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A B S T R A C T   

Strip rolling is a typical manufacturing process, in which conventional control approaches are widely applied. 
Development of the control algorithms requires a mathematical expression of the process by means of the first 
principles or empirical models. However, it is difficult to upgrade the conventional control approaches in 
response to the ever-changing requirements and environmental conditions because domain knowledge of control 
engineering, mechanical engineering, and material science is required. Reinforcement learning is a machine 
learning method that can make the agent learn from interacting with the environment, thus avoiding the need for 
the above mentioned mathematical expression. This paper proposes a novel approach that combines ensemble 
learning with reinforcement learning methods for strip rolling control. Based on the proximal policy optimization 
(PPO), a multi-actor PPO is proposed. Each randomly initialized actor interacts with the environment in parallel, 
but only the experience from the actor that obtains the highest reward is used for updating the actors. Simulation 
results show that the proposed method outperforms the conventional control methods and the state-of-the-art 
reinforcement learning methods in terms of process capability and smoothness.   

1. Introduction 

Strip rolling is a manufacturing process in which metal strips are 
passed through rolling mills to reduce their thickness, improve flatness 
and make the thickness uniform (Ginzburg, 2009). Steel strips are an 
important raw material in modern industries, such as shipbuilding, 
automotive, and construction (Deng et al., 2019). In the strip rolling 
industry, production lines are subject to the influence of various 
difficult-to-predict factors, resulting in randomly appearing quality is
sues, even when the production process works stably. These factors are 
referred to as common cause variation, which is considered to be an 
inherent part of the production process and cannot be changed without 
changing the process itself (Qiu, 2013). For example, in the strip rolling 
field, the vibration of the running mills and the changing temperature of 
the roller and product surface cannot be fully predicted or avoided by 
redesigning the production line or control rules, but these factors will 
influence the quality of products (Ginzburg, 2009). Researchers studied 
finite element models and pure mathematical analysis (Jin et al., 2020; 
Wang et al., 2022a, 2022b; Mathieu et al., 2017) to redesign the mill or 
control models, but these time-consuming approaches could not solve 

the above problems completely. 
Proportional integral (PI) controller is widely applied in control 

systems of production lines in the current strip rolling factories. It is 
synthesized based on the first principles and empirical models. For 
example, in a cold rolling production line, a feedback control loop that 
receives measured flatness values of the strips and outputs process pa
rameters for mills is used to control flatness quality. When designing 
control logic, specific mathematical models of the studied problems, 
which have been proved to be correct in the field, can be predetermined 
and instantly executed online. However, for common cause variation, 
control experts need to design specific rules by manually considering 
potential problems. The trial-and-error approach is widely used in real 
factories, which is time-consuming and inefficient (Deng et al., 2019). 
Therefore, new methods that could cover the basic functions of the 
existing controller, while coping with the common cause variation, 
would be important for quality improvement. 

The new trend of data-driven controllers could be of help. Such 
controllers are built using machine learning methods by data mining the 
available process data. The data collected from a stable process in a real 
production line contains the information of manufacturing principles 

* Corresponding authors. 
E-mail addresses: jifei.deng@aalto.fi (J. Deng), sunjie@ral.neu.edu.cn (J. Sun).  

Contents lists available at ScienceDirect 

Computers in Industry 

journal homepage: www.sciencedirect.com/journal/computers-in-industry 

https://doi.org/10.1016/j.compind.2022.103748 
Received 8 March 2022; Received in revised form 17 June 2022; Accepted 13 July 2022   

mailto:jifei.deng@aalto.fi
mailto:sunjie@ral.neu.edu.cn
www.sciencedirect.com/science/journal/01663615
https://www.sciencedirect.com/journal/computers-in-industry
https://doi.org/10.1016/j.compind.2022.103748
https://doi.org/10.1016/j.compind.2022.103748
https://doi.org/10.1016/j.compind.2022.103748
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2022.103748&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Computers in Industry 143 (2022) 103748

2

and common cause variation. The controller is designed through offline 
data analysis and deployed for online use. This offline-training-online- 
practice (OTOP) mode offers more adaptability and accuracy of control, 
and has been applied in various fields (Nawfel et al., 2021; Zhang et al., 
2021a, 2021b; Wang et al., 2022a, 2022b). 

In this paper, the OTOP mode is incorporated into model-free rein
forcement learning (RL). Recent studies show that RL can cope with 
high-dimensional stochastic problems (Vanvuchelen et al., 2020; Zhang 
et al., 2021a, 2021b; He et al., 2021). During the training process, the 
agent is not told what to do, but instead must discover which actions 
yield the most reward by trying them (Sutton and Barto, 2018). For 
model-free RL, on-policy methods attempt to evaluate or improve the 
policy that is used to make decisions, while off-policy methods evaluate 
or improve a policy different from that used to generate the data. 
State-of-the-art on-policy RL methods include Trust Region Policy 
Optimization (TRPO) (Schulman et al., 2015) and Proximal Policy 
Optimization (PPO) (Schulman et al., 2017). The off-policy methods 
include Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 
2016), Twin Delayed DDPG (TD3) (Fujimoto et al., 2018), and Soft 
Actor-Critic (SAC) (Haarnoja et al., 2018). In control fields, RL based 
methods have already been applied. Chen et al. (2021) proposed a 
model-free control scheme for emergency control in a power system 
based on multi-Q-learning based emergency plans and DDPG. Liu et al. 
(2015) presented an RL algorithm with fewer learning parameters for 
discrete-time multiple-input-multiple-output (MIMO) systems. Based on 
DDPG and a deep Q-network, a novel autonomous control framework is 
adopted to autonomous voltage control, supporting grid operators in 
making effective and timely control actions (Duan et al., 2020). In 
intelligent transportation systems, an intent-based traffic control system 
is proposed by investigating RL for a 5G-envisioned Internet of Con
nected Vehicles, which can dynamically orchestrate edge computing 
and content caching to improve the profits of the Mobile Network 
Operator (Ning et al., 2021). 

