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Modeling binding specificities 
of transcription factor pairs with random forests
Anni A. Antikainen1,2,3*, Markus Heinonen1,4 and Harri Lähdesmäki1 

Background
Transcription factors (TF) bind enhancers and gene promoter regions in a sequence-
specific manner to initiate or suppress target gene expression. Defining TF binding spe-
cificities, and hence the target genes, is the first step in understanding gene expression 
networks and thus e.g. cell differentiation patterns and responses to external stimuli 

Abstract 

Background: Transcription factors (TFs) bind regulatory DNA regions with sequence 
specificity, form complexes and regulate gene expression. In cooperative TF-TF bind-
ing, two transcription factors bind onto a shared DNA binding site as a pair. Previous 
work has demonstrated pairwise TF-TF-DNA interactions with position weight matrices 
(PWMs), which may however not sufficiently take into account the complexity and flex-
ibility of pairwise binding.

Results: We propose two random forest (RF) methods for joint TF-TF binding site 
prediction: ComBind and JointRF. We train models with previously published 
large-scale CAP-SELEX DNA libraries, which comprise DNA sequences enriched for 
binding of a selected TF pair. JointRF builds a random forest with sub-sequences 
selected from CAP-SELEX DNA reads with previously proposed pairwise PWM. Join-
tRF outperforms (area under receiver operating characteristics curve, AUROC, 0.75) 
the current state-of-the-art method i.e. orientation and spacing specific pairwise PWMs 
(AUROC 0.59). Thus, JointRF may be utilized to improve prediction accuracy for pre-
determined binding preferences. However, pairwise TF binding is currently considered 
flexible; a pair may bind DNA with different orientations and amounts of dinucleotide 
gaps or overlap between the two motifs. Thus, we developed ComBind, which utilizes 
random forests by considering simultaneously multiple orientations and spacings of 
the two factors. Our approach outperforms (AUROC 0.78) PWMs, as well as Join-
tRF (p<0.00195). ComBind provides an approach for predicting TF-TF binding sites 
without prior knowledge on pairwise binding preferences. However, more research is 
needed to assess ComBind eligibility for practical applications.

Conclusions: Random forest is well suited for modeling pairwise TF-TF-DNA binding 
specificities, and ComBind provides an improvement to pairwise binding site predic-
tion accuracy.
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[1]. However, understanding TF-DNA binding still remains a challenge. Transcription 
factor binding is probabilistic in nature and depends on DNA shape and methylation 
[2–5]. Moreover, TFs may exhibit multiple distinct binding specificities i.e. motifs [6, 7]. 
TFs cooperate with each other by facilitating each others binding, for instance through 
chromatin opening [8], and by forming DNA binding complexes [9]. In [10], Wunder-
lich et al. suggested TF cooperation to be of great importance especially in eukaryotes. 
Later on, Jolma et al. demonstrated that TF pairs can bind DNA with novel motifs, dif-
ferent configurations and clear spacing preferences [11]. To date, roughly 1600 TFs have 
been identified [1], thus, the amount of possible pairings is large. As the cooperativity of 
TFs has become increasingly clear, complex models to represent and predict pairwise TF 
binding are needed.

DNA binding sites are often experimentally searched in vitro—thus, minimizing the 
effects of chromatin state in motif discovery—with high-throughput methods such as 
protein binding microarrays and systematic evolution of ligands by exponential enrich-
ment (SELEX) followed by sequencing (SELEX-seq) [1, 12]. Experimental methods 
have been further developed to enable binding specificity discovery of TF-TF com-
plexes [11]. In [11], Jolma et al. studied TF-TF-DNA binding with a SELEX-seq based 
method; consecutive affinity purification evolution of ligands by exponential enrichment 
(CAP-SELEX), in which DNA sequences are purified for TF-TF binding and sequenced 
[7, 11, 12]. They studied 9,400 TF pairs and found that 315 of them exhibited pairwise 
DNA binding affinities; even across different TF classes [11]. Many TFs contain protein 
interaction domains with which they form complexes before binding DNA [9]. How-
ever, Jolma et al. suggested that TF pairs may bind DNA also with a manner facilitated 
by DNA, as TFs were bound on opposite strands or relatively far from each other [11]. 
CAP-SELEX data sets comprise hundreds of thousands of short DNA sequences known 
to entail a TF-TF binding site [11], thus, enabling the development of complex binding 
specificity models.

