' Aalto University

Salami, Dariush; Hasibi, Ramin; Palipana, Sameera; Popovski, Petar; Michoel, Tom; Sigg,
Stephan

Tesla-Rapture

Published in:
IEEE Transactions on Mobile Computing

DOI:
10.1109/TMC.2022.3153717

Published: 01/08/2023

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:

Salami, D., Hasibi, R., Palipana, S., Popovski, P., Michoel, T., & Sigg, S. (2023). Tesla-Rapture: A Lightweight
Gesture Recognition System from mmWave Radar Sparse Point Clouds. IEEE Transactions on Mobile
Computing, 22(8), 4946-4960. https://doi.org/10.1109/TMC.2022.3153717

This material is protected by colpyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by ?/ou for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other tuhse: Elgctronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

https://doi.org/10.1109/TMC.2022.3153717
https://doi.org/10.1109/TMC.2022.3153717

© 2022 IEEE. This is the author’s version of an article that has been published by IEEE.
Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Tesla-Rapture: A Lightweight Gesture
Recognition System from mmWave Radar
Sparse Point Clouds

Dariush Salami*, Ramin Hasibi*, Sameera Palipana, Petar Popovski, Tom Michoel, and Stephan Sigg

Abstract—We present Tesla-Rapture, a gesture recognition system for sparse point clouds generated by mmWave Radars. State of
the art gesture recognition models are either too resource consuming or not sufficiently accurate for the integration into real-life
scenarios using wearable or constrained equipment such as loT devices (e.g. Raspberry PI), XR hardware (e.g. HoloLens), or
smart-phones. To tackle this issue, we have developed Tesla, a Message Passing Neural Network (MPNN) graph convolution approach
for mmWave radar point clouds. The model outperforms the state of the art on three datasets in terms of accuracy while reducing the
computational complexity and, hence, the execution time. In particular, the approach, is able to predict a gesture almost 8 times faster
than the most accurate competitor. Our performance evaluation in different scenarios (environments, angles, distances) shows that
Tesla generalizes well and improves the accuracy up to 20% in challenging scenarios, such as a through-wall setting and sensing at

extreme angles. Utilizing Tesla, we develop Tesla-Rapture, a real-time implementation using a mmWave Radar on a Raspberry Pl 4
and evaluate its accuracy and time-complexity. We also publish the source code, the trained models, and the implementation of the

model for embedded devices.

Index Terms—Gesture-recognition, Machine-learning, Sensing, Graph-convolution, mmwave radar

1 INTRODUCTION

Human computer interaction systems, such as smart
home, vehicular, or human-robot interaction, prominently
utilize gesture recognition [1], [2], [3]. While classical sys-
tems rely on ultra-sound [4], [5], IMU [6], [7], or camera
sensors [8], [9], recent approaches have exploited electro-
magnetic radiation, such as Channel State Information (CSI)
or radar, to address the limited sensing range (e.g. untra-
sound), discomfort of wearing (IMU), occlusion (lidar) or
risk of privacy leakage (RGB-depth). In particular, mmWave
radar sensing is capable of fine-grained movement recog-
nition, robust to environmental lighting or weather condi-
tions, and can penetrate thin, non-metallic surfaces. Addi-
tionally, in monostatic operation, it is capable of providing
3D spatial information through multi-antenna systems. The
high operating frequencies allow for small form factors
so that the sensor can be mounted on miniature devices.
Millimeter waves are non-ionizing and thus not dangerous
to the human body.

The input representation plays an important role in
both accuracy and time-complexity of deep learning based
systems (RGB images [10], [11], [12], depth images [10],
[11], [12], spectrograms of Doppler signals [13], and point

e D. Salami, S. Palipana, and S. Sigg are with the Department of Commu-
nications and Networking, Aalto University, Espoo, Finland.
E-mails: {dariush.salami, sameera.palipana, stephan.sigg}@aalto.fi

e R. Hasibi and T. Michoel are with the Department of Informatics, Univer-
sity of Bergen, Bergen, Norway.
E-mails: {ramin.hasibi, tom.michoel }@uib.no

e P Popouski is with the Department of Electronic Systems, Aalborg
University, Aalborg, Denmark.
E-mail: petarp@es.aau.dk

* Both authors contributed equally to this research.

clouds [14], [15], [16], [17]).

In particular, converting the raw Analog to Digital Con-
version (ADC) data from the antenna arrays to point clouds
(i.e., unordered sets of points in space), massively reduces
the data size by several magnitudes (e.g. GBytes to MBytes),
which results in faster data transfer, pre-processing, and
inference time. Unlike spectrograms of Doppler signals,
point clouds are easily interpretable since the motions occur
in a 3D space. Furthermore, strong point-cloud processing
models exist, since this format is the standard output of a
wide range of sensors [14].

We distinguish these point cloud processing models
into multi-view (projection into 2D-planes for 2D process-
ing) [18], [19], volumetric (features generated from voxels
in 3D space) [20], [21], and direct, permutation invariant
point cloud interpretation (without intermediate represen-
tation) [14], [22]. In contrast to direct processing of point
clouds, multi-view and volumetric techniques are lossy (re-
duced accuracy) and computationally intensive (time con-
suming).

To achieve a low complexity model, we there-
fore propose a direct point cloud processing method,
Tesla (TEmporal graph SeLf Attention convolution), a Mes-
sage Passing Neural Network (MPNN) graph convolution
based architecture tailored to sparse point clouds gener-
ated by mmWave radars. Utilizing the unique properties
of mmWave radar point clouds, we introduce a novel
Temporal Graph K-Nearest Neighbor (K-NN) algorithm to
dynamically model the temporal evolution of the point
cloud over successive frames as a graph structure, and a
novel self-attention MPNN based graph convolution layer
called TeslaConv to process the generated graph and in-
fer the gestures. Unlike Recurrent Neural Network (RNN)

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Raspberry P14 . o Gesture Recognition
<+—— Gesture preprocessing pipeline —mmm >
Angle and distance - N . . Recognized
normalization Frame divider » Point re-sampling Tesla model Gostis
Y
. L IWR 1443 Radar
Radar preprocessing pipeline > -
Point cloud

o | Angle FFT (3D) |¢—| CFAR |4—| Doppler FFT (2D) |<—| Range FFT (1D)

)

Fig. 1. Overview structure of Tesla-Rapture. The radar transforms the 1Q samples into a point cloud through the radar processing pipeline and this

is fed to a Raspberry Pi 4 for further processing and infer the gestures.

based models, which iteratively fuse spatial features of
each time frame, our method takes advantage of a novel
graph convolution with a single forward pass to capture the
temporal evolution by reflecting the temporal evolution of
the gesture in the intermediate graph structure. As a result,
this approach outperforms the state of the art in terms of
accuracy and computational complexity, which positions it
for embedded devices and real-time settings. In particular,
Tesla is ahead of the state of the art by a margin of up
to 4.2%, 2.9%, and 9.09% on primary settings as well as
21% in challenging scenarios of three different datasets. It is
important to emphasize that the model is 8 times faster and
has almost 40 times less computational complexity than the
most accurate competitor when it comes to inference time
and Giga Floating Point OPerations (GFLOPs), respectively.

Given the widespread usage of Raspberry PI in the
Internet of Things (IoT) from human-robot interaction [23],
[24] to smart-home applications [25], [26], we integrate
Tesla in a system called Tesla-Rapture (Tesla for RAdar
generated Point cloud gesTURE) which can be executed on
a Raspberry PI 4. The architecture is depicted in Fig. 1.

Our main contributions are:

o Temporal Graph K-NN, a novel Graph K-NN algorithm
to model the time dimension of point clouds as a
temporal graph.

o This is the first work that processes motion point clouds
using a graph convolution approach and develops a
self-attention MPNN to process the temporal graph
built through the Temporal Graph K-NN.

o A thorough performance evaluation on three datasets
with different settings including diverse environments,
distances, angles and speeds.

e An implementation on a Raspberry PI 4 in a real-time
setting.

« Publicly available code !, trained models, and Rasp-
berry PI implementation for verification and follow-up
research purposes.

2 RELATED WORK
2.1 Gesture Recognition
RGB cameras, RGB depth sensors, Leap Motion, mmWave

radars, and WiFi are prominently utilized in the literature

1. https:/ / github.com/dariush-salami/attention-based-edge-
convolution

for mid-air gesture recognition. Extensive surveys on vision-
based gesture sensing were published by Wachs et al. [27]
and Rautaray et al. [28]. These systems (e.g. MS Kinect)
employ an RGB camera and an infrared depth sensor pro-
viding either 2D color frames, full-body 3D skeleton, or 3D
point clouds [29]. However, they are limited in darkness and
occlusion, and the camera raises privacy concerns [30].

Radio Frequency (RF) gesture recognition can be distin-
guished into sub-6 GHz and millimeter waves. The former
leverages received signal strength [31] from commodity
narrow-band devices, CSI from WiFi [32], [33], [34], [35],
Doppler [36], or radar [37], [38]. However, the gesture recog-
nition accuracy below 6 GHz is limited by its small band-
width and a wavelength above 5 cm, so that antenna array
apertures become too large. In contrast, mmWave sensing
features high bandwidth (4-7 GHz) and smaller antenna
apertures. For mmWave radars, gesture recognition is either
model [39], [40] or data-driven [41], [42], [43], [44], [45], [46].
Most data-driven approaches combine Convolutional Neu-
ral Network (CNN) and RNN modules to process Doppler,
range-Doppler, and/or angle-Doppler features [41], [42],
[44]. Since these features are dependent on relative direction
of movement and angle granularity, complex tasks, such
as distinguishing simultaneous movement of different body
parts becomes challenging.

Furthermore, although there exist systems that directly
process 1/Q data [47] or Doppler spectrograms [42], the
amount of data generated by the radar is in the order of GBs
per second for both I/Q and Doppler spectrograms, which
makes it a challenge to transfer and process in real-time on
embedded devices, such as Raspberry PI.