RL based methods have also been adopted in the steel-making in
dustry. In basic oxygen steel making, RL is used to express model 
behavior and increase transparency to generate short polynomials that 
can explain the model of the process from what it has learnt from process 
data (Ståhl et al., 2021). Guo et al. (2020) proposed an ε-greedy RL 
method for the hybrid flow-shop scheduling problem of a steel pro
duction process, outperforming the state-of-the-art genetic algorithm. A 
data-driven RL method is developed for model parameters identification 
and roll gap control of a bar (Gamal et al., 2021). Han et al. (2020) 
proposed an RL approach with Monte-Carlo search and policy gradient 
to train a hierarchical granular computing-based model to construct 
long-term prediction intervals for reducing byproduct gas from the 
iron-steel-making process. However, using RL methods to train a 
controller for a process control system of a strip rolling line is a new 
topic. 

In this paper, to improve the quality of the steel strips, a new 
controller which is a learnt policy of RL is developed. Without upgrading 
the machines and modifying the control logic, the controller which sets 
the process parameters of the final mill is studied. Our focus is limited to 
the final mill, because real-time flatness control is determined by the 
final mill. Currently, in the control system at our case study factory, a 
general PI controller is used. However, such a controller requires control 
experts to tune the parameters (e.g., by trial-and-error), and the 
controller is not adaptive to the rolling process, because it cannot learn 
from the process. Therefore, RL which is easy to implement and learn 
from the data is adapted to train a new controller. The real rolling data 
collected from the control system were analyzed offline using RL 
methods. This paper proposed a novel method that is based on multi- 

actor PPO. Because safety is crucial in the strip rolling industry, stable 
performance is required for the new method to reduce risks. Based on 
the random initialization of actors, given the same states, actors will 
output different actions with different new states and rewards. For the 
proposed method, only the actions with the highest rewards will be 
stored to update the actors, therefore, the pressure of local optimum can 
be relieved. Using the new method, the process is expected to produce 
strips of higher quality. 

The developed RL based control method will be compared to an in
dustry state-of-the-art PI controller. In the simulation, time-series data 
will be collected separately from the process using the PI and our pro
posed RL controller. The flatness values will be compared and analyzed, 
strips with lower flatness at each point are considered to have higher 
quality. The main intended contribution of this paper is to develop a 
novel RL based controller for a real industrial control system substan
tially outperforming the existing methods. The approach aims at the 
following results:  

1. To propose an RL based intelligent controller for a control system to 
replace the existing controller.  

2. To propose a novel method for training the RL controller, by 
combining PPO with ensemble learning that can reduce the influence 
of falling into the local optimum.  

3. To confirm the superiority of the proposed method in simulation, 
using data from a real steel plant. Metrics of process capability and 
smoothness of controlled flatness values are used for the perfor
mance comparison of the RL and PI controllers. 

The rest of the paper is organized as follows. Conventional methods 
and recent approaches to RL in control are reviewed in Section 2. Section 
3 introduces the studied strip rolling line and system model. Section 4 
illustrates the proposed method. Results are described and analyzed in 
Section 5. Section 6 discusses the limitations of the current work, the 
corresponding solutions, and future plans. Section 7 concludes this 
paper and describes the next step. 

2. Literature review 

The conventional Proportional (P) or Proportional Integral (PI) 
controllers have been used in process industries for more than two de
cades. These controllers require a mathematical expression of the pro
cess to be controlled, and their application involves controller tuning 
(Nian et al., 2020). However, designing a mathematical model (first 
principles or empirical) and deriving the control law require extensive 
knowledge from an expert with relevant domain knowledge (Spielberg 
et al., 2017). Thus, the application of such controllers on complex sys
tems could be computationally demanding, and maintenance is difficult 
(Shin et al., 2019). Moreover, conventional approaches are not adaptive 
in nature, because these controllers can only obey certain rules preset by 
a control expert instead of taking intelligent decisions based on the real 
changeable condition. 

On the contrary, the self-learning controller learns to control a pro
cess just by interacting with the process using an intelligence algorithm. 
The learning process enables controllers to understand the plant dy
namics and then to act optimally to control actuators. It does not require 
the mathematical model of the process, does not involve controller 
tuning and it is fast since it does not have the optimization step (Bao 
et al., 2021). 

The goal of the RL is to make the controller learn the optimal map
ping of situations to actions through interaction guided by a scalar 
reward signal (Sutton and Barto, 2018). Moriyama et al. (2018) applied 
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an RL algorithm to a data-center cooling application where accurate 
system models are very difficult to identify even with sufficient data. Fan 
et al. (2019) achieved increased energy efficiency using deep RL by 
allowing the agent to learn the optimal policy online instead of mathe
matically modelling the system. Combining the intelligent data-based 
models of random forest and a human knowledge-based multi-criteria 
structure of the analytical hierarchical process, a deep Q-Network-based 
decision support system was proposed to optimize the subjective factors 
of the textile manufacturing process (He et al., 2021). Based on the 
actor-critic algorithm, Liu et al. (2021) proposed a multi-actor network 
ensemble is proposed for decision-making in a mineral processing plant. 

Before starting a real production line, experts and engineers will 
perform parameter tuning. The trial-and-error method is used, but it 
does not mean the engineers will groundlessly set parameters. Based on 
the engineers’ experience, knowledge, and availability of the production 
line, they will first give regular values (within an acceptable region, and 
not far away from the optimal values). Then trial-and-error is adopted to 
adjust the parameters. This process is time-consuming, risky, and re
quires the collaboration of experts in various domains. Moreover, steel 
strips will be wasted because machines need to produce the strips to 
evaluate the parameters. However, this method has advantages, since 
safety can be guaranteed because the experts have full knowledge of the 
production, which can effectively address potential problems. And this 
proven technique has complete plans for system updates and problem 
solving. 

