACT
Theory-based, or “white-box,” models come with a major benefit
that makes them appealing for deployment in user modeling: their
parameters are interpretable. However, most theory-based models
have been developed in controlled settings, in which researchers de-
termine the experimental design. In contrast, real-world application
of these models demands setups that are beyond developer control.
In non-experimental, naturalistic settings, the tasks with which
users are presented may be very limited, and it is not clear that
model parameters can be reliably inferred. This paper describes a
technique for assessing whether a naturalistic dataset is suitable for
use with a theory-based model. The proposed parameter recovery
technique can warn against possible over-confidence in inferred
model parameters. This technique also can be used to study condi-
tions under which parameter inference is feasible. The method is
demonstrated for two models of decision-making under risk with
naturalistic data from a turn-based game.

CCS CONCEPTS
•Human-centered computing→Usermodels;HCI theory, con-
cepts and models.
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1 INTRODUCTION
This paper contributes to attempts to use theory-based, so-called
white-box, models as user models. We use the term “theory-based
model” for an instantiation of a theory that explains cause-and-
effect relationships between inputs and outputs with interpretable
parameters. In contrast, data-driven, or “black-box,” models, while
they may be grounded in theory, learn a relationship between
features. Data-driven models are widely used in user modeling
but can lack explainability [12]. Theory-based models of human
behavior have succeeded in explaining decision-making in various
controlled contexts [e.g., 16, 22, 29] and, therefore, could help to
increase interpretability in user modeling.

We address a discrepancy between how theory-based models are
developed and how they should be deployed as user models. Theory-
based models, especially the models of human decision-making
examined in this paper, are generally developed under controlled
settings (i.e., the researcher can choose the experimental design).
However, user models often get applied in situations where only
non-experimental, or naturalistic, data are available. Naturalistic
datasets can take many forms (e.g., clickstream data and game
logs), but their defining feature is that a user has produced data
without experimental oversight, doing so in scenarios that arise
in the natural course of system use. This discrepancy produces a
need to assess whether a theory-based model can be fitted to a
naturalistic dataset.

This paper presents a parameter recovery technique [17, 33] for
user models. Parameter recovery refers to the study of conditions
in which model parameters can be reliably inferred. Our technique
can be used for two purposes: to assess how suitable a naturalistic
dataset is for a given theory-based user model and, secondly, to
study requirements for reliable application of a model. It can help
practitioners to avoid misinterpretation of their modeling results.

The proposed technique should be implemented in a systematic
modeling workflow. Consider a flow in which a model is picked, it
gets fitted to data, and its performance is evaluated in an iterative
process (Box’s loop [5] in Figure 1A). Naturalistic datasets require
special attention in the modeling workflow. A naturalistic dataset,
in the case of models of decision-making, has two components: 1) n
tasks of choosing fromm discrete options (task data) and 2) users’
actual choices in the tasks (choice data). This split is applicable to
user modeling in a relatively general manner, since users frequently
make such choices as picking which method to use in a sub-task or
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Figure 1: Before model fitting, one should assess a naturalistic dataset for suitability, since it may be uninformative for the
givenmodel. A. Typical steps in iterativemodeling (Box’s-loop adaptation based on Blei’s work [5]). B. Our suggestedmodeling
workflow, including a parameter recovery step to assess the suitability of naturalistic data. This considers that the data include
information on tasks and users’ choices in these tasks. The tasks’ suitability for the model should be assessed before fitting.

how to configure a system [19]. For instance, mobile-game players
may be given a task of choosing one tool among multiple options
presented to them in an in-app shop, or a user could choose an item
from a menu. Crucially, in naturalistic settings these tasks emerge
from users’ interactions with the system and are not designed to
interrogate a specific theory. Given a theory-based model, we need
to assess the suitability of the task data for said model (see Figure
1B). In contrast, the task quality in controlled experiments is (or
should be) checked before data collection [17, 33]. We suggest using
parameter recovery, after data collection, to assess whether tasks
in an existing dataset are suitable for a theory-based model.