2.2 Static Point Clouds

Point clouds from RGB-depth images, LIDAR or mmWave
radars differ in their granularity. While point clouds ex-
tracted from RGB-depth images and LiDAR are dense,
mmWave radars produce sparser point clouds [48] that
do not highlight the human skeletal structure [16]. Recent
years have witnessed the emergence of mmWave radar
point cloud human sensing due to the availability of com-
mercial hardware that is miniaturized and low cost (e.g.
hand tracking [49], gesture recognition [16], [50] activity
recognition [43], gait recognition [46], or positioning [45]).
PointNet [14], the pioneering model for direct processing
of 3D point clouds extracts features on a point-by-point basis
and aggregate them using permutation-invariant pooling.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

In PointNet++ [51], set abstraction modules to sample and
group neighbouring points in each processing layer have
been added to for improved representation of spatial fea-
tures.

At the same time, by applying CNNs on graphs, graph
convolution approaches have emerged [52]. By modeling
point clouds as graphs, in which nodes correspond to
points, connected to their nearest neighbours through edges
in an Euclidean space, graph convolution principles can
be applied. In particular, a message passing algorithm
(MPNN), is utilized to gradually propagate each point’s
features as a message to its neighbours and to aggregate the
incoming messages with the features of the point itself [53].
Based on MPNN, Dynamic Edge Convolution (DEC) [54]
redefines the graph through nearest neighbour operations at
each convolution layer and messages as Euclidean distance
between neighbouring points. Although DEC performs well
on shape classification, it fails to capture temporal de-
pendency in mid-air gesture recognition. This shortcoming
specifically affects gestures that differ mainly in their tem-
poral, but not in their spatial distribution (i.e. similarity in
time-aggregated point clouds, e.g. opposing gestures such
as swipe-left and swipe-right). To address this issue, we
reflect the temporal evolution of gestures in the graph
structure. In particular, each point can only connect to points
from previous frames.

2.3 Dynamic Point Clouds

Previous attempts to capture spatio-temporal features of
dynamic point clouds include using a combination of RNN
with either 3DCNN or PointNet layers [16], [17], [55], as
well as using a modified RNN layer to propagate infor-
mation temporally while preserving the spatial structure in
each frame [15]. In real-world applications, these models
are constrained by their high computational complexity
and restricted generalizability on point clouds generated
in different settings. However, given the sparsity of the
mmWave radar point clouds in each frame (in average
5-10 points per frame), extraction of frame-wise spatial
features does not contribute to the latent representation of
gestures. Moreover, the recurrent pipeline of RNN-based
model increases the computational complexity. To tackle this
problem, we capture the temporal dependency reflected in
the graph structure using a single pass of the proposed
MPNN model. To further increase the performance of the
model, we integrate the self-attention mechanism [56] to
increase the impact of important parts of the input data
while fading out the rest.

3 PoOINT CLOUDS FROM MMWAVE RADARS

We use point cloud datasets from the Texas Instru-
ments IWR1443? sensor, a Frequency-Modulated Contin-
uous Wave (FMCW)-Multiple-Input and Multiple-Output
(MIMO) radar sensor that operates in the 77 GHz RF band.
A radar transmitter antenna (Tx) emits an electromagnetic
signal, which is reflected and scattered by objects in the en-
vironment, before it is captured again by a receiving antenna
(Rx). An FMCW signal is used for range estimation of the

2. https:/ /www.ti.com/product/TWR1443

Transmitted

- Received
o (a)
9]
=]
g LI
el N
1So IS1 ISm -
Time -
S &
C c (]
© © g’
o o <
o
1S| Doppler /,;“’
(b) (c) Doppler i 109320
(d) 20

Fig. 2. (a) The transmitted and the reflected chirps are shown in the
frequency domain. (b) The range of the detected objects after applying
1D-FFT on the intermediate signal. (c) The velocity of the detected ob-
jects after 2D-FFT. (d) The angle of the detected objects after applying
3D-FFT on the data from multiple antennas

reflecting objects and a MIMO configuration is utilized to
compute both elevation and azimuth angles [16]. A coor-
dinate transformation of the range, azimuth and elevation
angles of the detected objects yields the point cloud in a
x-y-z coordinate system. The following signal processing
pipeline achieves the point cloud representation from ADC
data.

3.1 Point Cloud Generation

The processing unit on the evaluation kit of the radar applies
a four step preprocessing pipeline to obtain point clouds.

Range-FFT (1D): The radar sends a chirp signal (Fig. 2.a),
i.e, a signal with linearly increasing carrier frequency, and
produces an intermediate frequency signal by mixing the
transmitted and received chirps and low pass filtering.
The distance to the reflecting object is proportional to the
intermediate frequency, which is computed using the FFT
operation on the mixed signal (Fig. 2.b).

Doppler-FFT (2D): Two or more time-separated chirps are
required to estimate the radial velocity of an object. The
phase difference between two chirps at the range-FFT peak
is proportional to the radial velocity of the detected object
(2D-FFT or Doppler-FFT) which is shown in Fig. 2.c.

Constant False Alarm Rate (CFAR): The CFAR detection
algorithm [57] is used to separate reflecting objects from
noise. The summation of the Doppler-FFT matrices creates a
pre-detection matrix. The CFAR algorithm identifies peaks
in the pre-detection matrix that correspond to the detected
objects. The elements with gray color in Fig. 2 show the
noisy points that are filtered by CFAR algorithm.

Angle-FFT (3D): For each object in the CFAR algorithm,
an FFT of the angle is performed on the correspond-
ing CFAR peaks across multiple Doppler-FFTs (Fig. 2.d).
Velocity-induced phase changes are Doppler-corrected be-
fore computing the angle-FFT.

The aforementioned process results in points that have
3D coordinates with respect to the position of the radar, time
sequence, and intensity of the reflection. The point cloud
generated by the radar is sparse since the CFAR algorithm
detects peaks in the pre-detection matrix as discussed be-
fore. If we reduce the threshold in CFAR to detect more

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

peaks, the false alarm rate will increase resulting in noisy
point clouds.

3.2 Point Cloud Properties

The point cloud generated from the above process has
unique spatial and temporal properties.

3.2.1 Spatial properties

The point cloud is sparse and the skeleton structure of
the human is not apparent in individual frames. The radar
captures more points during motion than during stationary
phases of an object or subject. This is attributed to the signal
processing tool chain used for the radar. First, the point
cloud is extracted through range-FFT, Doppler-FFT, CFAR,
and angle-FFT operations as described above. The CFAR
algorithm relies on range and Doppler dimensions to detect
an object, so that the detected cloud points are triggered due
to the motion and intensity of the reflection. This property
is used to filter stationary reflections in the environment.

The gestures in the horizontal plane have a higher gran-
ularity than in the vertical plane, since the radar has more
antenna elements in the azimuth direction. Eight virtual
elements can resolve an angle of 14.3°, in contrast to only
57° via two virtual antennas in the elevation direction.
Another reason is the sensitivity of the CFAR algorithm in
the Doppler direction.

For reflecting objects or subjects close to the sensor, the
larger radar cross-section results in denser point clouds.
For instance, representations of arms or hands become less
sparse in short distance case. Additionally, for reflections
off objects in a distance D, the spacing between points
captured at a resolution of 6 is proportional to D - §. This
causes the point cloud to have a distance-dependent density
and causes the trained model accuracy to deteriorate with
increasing distance.

3.2.2 Temporal properties

The CFAR algorithm collapses points that are detected over
a specific fixed temporal duration ta into frames. The
number of cloud points is variable across frames. Even
though the skeletal structure of the body is not apparent
in individual frames, an arm’s motion constructs a spatio-
temporal structure in the direction of motion over successive
frames. These unique spatio-temporal structures in the point
cloud for different gestures can be exploited for motion
gesture recognition.

3.3 Comparison with RGB-D Point Clouds

Compared to RGB-D point clouds, mmWave point clouds
are sparse. We illustrate this in Fig. 3 using similar gestures
from two datasets. In particular, we utilize the Upper Body
Point Cloud Gestures (UBPG) RGB-D gesture point cloud
dataset [55], and the Pantomime dataset [16] (point clouds of
gestures captured by a mmWave radar). Indeed, mmWave
point clouds hold little information in each frame. Still,
stretched over four frames, a motion gesture is evolving,
that describes the two clusters of points corresponding to
the arms to close in. Specifically, the spatial relation between
points in each individual frame is less expressive to infer
a gesture than the temporal dependencies of points across
consecutive frames.

‘s o

&

(9) (h)

(b)

® °
arms%

(e) (f)

Fig. 3. (a), (b), (c), and (d) are point clouds of four frames from a single
gesture of the UBPG dataset which is essentially a closing in of the two
arms from a wider position. A similar gesture captured by the mmWave
radar is shown in (e), (f), (g), and (h) over four frames.

4 PROPOSED MODEL

In this section, we describe Tesla, an MPNN based graph
convolution approach tailored for inferring gestures from
motion point clouds.

The architecture of Tesla is depicted in Fig. 4. First, in
order to make the prediction model robust against possi-
ble spatial transformations of input gestures (e.g., rotation,
translation, scaling, etc.), we apply a TFNet [58] module on
the input point cloud. This trainable module is responsible
for producing a dynamic transformation for each input ges-
ture’s entire feature map to transform the possibly skewed
points to a rigid, uniform, and canonical point cloud, which
in turn makes the recognition in the following layers simple.
Next, we apply our proposed TeslaConv layer on the output
of TENet, which includes two steps: Graph Generation and
Graph Processing. In the Graph Generation phase, a temporal
graph is created from motion point clouds through the
proposed Temporal Graph K-NN algorithm, which connects
each point to its nearest neighbors from previous frames
to reflect the temporal pattern of gesture. In the Graph
Processing step, we apply the proposed MPNN scheme
that learns the representation of each point according to the
structure of the generated graph. Additionally, we optimize
this layer by integrating an self attention mechanism in the
message passing scheme to improve the performance of the
graph processing. Furthermore, it decreases the computa-
tional complexity of the model by eliminating the need for
removing outliers of the dataset explicitly. In the following
we will present more details about each step of the Tesla-
Conv.