Our motivation for applying RL to strip rolling control is threefold. 
Firstly, strip rolling is a classic example of a manufacturing process, 
where rolling mills are distributed across the production line. Each mill 
has multiple actuators that control the rolling force, bending force, and 
roll shifting (Deng et al., 2019). Feedback control with a PI controller is 
the current state-of-the-art in such systems, and the RL policy has the 
ability of working as a controller. Secondly, according to various spec
ifications and steel grades of the strips, controllers require different 
setpoints. The predesigned controller is not adaptive to variations and 
changing rolling conditions, resulting in irregular strip quality. For 
example, data collected from a real rolling production line contains 
significant noise, making information extraction with common machine 
learning methods difficult, so specific methods were required to process 
the data before modeling (Sun et al., 2021). However, an RL policy 
which learns from samples collected from interactions is able to solve 
these problems. Thirdly, unlike conventional methods that rely on 
complex mathematical models, RL has a simpler structure that is easier 
to implement. 

In this paper, based on a state-of-the-art RL method (PPO), ensemble 

learning is adapted to develop a novel method (EPPO) for the strip 
rolling control system. An industrial problem (flatness control) is stud
ied, and the proposed method was compared to the existing PI control 
method at the case study steel mill. 

3. Strip rolling control 

3.1. Background 

Fig. 1 shows a cold rolling line with five mills. From left to right, the 
strip is rolled by the mills in sequence. A mill is propelled by motors and 
cylinders. In practice, the system controls the flatness through two steps. 
In step 1, system computes the process parameters based on the 
measured flatness. Based on the given process parameters, in step 2, 
system controls multiple actuators (cylinders). In this paper, we studied 
the step 1 to build a model between the flatness and process parameters. 
After the final mill, sensors measure the flatness of the strip every 20 ms 
and send the data to the control system. Considering the space between 
the mills and costs, only the final flatness is available for flatness control. 
As shown in Fig. 2, a feedback controller controls the final mill. After 
receiving the flatness measurement from the sensors, the controller 
computes and sends new process parameters for the mill. The flatness 
index (Paakkari, 1998), for an individual strip is defined as: 

I =
(
ΔL

/
Lref

)
× 105 (1)  

where Lref is the length of the strip as a reference and ΔL is the difference 
between the length of a given strip and the reference strip. 

In industrial practice, the strip rolling controller is based on pure 
mathematical models, considering the relevant physical principle of 
flatness and process parameters. The PI controller designed by experts is 
not adaptive, because the performance is determined by the experts’ 
experience and understanding of strip rolling. Upgrading the control 
system requires new first-principles or empirical models, which is inef
ficient. Therefore, developing a fast and effective method for replacing 
or improving the existing controllers is a demanding task. 

3.2. Problem formulation 

As shown in Fig. 3, the strip is moving from left to right. The flatness 
measurement is pegged on the production line and measures the flatness 
of 4 reference points at each time. The flatness of the strip at time t can 
be defined asSt = (s0

t , s1
t , s2

t , s3
t ). Process parameters of the mill include 

rolling force, bending force of the work roll and intermediate roll, and 
the roll gap tilting, which are defined asUt = (u0

t ,u1
t ,u2

t ,u3
t ). During the 

rolling process, a controller receives St, then computes the output Ut. 
This process takes place every 20 ms to control flatness. 

Since RL has already been proved to perform well on some control 

Fig. 1. Example of a cold rolling line.  

Fig. 2. Feedback control.  
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problems (Vanvuchelen et al., 2020; He et al., 2021), this paper applies 
RL to strip rolling control problems. Using model-free RL methods, an 
agent will be trained through interaction. The obtained policy is pro
posed to replace the existing PI controller in the industrial strip rolling 
control system. 

The data description of the studied production line is shown in 
Table 1. The inputs to the RL controller are the states St (flatness of the 
strip at four reference points). The outputs are actions Ut (process pa
rameters of the mill). The control target is to compute the optimal 
control actions for the final mill, producing high quality strips for which 
the flatness values are close to zero. The flatness determines the quality 
of the strips. Lower flatness is a sign of higher quality. Therefore, the 
reward function is shown as follows: 

rt = −
( ⃒
⃒s0

t

⃒
⃒+

⃒
⃒s1

t

⃒
⃒+

⃒
⃒s2

t

⃒
⃒+

⃒
⃒s3

t

⃒
⃒
)/

4. (2) 

Designing this reward function has three main reasons. Firstly, in a 
factory, to evaluate the flatness of a strip, flatness values at different 
reference points at each timestep are averaged, and this averaged value 
is used to represent the flatness at the current timestep. Secondly, in 
practice, even at different reference points, the flatness values have a 
similar trend without trip points. This situation is determined by the 
method of adjusting the flatness (Bemporad et al., 2010). Thirdly, for the 
customer’s demand, two-sigma rule is used, meaning that a strip is 
qualified if 95 % of the averaged values are within a desired boundary. 
During the training process, this reward function can guide the policy to 
output actions that can generate a higher reward. In other words, the 
reward will increase if the policy is correctly trained. Finally, when it 
converges to a stable value, only the actor will be saved for testing. 

4. Proposed method 

4.1. Proximal policy optimization 

In this paper, PPO was adopted as the base algorithm, which was 
proven to be effective and efficient for many application fields (Van
vuchelen et al., 2020). PPO is an approximate version of TRPO that relies 
only on a first-order gradient, which is significantly simpler to imple
ment. It relies on specialized clipping in the objective function to remove 
incentives for the new policy to get far from the old policy (Schulman 
et al., 2017). Using an actor-critic framework, PPO has a policy and a 
value function. The policy network is trained with the clipped surrogate 

objective: 

(3)  

where πθ and πθold are a new and old policy parameterized by θ and θold, u 
and s are the action and state and ε is a hyperparameter, ε = 0.2. Given 
state as input, action is the output of actor. A is an estimator of the 
advantage function which is computed with generalized advantage 
estimation (GAE) (Schulman et al., 2016). 