The parameter recovery technique for assessing the suitability
of naturalistic data consists of two steps: a simulation and an as-
sessment. In a parameter recovery simulation, an artificial user
behaving in line with known “generating” parameters of a model
is simulated in the same tasks as the real users. Then, the chosen
model is fitted to the simulated choice data. Parameter recovery
is adequate if the correlation between the generating and inferred
parameters is sufficient, which we measure with the Pearson corre-
lation coefficient in this paper.

Here, we demonstrate the proposed technique via data from
Blade Runner: Rogue, a turn-based game from Next Games. In the
game, a player chooses a skill to use to attack an enemy in short
battles. Our results, from assessing two classic models of decision-
making via the log data from 510 players, indicate that only 6% of
the players considered were given tasks rich enough for adequate
parameter recovery for one of the two models tested. These results
imply that parameter inference for naturalistic datasets should be
exercised with caution, and that checking the parameter recovery
is crucial. Finally, we discuss how the tasks’ properties may result
in inadequate parameter recovery.

This paper makes the following contributions:

• We present a parameter recovery technique for assessing
whether a theory-based model can be fitted to a naturalistic
dataset.

• We demonstrate our approach by inferring players’ attitudes
to risk from game logs, illustrating how to avoid misinter-
pretation due to an unsuitable naturalistic dataset.

The proposed technique is relevant for any application where
naturalistic data can be split into tasks and choices. We focus on two
specific models in this paper, but other types that may be applied in
user modeling include memory models [2] for intelligent tutoring
systems and ambiguity models [16] to describe novice users.

The body of the paper is structured thus: We describe related
work in Section 2. The proposed technique is detailed in Section
3 and applied to the two models of decision-making in Section 4.
Results are discussed in Section 5.

2 RELATEDWORK
With this section, we briefly review types of models used in user
modeling, with special attention to theory-based models that de-
scribe behavior via interpretable parameters. We then turn to the
broader literature on statistical modeling and discuss recent at-
tempts to rethink modeling workflows for higher reliability.

2.1 Theory-based models and user modeling
User models can be viewed as representing user behavior via param-
eters inferred from interactions with a system [1]. In (purely) data-
driven models these parameters are learned from data, whereas in
models we refer to as theory-based the parameters are determined a
priori to have specific interpretations. In the past few decades, using
machine-learning models to learn the parameters of a user model
has been popular; however, this approach comes with limitations,
among them computational complexity, lack of scrutability, and a
need for large datasets [12, 32]. On the other hand, a theory (in the
social-sciences context) is intended to provide a coherent, rational,
and plausible explanation of cause and effect in a given phenom-
enon [3]. The benefit of incorporating theory-based insights into
user models has been discussed in contexts including recommender
systems [10] and gaming [25]. Theories of human behavior and
cognition have been extensively studied in experimental psychol-
ogy, cognitive science, and economics, largely in well-controlled
settings [15]. Since user models are often employed in naturalistic
settings, theory-based approaches’ applicability in these domains
requires attention.
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2.2 Modeling workflows and guidelines
Recently, the idea of implementing a workflow has gained attention
in efforts to improve the reliability of modeling for statistics and
data science [14], and similar iterative guidelines have been pro-
posed in the context of cognitive science [17, 33]. In representing
a systematic approach to implementing a computational model,
these workflows or guidelines are aimed at better model building
and parameter inference [13, 33]. Among the general challenges
in modeling are the uncertainty in the choice of model [13] and
assessment of the model’s reliability at describing latent (i.e., non-
observable) processes [17, 33]. Modeling workflows and guidelines
combat these issues by considering steps such as simulations or
predictions, comparison of models, and parameter recovery, de-
pending on the problem’s specifics and the estimate types used
[13, 17, 33]. However, these steps in modeling are not exactly new;
before attempts to draw them together into a systematic workflow
or a set of guidelines, they existed as implicit knowledge passed
from modeler to modeler [17]. Despite their benefits, such iterative
workflows are not widely reported in the user modeling literature.