4.1 Graph Generation

Consider a point cloud X = {1, ...,7,} C RY where each
point is represented by a feature set of z; = {f},..., fI'}.
In motion point clouds the frame number f; of each point
is also a dimension of the feature set, i.e., f7 € ;. The
K-NN graph G = {X,£} is obtained through the Graph
K-NN algorithm where £ C X x X is the set of directed
edges between each point and its closest neighbours in the
Euclidean space.

As illustrated in Fig. 5, in the graph generation phase,
for each point, we use Temporal Graph K-NN to find the
nearest neighbors only from the previous frames. For swipe-
left gesture in Pantomime dataset, the comparison between
Graph K-NN and Temporal Graph K-NN in the graph
structure is shown in Fig. 6. The trend in the direction of

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

ceeieeeeee___TeslaConv. __________

: R MPNN_ . . l

| | — - 1! S —

: = sl ¢ [(0

= I n ~ 7))

3 w2 || 92| =) I E=R i~ 2 9 o
o e O | S c (UC'I (o] = =\ o
Sl ™ o ¥ x| i|o % (7] o ol o 8 x - o
Ol x Xl cHxP S B> o ol D> a — o N> D
c| c c| |E a i © C Ol — — »
= x o) a x
o QS| || i x o o Sk € © 0 @
o iG] el LS] | @] |< =] = 2 5

: | E | el f || | E]

Fig. 4. The architecture of Tesla- Having multiplied the input point cloud by a 3 x 3 spatial transformation matrix of TFNet, the transformed output
is fed into TeslaConv. In TeslaConv a temporal graph is created using Temporal Graph K-NN module and the proposed message passing scheme
(section 4.2) is applied. Afterwards, to represent the gesture as a fixed-sized vector, an MLP of size 1024 followed by a max pooling is performed.
Finally, a three layered MLP with respective sizes of 512, 256, and ¢ (the number of classes) is used to predict the class scores of the gesture.

the arrows in Fig. 6.(c) shows the temporal evolution of
the gesture whereas that of Fig. 6.(b) is irrelevant to the
temporal pattern.

In the first step of Temporal Graph K-NN, we normalize
the feature set of each input point using batch-wise min-max
normalization.

x; — min(x)

)

v maz(z) — min(z)
in which, min(z) and maz(x) are the minimum and max-
imum values of each dimension of x over a batch of input
gestures, respectively. In the second step, we multiply the
temporal dimension of z; (f) by a hyperparameter o to
control the trade-off between temporal and spatial features.
Setting « to a large number (e.g., 100) forces the model to
find the nearest neighbors only from the previous frame,
while small numbers of a (e.g., 0) gives the model more
freedom in choosing the nearest neighbors from the whole
non-masked set.

i =aff.)

To find the nearest neighbors only from previous frames,
we introduce a masking scheme. The masked set of points
Fz, for z; is obtained through:

Fo, ={zj 2, € XN fF > f7} 3)

Furthermore, the distance between two points is defined
as the Euclidean distance of all the corresponding features
of points including f; and is calculated according to:

i — x| wp, ;€ X, ifxy .
Dmﬁ_%:{nxz zll iz € X, ifay ¢ Fay
0, otherwise,

where Dy, ;.. denotes the distance between x; and z; and
[|l.]| is Euclidean norm operator. Finally, the introduced
masked distance function is used to find the nearest neigh-
bors in Temporal Graph K-NN.

4.2 Graph Processing

As shown in Fig. 5, in the graph processing phase, the rep-
resentation of each point is calculated through the proposed
MPNN layer based on the temporal graph. In each layer,
the hidden representation of each point is updated through

an aggregation function on the point features except for f;
from the previous layer and the messages of its neighbours
according to:

) =z \ {f},

1 _ -1 31-1 (5)
M= T (Me(hh B,

in which, h! is the hidden representation of point i in
MPNN layer [, \ is the set subtraction operator, message
function My : RF x R — RF " is a non-linear function with
a set of trainable parameters § and is usually implemented
using MLP architectures, I' is a channel-wise symmetric
aggregation function (e.g. 3, max, or mean) applied on the
messages of the edge emanating from each neighbor.

The choice of M and T significantly affects the prop-
erties and the performance of the model in Eq. (5). For
example, setting My (h;, h;j) = Mpy(h;) causes the model
to only capture the global features of point clouds without
considering the local structures. On the other hand, setting
Mg (hi, hj) = My (h;, hj — h;), provides information about
the local relations of the neighbouring points. In this paper,
we use the second setting of message function to help cap-
ture the local dependencies as well as the global structure.

To decrease the effect of noisy points, we integrate a
scaled-dot multi-head self-attention mechanism [59] shown in
Fig. 7 into the message function. The goal is to let the
incident edges to point i decide their relative importance
in determining the updated representation of the point. Let
M; = @j:(i,j)es My(hi,hj — hi), M; € RFXF" denote the
array representation of the set of the messages of incident
edges for each point i and € is the concatenation of mes-
sages along the first dimension. A set of query Q¢, key K},
and value V}! for point 4 in a single-head self attention is
calculated through:

Qi = MW2, Ki=MWE, Vi=MW) (6)

where, WbQ €]RF/Xd’C,WbK € RF/Xd’szV € RF'xdv are
learned linear projections to dj, dir and d, dimensions,
respectively and b is the head index. Then, the single-head

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6
Graph generation Graph processing
X e
\
Temporal Message Self Aggregation
Graph K-NN propagation attention function T
_— _—

! —_—
"o h hl h Bl h Q) hi
! 1 ! K ! hg™! O
2 h R K
15 el
O g nel IS @
hl hl

ht K
7 7 may 7 7 pLrt
O n WO MO T @
1 ! 1 e 1 R
R ® hy R, hy Rl Mg hy Rl Q\/ hy 8 .

Frame s-1 Frame s-1 Frame s-1 Frame s-1
Fig. 5. TeslaConv layer- For points in each frame, a directed edge is connected from the nearest neighbours in the previous frames through Temporal

Graph K-NN. Next, messages are propagated according to the direction of the edges and a multi-head self-attention is performed on them. Finally,
the representation of each point is obtained by I" aggregation function on incoming messages.

\/1; (/// \\\ j/ /// \\\ \f
/“}\/ yy// \\\ 5 l/ : yl \\\ f

/ =S \ 1 y) J \

! " End Start ; ! End Start

(@) (b) (@

Fig. 6. Intuition behind Temporal Graph K-NN- (a) The schematic of the swipe-left gesture from the Pantomime dataset (b) Generated graph using
Graph K-NN (c) Generated graph using Temporal Graph K-NN with @« = 100. Both point clouds are shown from a top view and K is equal to 1 for
simplicity.

through:

Linear@(©) Qli) « (Kzi)T

VIl

in which, x is matrix multiplication operator. Moreover,
employing the multi-head approach allows the model to cal-
culate the attention scores using different sub-spaces at the
incident edges” messages as well as a more stable learning
process. In this work we employ m = 8 parallel attention
layers with f,/m dimensions, where f, is the number of

H;y(Qy, K3, Vi) = softmaz x Vi ()

I

Scaled dot-porduct
attention

r— [« t—i o

Lo I dimensions of incident messages after performing message
‘Llnear(WbQ)] [Llnea rvi) [Llnea r(W"V)]? function. The final multi-head output is obtained by
i i f
T m . . .
o AMa) = (]| Ho(@i, K5, VW, ®)
=1

Fig. 7. Multi-head Self Attention mechanism- Linear refers to multipli-

cation with corresponding learnable weights (Eq. (6) & Eg. (8)), Scaled Where WO e R™4*F" are trainable weights and || is the

dot-product attention is formulated in Eq. (7), and finally, Concat is the concatenation operator. Thus. the messa . t of

concatenation operation in Eq. (8). p : g ge passmg part o
the TeslaConv layer (Eq. (5)) can be updated as:

b= T AWM
; jz(meg(i))

For results on the effect of self-attention mechanism see
self attention on the messages of each point is calculated section 6.3.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

4.3 Permutation Invariance

Since the permutation of points in X does not alter the
nature of the gesture, the prediction model should be per-
mutation invariant with respect to the order of the input
points. This can be proved in two steps for our approach.

First, Temporal Graph K-NN, introduced in section 4.1,
uses symmetric aggregations (min and max) and calculates
the Euclidean distance between points which leads to a
permutation invariant graph generation process.

Second, in this work we use max as the aggregation
function in Eq. (9):

hl = maz AMY

j:(i,5)€E (19)
Since max in Eq. (10) and the global max-pooling func-
tion shown in Fig. 4 are symmetric functions, the output of

the layer is permutation invariant w.r.t the input.

5 IMPLEMENTATION

In this section, we present the implementation details of
Tesla-Rapture in terms of preprocessing pipeline, training
and inference phases, and real-time gesture recognition
interface on Raspberry PI 4.

5.1 Preprocessing

To prepare the data for Tesla model and study the effect
of different hyperparameters, we design a preprocessing
pipeline. Angle and distance normalization, frame division,
and point re-sampling are the steps of the pipeline in the
mentioned order.

5.1.1 Angle and distance normalization

To reduce the effect of angle and distance of the participant
w.r.t. the antenna center-line on the accuracy, data normal-
ization is performed. To do so, we use affine-geometric
transformation matrices to rotate and translate the data to
the reference point (1.5m distance and 0 angle in Pantomime
and 1m distance and 0 angle in RadHAR).