Considering an entropy bonus S
⌢

[πθ], two terms can be combined to 
the following objective: 

(4)  

where c is the hyperparameter for entropy, and c = 0.01 in this paper. To 
train the value function network, mean squared error of the value and 
return is computed, the objective is given by: 

(5)  

where Vϕ is the state-value function parameterized by ϕ and R is the 
return. Using state as input, the state-value is the output of the critic. 
During the training process, gradient descent will be used to update the 
actor and critic. 

4.2. Proximal policy optimization with multiple actors 

In this paper, ensemble learning is combined with PPO by designing 
multiple actors. The original PPO has an actor and a critic. Ensemble 
PPO with N actors (EPPO) defined as {πθ1 , πθ2 ,…, πθN} an output (u1,u2,

…,uN). The networks are updated in parallel, and their initializations are 
set randomly. For each timestep, based on reward function Eq. (2), 
reward of each state-action pair is computed separately. The overall 
optimal action is selected based on the following equation: 

u*
t = arg max

ut∈{u1 ,u2 ,…,uN}

r(st, ut) (6) 

Table 1 
Data description of states and actions.   

Parameters Values 

Actions Rolling force 7056–7448 kN 
Bending force of work roll 65–104 kN 
Bending force of intermediate roll 77–180 kN 
Roll gap tilting -0.01 to 0.18 mm 

States Flatness 1 -4.5 to 21 I 
Flatness 2 -10 to 15 I 
Flatness 3 -10 to 7.5 I 
Flatness 4 -20 to 0.5 I  

Fig. 3. Example of measuring flatness.  
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The optimal action is the action that has the highest reward. 
Algorithm 1  

The pseudocode of the proposed method (EPPO) is shown in Algo
rithm 1. The methods will be run for T timesteps. In the beginning, given 
an initial state, Nactor randomly initialized actors will compute and 
output different actions based on the state. The environment will output 
the rewards and new states after receiving the actions. In the original 
PPO, the state, action, and reward for each timestep will be stored in the 
experience replay memory and will be used to update the actor every m 
timesteps. The samples will not be reused. For EPPO, because of multiple 
actors, each timestep will generate Nactor action-reward-new state tuples, 
but only the tuple with the highest reward will be stored in the 

experience replay memory and used to update all the actors. In other 
words, during the training process, samples with the most contribution 
are used to update the actors. For each update, the actors and critic will 
be updated for Nepoch times based on the same data sampled from buffer 
B. Moreover, considering the safety, a constraint avoids dangerous ac
tions from the actors. Based on the machine capabilities, actions are 
mathematically restricted in an acceptable region. EPPO is intended to 
overcome the weakness of the original PPO method, in which the 
random initialization of the actors and the dynamics of the environment 
can cause the policy to easily fall into different local optima, making the 
performance unstable when repeating the training with random seeds. 

4.3. Environment modelling 

For RL methods in our paper, an environment is required. As shown 
in Fig. 4, the environment is used to interact with an agent for training a 
policy. Depending on the RL application, the environment can be a 
mathematical model, a real control system, a black box model (e.g., 
neural networks), etc. In other words, the environment is a model of the 
studied problem. 

For research targets like robots or video games, the agent can interact 
with the real environment. For example, with the famous AlphaGo, the 
researchers make the agent play GO games tens of thousands of times to 
gain experience. During this process, the agent could lose or win the 
games, but it is not risky or costly, since this process is fully happening 
on a computer. 

However, for industrial cases, such as strip rolling control in our 
paper, it is impossible to make the agent interact with the real system. 
Because the system needs to take actions given by the agent, and the 

Fig. 4. Data collection, system modelling, and policy training.  
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agent will try to explore the action space during the training process. In 
other words, the agent could give random and unsafe actions. Although 
we can try to constrain actions to a reliable region, this process is 
extremely risky in a safety critical industrial environment. For this 
reason, we first build an environment manually. 

The real system has mathematical models of solid mechanics, me
chanical engineering, and abrasion, so it is hard to build a physics-based 
model. Moreover, some of the models are sensitive in factories. There
fore, as shown in Fig. 4, using MATLAB system identification toolbox, 
we designed the environment by building a black box model (state-space 
model) based on the real data collected from the factory. Then, either 
the training process or the evaluation of the RL agent are based on this 
approximated model. 

For the black box model mentioned above, we directly adopted a 
state-space model in MATLAB. Based on its general framework, the real 
data were used to compute parameters of the state-space model. Our 
dataset from the strip rolling line of the case study factory is time- 
domain data with 4 inputs and 4 outputs. In our paper, a third-order 
state-space model was estimated. Our RL algorithms are based on the 
PyTorch platform in Python, so we ported that state-space model 
developed in MATLAB to Python by recording the parameters of the 
state-space model and building a new state-space model in Python using 
the recorded parameters. After that, based on the Python version state- 
space model, an RL environment was developed, including a step 
function, reward function, and reset function. All the RL methods in our 
paper were trained and evaluated on this environment. 

4.4. Experiment settings 

In this paper, the proposed method is evaluated with a strip rolling 
problem. The studied strip rolling production line has five rolling mills 
and sensors, and each mill has four process parameters to control the 
flatness of strips. Only the normal condition of the process is studied. 
Our RL policy works as a feedback controller for the final mill to keep the 
flatness close to the target value. The work has two steps. First, based on 
the data from the case study factory, offline training was carried out in 
the lab using high performance computers. Second, the policy was 
evaluated after being trained. For this evaluation step, currently it was 
done in the lab, but online evaluation is possible. The trained policy is a 
neural network, it can be added to PLCs. 