2.3 Parameter recovery
Parameter recovery is often discussed as an element of a modeling
workflow [14] or modeling guidelines [17, 33]. It is used to assess
the parameter estimates produced with a chosen model and estima-
tion technique for accuracy and consistency with a given dataset
[17]. One runs a parameter recovery simulation by fitting a model
to data, generated with known parameters of the same model, to
inspect whether the generating parameters are close to the inferred
ones. This technique is considered good practice in cognitive mod-
eling, and it also serves as a bug check for the software employed
for parameter inference [17, 33]. With non-linear models, running
a parameter recovery simulation is important because it can re-
veal details about their parameter-estimation properties [17, 26].
Parameter recovery is closely related to identifiability. Parameter
identifiability, redundancy, estimability [11], and symmetry [21] all
involve the same problem of inferring the generating parameter
vector uniquely from data. There are many reasons for poor param-
eter recovery in a given problem, with identifiability of the model’s
parameters being one of them.

Among the properties examined previously in parameter recov-
ery studies are stimulus quality and the chosen estimation proce-
dure. Broomell et al. [8] argue that current modeling practices often
neglect discussion of the “model–stimulus relationship” – that is,
of the impact of the chosen stimuli on parameter-estimation and
model-comparison results. Sloman et al. [26] and Broomell and
Bhatia [7] attest to a great influence of the experimental design on
the quality of parameter estimates, from demonstrating it in the
context of models of decision-making. Similarly, Toubia et al. [28]
used parameter recovery to optimize experimental design. On the
other hand, some studies examine parameter recovery from the
perspective of the estimation procedure; for instance, Nilsson et al.
[20] propose favoring a hierarchical Bayesian parameter-estimation
procedure over the more common maximum-likelihood estimation,
for better recovery. The work described has often taken models
of decision-making under risk as the model class (namely, using

cumulative prospect theory, introduced further on). However, pa-
rameter recovery has been explored also in such contexts as models
of inter-temporal choice [4] and cognitive decision models [30].
The focus in the work reviewed is largely on datasets obtained in
controlled experiments. To the best of our knowledge, parameter
recovery is not widely used in user modeling, and its application
with naturalistic datasets is a less explored topic.

3 WALK-THROUGH OF THE PROPOSED
PARAMETER RECOVERY TECHNIQUE

This section describes the proposed parameter recovery technique
in detail. The starting point is a wish to employ a theory-based
model to explain user behavior. Our goal is to evaluate whether
this model can be used with the data at hand.

Prerequisites. The proposed recovery technique entails a minimum
requirement for application: the dataset must contain information
about both choices and tasks. For instance, assume we have mobile-
game logs containing information about tasks wherein players
choose a tool to purchase from the in-app shop. The options (the
various tools) and choices (the tool actually chosen) are recorded.
Hence, both task and choice data are available. This conditionwould
not be fulfilled if only the choices each player made were recorded,
without any contextual information on the tasks.

Modeling workflow. Parameter recovery is applied as a part of the
following modeling workflow (see Figure 2):

(1) The naturalistic dataset is split into task and choice data
for each user. In the example of a purchase from the game’s
in-app shop, this translates to splitting the log data into tasks
(options, the tools the players chose from) and choices (the
tool chosen).

(2) Choice data are set aside for later. Each user’s task datum is
evaluated, in light of some model of interest, with parameter
recovery. For instance, we could assume that users in the
game example may be modeled via an arbitrary decision-
making model with a parameter λ. We would take a sequence
of tasks from one user and simulate choices of tools with
different values of λ. Then we would assess parameter recov-
ery for the simulations. The next section provides detailed
explanation of parameter recovery.

(3) A pre-specified assessment criterion is used to assess which
users were presented with tasks that are informative enough
for the givenmodel. In the game case, we would be interested
in those players presented with options “rich enough” to be
modeled by means of the chosen decision-making model.

(4) Now choice data are considered. The given model is fitted
to the choice data of only the users who passed step 3.