5.1.2 Frame divider

To study the effect of number of frames on system accuracy,
complying with the temporal order of points, we distribute
them in different number of frames (2, 4, 8, 16, 32, 64).
Assume S is the desired number of frames and n is the
total number of points ordered based on the time at which
each point was received. We consider first n/.S points as the
first frame, second n/S points as the second frame and so
on. Although we re-define the frame structure, the temporal
order of points is still preserved.

5.1.3 Point re-sampling

To study the effect of number of points in each frame on
the system performance, we employ a density-based re-
sampling strategy introduced by Cohen et al. [60] to pre-
serve the spatial structure while fixing the number of points
in each frame. Considering n/S as the desired number of
points in each frame, to reduce the number of points we
use K-means algorithm and set K equal to n/S and select
the centroids of the clusters as the points in the frame.

7

To increase the number of points in the frame to n/S,
we iteratively apply Agglomerative Hierarchical Clustering
(AHC) and add the centroids of the clusters as new points
to the frame until we have the desired number of points.

5.2 Data Augmentation

Different data augmentation techniques are applied to im-
prove the generalizability of the system in terms of different
angles, distances, and scales. We apply the following aug-
mentations to each batch during the training phase for all
the models:

e Random translation up to 10cm

e Random scaling between 0.8 to 1.25

o Random point-wise translation (jitter) based on a Gaus-
sian distribution with 4 = 0 and o = 0.01

e Random clipping of 0.03m

e Random shuffling of the point cloud representation
preserving the spatial and temporal features

5.3 Training and Inference

The infrastructure used for training and inference phases
has 64GB of RAM and is equipped with a Tesla V100 16GB
GPU. The model is implemented using PyTorch [61] and
PyTorch Geometric [62]. We utilize early stopping mecha-
nism in the training phase with a patience of 100 epochs.
To do so, if no improvement on validation set accuracy is
observed within the patience period, training is stopped and
the best model is saved. The loss function used for training
the model is cross-entropy between class scores and one-
hot encoded labels. To minimize this loss function, we use
Adam Optimizer [63] with a step-decay strategy to decrease
learning rate:

el

L, = Liniy - dr®" (11)

where L, is the learning rate used at each epoch, L;p;; is
the initial value of the learning rate, d,. is the drop rate after
every e, epochs, e is the current epoch and |-] is the floor
operator. In our setup Ly is 0.001, d,. is 0.5, and e, is 20.

5.4 Real-time Implementation

We implement Tesla-Rapture for real-time gesture recogni-
tion on Raspberry P14 device with 8GB RAM, as an example
embedded device with constrained computing resources.
For recognizing gestures in real-time, we develop an
algorithm which uses Tesla model as classifier. We cate-
gorize each captured frame into two sets of active frame
and idle frame. Idle frames are frames in which no notable
movement is observed and the rest are considered as ac-
tive frame. In Algorithm 1, we use a set of consecutive
idle frames as a delimiter for different gestures. A simi-
lar approach is employed in different gesture recognition
systems like DoubleFlip [64] and WristRotate [65] or even
in voice assistants, e.g., [66]. Gesture recognition is per-
formed whenever a minimum number of active frames are
identified. Thresholds for minimum active frames, gesture
delimiter, and maximum number of points for idle frames
are denoted as min_frames, idle_frame_delimiter,
idle_frame_threshold, respectively and tuned empirically.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Algorithm 1: Real-time recognition algorithm

Result: Recognized gesture

frame_list =[], min_frames = 2,
idle_frame_count = 0,
idle_frame_delimiter = 10,
idle_frame_threshold = 3;

while Receive frame_data from Radar do

if len(frame_list) > min_frames and
idle_frame_count > idle_frame_delimiter
then

preprocess(frame_list);

perform_recognition(frame_list);

end

if len(frame_data) < idle_frame_threshold
then

idle_frame_count+ = 1;

continue;

end

idle_frame_count = 0;

append frame_data to frame_list;

end

Pantomime RadHAR mHomeGes
Participants 41 2 25
Number of classes 21 5 10
Max. range (m) 5m 1.5m 3m
Environments 5 1 7
Frame rate (fps) 30 60 10
Training samples 7000 12097 22,000

TABLE 1

Comparison of the three datasets.

The real-time recognition algorithm is implemented on a
Raspberry PI 4 with a connected IWR1443 Radar responsible
for sensing the human movement (see section 3.1). A Cortex-
R4F built-in micro-controller is employed in the radar and
the universal asynchronous receiver-transmitter protocol
realizes data transfer. We configure the device to capture
frames at a rate of 30 fps with a range resolution of 0.047 m,
a velocity resolution of 0.87 m/s, and a maximum velocity
of 6.9 m/s up to a maximum range of 5 m. The starting fre-
quency is 77GHz and our selected range resolution dictates
a bandwidth of 3.19GHz.

6 EVALUATION

This section presents the performance evaluation of the
Tesla model and Tesla-Rapture system in terms of recog-
nition accuracy and time complexity.

6.1 Datasets

For evaluation purpose, we use three radar generated
point cloud datasets: Pantomime [16], RadHAR [43], and
mHomeGes [50]. The comparison between three datasets
is shown in Table 1. All datasets were acquired using a
77 GHz IWR1443 millimeter wave radar. The gestures in
Pantomime are divided into three sets: Easy (9 classes),
Complex (12 classes) and All (21 classes) based on the execu-
tion difficulty. The Easy set comprises single-hand gestures

8

that are easy to perform and remember. The Complex set
comprises bimanual, linear, and circular gestures. Finally,
All consists of gestures from both sets. The training data
in RadHAR is collected from one anchor position of 1.5m,
whereas the training data in Pantomime and mHomeGes
are collected from 4 and 13 anchor positions between 1.5 to
5m and 1.2m to 3m, respectively. For evaluating the model
on Pantomime and RadHAR datasets, we employ the same
train, validation, test splits provided by Pantomime and
RadHAR authors, respectively. For mHomeGes, we use the
same 20%/20%/60% test/validation/train split for all the
models.

6.2 Evaluation Metrics

The performance of models are evaluated using recognition
accuracy (Acc.), Area Under ROC Curve (AUC), which
quantifies the discriminatory power of the classifier, and
Average Precision (AP), which summarizes a precision-
recall curve as the weighted mean of precisions achieved at
each threshold, with the increase in recall from the previous
threshold used as the weight:

AP =Y (Riy — Rip_1) Py (12)
th

where P, and Ry, are the precision and recall at threshold

tr. We also report the confusion matrix to analyze perfor-

mance further and inspect conflicting gestures.

6.3 Hyperparameter Tuning

The results of hyperparameter tuning of the model on
Pantomime validation dataset are illustrated in Fig. 9. In
order to tune each point’s neighbors number (k) and the
value of o in Temporal Graph K-NN and the number of
TeslaConv layers, different combinations of parameters are
used to train the model and test it on the validation set.
According to the cross-validation process, best results are
obtained using one layer of TeslaConv with £ = 32 and
a = 10. Increasing the complexity of the model by adding
more layers does not contribute to the accuracy of the
model. Although, increasing k leads to a more complex
model since Temporal Graph K-NN generates denser graphs
(see Fig. 4), in most of the cases the accuracy is enhanced
as demonstrated in Fig. 9. In general, no clear trend is
observable when it comes to changing « indicating that
performance of different o values is not independent from
values of k and the number of layers.

We choose two sets of hyperparameters: Tesla model
with £ = 32 and a = 10, the best performing one in terms of
accuracy, and Tesla-V (Tesla-Vanilla) model with £ = 2 and
a = 10, reasonably accurate but faster than Tesla in terms of
prediction time.

In Fig. 10 the impact of the number of frames and the
number of points in each frame on the accuracy is evaluated
on three different datasets. Six settings of different combina-
tions of the number of frames and the number of points
per frame are considered while keeping the total number of
points (=number of frames x number of points per frame)
in each gesture constant (1024). Increasing the number of
frames up to 32 for Pantomime and mHomeGes datasets,
improves the accuracy. However, adding more frames than

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

32 to the gesture in these two datasets decreases the accu-
racy. For RadHAR dataset, the optimal number of frames is
8. These observations indicate that both number of frames
and number of points in each frame play important roles in
performance of the system.

Additionally, to illustrate the effect of self-attention
mechanism on the performance of the model, we train the
Tesla without the self-attention mechanism on the training
set of the Pantomime dataset. The overall accuracy of the
trained Tesla without self-attention on the validation set is
95.2% (3% drop compared to the model with self-attention)
indicating the positive effect of self-attention in improving
the performance of the model. Moreover, we train Tesla with
number of heads, m, equal to 1 and the accuracy is 97.7
which is 0.4% behind the model with 8 heads showing
that using multiple heads improves the performance of the
model.

6.4 Classification Results
6.4.1

In Table 2, the performance of Tesla and Tesla-V on Pan-
tomime dataset is compared to baseline models of Point-
Net [14], PointNet++ [51], O&H [55], PointGest [17], Rad-
HAR [43], PointLSTM [15], Pantomime [16], P4T [67], and
DEC [22]. In PointNet, PointNet++, and DEC, the frames
are aggregated through time dimension into a single frame
representing the whole gesture, since they are designed to
classify static point clouds. While the rest of the models
aim to classify motion point clouds. Moreover, from input
data representation perspective, O&H and RadHAR work
on voxels whereas the rest of them directly operate on point
clouds. In case of Pantomime and PointGest, gestures are
represented with 8 frames (same number as in the original
papers) since they are computationally demanding and not
feasible to run with more frames on the same infrastructure.
As illustrated in Table 2, our Tesla model outperforms all
baselines in every category, in terms of accuracy, AUC,
and AP. Additionally, Tesla model increases the accuracy
of state of the art by 0.9%, 4.2%, 3.1% in Easy, Complex,
and All settings, respectively, as well as achieving 100%
AUC in both Complex and All. Furthermore, Tesla-V model
performs rather efficiently compared to baselines and Tesla,
ranking 2nd on Complex and All and 3rd (only 0.1% behind
2nd) on Easy when it comes to accuracy.