Considering the safety and costs, it is impossible to directly make any 
experiments on the real production line, so this paper introduced an 
offline analysis. Firstly, based on the strip rolling related knowledge and 
real data collected from the production line, experts from the factory 
designed a simulator, which is also called environment for RL in this 
paper. Secondly, the new controller was trained based on this environ
ment using the EPPO algorithm. Finally, the new controller was evalu
ated using this environment. 

The environment is a model of the real system by simplifying the 

connection between the machines and products. In practice, the real 
system has pure mathematical models of abrasion, pressure, etc. How
ever, these models are sensitive and complex, which cannot be directly 
used for the experiments in this paper. Using data-driven principles and 
rolling knowledge, partners from the factory designed the environment. 

Five methods are evaluated and compared in this paper, including 
DDPG, SAC, TD3, PPO, and EPPO. The hyperparameters were selected 
based on the recommended values in the original papers (Lillicrap et al., 
2016; Schulman et al., 2017; Fujimoto et al., 2018; Haarnoja et al., 
2018), and grid research was adopted for key hyperparameters (e.g., act 
noise). The hyperparameters of the models are shown in Table 2. In 
order to objectively compare and analyze the methods, the shared 
hyperparameters such as total steps and optimizer will have the same 
values. Each method will be repeated five times with random seeds. 

The proposed method (EPPO) is analyzed in simulation by adding 
Gaussian noise to model the disturbance. The data of an existing strip 
rolling process with PI control were collected from a real production line 
and our EPPO based control was implemented. For the proposed and 
existing methods, given initial states, the policy or controller computes 
and output actions. Based on the actions, new states will be generated. 
The time-series states were collected to analyze quality performance. 
For the studied strip rolling problem, the optimal state values are 0, 
which corresponds to ideal flatness. In other words, the method that 
generates new states to be closer to 0 is better. 

4.5. Quality metrics 

For the studied strip rolling problem, the purpose is to control the 
flatness of the strips, keeping the values within a boundary designed by 
engineers, and close to the optimal value of 0. In this paper, capability 
and smoothness will be studied to evaluate the performance of the 
proposed method. 

Capability of a process is the ability to produce output within spec
ification limits. Capability is measured with capability ratios such as Cp 
and Cpk (Qiu, 2013). Cp and Cpkmeasure how consistent the data are 
around the average performance. Cp indicates whether the process can 
produce products to specifications.Cpkindicates whether the process is 
capable of producing within specifications and it is also an indicator of 
the ability of the process to adhere to the target specification. The 
equations of Cp and Cpk are given by Qiu (2013): 

Cp =
(
USL − LSL

)/
6σ (7)  

Cpk = min[(USL − μ)/3σ, (μ − LSL)/3σ] (8)  

where USL and LSL are the upper and lower specification limits of the 
process, μ and σ are sample mean and standard deviation. 

The coefficient of correlation between two values in a time series is 
called the autocorrelation function (ACF) (Box et al., 2015; Liu et al., 
2019). Instead of correlation between two different variables, ACF 

Table 2 
Hyperparameters of RL methods.  

Shared TD3 SAC 
Hyperparameters Value Hyperparameters Value Hyperparameters Value 
Total steps 270,000 Start step 10,000 Start step 10,000 
Optimizer Adam Update after 1000 Update after 1000 
Learning rate for actor 1e-3 Act noise 0.1 Entropy coefficient 0.2 
Learning rate for critic 1e-3 Target noise 0.2 Polyak 0.95 
Activation function ReLU Noise clip 0.5   
Update every 300 Policy delay 2 DDPG 
Batch size 100 Polyak 0.95 Hyperparameters Value 
gamma 0.99   Start step 10,000 
Hidden nodes of nets 64 PPO/EPPO Update after 1000   

Hyperparameters Value Act noise 0.1   
Clip range (ε) 0.2 Polyak 0.995   
Lambda 0.98     
EPPO actors 3    
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measures the self-similarity of the variables. The ACF for a time series 
(the length is N) is given by Box et al. (2015): 

corrk =

∑N

t=k+1
(yt − μ)(yt− k − μ)

∑N

t=1
(yt − μ)2

(9)  

where k is the time gap being considered and is called the lag. A lag 1 
ACF (k = 1 in the above) is the correlation between values that are one 
time period apart. More generally, a lag k autocorrelation is a correla
tion between values that are k time periods apart. yt and yt− k are the 
variables measured at time t and t − k, and μ is the mean of all the 
samples in the time series. For ACF, possible values range from + 1 to 
− 1. An ACF of + 1 indicates a perfect positive correlation, which means 
that both variables move in the same direction. 

5. Results 

5.1. Training performance 

Training results of four state-of-the-art methods are shown in Fig. 5. 

According to the cumulative reward of each episode, each method can 
converge within 150 episodes. After being trained for 450 episodes, 
DDPG (green line) has the lowest reward, while PPO (red line) has the 
highest one. Because each method was repeated 5 times, the mean and 
standard deviation are used for plotting, and shadow areas in Figs. 5 and 
6 represent the standard deviation. As shown in Fig. 5, at 30th episode, 
TD3 (blue line) and SAC (orange line) have shadow area beyond 0, that 
means the rewards vary dramatically, resulting in a large the standard 
deviation. In other words, performance of TD3 and SAC are unstable at 
that episode. Fig. 6 shows the zoomed in cumulative reward, so that the 
minimum value of the vertical axis has been set to − 2000. During the 
training process, the cumulative reward for SAC increased during the 
first 150 episodes and then decreased to − 720. DDPG has a similar 
trend as SAC, increasing first, and finally decreasing to − 1500. The 
average reward for PPO is increasing and approaching − 530. Like PPO, 
the reward for TD3 has an increasing trend, but converged to around 
− 720, which is lower than that of PPO. PPO has less shadow area than 
other methods have, so with different values for random seeds, PPO has 
a smaller fluctuation in cumulative reward. 

