
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Wahid, Kareem A.; Olson, Brennan; Jain, Rishab; Grossberg, Aaron J.; El-Habashy, Dina;
Dede, Cem; Salama, Vivian; Abobakr, Moamen; Mohamed, Abdallah S.R.; He, Renjie;
Jaskari, Joel; Sahlsten, Jaakko; Kaski, Kimmo; Fuller, Clifton D.; Naser, Mohamed A.
Muscle and adipose tissue segmentations at the third cervical vertebral level in patients with
head and neck cancer

Published in:
Scientific Data

DOI:
10.1038/s41597-022-01587-w

Published: 02/08/2022

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Wahid, K. A., Olson, B., Jain, R., Grossberg, A. J., El-Habashy, D., Dede, C., Salama, V., Abobakr, M.,
Mohamed, A. S. R., He, R., Jaskari, J., Sahlsten, J., Kaski, K., Fuller, C. D., & Naser, M. A. (2022). Muscle and
adipose tissue segmentations at the third cervical vertebral level in patients with head and neck cancer.
Scientific Data, 9(1), 1-6. Article 470. https://doi.org/10.1038/s41597-022-01587-w

https://doi.org/10.1038/s41597-022-01587-w
https://doi.org/10.1038/s41597-022-01587-w


1Scientific Data |           (2022) 9:470  | https://doi.org/10.1038/s41597-022-01587-w

www.nature.com/scientificdata

Muscle and adipose tissue 
segmentations at the third cervical 
vertebral level in patients with head 
and neck cancer
Kareem A. Wahid   1, Brennan Olson2,3, Rishab Jain2, Aaron J. Grossberg   2, Dina El-
Habashy1,4, Cem Dede1, Vivian Salama1, Moamen Abobakr1, Abdallah S. R. Mohamed1, 
Renjie He1, Joel Jaskari5, Jaakko Sahlsten5, Kimmo Kaski5, Clifton D. Fuller   1 ✉ & 
Mohamed A. Naser1 ✉

The accurate determination of sarcopenia is critical for disease management in patients with head and 
neck cancer (HNC). Quantitative determination of sarcopenia is currently dependent on manually-
generated segmentations of skeletal muscle derived from computed tomography (CT) cross-sectional 
imaging. This has prompted the increasing utilization of machine learning models for automated 
sarcopenia determination. However, extant datasets currently do not provide the necessary manually-
generated skeletal muscle segmentations at the C3 vertebral level needed for building these models. In 
this data descriptor, a set of 394 HNC patients were selected from The Cancer Imaging Archive, and their 
skeletal muscle and adipose tissue was manually segmented at the C3 vertebral level using sliceOmatic. 
Subsequently, using publicly disseminated Python scripts, we generated corresponding segmentations 
files in Neuroimaging Informatics Technology Initiative format. In addition to segmentation data, 
additional clinical demographic data germane to body composition analysis have been retrospectively 
collected for these patients. These data are a valuable resource for studying sarcopenia and body 
composition analysis in patients with HNC.

Background & Summary
Head and neck cancer (HNC) affects more than 900,000 individuals worldwide annually1. Sarcopenia, a body 
composition status describing skeletal muscle depletion, is a well-validated negative prognostic factor in patients 
with HNC and has become increasingly studied in recent years2–4. Sarcopenia is quantitatively determined pri-
marily using the cross-sectional estimate of skeletal muscle at a specific vertebral level. Current methods to 
generate cross-sectional skeletal muscle segmentations for use in sarcopenia determination are reliant on expert 
human-generated segmentations, which can be time-consuming to procure and subject to user variability5. 
Therefore, the dissemination of high-quality skeletal muscle segmentations is of paramount importance to 
develop tools for sarcopenia-related clinical decision making.