Transcription factor binding is probabilistic and the binding sites exhibit base position 
dependencies [2, 13]. Binding specificities are most commonly modeled with position 
weight matrices (PWMs), which describe probabilities to detect nucleic acids at each 
binding site position; sequence scores are attained by summing the logarithmic posi-
tion specific scores. These matrices are derived from high-throughput data sets with 
motif discovery algorithms (e.g. MEME algorithm [14]). Position weight matrices are 
simple and intuitive, but have limitations. Nucleic acids are assumed to be independent 
of each other and thus the commonly occurring base correlations are ignored [13, 15]. 
Furthermore, base positions are independently normalized during PWM construction 
from position frequency matrices, which Ruan et al. suggested to be a significant source 
of inaccuracy [16]. In fact, binding specificities have been modeled more accurately for 
instance with hidden Markov models, k-mer models and neural network models [13, 15, 
17, 18]. Position weight matrices may be especially unsuitable for TF complexes due to 
the assumption of a fixed binding configuration, since in [11], Jolma et al. suggested that 
TF pairs can bind DNA with multiple orientation and spacing preferences. Defining sev-
eral PWMs for a single pair is an option to overcome multiple spacing preferences, but 
might not sufficiently explain the entire range of flexibility in pairwise binding. However, 
complex models for pairwise TF-TF binding are scarce. In [19], Hong et al. proposed a 
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novel support vector machine (SVM) classifier for TF-TF binding site predictions, which 
was evaluated with 30 CAP-SELEX data sets each reduced to 800 DNA sequences. 
Despite the simplicity and evident limitations of PWMs, they still remain the most com-
monly used binding specificity description.

Random forest (RF) is an intriguing option for modeling TF-DNA binding specifici-
ties due to its capability to effectively model high-dimensional data with correlated vari-
ables following the grouping property of decision trees [20, 21]. Of note, decision trees 
are able to handle both categorical and numerical features. Decision trees are able to 
identify class specific clusters of correlated variables and give a small minimal depth to 
them [21], resulting in high classification accuracy for instances encompassing variables 
from these clusters. Importantly, variables (i.e. DNA base pairs) on TF-DNA binding 
site are usually correlated [15]. One of the most important benefits of RF is its ability to 
process large data sets, which currently is a requirement in genetics with all the novel 
high-throughput methodologies. In general, random forest has showcased good predic-
tion accuracies in comparison to other machine learning tools in the field of life sciences 
with omics data [22]. Of note, RF has been exploited for modeling TF-DNA interactions 
with in vivo ChIP-seq data by Wang et al. [23] and Arkadani et al. [24]. Random forest, 
as an ensemble method, can achieve high model complexity and is able to process large 
genetic data sets obtained with high-throughput methods.

In this paper, we propose a novel random forest based pairwise binding specificity 
model, ComBind, trained with high-throughput CAP-SELEX sequence libraries from 
[11]. ComBind entail multiple TF-TF orientations and spacings in one binding predic-
tion score. Thus, although ComBind has higher accuracy, it cannot distinguish indi-
vidual binding preferences. Furthermore, we show that random forest can be combined 
with known pairwise PWMs to increase configuration specific prediction accuracy with 
a second RF based method: JointRF. ComBind outperforms PWMs, as well as Join-
tRF, thus providing a notable improvement to pairwise TF-TF-DNA binding site pre-
diction accuracy.

Results
Experimental setting

We conduct experiments with the 362 CAP-SELEX data sets from [11]. The material 
comprise 315 unique TF pairings, hence we conduct several experiments for some pairs. 
A CAP-SELEX data set contains DNA sequences (40 nucleic acids each) purified for 
containing a binding site of a TF pair specified for that experiment [11]. Therefore, back-
ground sets must be constructed artificially. We perform this by shuffling—with dinu-
cleotide count preservation—each CAP-SELEX sequence once with uShuffle tool [25], 
therefore resulting in equally sized positive and negative sets. Importantly, we consider 
sequences with their reverse complements. We sample 75% of both positive and negative 
sequences randomly to a training set with balanced class labels. Hence, 25% of the data is 
kept as an independent test set (Fig. 1). Furthermore, we sample, with balanced classes, 
25% of the training sequences to pre-training, where RF parameters are optimised via 
grid search. In the independent test set, we compare RF model performances with area 
under receiver-operating characteristic curves (AUROC), and evaluate overall RF model 
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performances in comparison to PWMs trained in [11] with median AUROCs across the 
experiments (n=362).

ComBind and JointRF

We model pairwise binding specificities with two RF models: JointRF and ComBind. 
JointRF utilizes the previously proposed TF-TF pairwise PWMs from [11], while 
ComBind is a novel approach able to capture multiple pairwise binding configurations 
simultaneously. Since the exact TF-TF binding site position on a CAP-SELEX sequence 
or its complement is unknown, we select shorter sub-sequences for RF training with 
PWMs. JointRF exploits pairwise PWMs from [11] for selecting the most likely bind-
ing sites, and trains a RF with them by considering nucleic acids, ordered according to 
position, as variables for the RF. When scoring an unseen DNA double-strand, Join-
tRF scores all sub-sequences with the same length as variables in RF, and considers 
the maximum per-position score as the sequence score. Whenever there were multiple 
motifs reported for a pair in [11], we train JointRF models for each and report the best 
performing model.
ComBind selects the most probable binding sites for RF training with individual 