Parameter recovery simulations and assessment. The proposed pa-
rameter recovery technique consists of simulating and assessing
the recovery. Parameter recovery involves only the task data (as
opposed to choice data). The suitability of the task data is measured
by simulating the choices that a model with known parameters
produces and studying whether we can recover the same param-
eters. The metric of interest is the distance between two sets of
parameters: one used to generate choices and one inferred from
those choices. If parameter recovery is inadequate, it is unlikely
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Figure 2: Themodeling workflow for assessing the data’s suitability for themodel of decision-making. The naturalistic dataset
is split into task and choice data for each user (1). Then, the data for each user are evaluated via parameter recovery (2). A pre-
specified assessment criterion indicates whether the tasks are informative enough for the given model (3). The model is fitted
to choice data only for those users filtered past step 3 (4).
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Figure 3: Parameter recovery simulation. A.Models of decision-makingwith known generating parameters θ are considered. B.
Choices are generated via themodel of decision-making with known parameters over a set of tasks. Prior work has often used
parameter recovery with experimental tasks [17, 33, etc.]. We propose extending the technique to be used with naturalistic
data. C, D. The chosen model is fitted to the choices, and θ̂ is obtained. E. Closeness of θ and θ̂ is measured through Pearson
correlation coefficient ρ. Note that other assessment criteria may be used as well.

that we can recover the ground-truth model – the parameters that
describe how users produce choice data.

Here, we consider a parameter recovery simulation including the
following steps (for other descriptions, see the literature [4, 17, 33]).
We take a model of decision-making with known generating param-
eters θ (Figure 3, pane A) and generate choices for a set of tasks by
using this model (Figure 3, pane B). Our implementation employs
100 distinct combinations of parameters for each model, which is
the number used by Ballard et al. [4]. Then, the candidate model
is fitted to these choices (pane C) to obtain inferred parameters θ̂
(pane D). These inferred parameters θ̂ should be close to the gener-
ating parameters θ , assessed against a set criterion (pane E). The
criterion considered here is the Pearson correlation coefficient ρθ, θ̂
between θ and θ̂ . We set some threshold ρ∗ that ρθ, θ̂ should exceed.
We use ρ∗ = 0.7, which can be thought of as a large correlation

coefficient in contexts of human behavioral data [18]. The exact
value of ρ∗ depends on the dataset, and there may be a tradeoff
between the quality of parameter inference and the number of users
accepted for model fitting. Due to random sampling of the generat-
ing parameters θ , some variation may exist in the number of users
accepted. For models with a larger number of parameters, visualiz-
ing the results may be more challenging, but the computation of
the metric to either reject or accept a model still applies. We use
maximum-likelihood estimation as a goodness-of-fit metric when
fitting parameters, using an L-BFGS-B optimization algorithm [9]
(SciPy library) for generating the samples. The parameter-inference
method used in parameter recovery should match that used in
model fitting. We note, however, that these specific choices are not
central to the proposed technique, and the principle expressed can
be applied with other metrics and inference methods.
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4 APPLICATION: MODELS OF
DECISION-MAKING UNDER RISK

Our demonstration of the proposed parameter recovery technique
applies models of decision-making under risk to a naturalistic
game dataset. We start by describing the corresponding tasks,
risky-choice problems. Then we outline two candidate theories:
probabilistic cumulative prospect theory (P-CPT) and probabilistic
expected utility theory (P-EUT). We illustrate in two ways how
properties of the data may give rise to inadequate parameter re-
covery: 1) via a demonstration with a naturalistic dataset and 2) by
analyzing the task properties with an artificial dataset.

4.1 Problem formulation
We focus on risky-choice problems, where a user chooses from
options that are lotteries; that is, each option is a probability dis-
tribution over rewards x . Consider a choice problem where a user
has to choose amongm options Li , where i = 1, 2, ...,m (see Figure
4). Each option Li is a lottery with two outcomes: a high outcome
xhigh at probability pxhigh and a low one xlow at probability pxlow .
We assume users calculate a subjective expected utility (SEU) for
each lottery, which guides their decision and depends on the model
considered. In our calculation of SEU, the outcomes are normalized
with respect to the highest outcome a user observes when using the
application. We assume player behavior to be probabilistic. Here,
we consider both P-EUT and P-CPT as candidates for modeling.