The training performance of EPPO (gray line) is shown in Fig. 7. The 
purpose of adding multiple actors to PPO is to obtain better and stable 
performance. The cumulative reward of PPO has an obvious increasing 
trend and converges to − 530, which is the highest reward among all the 
methods implemented in this paper, but there are three drops at 35th, 
80th, 330th episode. For EPPO, the final reward is − 660, which is lower 
than that of PPO. However, the cumulative reward of EPPO increases 
without any obvious drops. Moreover, EPPO has a high convergence 
speed. After only 20 episodes, the cumulative reward reaches − 700, 
while PPO has a reward of − 870. Therefore, EPPO outperforms PPO in 
terms of cumulative reward. 

5.2. Simulation analysis 

In addition to the training performance, the control performance will 
be evaluated by a simulation. The studied problem has four states 
(flatness values at four reference points). The control performance at 
these four states is analyzed separately. In the studied factory, the actual 
USL and LSL are set as 15 I and − 15 I. However, in our paper, a strict 
requirement is designed, USL and LSL are set as 5 I and − 5 I. In Fig. 8, 
all the state values generated by PI and EPPO are in the range of − 15 I 
and 15 I, which meets the demands in our case study factory. However, 
given a strict requirement, only state 2 and state 3 of the data collected 
from two processes using PI and EPPO are between the boundaries of 
USL and LSL. The optimal flatness is 0, and EPPO has more samples 
much closer to 0 than PI has. For state 1, the PI based controller has 50 % 
of the data beyond the USL, while the EPPO based controller has all the 
data meeting the requirement. Similar to the performance of state 3, for 
state 4, the EPPO based controller performed well, but the PI based 
controller failed to effectively control the flatness, because 99 % of the 
data is beyond the LSL. 

Moreover, in Table 3, Cp and Cpk are calculated based on the data 
shown in Fig. 8. The EPPO based controller has higher Cp than what the 
PI based controller has in all the states, which means that the EPPO 
controller is more capable of producing products to specifications. The 
larger Cpk is, the less likely it is that any sample will be outside the 
specification limits. For the EPPO based controller, all the values of Cpk 

in four states are over 2. For the PI based controller, Cpk values are much 
lower, and lower than 1. For state 4, Cpk is even negative, meaning that 
the process will produce output that is outside the customer specifica
tion limits. With the EPPO based controller, for each state, Cpk is close to 
Cp, which means the average of the specification is close to the target 
value. 

For the flatness measured at a specific frequency, the values are ex
pected to be close to the optimal value 0 without huge sudden changes. 
As shown in Fig. 8, the process based on the PI controller (black lines) 

Fig. 5. Comparison of DDPG, SAC, TD3, PPO.  

Fig. 6. Comparison of DDPG, SAC, TD3, PPO in terms of cumulative reward 
over − 2000. 
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produced strips having notable fluctuations in flatness, while the red 
lines are smoother. Mathematically, based on Eq. (9), lag 1 ACF is 
computed for smoothness analysis, which is shown in Table 4. For lag 1 
ACF, close to 1 means a smoothly varying series. Like the capability 
analysis, performance of PI and EPPO controllers is analyzed separately 
by observing the four states. For PI, it has the highest lag 1 ACF of 
0.96815 for state 2, while state 3 and state 4 have lower values of 

0.94819 and 0.94662. However, for EPPO, state 3 and state 4 have the 
highest lag 1 ACF values of 0.99781, and state 1 has the lowest value of 
0.99780. Moreover, all the states of the EPPO based controller have 
higher values of lag 1 ACF compared to the PI based controller. It can be 
concluded that the proposed method (EPPO) outperforms the existing 
method (PI). 

Fig. 7. Comparison of PPO and EPPO.  

Fig. 8. Capability analysis of the proposed and the existing methods.  

Table 3 
Capability data of PI and EPPO.  

Flatness PI EPPO 

Cp Cpk Cp Cpk 

State 1  0.90009  0.07261  2.89666  2.86143 
State 2  0.96115  0.72811  2.27545  2.21477 
State 3  1.03520  0.90036  6.44785  6.41915 
State 4  0.80144  -0.71414  4.45139  4.42305  

Table 4 
Lag 1 autocorrelation of time series collect from PI and EPPO.  

Flatness PI EPPO 

State 1  0.95024  0.99780 
State 2  0.96815  0.99778 
State 3  0.94819  0.99781 
State 4  0.94662  0.99781  

J. Deng et al.                                                                                                                                                                                                                                     



Computers in Industry 143 (2022) 103748

9

6. Discussion 

This paper tried to address real industrial control problems using RL 
methods, and the results in Section 5 showed that RL can be used for 
industrial control system. However, this topic also has three main lim
itations that need to be studied further.  

1. The simplified data-driven model used for training can represent the 
real system only to a limited extent, there could be a bias between the 
model and the real system. Thus, it is risky to directly use the policy 
for real control.  

2. Using approximated environment on computers for training and 
evaluation is normal practice in RL literature. As a feasibility test, 
this paper proved the method is possible to be used for industrial 
application, bur real tests in the factory are needed in the future.  

3. In addition to the stability and capability of the proposed method 
discussed in Section 5, functionalities, e.g., computational efficiency, 
are needed for an industrial application. Although the policy (neural 
network) can be added to (PLCs), a real test is significant. 

Although limitations are existing, the current results in the paper 
demonstrated that RL can be adapted to strip rolling control. Such work 
is motivated because few publications about RL in strip rolling can be 
found. Based on the first work proposed in this paper, in the future, we 
have three main plans to address the above limitations.  

1. For the first limitation about the simplified environment model:  
a) Collaborate with experts from the factory, design a near optimal 

environment model, considering all the possible factors 
(mentioned in Paragraph 4 of Section 4.3) which are existing in 
the real system. 

b) Train a policy without an environment using offline reinforce
ment learning (OLRL). This is done by collecting data from the 
real production line, and OLRL can directly learn from the data 
without interacting with an environment model. Because the 
assumption behind OLRL is that the real data are considered to 
have all the underlying information generated by the factors 
mentioned in Paragraph 4 of Section 4.3. Therefore, the simpli
fication problem does not exist in OLRL.  