TF PWMs (Algorithm  1, Fig.  2). Aim is to select the most probable binding site of 
one of the TFs, possibly the one with a higher binding specificity, while simultane-
ously covering binding of the other TF. Thus, prior knowledge regarding the exact 
TF-TF configuration is not needed. There are four possible binding orientations, 
which ComBind approximates with two due to reflection of a binding site onto the 
opposite strand. ComBind trains two random forests, one for each of the orienta-
tions: TF1-TF2 and TF2-TF1. Sub-sequences for training the RFs are chosen from 
DNA double-strands as sub-sequences with maximum PWM scores, similarly as in 
JointRF. However, ComBind utilizes individual TF PWMs, which are extended by 
(0.25, 0.25, 0.25, 0.25)T  columns until 25 nucleic acids long—thus including space for 

AGCTTGATTACTGCGGAGTCCCCACTGCAAAGATATGCGA

GACCTCCTTGATTCTCGACCTCACCTTACCGTACTCGTAA

CCTCGTGCTCTGGAAAATTGGCTAAACTGCAACTCCGTAC

AAGATAGCCGCCCTGACTGGTTCTGCGAGCAACATGATTA

GTCTCGACTATCCTTTTCTGACCGTCACCCTAACTACCGA

CTAATGCGGCTGCGTACTTCCTGGTCTCCAAAAACTGAAC

AGCTTGATTACTGCGGAGTCCCCACTGCAAAGATATGCGA

TCGCATATCTTTGCAGTGGGGACTCCGCAGTAATCAAGCT

GACCTCCTTGATTCTCGACCTCACCTTACCGTACTCGTAA

TTACGAGTACGGTAAGGTGAGGTCGAGAATCAAGGAGGTC

CCTCGTGCTCTGGAAAATTGGCTAAACTGCAACTCCGTAC

GTACGGAGTTGCAGTTTAGCCAATTTTCCAGAGCACGAGG

A Dinucleotide shuffling

. . .

B Reverse complements

C Training/testing sets 

AAGATAGCCGCCCTGACTGGTTCTGCGAGCAACATGATTA

GTCTCGACTATCCTTTTCTGACCGTCACCCTAACTACCGA

CTAATGCGGCTGCGTACTTCCTGGTCTCCAAAAACTGAAC

TAATCATGTTGCTCGCAGAACCAGTCAGGGCGGCTATCTT

TCGGTAGTTAGGGTGACGGTCAGAAAAGGATAGTCGAGAC

GTTCAGTTTTTGGAGACCAGGAAGTACGCAGCCGCATTAG
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Experimental Design

Fig. 1 A Negative sequences are constructed by shuffling CAP-SELEX sequences with dinucleotide count 
preservation. B We include reverse complements. C 75% of DNA double-strands are randomly sampled to 
training set
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the pair without specifying the amount of nucleic acid gaps or overlap between their 
motifs. In more detail, we extend the PWM with columns, which consider all DNA 
bases to have the same importance. Thus, DNA in the other TF binding site is not 
determined in training sequence pre-search. Sub-sequences in TF1-TF2 orientation 
are selected with TF1 PWM extended to right or TF2 PWM extended to left, while 
the opposite is true for TF2-TF1 orientation. The selected sub-sequence is always the 
sub-sequence with maximum score according to either one of the orientation’s two 
PWMs. Finally, ComBind trains random forests with the chosen 25 nucleic acids long 
DNA sequences, RF1 for TF1-TF2 orientation and RF2 for TF2-TF1 orientation. Due 
to PWM elongation to only 25 nucleic acids, even shorter binding sites in the mid-
dle of the 40 nucleic acids long CAP-SELEX double-strands can be chosen. ComBind 
scores unseen DNA double-strands by scoring all 25 nucleic acids long positions with 
RF1 and RF2, and considers their maximum per-position scores as the corresponding 
orientation specific scores. ComBind score for a DNA double-strand is then the aver-
age of these two scores. Of note, we inspected a couple of pairs and found that aver-
aging outperformed the maximum; possibly due to model stability gained through 
averaging as both scores do entail information regarding binding affinity. Importantly, 
the final ComBind score describes TF-TF-DNA binding affinity by considering all 

Fig. 2 A Sub-sequences with maximum PWM scores are chosen from the DNA double-strands according 
to orientations 1 and 2 (TF1 + TF2 and TF2 + TF1, respectively). PWMs are extended until 25 nucleic acids 
to cover binding of both TFs. Within an orientation, ComBind scores DNA double-strands with two PWMs 
and selects the sub-sequence with the highest per-position score. B Forests are trained with the chosen 
sub-sequences separately for both orientations. C ComBind scores unseen DNA double-strands with 
both RFs. Maximum per-position scores are considered as the orientation specific scores, whose average 
ComBind outputs as the sequence score. [PWM visualization [38], and PWM structures [7].]
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possible binding orientations, and can therefore be utilized to give one DNA-binding 
probability score for a sequence.