Overall Results on Pantomime dataset

6.4.2 Different Environments

We also evaluated Tesla model with different environments
on Pantomime dataset, comparing to the closest competitor.
Following the same approach as [16], the model is trained on
data acquired in Open and Office settings and tested against
five different environments reported in Table 3. We manage
to improve accuracy up-to 10% in all environments except
for Open. This arises from the fact that the frames in clut-
tered environments like Through-wall are sparser compared
to less cluttered environments , e.g., Open. Therefore, the
spatial distribution of the frames in the train set is different
from that of the test set. Consequently, the models capturing
spatial features and fusing them through Long Short-Term
Memory (LSTM) layers i.e. Pantomime, fail to generalize

9
<80 00 00O0O0UO0OOOOO0TO0IO0O0O0O0 0 0 100
2-08 0 000 00O0O0UOOOOOGOUO0O0O0 0 O
v-0 offJo 0o 00 012000 000000000 O
-0 0 o120 0 0 0 0 0 0 00 O O OO0 OO O
w-0 0 0 12 0o o 0o 0 0 0120 0 0 0 0 0 0 0 O 80
“-0 000 oMo 000 00D0O0O0GO0O0O0O0O0 O
©o-0 0 0O O O OfEEQO 0 O 0 0 0 0 O O O O O O 12
-0 0 00 00 oMo 000 0O0GOGOTUOO0O0O0 O
~-0 0620 0 0 0 O 0 0250 0 0 0 0 0 0 0 0 60
2--0 000000 00 00 000O0DO0GO0GOUO0O0 O
Exfoz.sooooooz.soooooooooo
2--0 000000000 0ofFWO O0O0O0O0O0O O O
g-0 000 0000000 oFFo o000 o000 O 40
€220 0 0 0 0 0 0 000 o0 offJooo0o0o0o0o0
©-0 0 0 0 0 0 00 0000 0 oMo 0000 O
-0 0 0 0 00 00 0000 0o0 oMo o0o0o0 o0
©-0 000 000 00000 o022110Fo0 0 o0 o0 20
-0 0 0000 O0OUOOOGOTO OO OO0 OO 0 o0
“w-0 0 0 0 0000 O0O0O0O0UO OGO OTUO0TO0TO0O0MNMO o
“-120 0 0 0 0 000000000000 oo
5-250 0 0 0 0 0 0 0 0 00 0O 000 0 O om 0
a b cdefgh i jkimnoopagrstou

Predicated Label

Fig. 8. Confusion matrix of Tesla on Pantomime dataset

well (see section 3.2). On the contrary, Tesla model, rec-
ognizes gestures based on their temporal structures which
leads to a more robust prediction in unseen environments.

6.4.3 Different Speeds

In addition, the effect of gesture speed is illustrated in
Table 3. The models are trained on gestures performed with
Normal speed and tested on Slow, Normal, and Fast speeds.
Tesla model outperforms Pantomime in Normal and Fast
articulation speeds. However, in setting Slow, we are behind
state of the art.

6.4.4 Different Distances and Angles

For measuring the robustness of the prediction against the
position of the participant w.r.t. radar, we compared the
performance of Tesla, on different angles and distances. As
shown in Fig. 11, our Tesla model outperforms Pantomime
in every setting of angle and distance in terms of both
accuracy and AUC. When it comes to extreme setups i.e.
5m distance, —45° and 45° angels, Tesla is significantly
ahead of Pantomime improving the accuracy up to 21%.
Furthermore, with the increase of distance, the performance
drop in our Tesla is less than 10%, whereas Pantomime
degrades in accuracy with an exponential rate (almost 30%).
Given the change in the distribution of point clouds in
different configurations of the radar (see section 3.2), Pan-
tomime fails to generalize since it extracts spatial features
from each frame, fusing them to identify temporal pattern.
However, Tesla recognizes gestures based on the temporal
graph which is more robust to angle and distance.

6.4.5 Conflicting gestures

The confusion matrix of Tesla on the ALL set of Pantomime
dataset is shown in Fig 8. There are a few minor conflicts
in the gestures, but the main source of confusion is between
gestures i’: throw and 'c’: lift which are shown in Fig. 12.
The first reason is that the gestures are similar since both
of them are performed in mainly z-axis. The second reason
is that the radar has a lower resolution in elevation angle
given the less number of antennas in that direction [16].

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

~0.98 ~0.98 =0.98

X X R

30.97 30.97 30.97

e e c

3 3 3

£0.96 £0.96 $0.96

() () (9]

20.95 20.95 20.95

@ @]

> > >

<0.94 <0.94 <0.94
1 2 3 4 5 1 2 3 4 1 2 3
Number of Nearest Neighbors (log2(K)) Number of Nearest Neighbors (log2(K)) Number of Nearest Neighbors (log2(K))

(@) (b) ()
Fig. 9. The effect of hyper parameters. (a) One, (b) two and (c) three layers.

R 100 981 R 100 _ 100

g 953 96.0 £ 99 98.7 S ois

S 95 o 98.0 & 951 .

g 92.0 g 98 97.7 97.8 g 016 922

2 9 g o7 2 g0 89.6

< 879 | < 96.5 < 875 88.3

[[[

o o 96 o

° 85 o 95.1 S g5

g 82.7 g o5 g

< < <

2/512 4/256 8/128 16/64 32/32 64/16
frames / # points per frame

(@

4
2/512 4/256 8/128 16/64 32/32 64/16
frames / # points per frame

(b)

80+
2/512 4/256 8/128 16/64 32/32 64/16
frames / # points per frame

(©

Fig. 10. The impact of the # of frames and points per frame on avg. accuracy. for (a) Pantomime dataset (b) RadHAR dataset and (c) mHomeGes

dataset
EAsy COMPLEX ALL
Model Acc. AUC AP Acc. AUC AP Acc. AUC AP
PointNet 79.7 98.4 81.1 825 98.7 82.6 81.6 99.4 82.2
PointNet++ 79.7 98.1 80.5 849 99.0 85.5 83.6 99.4 84.2
O&H 77.7 96.0 79.7 83.2 98.1 84.1 79.1 97.9 80.2
PointGest 83.3 98.5 85.6 884 99.5 89.2 86.3 99.4 88.8
RadHAR 91.6 98.9 91.7 943 99.6 945 899 99.5 90.3
PointLSTM 85.1 99.1 863 92.1 99.8 93.6 90.7 99.7 918
P4T 78.9 97.0 794 79.8 97.0 80.2 782 98.1 79.5
Pantomime 96.6 99.8 96.6 95.1 99.8 954 95.0 99.9 95.3
DEC 81.9 98.2 824 89.1 99.3 90.2 86.0 99.4 86.4
Tesla-V 96.2 99.7 968 99.1 100 99.1 96.6 99.9 96.7
Tesla 97.5 99.8 97.6 99.3 100 99.1 98.1 100 98.2
TABLE 2

Comparison with the state of the art on the Pantomime dataset. Acc., AUC, and AP are reported in percentages. The best results per column are
denoted in bold typeface.

6.4.6 Overall results on RadHAR dataset

In Table 4, the results of different models on RadHAR
dataset are illustrated. SVM, MLP, Bi-directional LSTM,
and RadHAR use voxels as input. As shown in Table 4,
Tesla model outperforms baselines in measures of accuracy,
AUC, and AP. Moreover, Tesla-V ranks third in the table in
terms of accuracy, AUC, and AP.

6.4.7 Overall results on mHomeGes dataset

The results of different models on mHomeGes dataset are
shown in Table 5. Tesla model outperforms baselines in
accuracy, AUC, and AP. The margin between Tesla and the
closest competitor, P4T, is 9.09%. Moreover, Tesla-V ranks
second in the table in terms of both accuracy and AUC.

6.5 Time Complexity Results

In Fig. 13, time complexity comparison between Tesla and
Tesla-V and baselines on Pantomime dataset on a Tesla V100
Graphical Processing Unit (GPU) with 16GB of memory is
presented. To evaluate the efficiency of the model, we mea-
sure four different metrics of average inference time, GFLOPs,
number of trainable parameters, and size of the trained model.
For measuring inference time, two settings of batch size 1
and 16 were considered and the average time of 10 forward
passes were gathered after warming up the infrastructure
by running a few batches. Each category of measurements
in Fig. 13 are scaled based on the maximum value of the
category. According to Fig. 13, Tesla-V model has the lowest
aggregate complexity among all the models. Furthermore,
Tesla model, which is the best performing one in terms of

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Pantomime Proposed

Setting Acc. AUC AP Acc. AUC AP

Factory 89.11 99.79 91.03 9714 99.96 97.63
Restaurant 81.13 98.84 84.01 8214 98.19 88.40
Office 9340 99.86 9365 9714 99.94 97.24
Open 9612 99.94 97.11 9436 99.88 96.21
Through-wall 6443 9724 6872 74.64 9851 81.56
Slow 85.00 99.33 86.62 76.19 98.69 86.19
Normal 94.05 9990 9427 9595 99.95 96.53
Fast 9214 99.68 9293 94.28 99.87 94.62

TABLE 3

Comparison with Pantomime model (the closest competitor) on
different settings of the Pantomime dataset. The best Acc., AUC, and
AP per row are denoted in bold typeface.