4.2 Candidate models
4.2.1 Choice stochasticity. We assume that the users’ decisions are
probabilistic. Users will choose the lottery with the highest SEU
most of the time, but occasionally they explore other options (some
prior work has taken a similar approach [6, 24, 27, 33]). Scholars
have observed that people’s decisions may vary between very simi-
lar tasks and that probabilistic models explain behavior better than
deterministic approaches [24]. The probability of a user choosing
each lottery is calculated via:

pchoice(Li ) =
eβSEU(Li )∑m
j=1 e

βSEU(Lj )
(1)

which is a softmax function wherem is the number of lotteries and
β ∈ [0, 100] is the inverse temperature parameter, with values close
to 0 indicating random behavior and values close to 100 indicating
deterministic behavior. When β is close to 0, the chances of a user
choosing each lottery are nearly equal, whereas when β is close
to 100 the user will almost certainly choose the lottery with the
highest SEU. The SEU values depend on whether we model the user
behaving in line with expected utility theory (EUT) vs. cumulative
prospect theory (CPT).

4.2.2 Probabilistic expected utility theory. Individuals following
the explanation of EUT, a normative theory, obey certain axioms of
decision-making, whereby they choose as if they were maximizing
their expected utility (EU) [31], the utility being a quantity that
represents the satisfaction or pleasure of the individual. We use a
probabilistic form (P-EUT), with a constant relative risk-aversion
utility function u expressed as:

u(x) = x1−α (2)

where x ∈ R is a possible outcome and α ∈ [−3, 0.75] is the coef-
ficient of relative risk aversion. The bounds are chosen such that
they produce symmetric utility functions around the line of equal-
ity (y = x). The higher α is, the more risk-averse the individual.
If α = 0, the individual is risk-neutral. The expected utility for a
lottery is calculated as:

EU (L) = u(xlow) · (1 − phigh) + u(xhigh) · phigh (3)

We assume that the individuals’ behavior is probabilistic, following
Equation 1, where SEU=EU.

4.2.3 Probabilistic cumulative prospect theory. CPT is an extension
of EUT, a descriptive theory that assumes that people weight prob-
abilities non-linearly [29]. The original CPT is deterministic and
assumes choice of the lottery with the highest cumulative prospect
value (CPV), whereas we use a probabilistic CPT (P-CPT).

We use the utility function presented in Equation 2, alongside
the following probability-weighting function [23]:

w(p) = e−(−ln p)γ (4)

Here, γ ∈ [0.001, 0.999] is the probability-weighting parameter. The
closer it is to 0, the more the function takes on an inverse S shape.
The CPV for a lottery is then obtained by means of:

CPV (L) = u(xlow) · (1 −w(phigh)) + u(xhigh) ·w(phigh) (5)

We assume that the players’ behavior is probabilistic, according to
Equation 1, where SEU=CPV. The three forms of the functions, for
equations 1, 2, and 4, follow those suggested by Stott [27].

4.3 Modeling game players by using models of
decision-making under risk

This subsection describes how parameter recovery can be used to
assess an existing naturalistic dataset obtained from an interactive
system. Using data collected in a turn-based game where each
player is given a set of risky-choice problems as tasks, we determine
which users were shown tasks with sufficient parameter recovery
for model fitting.

4.3.1 Task description. Our work focuses on Blade Runner: Rogue,
a non-deterministic tactical turn-based game developed by Next
Games. Figure 5A presents a screenshot of a task (a risky-choice
problem) from the game. In a typical gaming session, the player
controls a set of characters in several short turn-based battles. Each
of the battles comprises several risky-choice problems. In turns,
the player will choose a skill to use and a target to attack with a
predetermined character. Each of these skill–target combinations
can be represented as a lottery, where the user receives a reward
with a certain probability. The user interface shows the player
details of the characters’ relative strengths, the targets, and the
skills. We assume that the player can use this information to infer
the probability distributions of outcomes for the various lotteries (an
abstraction is presented in Figure 5B). Game logs from anonymous
users in this game inform inferences of attitudes to risk.