Algorithm 1: ComBind training
Data: Training set = CAP-SELEX sequences in training
Result: Random forests with orientations 1 and 2
for orientation ∈ [1, 2] do

if orientation = 1 then
PWM1 = TF1 PWM extended right until 25 nucleic acids
PWM2 = TF2 PWM extended left until 25 nucleic acids

else
PWM1 = TF1 PWM extended left until 25 nucleic acids
PWM2 = TF2 PWM extended right until 25 nucleic acids

end
training sequences = ∅
for sequence ∈ Training set do

reverse = reverse complement of sequence
scoresseq , scoresrev = ∅
for i ∈ [1:16] do

scoresseq [i] = maxscore(PWM1, PWM2) for sequence[i : i+25]
scoresrev [i] = maxscore(PWM1, PWM2) for reverse[i : i+25]

end
sub-sequence1 = sub-sequence with maximum score in scoresseq
sub-sequence2 = sub-reverse with maximum score in scoresrev
if max(scoresseq) >max(scoresrev) then

Append training sequences with sub-sequence1
else

Append training sequences with sub-sequence2
end

end
Train random forest with training sequences
return Random forest according to orientation (RF1 or RF2)

end

ComBind outperforms PWM scoring

We score DNA double-strands in 362 independent test sets with corresponding 
ComBind, JointRF and PWM models; and assess their performance with AUROC 
values (Additional file 2). JointRF (median AUROC = 0.749) outperforms PWM scor-
ing (0.594, p-value < 0.0001, n = 362) (Fig. 3). PWM scoring is described in more detail 
in the Methods section. Most importantly, when multiple PWMs are provided for a 
pair from an experiment in [11], we score test set DNA double-strands with each and 
consider the maximum score as the final PWM score. It is important to note that we 
compare random forest performance against a defined set of PWMs, not PWM mod-
eling in general. JointRF can be seen as adding a layer of complexity to the already 
proposed pairwise binding configurations by computing a non-linear prediction for a 
pairwise binding site with RF. We therefore suggest that RF is a viable option for improv-
ing accuracy of orientation and spacing specific TF-TF-DNA binding specificity models, 
although the eligibility of JointRF in practice should be validated with more compre-
hensive analyses.
ComBind (median AUROC  =  0.775) outperforms PWM scoring (0.594, 

p-value < 0.0001, n = 362), and the difference is slightly greater than for JointRF. In 
fact, ComBind predicts TF-TF binding in a significantly higher accuracy than Join-
tRF (p-value = 0.00195, n = 362). Notice that JointRF exploits PWMs from [11], 
which were trained with the same CAP-SELEX data that we use, and may therefore 
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give too optimistic results. However, a possible error source in JointRF lies in the 
noisier random forest training data for pairs with multiple suggested binding configu-
rations (i.e. provided PWMs). JointRF selects sub-sequences for RF training also 
from positive sequences, which contain a binding site according to another TF-TF 
spacing, as all training sequences are utilized for training of each configuration spe-
cific JointRF model. However, as an ensemble method, random forest should not be 
extremely sensitive to noise [20]. When scoring sequences with JointRF, all unseen 
DNA double-strands are scored with the same orientation specific RF, while some 
sequences may have been bound according to another TF-TF configuration. Of note, 
we attempted to assign the highest TF pair JointRF score for each test set DNA 
double-strand separately. However, scoring all sequences with the best-performing 
JointRF model outperformed slightly the above scoring scheme (AUROC = 0.747, 
p-value =  0.74). Importantly, ComBind (AUROCN=1 =  0.775) outperforms Join-
tRF (AUROCN=1 = 0.742, p-value = 0.00138, n = 203) also for pairs with only one 
suggested binding configuration (Table  1). ComBind utilizes PWMs derived from 
completely independent data and outperforms JointRF. Since ComBind considers 
all gaps at once, binding site prediction accuracy may be increased at least for pairs 

Fig. 3 A Experimental AUROC relation of ComBind and JointRF to PWM scoring with 2 standard 
deviation ellipse (N = 362). B Summary of experiment AUROCs between the models ordered according to 
ComBind AUROCs

Table 1 Model performances

Model Median AUROC

1. PWM 0.594

2. JointRF 0.749

3. ComBind 0.775

4. JointRF with best configuration score separately for each test 
sequence

0.747

5. JointRF for pairs with one configuration 0.742

6. ComBind for pairs with one configuration 0.775
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with more relaxed gap spacing. In fact, it has been suggested that there are TF pairs, 
which bind DNA rather promiscuously [11].