Publicly disseminated HNC datasets have increased sharply in recent years. For example, several HNC 
imaging datasets, predominantly composed of computed tomography (CT) images, have been hosted on The 
Cancer Imaging Archive (TCIA)6. Public datasets, such as these, have been crucial towards advanced algorith-
mic development for clinical decision support tools7. However, only a handful of existing HNC datasets have 
provided information germane to determining sarcopenia status in patients, namely that by Grossberg et al.8 
providing body composition analysis data based on abdominal imaging. Moreover, to date, there are no existing 
open-source repositories for body composition analysis data based on head and neck region imaging. Increasing 
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evidence has shown the potential utility of sarcopenia determination using skeletal muscle in the head and neck 
region2,9. This is driven by the fact that many patients with HNC may not have abdominal imaging acquired as 
part of the standard workup, but will almost certainly have head and neck region imaging acquired, particularly 
due to its necessity for radiotherapy treatment planning10 and staging purposes11. These head and neck imaging 
data could be used to train models for automated sarcopenia-related clinical decision making, as shown in pre-
vious studies12. Therefore, the dissemination of sarcopenia-related data derived from head and neck imaging is 
an unmet need that may foster more rapid adoption of automated HNC clinical decision support tools.

Here we present the curation and annotation of a large-scale TCIA dataset of 394 patients with HNC for 
use in sarcopenia-related clinical decision making and body composition analysis. The primary contribu-
tion of this dataset is high-quality skeletal muscle and adipose tissue segmentation at the cervical vertebral 
level in an easily accessible and standardized imaging format, in addition to additional clinical demographic 
variables. These data can be leveraged to build models for body composition analysis and sarcopenia-related 
decision-making germane to HNC. Moreover, these data could form the basis for future data modeling chal-
lenges for sarcopenia-related decision-making in patients with HNC. An overview of the data descriptor is 
shown in Fig. 1.

Methods
Study population and image details.  To develop this dataset, imaging data from the TCIA head and neck 
squamous cell carcinoma (HNSCC) collection, a large repository of imaging data originally collected from The 
University of Texas MD Anderson Cancer Center, were utilized. Specifically, 396 patients with contrast-enhanced 
CT scans were selected from the 495 available patients in the “Radiomics outcome prediction in Oropharyngeal 
cancer” dataset13,14. These patients were selected due to their inclusion of the third cervical vertebral level on 
imaging. To summarize the underlying data, these were patients with histopathologically-proven diagnosis of 
squamous cell carcinoma of the oropharynx that were treated with curative-intent intensity-modulated radiother-
apy. Imaging data was composed of high-quality CT scans of patients who were injected with intravenous con-
trast material. Images were acquired before the start of radiotherapy. Imaging data were provided in the Digital 

Fig. 1  Data descriptor overview. The Cancer Imaging Archive (TCIA) head and neck squamous cell carcinoma 
(HNSCC) computed tomography dataset is used to generate muscle and adipose tissue segmentations at 
the third cervical (C3) vertebral level in Neuroimaging Informatics Technology Initiative (NIfTI) format. 
Additional demographic data (weight, height) is collected from electronic health records (EHR). The final newly 
distributed dataset can be used for body composition analysis, such as sarcopenia-related clinical decision-
making.
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Imaging and Communications in Medicine (DICOM) standardized format. Additional details on the original 
imaging dataset are provided in the corresponding data descriptor14 and TCIA website13. All DICOM images were 
previously de-identified, as described in previous data descriptors8,14.

Skeletal muscle segmentation.  For each CT image, the middle of the third cervical vertebra (C3) was 
located on a single axial slice and the skeletal muscle and adipose tissues were manually segmented. As described 
in previous publications15, muscle and adipose tissue were defined in the ranges of −29 to 150 and −190 to −30 
Hounsfield units, respectively to initially guide manual segmentation; manual corrections to the initial automat-
ically generated segmentation were necessary due to the presence of non-desired tissues (i.e., vasculature, soft 
tissue) in the Hounsfield unit ranges implemented. Based on these criteria, the paraspinal and sternocleidomas-
toid muscles were included as part of the skeletal muscle segmentation, while subcutaneous, intermuscular, and 
visceral adipose compartments were included as part of the adipose segmentation. Skeletal muscle and adipose 
tissue were segmented by trained research assistants (B.O. and R.J.) and reviewed by a radiation oncologist with 
4 years of post-residency experience (A.J.G.) using a commercial image-processing platform (sliceOmatic v. 5.0, 
Tomovision, Magog, Canada). Examples of skeletal muscle and adipose tissue segmentations with corresponding 
images are shown in Fig. 2. Segmentations were exported from sliceOmatic in .tag format, with the corresponding 
2D axial slice in DICOM format.