4.3.2 Data preparation. The raw dataset, obtained from a gaming
company, contained information about 510 users playing the game
during a specific time interval. That interval was picked on the basis
of restrictions related to the game version, chosen to guarantee that
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Figure 5: Illustration of applying the proposed technique via data from the game Blade Runner: Rogue. A. A screenshot of a
task in the game, where a player chooses a skill to attack a target with (screenshot courtesy of Next Games). B. Illustration of
one example task: a player has to choose from among eight lotteries, where each combination of a target and skill is a lottery
(illustrated as a pie chart with rewards overlaid). We assume the player can construct these lotteries via information available
from the user interface. The player chooses one lottery.

all data came from the same version of the game. The game data
were anonymized. In all, 58 users’ data were removed because of
incompleteness. Our analysis used the data of 452 users in total,
corresponding to 452 unique sets of tasks these users saw during
game play. We had no control over the tasks in these sets. The in-
formation contained in this dataset was converted into a structure
for tasks and choices. Each task was a risky-choice problem where
the player has to choose from amongm lotteries, with 2 outcomes
in each (see Figure 4). Each choice picked a skill and a target for an
attack (one of the pie charts in Figure 5B). The outcome is damage
from a “normal” hit (xlow) and a “critical” hit (xhigh), inflicted on
the target in game-specific health units. A critical hit deals out

greater damage but occurs at lower probability. Approximations
for the probability distributions of the lotteries in each task were
extracted by means of expert knowledge of the game mechanics.
Information about the attacking character, target, skill, and relative
strengths were used to reverse-engineer a stochastic function for
determining an approximation for the damage each target–skill
combination yields. A proxy for the damage observed was available
in the dataset. This was compared to the estimates obtained via
reverse-engineering. If both of the possible approximations of out-
comes (xlow and xhigh) from the chosen lottery deviated by more
than 25% from the outcome observed, the task was discarded, to
account for inaccuracies in the reverse-engineered estimates. In
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Figure 6: Parameter recovery results with naturalistic game data. Each marker corresponds to a model parameter used to
generate choices. The colored markers correspond to parameters for generating choices for those players whose task data
passed the parameter recovery threshold (ρθ, θ̂ > 0.7). A–B. Parameter recovery is sufficient for the task data presented to 6%
of the players when they are assumed to behave in accordance with probabilistic expected utility theory (P-EUT). C–E. With
probabilistic cumulative prospect theory (P-CPT), no users received tasks with sufficient parameter recovery.

addition, all deterministic tasks wherein only one option was pre-
sented to the player were removed. Some inaccuracies arose from
game features not captured in the lottery estimates (e.g., healing
of characters and damage inflicted over time). The distribution of
the number of tasks per player was right-skewed. Even though the
modeling did not encompass all tasks presented to the players in
the game, this long right tail suggests that many players tend to
play it for only a few rounds.

4.3.3 Results. Parameter recovery was poor for a large proportion
of the naturalistic dataset (this is visible as large discrepancies
between the generating and recovered parameters in Figure 6).
Only 6% of the players’ task sets exceeded the threshold ρθ, θ̂ > 0.7
whenmodeled via P-EUT. No players’ task sets passed this threshold
when modeled with P-CPT, a result most likely related to the small
range of outcome probabilities for “critical” damage pxhigh in the
raw dataset. We analyze possible reasons for the poor parameter
recovery in the following Subsection 4.4.

4.3.4 Implications for parameter inference. Since only 6% of the
players were given tasks for which parameter recovery sufficed
when P-EUT is used as the candidate model (i.e., ρθ, θ̂ > 0.7), we

consider model fitting for these players alone. On visual inspection,
P-EUT seems insufficiently descriptive of the behavior of some
players – namely, those individuals for whom β is low, who seem to
have been choosing randomly (horizontal line in Figure 7B). How-
ever, since we verified the quality of parameter recovery for the
tasks shown to these users, the issues with the model’s ability to de-
scribe player behavior can be put down to modeling considerations
other than the tasks presented.