Comparing ComBind to support vector machines

We compare ComBind performance to the TF-TF dimer SVM application [19]. We train 
ComBind models with varying number of sequencing reads using a randomly selected 
set of five pairs (Additional file 1: Table S1). SVM does not converge properly with large 
training set size [19], thus, we train SVM models only with 10,000 DNA sequences to 
which we then compare ComBind performance. Of note, testing is performed with 
10,000 unseen DNA sequences. With small training data (N =  10,000); SVM (mean 
AUROC =  0.744) clearly outperforms ComBind (mean AUROC =  0.694). However, 
with ComBind, we are able to increase training set size and can show that its perfor-
mance steadily increases with increasing training set size, until it performs slightly better 
than SVM with 80,000 training sequences (mean AUROC 0.748).

ComBind performance vary across TF pairs

ComBind prediction accuracy varies across TF pairs (Fig. 4). High prediction accuracy 
may suggest an easier learning problem due to more specific binding preferences or for 
instance due to a larger- or otherwise purer CAP-SELEX data. Of note, our results sug-
gest that training set size does not greatly affect ComBind prediction accuracy (Addi-
tional file 1: Figure S1). In our experiments, binding site prediction problem was easier 
for some of the pairs. In most cases, ComBind predicts binding with a high accuracy, 
if the pair includes even one TF with a high mean accuracy across all its ComBind 
models. For instance, pairs including either POU2F1 (AUROCN=4 =  0.980) or MGA 
(AUROCN=15 = 0.935) can be modeled with ComBind with a very high accuracy, while 

Fig. 4 ComBind binding site prediction accuracy (i.e. AUROC) across the studied TF pairs (N = 362). 
Transcription factors 1 and 2 in the pair are ordered according to their mean ComBind accuracy. Whenever, 
there are multiple CAP-SELEX libraries for one pair, we consider the one with the highest AUROC
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others such as FOXO1 (AUROCN=16 = 0.680) and E2F3 (AUROCN=7 = 0.629) exhibit 
lower prediction accuracies in almost all pairwise binding scenarios modeled here. There 
are also TFs, such as TBX21, for which ComBind accuracy varies greatly depending on 
the TF it is cooperating with. Furthermore, occasionally TFs loose their high overall 
ComBind prediction accuracy in a dimeric form with a certain TF (e.g. TEF-ATF4), or 
bind DNA with a very high DNA binding specificity only when modeled together such 
as GCM1-ETV7. The examples discussed were selected due to extreme prediction accu-
racy behaviour and at least four experimental replicates.

Random forest parameters in ComBind

ComBind and JointRF select a minimum tree node size (1, 5, 10 or 15 instances) and 
a number of variables randomly assigned to a split function at tree nodes (10%, 20%, 
30%, 40% or 50% of the total number of variables) via grid search in pre-training. All 
RFs entail 200 decision trees, due to a good trade-off between model performance and 
computational cost (Additional file 1: Figure S2). Most of the TF pairs favor small termi-
nal nodes sizes in ComBind (Fig. 5). A high tree depth suggest an easier learning prob-
lem and potentially also a more specific DNA binding preference. In fact, ComBind had 
selected smaller minimum tree node sizes for pairs with higher test set binding site pre-
diction accuracies (Fig. 5).

Greater amount of variables considered at a tree partitioning decrease randomness in 
a forest and increase variance, which may decrease prediction accuracy. However, the 
amount of variables should be great enough to correctly capture binding preferences. 
ComBind had selected values for the ’variables at a split’ parameter rather evenly across 
the pairs, except that the smallest option (i.e. 10% of sequence length) was chosen only 
for few pairs (Fig. 5). In ComBind, TF pairs most commonly favor five (20% of 25 nucleic 
acids sequence length) as the number of variables assigned to split function. Pairs 
with long binding sites and high binding specificities may prefer smaller percentages. 

Fig. 5 Violin plots of AUROC measures for different random forest parameters in ComBind. The number 
of TF pairs (N), which obtained the best AUROC with the corresponding parameter value (shown on x-axis) 
and are included into each violin plot, are represented within the labels. A Terminal node size. B Number of 
variables in decision tree data partitioning (as percentage of the amount of total variables)
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Whenever there are less variables which do not relate to binding with high importance, 
RF may better exploit the benefits of added randomness with fewer variables sampled 
for split function at tree nodes.