2. For the second limitation about the evaluation:  
a) As mentioned above, if a near optimal environment is available, 

that will also address the evaluation limitation.  
b) The trained policy is a neural network, and the evaluation does 

not have complex calculation. In fact, it is functionally possible to 
add a neural network to PLCs, making it involve in real control. 
New RL methods with safety precautions are needed.  

3. For the limitations in RL algorithm development:  
a) Currently, most of the general RL algorithms were designed 

purely on computers using simulation environments. Considering 
specific functionalities, e.g., safety, stability, new algorithms for 
industrial control are needed.  

b) For industrial applications, the algorithms need to be practicable. 
Based on high performance computers in the lab, we can modify 
the existing state-of-the-art algorithms to meet the demands 
mentioned above. It is important to keep a balance between 
functionality and practicality for algorithm development. For 
example, PLCs may not be able to execute complex models, 
especially if the cycle time is short. The tradeoff between 
simplicity and real-time performance can be determined empiri
cally for alternative RL algorithms. 

7. Conclusions and future work 

This paper proposed a novel intelligent policy for flatness control of a 
strip rolling line. Without first-principles or empirical models, the policy 

was trained with a model-free reinforcement learning method, using an 
environment that was generated based on data from a real industrial 
strip rolling line. To enhance performance, ensemble learning was 
adopted. A proximal policy optimization with multiple actors was 
developed to stabilize performance. For the proposed method, capability 
and smoothness analysis were implemented based on a simulation. Re
sults showed that the proposed method outperformed the existing 
method. 

Our next work will focus on the practical application of the proposed 
method. By improving the environment and reinforcement learning al
gorithm, the gap between the experiments and a factory environment 
can be narrowed. For that, the policy (neural network) will be imple
mented in a Programmable Logic Controller, aiming not to replace the 
current controller but rather to work together. Based on the real in
dustrial experiment, the performance of the policy will be improved. 

CRediT authorship contribution statement 

Jifei Deng: Conceptualization, Methodology, Software, Validation, 
Formal analysis, Writing – original draft, Visualization. Seppo Sierla: 
Investigation, Validation, Writing – review & editing Jie Sun: Investi
gation, Resources, Data Curation, Writing – review & editing. Valeriy 
Vyatkin: Writing – review & editing, Supervision, Project 
administration. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

This work was supported by China Scholarship Council (No. 
202006080008), the National Natural Science Foundation of China 
(Grant Nos. 52074085 and U21A20117), the Fundamental Research 
Funds for the Central Universities (Grant No. N2004010), and the 
LiaoNing Revitalization Talents Program (XLYC1907065). 

References 

Bao, Yaoyao, Zhu, Yuanming, Qian, Feng, 2021. A deep reinforcement learning approach 
to improve the learning performance in process control. Ind. Eng. Chem. Res. 60 
(15), 5504–5515. https://doi.org/10.1021/ACS.IECR.0C05678. 

Bemporad, Alberto, Bernardini, Daniele, Cuzzola, Francesco Alessandro, 
Spinelli, Andrea, 2010. Optimization-based automatic flatness control in cold 
tandem rolling. J. Process Control 20 (4), 396–407. https://doi.org/10.1016/J. 
JPROCONT.2010.02.003. 

Box, George E.P., Jenkins, Gwilym M., Reinsel, Gregory C., Ljung, Greta M., 2015. Time 
Series Analysis: Forecasting and Control. John Wiley & Sons. 

Chen, Chunyu, Cui, Mingjian, Li, Fangxing, Yin, Shengfei, Wang, Xinan, 2021. Model- 
free emergency frequency control based on reinforcement learning. IEEE Trans. Ind. 
Inform. 17 (4), 2336–2346. https://doi.org/10.1109/TII.2020.3001095. 

Deng, Jifei, Sun, Jie, Peng, Wen, Hu, Yaohui, Zhang, Dianhua, 2019. Application of 
neural networks for predicting hot-rolled strip crown. Appl. Soft Comput. J. 78, 
119–131. https://doi.org/10.1016/j.asoc.2019.02.030. 

Duan, Jiajun, Shi, Di, Diao, Ruisheng, Li, Haifeng, Wang, Zhiwei, Zhang, Bei, 
Bian, Desong, Yi, Zhehan, 2020. Deep-reinforcement-learning-based autonomous 
voltage control for power grid operations. IEEE Trans. Power Syst. 35 (1), 814–817. 
https://doi.org/10.1109/TPWRS.2019.2941134. 

Fan, Haoren, Zhu, Lei, Yao, Changhua, Guo, Jibin, Lu, Xiaowen, 2019. Deep 
reinforcement learning for energy efficiency optimization in wireless networks. In: 
Proceedings of the 2019 IEEE 4th International Conference on Cloud Computing and 
Big Data Analytics, ICCCBDA 2019, April. Institute of Electrical and Electronics 
Engineers Inc., pp. 465–71. 〈https://doi.org/10.1109/ICCCBDA.2019.8725683〉. 

Fujimoto, Scott, Hoof, Herke Van, Meger, David, 2018. Addressing function 
approximation error in actor-critic methods. In: Proceedings of the 35th 
International Conference on Machine Learning, ICML 2018, 4, pp. 2587–601. 

Gamal, Omar, Mohamed, Mohamed Imran Peer, Patel, Chirag Ghanshyambhai, 
Roth, Hubert, 2021. Data-driven model-free intelligent roll gap control of bar and 
wire hot rolling process using reinforcement learning. Int. J. Mech. Eng. Robot. Res. 
10 (7), 349–356. https://doi.org/10.18178/ijmerr.10.7.349-356. 