NIfTI conversion.  The Neuroimaging Informatics Technology Initiative (NIfTI) file format is increasingly 
seen as the standard for reproducible medical imaging research16. Therefore, we converted all our segmentation 
(.tag) and imaging (.dcm) data to NIfTI format, in order to increase the interoperability and widespread utiliza-
tion of these data.

For all file conversion processes, Python v. 3.7.917 was used. An overview of the NIfTI conversion workflow 
for segmentations and images is shown in Fig. 3. In brief, using an in-house Python script, .tag files (sliceOmatic 
output) were read in binary format and converted into numpy format18, trimmed to remove header information, 
and then re-sized to the corresponding size of the 2D DICOM axial slice (sliceOmatic output) which was also 
converted to numpy format, i.e., a 2D array. The slice location was determined from the 2D DICOM axial slice 
in tandem with the 3D DICOM image (acquired from the TCIA) using pydicom19; the 3D DICOM image was 
necessary to determine the relative position of the 2D axial slice on the 3D volume. A 3D array that contained 
the segmentation information was then created by filling in all non-segmented slices with 0s, yielding a 3D seg-
mentation mask. Each 3D segmentation mask contained separate regions of interest (0 = background, 1 = mus-
cle, 2 = adipose for example in Fig. 3). A 3D representation was selected for the segmentation masks so that 
segmentations could be used for 3D applications (e.g., in tandem with the original 3D images), in addition to 
2D applications (e.g., in tandem with single slice 2D images). 3D segmentation masks were converted to binary 
masks in NIfTI format (separate binary files for muscle and adipose) using SimpleITK20; separate binary files for 
each tissue type were generated for ease of use, e.g., most auto-segmentation approaches utilize binary masks21. 
3D CT DICOM images were loaded into Python using the DICOMRTTool22 library, and then converted to 

Fig. 2  Segmentation examples for a subset of 25 cases. Each image corresponds to one patient. Images are 
single-slice computed tomography axial views with segmentations superimposed. The red regions correspond 
to skeletal muscle tissue and the yellow regions correspond to adipose tissue.
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NIfTI format using SimpleITK. Additional documentation on scripts used for conversion can be located on the 
corresponding GitHub repository: https://github.com/kwahid/C3_sarcopenia_data_descriptor.

Of the 396 cases converted through the previously mentioned workflow, one patient (TCIA ID 0435) had a 
DICOM CT file with image reconstruction errors, while another (TCIA ID 0464) was unable to be converted to 
NIfTI format successfully, thus necessitating their removal from the final dataset, yielding 394 image/segmen-
tation pairs in NIfTI format. Also worthy of note, 4 cases (TCIA ID’s: 0226, 0280, 0577, and 0607) yielded par-
titioned segmentation masks (mask spread over several slices) secondary to export issues in sliceOmatic when 
loading images with oblique image orientations; these cases have been kept in the dataset for completeness but 
should likely not be used for most segmentation-related applications.

Additional patient demographic data collection.  In addition to cross-sectional area derived from 
skeletal muscle segmentations, calculation of skeletal muscle index requires data concerning patient height and 
weight. In order to increase the usability of segmented regions of interest for sarcopenia-related calculations and 
model building, we also collected corresponding height (in m) and weight (in kg) data for all patients in our 
dataset. Anonymized TCIA IDs were mapped to existing patient medical record numbers to collect the corre-
sponding data. Data were collected from the University of Texas MD Anderson Cancer Center clinical databases 
through the EPIC electronic medical record system by a manual review of clinical notes and paperwork. The 
Institutional Review Board of the University of Texas MD Anderson Cancer Center gave ethical approval for this 
work (RCR03–0800, waiver of informed consent). Height and weight were collected for the pre-radiotherapy 
visit only in accordance with the pre-radiotherapy imaging collected for this study. Clinical data collection was 
performed by a trained physician (D.E.).