ComBind validation with external data

We attempted external validation with data other than CAP-SELEX. Of note, for 
pairwise TF-DNA binding, experimental methods developed are few. However, an 
experimental method i.e. SMiLE-seq, which enables pairwise TF-TF-DNA binding 
site modeling, was developed in [26]. We selected four pairs for which we could find 
overlapping data between CAP-SELEX and SMiLE-seq (ARNTL-CLOCK, cJUN-
cFOS, NR4A2-RXRa, RARa-RXRa), trained ComBind models within CAP-SELEX 
and tested model performance in the corresponding SMiLE-seq data set (Additional 
file  1: Table  S2). Importantly, these TF pairs were not used for PWM construction in 
[11], thus, either considered poor-quality data or otherwise not exhibit pairwise TF-
DNA binding. ComBind models are likely not trained here with optimal data. Of note, 
DNA read length is 101 base pairs in SMiLE-Seq, while we optimised the models for 
40 base pairs. Interestingly, ComBind still performs rather well on SMiLE-seq (mean 
AUROC = 0.625). Performance vary greatly depending on the TF pair; ComBind pre-
dicts ARNTL-CLOCK binding well (AUROC = 0.784), while for the other three pairs 
prediction accuracy is not as high. When comparing to PWMs developed in [26], PWMs 
outperform ComBind, although the result slightly depends upon the PWM scoring 
scheme. If we assign the highest PWM score for each DNA sequence when multiple 
PWMs are provided, as usually done in practice, ComBind performs closer to PWM 
(mean AUROC = 0.660). However, one PWM predicts cJUN-cFOS binding very accu-
rately, thus, if we use only the best-performing PWM, the difference is greater (mean 
AUROC=0.669). It must be noted that although ComBind performs reasonably well 
within this external validation, more research is needed to accurately describe its per-
formance in relation to PWMs due to limited sample size and unknown reliability of 
sequence libraries utilized for ComBind training.

In addition, we evaluated ComBind performance in three experimental replicates 
[11], i.e. models are trained in different CAP-SELEX experiments than within which 
they are evaluated. We selected three pairs randomly. ComBind performs well on 
these experimental replicates (mean AUROC = 0.740) and outperforms PWMs (mean 
AUROC  =  0.644, Additional file  1: Table  S2). Although ComBind models are here 
trained with CAP-SELEX libraries utilized also in [11], making the models more reliable, 
sample size is small and definite conclusions cannot be drawn.

Binding specificity visualization

ComBind and JointRF binding specificity models cannot be directly visualized. We 
therefore construct PWMs from positive RF out-of-bag prediction sequences for two 
randomly selected pairs: ALX4-EOMES and ERF-MAX (Additional file 1: Figures S3 and 
S4). Relaxed gap spacings and orientation unspecificity in ComBind prevent informative 
binding specificity visualizations. Thus, we applied visualization with JointRF, where 
decision tree variables are the nucleic acids ordered as positioned on a configuration 
specific binding site from [11]. JointRF decreases information content of nucleic acids 
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from the PWMs. The most important nucleic acids regarding binding specificity remain 
unchanged, and only small changes can be observed in nucleic acid importance relations 
within the binding sites. JointRF captures also higher-order dependencies, which may 
decrease PWM information content of individual nucleic acids.

Discussion
Predicting TF-DNA binding is a key for understanding gene expression patterns. Defin-
ing TF-DNA interactions has however proved challenging, not only due to the complex-
ity of DNA binding motifs, but due to the varying manners TFs function. Transcription 
factors cooperate with each other, interact with nucleosomes and recruit different cofac-
tors involved in gene expression networks [1]. Despite the high importance of TF coop-
erativity in gene expression, research has not yet been extensive. According to current 
knowledge, TFs may cooperate directly by forming TF-TF complexes either in a manner 
independent of DNA, facilitated by DNA or even entirely mediated by DNA [9]. In [11], 
Jolma et al. demonstrated DNA binding for 315 TF pairs with CAP-SELEX; a SELEX-
seq based method for pairwise binding, and identified in total 618 distinct DNA binding 
motifs. With these data, we aimed to improve prediction accuracy of current pairwise 
TF-TF-DNA binding models with an approach that includes multiple putative TF-TF 
binding configurations in one binding score.

TF-DNA binding specificites are commonly modeled with PWMs. Despite the PWM 
being an intuitive motif description, it may be too simple and inflexible for an accurate 
binding site prediction. Limitations include the independent normalization of positions 
during PWM construction and the assumed independence of nucleic acids on the motif 
[16], which may not always hold [13, 15]. Of note, motif position dependencies may not 
be restricted to nearest neighbors [15]. The PWM might be especially unsuitable for 
cooperative binding due to the varying binding orientations and number of nucleic acid 
gaps or overlap between the motifs. We demonstrated how RF based models outperform 
the PWM in TF-TF-DNA binding site prediction within CAP-SELEX. JointRF simply 
adds a layer of complexity with RF to the already proposed TF-TF configuration specific 
joint PWMs [11], by selecting sub-sequences for RF training with them and by utiliz-
ing the sub-sequence nucleic acids as features for decision trees. When scoring unseen 
DNA, JointRF significantly outperformed PWM scoring. However, one limitation in 
the present study is that we compared RF performance to a limited selection of PWMs. 
RF can achieve high modeling complexity by assembling decision trees, while maintain-
ing model stability with bootstrap aggregation and random variable selection at tree 
nodes [20]. Our results demonstrate that increasing mathematical complexity of TF pair 
motif descriptions improves prediction accuracy on unseen DNA.