Model Acc. AUC AP
Support Vector Machine (SVM) 63.74 - -
MLP 80.34 - -
Bi-directional LSTM 88.42 - -
RadHAR 90.47 - -
PointLSTM 94.11 9870 94.74
PAT 67.82 9133 68.64
Pantomime 9419 99.65 9495
DEC 9624 99.62 96.30
Tesla-V (ours) 9549 9948 95.59
Tesla (ours) 98.71 9991 98.92

TABLE 4
Comparison with the state of the art on the RadHAR. The Accuracy is
reported in percentages. The performance of SVM, MLP, Bi-directional
LSTM, and RadHAR are reported from [43]. The best results per
column are denoted in bold typeface.

accuracy, ranks 3rd in total, just behind PointNet, a model
that does not take into account the temporal dependency,
therefore, having a much lower accuracy. Compared to
the most accurate competitor (Pantomime), Tesla-V is 18
and 8 times faster in inference with batch sizes 16 and 1
respectively; and 40 times computationally efficient in terms
of GFLOPs. In addition, computationally closest competitor
is PointNet which has almost the same inference time and

100 A 100 4 ™= pey gy

;\3 — - L e S —

> 901 T e | ¥ 991

> [

© 804 S 984

§ == Ours < = = Ours

< 7071 Pantomime 971 Pantomime

60 T T T 96 - T T T
1.5 3.0 4.0 5.0 1.5 3.0 4.0 5.0

Distance (m) Distance (m)
(a) (b)

. 1001 o 100 o g,

3 / —y \\ _ - \\

> 901, \ L 991 ~

o <

S 801 1Y 984

] == = Ours < == = Ours

< 707 Pantomime 971 Pantomime

60 T T T T T T 96 T T T T T T
—-45-30-15 0 15 30 45 —-45-30-15 0 15 30 45

Angle (Deg.) Angle (Deg.)
() (d)

Fig. 11. Comparison between Pantomime and Tesla models. (a), (b) on
different distances and (c), (d) on angles in terms of accuracy and AUC

11

Model Acc. AUC AP

PointNet 8045 99.05 75.22
PointNet++ 79.77 9897 7522
PointGest 68.36 96.52 65.71
PointLSTM 83.70 9793 83.82
PAT 85.71 98.66 85.75
Pantomime 80.24 99.12 75.86
DEC 7899 9756 79.08
Tesla-V (ours) 90.35 99.34 90.92
Tesla (ours) 94.80 99.53 95.87

TABLE 5

Comparison with the state of the art on the mHomeGes dataset. The
best results per column are denoted in bold typeface.

Model Size IT-1 IT-16 FLOPS Params
PointNet 43.00 639 0.64 0.45 347
PointNet++ 1840 7.03 1.08 1.68 1.47
PointGest 2480 3796 744 13.47 1.66
PointLSTM 528 22.00 8.00 4.03 1.24
Pantomime 45.80 43.00 1246 15.16 3.26
P4T 7620 25.71 1.20 4.87 19.96
DEC 6.80 7260 647 0.87 1.69
Tesla-V (ours) 6.30 5.23 0.66 0.40 1.56
Tesla (ours) 630 13.04 430 1.29 1.56
TABLE 6

Comparison to the state of the art in terms of computational complexity

GFLOPs while falling behind Tesla-V by 16.5% when it
comes to recognition accuracy.

Moreover, we have the explicit metrics for each model in
Table 6. Tesla-V in terms of inference time with batch size
equal to 1 and FLOPS is better than the rest. Although in
terms of model size, inference time with batch size equal to
16, and number of parameters Tesla-V ranks either second
or third, when it comes to the normalized aggregated metric
(Fig. 13, it is ahead of the rest of the models, making
it suitable for real-time gesture recognition on embedded
devices.

6.6 Real-time Implementation Evaluation

In this part we evaluate inference time and performance of
the model on a Raspberry PI 4 device with 8GB of RAM.
The setup for the real-time testbed is shown in Fig. 15.

Fig. 12. The conflicting gestures from Pantomime dataset: (a) Gesture
'z throw, (b) Gesture 'c¢’: lift

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

N Size (MB)

3 e BS=1
3 B BS=16
25l HE FLOPS (G)
_% BN Params (M)
[}
©
& 11

2 & s L S & 2 x P
. o 5 & A ¢ 5
& F8 5§ &8 LS
9 S RS N
] L
Models

Fig. 13. Scaled model complexity comparison. Each metric is
scaled between 0 and 1. Size: model size, BS: average inference
time a batch size, Params: trainable parameters

Fig. 15. Tesla-Rapture setup for real-time evaluation using an IWR1443
radar and Raspberry Pl 4 device

6.6.1

In Fig. 14, the average inference time on a Raspberry PI 4
with 8GB of memory with batch sizes of 1 and 16, for DEC,
PointL.STM, Tesla, PointNet++, PointNet, and Tesla-V are
illustrated. Since, Pantomime and PointGest require more
than 8GB of RAM, their implementation on Raspberry PI
is not feasible. Among the implemented models, Tesla-V is
able to predict gestures in 0.4s and 0.3s with batch sizes 1
and 16 respectively, making it the only model predicting a
gesture in less than half a second. As a result, Tesla-Vis the
only suitable model for integration into the real-time gesture
recognition interface Tesla-Rapture, since inference time of
more than one second in the case of all other models, is not
fast enough for real-time user experience.

Inference time

6.6.2 Performance

To evaluate the performance of the purposed gesture recog-
nition system, Tesla-Rapture, the pipeline shown in Fig. 1 is
implemented. The prediction model in this system is Tesla-
V (the only model with inference time of less than one
second) and the inference is done on a Raspberry PI device
connected to an IWR1443 radar for gathering gestures.

12

Avg. time(s)
= N N
wv o w

g
o

o
5

©
)

A O D R % X BNy
= @ 2
] QQ' \0,/)\ &‘5’ Q,«?(N P
& S & o~
s S &
QO .os
]
Models

Fig. 14. Average inference time per gesture of proposed models
on a Raspberry Pl device

Since Pantomime dataset does not have a class for re-
jecting gestures (no-gesture class), 2 hours of moving point
clouds in which there were random movements of partic-
ipants as well as idle frames were recorded. The training
data from Pantomime dataset was combined with no-gesture
samples to train the model. As a result, to train Tesla-V for
the real-time system, we used 22 classes including a no-
gesture class to reject the gestures that do not belong to the
gesture set of Pantomime dataset.

In the evaluation phase of the Tesla-Rapture, we asked
5 participants to perform each class of gesture for 10 times
as well as doing random movements in front of the radar
(like walking, staying idle, and doing some random gestures
other than the original gesture set). To do so, we showed
gesture videos to participants and asked them to perform
each gesture a few times before the actual evaluation. In the
evaluation round, we showed the name and the schematic
view of the gesture in a random order on the screen and
the participant performed the gesture. As shown in algo-
rithm 1, we use a few idle frames as a gesture delimiter.
Consequently, between each gesture there was one second
gap. The overall accuracy of the real-time system is 90.53%
and the false-alarm rate is 4.4%.

7 DISCUSSION

Gesture Recognition. Introducing Tesla-Rapture system,
as a fast and accurate gesture recognition interface is a
step forward in human-computer interaction scenarios for
integration with many off-the-shelf devices. Given the ro-
bustness of the system in different environments, angels,
and distances as well as real-time performance, Tesla-
Rapture system can be incorporated into a wide range
of applications e.g., smart-homes, vehicular settings, and
human-robot interaction. Furthermore, the model can be
trained on a customized set of gestures and deployed on
Tesla-Rapture for a specific real-time application.

Speed vs. Accuracy. High performance of Tesla makes it
suitable for sensitive applications in which the accuracy
cannot be compromised. However, this performance comes

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

with a cost of slower recognition speed. To address this
issue, we introduced Tesla-V, a faster prediction model, with
only 1.5% drop in accuracy while performing inference 3
times faster than Tesla. Thus, Tesla and Tesla-V cover a
wide range of applications with different speed-accuracy
requirements.

Egocentric Applications. Due to the computational effi-
ciency and robustness to different environments and an-
gles, Tesla-Rapture system can be extended to scenarios
where egocentric gestures should be recognized on con-
strained devices. Tesla prediction model can be modified
to adapt to new applications for wearable devices, e.g.,
Microsoft HoloLens®. Currently, HoloLens 2 captures hand
gestures using RGB-D sensors. Given the benefits of radars
over RGB-D cameras (see section 2), integration of Tesla-
Rapture with HoloLens improves the performance of hand
gesture recognition which is one of the main interaction
mechanisms of this device.

Tesla on Dense Point Clouds. We trained and evaluated
Tesla on SHREC-28 [68] and NVGesture [11] datasets, in
both of which a set of dense gestures are collected using
a depth camera. The proposed model achieves 81.5% and
80.1% accuracy, while the state of the art (PointLSTM) has
94.7% and 87.9% accuracy on SHREC-28 and NVGesture,
respectively suggesting that Tesla fails to capture spatial
structures in each frame effectively which is vital for dense
point cloud processing. Since Tesla aims at recognizing ges-
tures from mmWave radar generated point clouds, highly
sparse compared to that of other devices (see section 3.3),
capturing spatial features of each frame does not contribute
to the performance. Our approach outperforms PointLSTM
(state of the art model on SHREC-28 and NVGesture),
with a margin of up to 12.4%, 11.1%, and 4.6% accu-
racy on mmWave radar generated point cloud datasets of
Pantomime, mHomeGes, and RadHAR, respectively (see
section 6.4.1).

Tesla on PRM (Pantomime, RadHAR, mHomeGes). To
further analyze the performance of the proposed model,
Tesla, on scenarios with higher number of gestures, we
combined the three datasets to have 36 classes of gestures.
Tesla was trained from scratch on 70% of the data and tested
using the rest. The accuracy is 93.31% indicating that the
model is able to generalize well on the scenarios with more
number of classes.

Future Work. While in this work, we introduced Temporal
Graph K-NN to reflect the temporal dependency in graph
generation, the graph is still being created statically us-
ing Graph K-NN algorithm. Reinforcement Learning (RL),
imitating the cognitive reward based learning process, en-
hances the graph according to the accuracy of the classifica-
tion model. Therefore, dynamic graph generation using RL
is one possible direction for improving the temporal graph.