4.4 Examining task properties to understand
inadequate parameter recovery

This portion of the paper illustrates how restrictions that arise in
naturalistic settings (e.g., with the game data considered in Sub-
section 4.3) can affect parameter recovery. We demonstrate this by
means of a parameter recovery simulation using an artificial dataset.
The choice problems generated mimic the structure of those used
for the game data in Subsection 4.3. An artificial dataset grants us
full control over the modeling inputs. Specifically, we show how
the following properties affect parameter recovery: 1) number of
observations, 2) range of outcome probabilities, and 3) outcome
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Figure 7: Parameter inference results for the 31 game players presented with tasks where parameter recovery is sufficient for
probabilistic expected utility theory (P-EUT). A. Utility functions (u(x) = x1−α ) plotted for point estimates of the risk-aversion
parameter α for each player. Concave (orange) utility functions describe a risk-averse and convex (blue) a risk-seeking player.
B. The inverse temperature parameter β ’s effect on the probability of choosing lottery L1, when there are two options L1 and
L2 with subjective expected utility EU . Lower values of β correspond to more stochastic behavior (horizontal line).

magnitudes. The results presented in this section were produced
with a Jupyter Notebook available online.1

4.4.1 Task description. The tasks we consider are simplified ver-
sions of the game presented in Subsection 4.3: risky-choice problems
with two lotteries to choose from in each (i.e., we have lotteries
wherem = 2 in a task represented in Figure 4). All told, there are
nchoices choice problems. Even though the game data presented
in Subsection 4.3 contain tasks for which the number of lotteries
m > 2, we constrain the number of options to simplify computation.
Each lottery has two potential outcomes, high and low reward (xhigh
and xlow, respectively). We confine ourselves to positive rewards,
to match the structure of the tasks in the aforementioned natural-
istic dataset. The higher reward occurs with probability phigh. We
employed P-EUT and P-CPT as candidate user models. The nchoices
choice problems considered can be thought of as task data collected
for one user. As noted in Subsection 4.3, we observed that for a large
proportion of the users, the task data were not informative enough.
This artificial setup enables us to examine potential reasons for the
poor parameter recovery.

4.4.2 Data generation. Generating four versions of the artificial
dataset described, we restrict different properties of the tasks (num-
ber of choices nchoices, probability of the highest reward resulting
phigh, and range of rewards xhigh and xlow) in order to mirror fea-
tures of the lotteries encountered by the players in the naturalistic
game data considered in Subsection 4.3. The artificial datasets gen-
erated are identical apart from the dimension that is modified. The
exact (uniform) distributions from which we sampled data are de-
scribed in the leftmost column in Figures 8 and 9.

1 See https://github.com/aalto-ui/umap22-parameter-recovery.

4.4.3 Results. Then, we pass the resulting artificial datasets through
the parameter recovery simulations described in Figure 3. When
the tasks are not rich enough, the recovery results deteriorate as
measured by means of the Pearson correlation coefficient ρ be-
tween generating and recovered parameters. The two parameters
in P-EUT pass the ρ∗ > 0.7 threshold for the original reference
dataset and when the range of probabilities is restricted (see Figure
8, panes A and C). The three P-CPT parameters pass the parameter
recovery check only in the reference dataset (see Figure 9, pane A).