We proposed a flexible RF based model, ComBind, for pairwise DNA binding without 
fixed binding configurations. Thus, an unseen DNA double-strand may be given a TF-TF 
binding site score without pre-defining the pair’s orientation. ComBind trains a RF for 
both putative orientations: TF1-TF2 and TF2-TF1. Of note, both orientations include 
the possibility for opposite strand binding. ComBind selects sub-sequences for RF train-
ing with individual TF PWMs extended with (0.25, 0.25, 0.25, 0.25)T columns until 25 
nucleic acids—either left or right according to the considered orientation—thus covering 
binding space of the other TF. RFs exploit nucleic acids on the selected sub-sequences 
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as features. We attempted to maintain appropriate binding site length with the defined 
25 nucleic acids, while allowing sub-sequence selection from the middle of train-
ing sequences. Of note, it has been discussed how DNA binding models benefit from 
extended binding sites with ’flanking regions’ [15]. In the independent test set, ComBind 
significantly outperformed PWM scoring and JointRF; even though JointRF may 
be prone to overfitting as it exploits pairwise PWMs trained previously with the same 
CAP-SELEX data [11]. Of note, we found that the Hong et  al. pairwise SVM model 
outperformed ComBind with small training data [19], but we demonstrated improving 
prediction accuracies with ComBind with respect to increasing training set size. Thus, 
ComBind is a viable option whenever high-throughput data is available. ComBind may 
yield higher prediction accuracies especially for pairs with flexible binding preferences 
due to its capability to model binding without defined configurations, even though 
sub-sequences selected for RF training have thus higher disparity in ComBind than in 
JointRF, complicating the learning task. Decision trees have the capability to identify 
clusters of correlated features, while trees in RF select variables randomly at each node 
for the split function to consider [20, 21], thus, enabling the discovery of groups of data 
with correlated variables even at altered positions within training sequences. Finally, 
ComBind scores an unseen DNA double-strand with both RFs and selects maximum 
per-position score as the sequence’s orientation specific RF score (TF1-TF2 or TF2-
TF1). ComBind defines an average of these two scores as the final score. Averaging may 
increase model stability. Whenever TFs are bound to complementary strands, both RFs 
should be capturing the same binding preference. Even when a pair exhibit only same 
strand binding, both orientation specific RFs should include evidence for at least one TF. 
Finally, we found ComBind to predict TF-TF-DNA binding reasonably well also within 
external validation using SMiLE-seq data and CAP-SELEX experimental replicates [11, 
26]. However, PWM outperformed ComBind with SMiLE-seq. ComBind training data 
in SMiLE-seq validation was likely sub-optimal (i.e. CAP-SELEX libraries not used for 
PWM construction in [11]), and more research is needed to confirm random forest usa-
bility for practical applications. Importantly, external validation sample size performed 
here was small, which adds uncertainty to the conclusions.

Random forest is able to process large high-throughput genetic data sets. The down-
side, however, is that binding preferences cannot be readily visualized. Although 
ComBind can include multiple binding configurations into one prediction, it cannot be 
utilized for research on the characteristics of pairwise binding specificities e.g. to deter-
mine motif spacings and orientation. For instance, the SVM model proposed in [19], 
enable more specific binding preference examination, although being more suitable for 
smaller data sets. However, we did examine the degree of ComBind prediction accuracy 
across TFs, which suggested an easier learning problem for pairs entailing at least one 
TF with high overall prediction accuracy. Of note, some TFs showcased high pairwise 
binding prediction accuracies only when modeled together, and vice versa. One limita-
tion of this study is that random forests trained with high-throughput genetic data are 
large and storing them requires substantial computational memory. In addition, exter-
nal validation performed here for ComBind was limited due to small sample size and 
unknown quality of training data. More research is needed to validate ComBind per-
formance—especially in experimental data other than CAP-SELEX—to ensure good 
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prediction accuracies for practical applications. We demonstrated that random forest is 
suitable for modeling TF pair DNA binding preferences, and our results suggest that TF 
pairs benefit from binding specificity models with configuration flexibly.

Conclusions
We developed random forest based TF-TF-DNA binding specificity models: Join-
tRF and ComBind, which both significantly outperformed PWM scoring. Models were 
trained and their performances were assessed with 362 CAP-SELEX sequence libraries 
from [11]. We utilized previously proposed pairwise PWMs in JointRF and demon-
strated that adding complexity to motif representation with random forest improves 
binding site prediction accuracy. ComBind is a flexible random forest based model for 
pairwise DNA binding able to score DNA sequences with high accuracy without defin-
ing binding configurations. ComBind outperforms PWM scoring as well as JointRF. 
However, in external validation the results are more uncertain. It is important to note 
that we compared ComBind performance only to a defined set of PWMs and mainly 
within CAP-SELEX sequence libraries. Thus, more experimental and computational 
research is needed to verify good prediction accuracies with ComBind before utilizing it 
in practical applications. In conclusion, we demonstrate that random forest is well suited 
for modeling TF pair DNA binding specifities, and propose a model, ComBind, able to 
predict binding sites without previous knowledge on pairwise binding configurations.