Data Records
Segmentation data.  This data collection consists of 788 3D volumetric compressed NIfTI files (394 skel-
etal muscle “muscle.nii.gz” files, 394 adipose tissue “fat.nii.gz” files) derived from an original collection of 394 
DICOM files of pre-therapy CT images collected from 495 TCIA cases (“Radiomics outcome prediction in 
Oropharyngeal cancer”)13,14. The skeletal muscle and adipose tissue NIfTI files are binary masks (0 = background, 
1 = tissue region of interest). While we do not provide the corresponding 394 CT images in NIfTI format due to 
Figshare upload size constraints, we do provide all the code necessary to produce these files (see Code availability 
section). In addition to NIfTI format files, we also include .tag segmentation files and corresponding 2D DICOM 

Fig. 3  File conversion workflow for segmentations and images. Outputs from sliceOmatic software, i.e., .tag 
segmentation and 2D Digital Imaging and Communications in Medicine (DICOM) slice, are used to generate a 
2D mask array of muscle and adipose tissue. Information from 2D DICOM slice and corresponding 3D DICOM 
image (acquired from corresponding The Cancer Imaging Archive dataset) are used to generate a 3D array, 
which is then converted to Neuroimaging Informatics Technology Initiative (NIfTI) format.
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files (sliceOmatic outputs) for interested parties to recreate our NIfTI conversion pipeline if desired. Of note, we 
do not include the 3D DICOM CT files as these can be acquired from existing TCIA repositories13,14.

Clinical data.  We also provide a single comma-separated value (CSV) file containing additional clinical 
demographic data germane to sarcopenia clinical-decision making. Within the CSV file, in addition to newly 
collected height and weight variables, we also include previously publicly available clinical variables in the TCIA 
dataset13,14 relevant for body composition analysis (age and sex).

Segmentations are organized by an anonymized TCIA patient ID number (“TCIA Radiomics ID”) and can 
be cross-referenced against the CSV data table using this identifier. The raw data, data records, and supplemen-
tal descriptions of the meta-data files are cited under Figshare: https://doi.org/10.6084/m9.figshare.1848091723.

Technical Validation
Skeletal muscle segmentations.  The segmentations provided in this data descriptor have been utilized as 
ground-truth segmentations in a previous study by Naser et al.12 which yielded sarcopenia determination results 
(normal vs. depleted skeletal muscle) that were consistent with existing literature9, i.e., overall survival stratifica-
tion is significant in males but not females as determined by Kaplan Meier analysis. Note: 4 patients included in 
the current data descriptor were excluded from the aforementioned analysis (TCIA ID’s: 0226, 0280, 0577, and 
0607), due to oblique image orientation mask issues previously described in Methods.

EPIC (Electronic Medical Record System).  The University of Texas MD Anderson Cancer Center 
adopted this system in the year 2017 which allows integrating research data and accessing data from virtually 
every electronic source within the institution. https://www.clinfowiki.org/wiki/index.php/Epic_Systems.

Usage Notes
This data collection is provided in NIfTI format with the accompanying CSV file containing additional clinical 
information indexed by TCIA identifier. We invite all interested researchers to download this dataset to use in 
sarcopenia-related research and automated clinical decision support tool development.

Images (reproducible through code) and segmentations are stored in NIfTI format and may be viewed and 
analyzed in any NIfTI viewing application, depending on the end-user’s requirements. Current open-source 
software for these purposes includes ImageJ24 and 3D Slicer25.

Code availability
Segmentation was performed using the commercially-available tool sliceOmatic v. 5.0 (Tomovision, Magog, 
Canada). The code for NIfTI file conversion of DICOM CT images and corresponding .tag format muscle/
adipose tissue segmentations was developed using in-house Python scripts and is made publicly available through 
GitHub: https://github.com/kwahid/C3_sarcopenia_data_descriptor. Alternative code for converting .tag files to 
Matlab readable format can be located at: https://github.com/RJain12/matlab-tag-reader.
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