8 CONCLUSION

In this work, we proposed Tesla-Rapture, a real-time gesture
recognition interface based on mmWave radar generated
sparse point clouds. In doing so, we designed Temporal

3. https:/ /www.microsoft.com/en-us/hololens

13

Graph K-NN to implicitly reflect the temporal evolution
of gestures in a temporal graph on which the proposed
attention-based MPNN is applied to recognize gestures.
Moreover, we presented two versions of Tesla and Tesla-
V employing the mentioned strategy. Our results show that
Tesla-Rapture enhances the accuracy up to 21% in extreme
settings while reducing the prediction time by a magnitude
of 8 and computational complexity (GFLOPs) by almost 40
times compared to the most accurate competitor.

ACKNOWLEDGMENT

We thank the anonymous referees for the constructive feed-
back provided. Part of the calculations presented above
were performed using computer resources within the Aalto
University School of Science “Science-IT” project.

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under the Marie Sklodowska-Curie Grant agreement No.
813999.

REFERENCES

[1] Q. Wan, Y. Li, C. Li, and R. Pal, “Gesture recognition for smart
home applications using portable radar sensors,” in 2014 36th
annual international conference of the IEEE engineering in medicine
and biology society. 1EEE, 2014, pp. 6414-6417.

[2] E. Ohn-Bar and M. M. Trivedi, “Hand gesture recognition in
real time for automotive interfaces: A multimodal vision-based
approach and evaluations,” IEEE transactions on intelligent trans-
portation systems, vol. 15, no. 6, pp. 2368-2377, 2014.

[3] H. Liu and L. Wang, “Gesture recognition for human-robot col-
laboration: A review,” International Journal of Industrial Ergonomics,
vol. 68, pp. 355-367, 2018.

[4] K. Kalgaonkar and B. Raj, “One-handed gesture recognition using
ultrasonic doppler sonar,” in 2009 IEEE International Conference on
Acoustics, Speech and Signal Processing. 1EEE, 2009, pp. 1889-1892.

[5] R. J. Przybyla, H-Y. Tang, S. E. Shelton, D. A. Horsley, and
B. E. Boser, “12.1 3d ultrasonic gesture recognition,” in 2014 IEEE
International Solid-State Circuits Conference Digest of Technical Papers
(ISSCC). 1IEEE, 2014, pp. 210-211.

[6] Z. Lu, X. Chen, Q. Li, X. Zhang, and P. Zhou, “A hand gesture
recognition framework and wearable gesture-based interaction
prototype for mobile devices,” IEEE transactions on human-machine
systems, vol. 44, no. 2, pp. 293-299, 2014.

[7] Y. Zhang and C. Harrison, “Tomo: Wearable, low-cost electrical
impedance tomography for hand gesture recognition,” in Proceed-
ings of the 28th Annual ACM Symposium on User Interface Software
& Technology, 2015, pp. 167-173.

[8] P. Gupta, K. Kautz et al., “Online detection and classification of
dynamic hand gestures with recurrent 3d convolutional neural
networks,” in CVPR, vol. 1, no. 2, 2016, p. 3.

[9] P. K. Pisharady and M. Saerbeck, “Recent methods and databases
in vision-based hand gesture recognition: A review,” Computer
Vision and Image Understanding, vol. 141, pp. 152-165, 2015.

[10] X. Yang, P. Molchanov, and]. Kautz, “Making convolutional
networks recurrent for visual sequence learning,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 6469-6478.

[11] P. Molchanov, X. Yang, S. Gupta, K. Kim, S. Tyree, and J. Kautz,
“Online detection and classification of dynamic hand gestures
with recurrent 3d convolutional neural network,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2016,
pp- 4207-4215.

[12] M. Abavisani, H. R. V. Joze, and V. M. Patel, “Improving the
performance of unimodal dynamic hand-gesture recognition with
multimodal training,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019.

[13] Y. Kim and B. Toomajian, “Hand gesture recognition using micro-
doppler signatures with convolutional neural network,” IEEE
Access, vol. 4, pp. 7125-7130, 2016.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

C.R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning
on point sets for 3d classification and segmentation,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, 2017,
pp- 652-660.

Y. Min, Y. Zhang, X. Chai, and X. Chen, “An efficient pointlstm
for point clouds based gesture recognition,” in 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2020,
pPp- 5760-5769.

S. Palipana, D. Salami, L. A. Leiva, and S. Sigg, “Pantomime: Mid-
air gesture recognition with sparse millimeter-wave radar point
clouds,” Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, vol. 5, no. 1, pp. 1-27, 2021.

D. Salami, S. Palipana, M. Kodali, and S. Sigg, “Motion pattern
recognition in 4d point clouds,” in 2020 IEEE 30th International
Workshop on Machine Learning for Signal Processing (MLSP). IEEE,
2020, pp. 1-6.

H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-
view convolutional neural networks for 3d shape recognition,”
in Proceedings of the IEEE international conference on computer vision,
2015, pp. 945-953.

T. Yu,]. Meng, and]. Yuan, “Multi-view harmonized bilinear
network for 3d object recognition,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp.
186-194.

D. Maturana and S. Scherer, “Voxnet: A 3d convolutional neural
network for real-time object recognition,” in 2015 IEEE/RS] Inter-
national Conference on Intelligent Robots and Systems (IROS). 1EEE,
2015, pp. 922-928.

G. Riegler, A. Osman Ulusoy, and A. Geiger, “Octnet: Learning
deep 3d representations at high resolutions,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 3577-3586.

Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, “Dynamic graph cnn for learning on point clouds,” Acm
Transactions On Graphics (tog), vol. 38, no. 5, pp. 1-12, 2019.

H. U. Odoemelem and K. Van Laerhoven, “A low-cost prototyping
framework for human-robot desk interaction,” in Adjunct Proceed-
ings of the 2020 ACM International Joint Conference on Pervasive and
Ubiquitous Computing and Proceedings of the 2020 ACM International
Symposium on Wearable Computers, 2020, pp. 191-194.

V. D. Soni, “Artificial cognition for human-robot interaction,”
International Journal on Integrated Education, vol. 1, no. 1, pp. 49—
53, 2018.

V. Vujovi¢ and M. Maksimovi¢, “Raspberry pi as a sensor web
node for home automation,” Computers & Electrical Engineering,
vol. 44, pp. 153-171, 2015.

S. Jain, A. Vaibhav, and L. Goyal, “Raspberry pi based interactive
home automation system through e-mail,” in 2014 International
Conference on Reliability Optimization and Information Technology
(ICROIT). IEEE, 2014, pp. 277-280.

J. P. Wachs, M. Kélsch, H. Stern, and Y. Edan, “Vision-based hand-
gesture applications,” Commun. ACM, vol. 54, no. 2, 2011.

S.S. Rautaray and A. Agrawal, “Vision based hand gesture recog-
nition for human computer interaction: A survey.” Artif. Intell.
Rev., vol. 43, no. 1, pp. 1-54, 2012.

R. Lun and W. Zhao, “A survey of applications and human motion
recognition with Microsoft Kinect,” Int. |. Pattern Recognit. Artif.
Intell., vol. 29, no. 5, pp. 1555 008:1-48, 2015.

K. Caine, S. Sabanovic, and M. Carter, “The effect of monitoring by
cameras and robots on the privacy enhancing behaviors of older
adults,” in Proc. HRI, 2012, pp. 343-350.

H. Abdelnasser, M. Youssef, and K. A. Harras, “WiGest: A ubiqui-
tous wifi-based gesture recognition system,” in Proc. INFOCOM,
2015.

H. Li, W. Yang, J]. Wang, Y. Xu, and L. Huang, “WiFinger: talk to
your smart devices with finger-grained gesture,” in Proc. UbiComp,
2016, pp. 250-261.

Y. Ma, G. Zhou, S. Wang, H. Zhao, and W. Jung, “SignFi: Sign
language recognition using wifi,” ACM IMWUT, vol. 2, no. 1, pp.
1-21, 2018.

R. H. Venkatnarayan, G. Page, and M. Shahzad, “Multi-user ges-
ture recognition using WiFi,” in Proc. MobiSys, 2018, pp. 401-413.
A. Virmani and M. Shahzad, “Position and orientation agnostic
gesture recognition using WiFi,” in Proc. MobiSys, 2017, pp. 252-
264.

[36]

[37]

[38]

(39]

[40]

[41]

[42]

(43]

[44]

(45]

[46]

(47]

[48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

14

Q. Pu, S. Gupta, S. Gollakota, and S. Patel, “Whole-home gesture
recognition using wireless signals,” in Proc. MobiCom, 2013, pp.
27-38.

T. Li, L. Fan, M. Zhao, Y. Liu, and D. Katabi, “Making the invisible
visible: Action recognition through walls and occlusions,” in Proc.
ICCV, 2019, pp. 872-881.

M. Zhao, Y. Liu, A. Raghu, T. Li, H. Zhao, A. Torralba, and
D. Katabi, “Through-wall human mesh recovery using radio sig-
nals,” in Proc. ICCV, 2019, pp. 10113-10122.

J. Lien, N. Gillian, M. E. Karagozler, P. Amihood, C. Schwesig,
E. Olson, H. Raja, and 1. Poupyrev, “Soli: Ubiquitous gesture
sensing with millimeter wave radar,” ACM Trans. Graphics, vol. 35,
no. 4, pp. 1-19, 2016.

T. Wei and X. Zhang, “mTrack: High-precision passive tracking
using millimeter wave radios,” in Proc. MobiCom, 2015, pp. 117-
129.

A. D. Berenguer, M. C. Oveneke, H. Khalid, M. Alioscha-Perez,
A. Bourdoux, and H. Sahli, “GestureVLAD: Combining unsu-
pervised features representation and spatio-temporal aggregation
for doppler-radar gesture recognition,” IEEE Access, vol. 7, pp.
137122-137135, 2019.