4.4.4 Implications for parameter recovery with naturalistic datasets.
Again, we observed that only 6% of users’ task data passes the pa-
rameter recovery tests presented in Subsection 4.3 only for P-EUT,
and our simulation with artificial data shows that the dataset’s
properties can lead to bad parameter recovery. Parameter recovery
proves sufficient for all P-EUT parameters for two of the datasets
considered: the original reference data and with outcome probabili-
ties restricted. In contrast, P-CPT parameters pass the parameter
recovery test only in the case of the original reference data. This
result illustrates that P-EUT, as the simpler model, imposes restric-
tions on fewer dimensions of the dataset. The probability-weighting
function used in P-CPT (Equation 4) creates a further requirement
that the outcome probabilities have to fulfill. Indeed, the game data
encompassed a limited range of outcome probabilities, which may
explain why none of the players’ task data showed sufficient param-
eter recovery. On the other hand, a limited number of observations
leads to poor parameter recovery for both models. Users often
played through only a small set of tasks in the game data consid-
ered in Subsection 4.3; this could be another reason for insufficient
parameter recovery.
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Figure 8: Parameter recovery simulation results for artificial datasets with probabilistic expected utility theory (P-EUT). Data
are generated for nchoices choice problems with two outcomes (xhigh and xlow with probabilities phigh and 1 − phigh). The cor-
relation between generating and recovered parameters is worse when certain properties of the dataset are limited. Those
parameters with low correlation (i.e., ρθ, θ̂ < 0.7) are indicated with gray crosses. Several datasets were used: original reference
data (A), number of observations limited (B), range of probabilities limited (C), and range of outcomes limited (D).
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Figure 9: Parameter recovery simulation results for artificial datasets with probabilistic cumulative prospect theory (P-CPT).
We generated data in nchoices choice problems with two outcomes (xhigh and xlow and probabilities phigh and 1 − phigh). Fewer
datasets pass the parameter recovery test for P-CPT than P-EUT (see Figure 8). Gray crosses mark those parameters for which
the correlation between generating and inferred parameters is low (i.e., ρθ, θ̂ < 0.7). The following datasets were included:
original reference data (A), number of observations limited (B), range of probabilities limited (C), and range of outcomes
limited (D).
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5 DISCUSSION
We have presented a parameter recovery technique for assessing
whether a theory-based model should be fitted to a naturalistic
dataset. By doing so, we contribute to wider application of theory-
based models in user modeling, which could offer several benefits.
For instance, theory-based models provide a more interpretable
alternative to data-driven techniques and are a better way of de-
scribing human behavior when fewer data are available [22]. That
said, because theory-based models often are built in controlled ex-
periments [15], their application in naturalistic settings requires
special care since the tasks presented to users of interactive sys-
tems seldom are designed with a particular model in mind. We
suggest that parameter recovery is a way for verifying that invalid
conclusions are not drawn about users.

The demonstration here presents the proposed technique’s appli-
cation for a naturalistic dataset containing information about 510
players from a mobile game. In this application, the data comprise,
as tasks, risky-choice problems where the user must choose from
lotteries with two outcomes in each. Our results from applying two
theory-based models for this dataset (P-EUT and P-CPT) suggest
that we should fit only one model (P-EUT) for 6% of the players,
since the other users were given tasks with insufficient parameter
recovery. This result indicates that model fitting should be exer-
cised with caution with naturalistic data, in that a strikingly low
percentage of the players received tasks with sufficient parameter
recovery. Hence, we recommend that those working with datasets
of such a nature always validate their content by using parameter
recovery before fitting a model. Verifying parameter recovery aids
in interpreting the model-fitting results: if the inferred parameters
seem to be insufficient in explaining user behavior, this may be
attributed to modeling considerations other than the tasks in which
the data were produced (e.g., the choice of model).

In our further examination of how limitations in properties of
the tasks may lead to inadequate parameter recovery, we generated
artificial data containing tasks with restrictions similar to what
naturalistic datasets can exhibit. Of relevance for this paper were
restrictions to the range of observations, outcomes, and outcome
probabilities of risky-choice problems in which a user has to choose
between two lotteries where each has two potential outcomes. Re-
stricting these properties led to, inmost cases, inadequate parameter
recovery. Examining the game data in light of these observations
suggests that parameter recovery failed for a large proportion of
the users since the players were given tasks with a very limited
range of outcome probabilities.

The implementation chosen displays certain limitations that
could be addressed in futurework.We used point estimates obtained
via maximum likelihood estimation in assessing the recoverability
of model parameters. Also, hierarchical Bayesian approaches [20],
in which the inference at population level is handled at the same
time as the inference at the level of individuals, could contribute to
a more reliable inference process. In addition, future work could
extend the proposed technique by exploring assessment criteria
other than the Pearson correlation coefficient.

6 CONCLUSION
Theory-based models provide a good foundation for user models,
thanks to their interpretability. However, theory-based inference is
only as good as the data, since these models are often developed
in controlled conditions. Attention should be given to the tasks
users are presented with in naturalistic settings, on account of the
lack of experimental control. Hence, we have proposed a parameter
recovery technique for assessing how suitable a dataset is for a
given theory-based model. The technique can increase (or decrease)
confidence in parameter-inference results. Its results for a real-
world game, which showed a strikingly low rate of application for
the two models, lead us to recommend always checking parameter
recovery before application in naturalistic datasets.
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