J. Deng et al.                                                                                                                                                                                                                                     

https://doi.org/10.1021/ACS.IECR.0C05678
https://doi.org/10.1016/J.JPROCONT.2010.02.003
https://doi.org/10.1016/J.JPROCONT.2010.02.003
http://refhub.elsevier.com/S0166-3615(22)00145-2/sbref3
http://refhub.elsevier.com/S0166-3615(22)00145-2/sbref3
https://doi.org/10.1109/TII.2020.3001095
https://doi.org/10.1016/j.asoc.2019.02.030
https://doi.org/10.1109/TPWRS.2019.2941134
https://doi.org/10.1109/ICCCBDA.2019.8725683
https://doi.org/10.18178/ijmerr.10.7.349-356


Computers in Industry 143 (2022) 103748

10

Ginzburg, Vladimir B. (Ed.), 2009. Flat-Rolled Steel Processes: Advanced Technologies. 
CRC Press. 

Guo, Fang, Li, Yongqiang, Liu, Ao, Liu, Zhan, 2020. A reinforcement learning method to 
scheduling problem of steel production process. J. Phys. Conf. Ser. 1486 (7) https:// 
doi.org/10.1088/1742-6596/1486/7/072035. 

Haarnoja, Tuomas, Zhou, Aurick, Abbeel, Pieter, Levine, Sergey, 2018. Soft actor-critic: 
off-policy maximum entropy deep reinforcement learning with a stochastic actor. In: 
Proceedings of the 35th International Conference on Machine Learning, ICML 2018, 
5, pp. 2976–89. 

Han, Zhongyang, Pedrycz, Witold, Zhao, Jun, Wang, Wei, 2020. Hierarchical granular 
computing-based model and its reinforcement structural learning for construction of 
long-term prediction intervals. IEEE Trans. Cybern. 52 (1), 666–676. https://doi. 
org/10.1109/TCYB.2020.2964011. 

He, Zhenglei, Tran, Kim Phuc, Thomassey, Sebastien, Zeng, Xianyi, Xu, Jie, Yi, Changhai, 
2021. A deep reinforcement learning based multi-criteria decision support system for 
optimizing textile chemical process. Comput. Ind. 125 (February) https://doi.org/ 
10.1016/J.COMPIND.2020.103373. 

Jin, Xin, Li, Changsheng, Wang, Yu, Li, Xiaogang, Xiang, Yongguang, Gu, Tian, 2020. 
Investigation and optimization of load distribution for tandem cold steel strip rolling 
process. Metals 10 (5), 677. https://doi.org/10.3390/MET10050677. 

Lillicrap, Timothy P., Hunt, Jonathan J., Pritzel, Alexander, Heess, Nicolas, Erez, Tom, 
Tassa, Yuval, Silver, David, Wierstra, Daan, 2016. Continuous control with deep 
reinforcement learning. In: Proceedings of the International Conference on Learning 
Representations (ICLR). 

Liu, Chao, Ding, Jinliang, Sun, Jiyuan, 2021. Reinforcement learning based decision 
making of operational indices in process industry under changing environment. IEEE 
Trans. Ind. Inform. 17 (4), 2727–2736. https://doi.org/10.1109/TII.2020.3005207. 

Liu, Yan Jun, Tang, Li, Tong, Shaocheng, Philip Chen, C.L., Li, Dong Juan, 2015. 
Reinforcement learning design-based adaptive tracking control with less learning 
parameters for nonlinear discrete-time MIMO systems. IEEE Trans. Neural Netw. 
Learn. Syst. 26 (1), 165–176. https://doi.org/10.1109/TNNLS.2014.2360724. 

Liu, Guangbiao, Zhou, Jianzhong, Jia, Benjun, He, Feifei, Yang, Yuqi, Sun, Na, 2019. 
Advance short-term wind energy quality assessment based on instantaneous 
standard deviation and variogram of wind speed by a hybrid method. Applied 
Energy 238 (March), 643–667. https://doi.org/10.1016/J.APENERGY.2019.01.105. 

Mathieu, N., Potier-Ferry, M., Zahrouni, H., 2017. Reduction of flatness defects in thin 
metal sheets by a pure tension leveler. Int. J. Mech. Sci. 122 (March), 267–276. 
https://doi.org/10.1016/J.IJMECSCI.2017.01.036. 

Moriyama, Takao, De Magistris, Giovanni, Tatsubori, Michiaki, Pham, Tu. Hoa, 
Munawar, Asim, Tachibana, Ryuki, 2018. Reinforcement learning testbed for power- 
consumption optimization. Commun. Comput. Inform. Sci. 946 (October), 45–59. 
https://doi.org/10.1007/978-981-13-2853-4_4. 

Nawfel, Jena L., Englehart, Kevin B., Scheme, Erik J., 2021. A multi-variate approach to 
predicting myoelectric control usability. IEEE Trans. Neural Syst. Rehab. Eng. 29, 
1312–1327. https://doi.org/10.1109/TNSRE.2021.3094324. 

Nian, Rui, Liu, Jinfeng, Huang, Biao, 2020. A review on reinforcement learning: 
introduction and applications in industrial process control. Comput. Chem. Eng. 139 
https://doi.org/10.1016/j.compchemeng.2020.106886. 

Ning, Zhaolong, Zhang, Kaiyuan, Wang, Xiaojie, Obaidat, Mohammad S., Guo, Lei, 
Hu, Xiping, Hu, Bin, Guo, Yi, Sadoun, Balqies, Kwok, Ricky Y.K., 2021. Joint 

computing and caching in 5G-envisioned internet of vehicles: a deep reinforcement 
learning-based traffic control system. IEEE Trans. Intell. Transp. Syst. 22 (8), 
5201–5212. https://doi.org/10.1109/TITS.2020.2970276. 

Paakkari, Jussi, 1998. On-Line Flatness Measurement of Large Steel Plates Using Moiré 
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