P. S. Santhalingam, A. A. Hosain, D. Zhang, P. Pathak, H. Rang-
wala, and R. Kushalnagar, “Environment-Independent ASL Ges-
ture Recognition Using 60 GHz Millimeter-wave Signals,” ACM
IMWUT, vol. 4, no. 1, pp. 1-30, 2020.

A. D. Singh, S. S. Sandha, L. Garcia, and M. Srivastava, “Radhar:
Human activity recognition from point clouds generated through
a millimeter-wave radar,” in Proceedings of the 3rd ACM Workshop
on Millimeter-wave Networks and Sensing Systems, 2019, pp. 51-56.
S. Wang, J. Song, J. Lien, I. Poupyrev, and O. Hilliges, “Interacting
with Soli: Exploring fine-grained dynamic gesture recognition in
the radio-frequency spectrum,” in Proc. UIST, 2016, pp. 851-860.
P. Zhao, C. X. Lu, J. Wang, C. Chen, W. Wang, N. Trigoni, and
A. Markham, “mid: Tracking and identifying people with millime-
ter wave radar,” in In Proc. of DCOSS. 1EEE, 2019, pp. 33-40.
Z.Meng, S. Fu, J. Yan, H. Liang, A. Zhou, S. Zhu, H. Ma, J. Liu, and
N. Yang, “Gait recognition for co-existing multiple people using
millimeter wave sensing,” in In Proc. of AAAI, vol. 34, no. 01, 2020,
pp- 849-856.

C. Jiang, J. Guo, Y. He, M. Jin, S. Li, and Y. Liu, “mmvib:
micrometer-level vibration measurement with mmwave radar,”
in Proceedings of the 26th Annual International Conference on Mobile
Computing and Networking, 2020, pp. 1-13.

K. Qian, Z. He, and X. Zhang, “3d point cloud generation with
millimeter-wave radar,” Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, vol. 4, no. 4, pp. 1-
23, 2020.

Z. Dong, E. Lj,]. Ying, and K. Pahlavan, “A model-based rf hand
motion detection system for shadowing scenarios,” IEEE Access,
vol. 8, pp. 115662-115 672, 2020.

H. Liu, Y. Wang, A. Zhou, H. He, W. Wang, K. Wang, P. Pan, Y. Lu,
L. Liu, and H. Ma, “Real-time arm gesture recognition in smart
home scenarios via millimeter wave sensing,” Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,
vol. 4, no. 4, pp. 1-28, 2020.

C. R Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep
hierarchical feature learning on point sets in a metric space,” in
Proceedings of the 31st International Conference on Neural Information
Processing Systems, ser. NIPS’17, 2017.

T. N. Kipf and M. Welling, “Semi-Supervised Classification with
Graph Convolutional Networks,” in Proceedings of the 5th Interna-
tional Conference on Learning Representations, ser. ICLR "17, 2017.

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in Proceedings
of the 34th International Conference on Machine Learning - Volume 70,
ser. ICML'17, 2017.

Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, “Dynamic graph cnn for learning on point clouds,”
ACM Trans. Graph., vol. 38, no. 5, Oct. 2019. [Online]. Available:
https://doi.org/10.1145/3326362

J. Owoyemi and K. Hashimoto, “Spatiotemporal learning of dy-
namic gestures from 3d point cloud data,” in 2018 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). IEEE, 2018,
pp. 1-5.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”
arXiv preprint arXiv:1706.03762, 2017.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

[57] M. A. Richards, J. A. Scheer, and W. A. Holm, Principles of Modern
Radar: Basic Principles. Scitech Publishing, 2010.

[58] M. Jaderberg, K. Simonyan, A. Zisserman, and k. kavukcuoglu,
“Spatial transformer networks,” in Advances in Neural Information
Processing Systems, vol. 28. Curran Associates, Inc., 2015, pp.
2017-2025.

[59] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Advances in Neural Information Processing Systems, I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, Eds., vol. 30. Curran Associates, Inc., 2017, pp. 5998-
6008.

[60] G. Cohen, M. Hilario, H. Sax, S. Hugonnet, and A. Geissbuhler,
“Learning from imbalanced data in surveillance of nosocomial
infection,” Artificial intelligence in medicine, vol. 37, no. 1, pp. 7-
18, 2006.

[61] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” arXiv
preprint arXiv:1912.01703, 2019.

[62] M. Fey and J. E. Lenssen, “Fast graph representation learning with
pytorch geometric,” arXiv preprint arXiv:1903.02428, 2019.

[63] D.P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[64] J. Ruiz and Y. Li, “Doubleflip: a motion gesture delimiter for
mobile interaction,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, 2011, pp. 2717-2720.

[65] E. Kerber, P. Schardt, and M. Lochtefeld, “Wristrotate: a person-
alized motion gesture delimiter for wrist-worn devices,” in Pro-
ceedings of the 14th international conference on mobile and ubiquitous
multimedia, 2015, pp. 218-222.

[66] E. Masina, V. Orso, P. Pluchino, G. Dainese, S. Volpato, C. Nelini,
D. Mapelli, A. Spagnolli, and L. Gamberini, “Investigating the ac-
cessibility of voice assistants with impaired users: Mixed methods
study,” Journal of medical Internet research, vol. 22, no. 9, p. 18431,
2020.

[67] H. Fan, Y. Yang, and M. Kankanhalli, “Point 4d transformer
networks for spatio-temporal modeling in point cloud videos,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021, pp. 14204-14213.

[68] Q. De Smedt, H. Wannous, J.-P. Vandeborre, J. Guerry, B. L. Saux,
and D. Filliat, “3d hand gesture recognition using a depth and
skeletal dataset: Shrec’17 track,” in Proceedings of the Workshop on
3D Object Retrieval, 2017, pp. 33-38.

Dariush Salami received his BSc and MSc
degrees from Shahid Beheshti University and
Amirkabir University of Technology in Software
Engineering in 2016 and 2019, respectively. He
is currently a Marie Sktodowska Curie fellow in
ITN-WindMill project and a PhD researcher at
the department of communications and network-
ing at Aalto University. He is mainly focused on
Machine Learning for Wireless Communications
and Sensing especially in mmWave range.

Ramin Hasibi received his the BSc and MSc
from Isfahan University of Technology and
Amirkabir University of Technology in Informa-
tion Technology Engineering in 2016 and 2019,
respectively. He is currently a Ph.D. researcher
at the department of informatics, University of
Bergen where his main research focus is on
Graph Representation Learning and Graph Neu-
ral Networks as well as their application in differ-
ent domains.

15

Sameera Palipana is currently a System Spec-
ification Engineer at Nokia Solutions and Net-
works, Espoo and a Visiting Researcher at Aalto
University. He was a Postdoctoral Researcher
at Aalto University between 2019-2021. He ob-
tained his PhD from Munster Technological Uni-
versity, Ireland, in 2019, received his Master’'s
degree at University of Bremen, Germany in
2014 in Information and Communication Tech-
nology, and received his B.Sc. (Hons) degree in
Electronics and Telecommunication Engineering
from University of Moratuwa, Sri Lanka in 2010.

Petar Popovski is a Professor at Aalborg Uni-
versity, where he heads the section on Connec-
tivity and a Visiting Excellence Chair at the Uni-
versity of Bremen. He received his Dipl.-Ing and
M. Sc. degrees in communication engineering
from the University of Sts. Cyril and Methodius
in Skopje and the Ph.D. degree from Aalborg
University in 2005. He is a Fellow of the IEEE.
He received an ERC Consolidator Grant (2015),
the Danish Elite Researcher award (2016), IEEE
Fred W. Ellersick prize (2016), IEEE Stephen O.
Rice prize (2018), Technical Achievement Award from the IEEE Tech-
nical Committee on Smart Grid Communications (2019), the Danish
Telecommunication Prize (2020) and Villum Investigator Grant (2021).
He is a Member at Large at the Board of Governors in IEEE Communi-
cation Society, Vice-Chair of the IEEE Communication Theory Technical
Committee and IEEE TRANSACTIONS ON GREEN COMMUNICA-
TIONS AND NETWORKING. He is currently an Area Editor of the IEEE
TRANSACTIONS ON WIRELESS COMMUNICATIONS. Prof. Popovski
was the General Chair for IEEE SmartGridComm 2018 and IEEE Com-
munication Theory Workshop 2019. His research interests are in the
area of wireless communication and communication theory. He authored
the book “Wireless Connectivity: An Intuitive and Fundamental Guide”,
published by Wiley in 2020.

Tom Michoel is Professor in bioinformatics at
the Computational Biology Unit at the Depart-
ment of Informatics at the University of Bergen
since 2018, and was an independent group
leader in computational biology at the Univer-
sity of Edinburgh (2012-2018) and the Univer-
sity of Freiburg (2010-2012). He obtained the
MSc degree in Physics (1997) and PhD degree
in Mathematical Physics (2001) from the KU
Leuven, and was a postdoctoral researcher in
mathematics (UC Davis, 2001-2002), theoretical
physics (KU Leuven, 2002-2004), and bioinformatics and systems biol-
ogy (Ghent University, 2004-2010). His research focus in the last five
years has been on developing methods, algorithms, and software for
causal inference and Bayesian network learning from high-dimensional
omics data, supported by grants from the BBSRC (2015-2016), the
NIH (2016-2019), the MRC (2017-2021), and the Norwegian Research
Council (2021-2024).

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Be

Stephan Sigg received his M.Sc. degree in
computer science from TU Dortmund, in 2004
and his Ph.D. degree from Kassel University, in
2008. Since 2015 he is an assistant professor at
Aalto University, Finland. He is a member of the
editorial board of the Proceedings of the ACM
on Interactive, Mobile, Wearable and Ubiquitous
Technologies as well as of the Elsevier journal
of Computer Communications. He has served
as a TPC member of renowned conferences
including IEEE PerCom, IEEE ICDCS, etc. His

research interests include Ambient Intelligence, in particular, Pervasive
sensing, activity recognition, usable security algorithms for mobile dis-

tributed systems.

16