Methods
Materials

CAP-SELEX is a method enabling the discovery of TF-TF-DNA binding preferences—
also when facilitated by DNA [11]. In short, DNA double-strands are mixed with two 
differently tagged TFs, and purified for pairwise binding, after which they are PCR 
amplified and sequenced [11]. This is repeated three times. The resulting CAP-SELEX 
library contains hundreds of thousands of DNA sequences known to entail a binding 
site; either on the sequence itself or on its complement. However, the length and exact 
position of the motif on the DNA double-strand is unknown. In [11], Jolma et al. tested 
9400 TF pairs for pairwise binding: 315 bound DNA cooperatively with novel motifs. In 
total, they derived 618 pairwise PWMs from 362 CAP-SELEX data sets. We performed 
experiments with the 362 CAP-SELEX libraries, thus including multiple experiments 
for some pairs. CAP-SELEX libraries are available in [27]. JointRF exploits the 618 
pairwise PWMs in training, while ComBind uses PWMs derived for the TFs individu-
ally from high-throughput SELEX (HT-SELEX) experiments in [7, 11]. Although, PBX4 
PWM was available only from UniProbe data base [28, 29].

We constructed the negative set for classification artificially by shuffling, with dinu-
cleotide count preservation, each CAP-SELEX DNA sequence once with uShuffle tool 
[25]. Of note, dinucleotides appear hierarchically in DNA [30]—aim is to model differ-
ences between specific TF binding sites rather than differences between binding sites in 
general and other regions of DNA, hence the dinucleotide preservation.

We performed external validation with SMiLE-seq data [26]. SMiLE-seq data sets 
comprise 101 base pair long DNA sequences for which we similarly built the negative 
set with dinucleotide count preservation [25]. Of note, we trained RFs with the entire 
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CAP-SELEX data for SMiLE-seq validation with the smallest data sets (NR4A2-RXRa, 
RARa-RXRa and JUN-FOS), e.g. NR4A2-RXRa data contain still only 17,804 sequencing 
reads in RF training. We compared ComBind performance to joint pairwise PWMs [26]. 
Of note, PWMs are likely trained within the same data sets than they are here evaluated 
in.

Random forest

Random forest assembles decision trees (in here classification trees) [20], which recur-
sively divide the data [31]. At each node, a split function selects a split feature and its 
label by minimizing cost function, which in here is the Gini-index, 

∑
i=1 p̂i(1− p̂i) , 

where p̂i is the proportion of instances belonging to class i [32, 33]. We decide whether 
an impure node is split further with a minimum node size. ComBind and JointRF 
select the optimal minimum tree node size in pre-training (N = {1, 5, 10 or 15}). Near 
purity trees have been suggested to perform better with genomic data due the bias-
lowering effect of deep trees in the presence of high feature space, although in general, 
larger data sets may require larger terminal node sizes [21, 34].

Decision trees are unstable and the algorithms may stagnate at local optima. Random 
forest addresses these issues by combining bootstrap aggregation (i.e. bagging) and ran-
dom variable selection at tree nodes [20]. Instances in training data are randomly with 
replacement divided into subsections for training classification trees, which are com-
bined in the final classification decision [20, 35, 36]. Thus, part of the decision trees have 
been trained without outliers and will have more power in the aggregation decision. In 
this study, one third of training instances are assigned to an out-of-bag sample when 
learning a tree. Furthermore, we consider the number of decision trees as a hyperpa-
rameter, and therefore evaluated ComBind performance with eight TF pairs and with 
varying number of trees in RF (N={25, 50, 75, 100, 125, 150, 200 and 250}). Random 
forests in ComBind and JointRF comprise 200 classification trees due to a good trade-
off between computational cost and model performance (Additional file 1: Figure S2). 
Random selection of features for split function at tree nodes further decorrelates the 
decision trees [20]. ComBind and JointRF select the optimal number of variables, as 
percentage from total number of variables ({10%, 20%, 30%, 40% and 50%} rounded in 
R software, thus following EC 60559 standard), with grid search along with minimum 
node size within pre-training.

Nucleic acids on the most probable binding site are utilized as RF features. Variables 
are the nucleic acids Ni ∈ {A, C, G, T} ordered according to their position, i = (1, .., n) , 
on the most probable binding site, x = (N1, ...,Nn) . We implement binding specificity 
models in R software with randomForest package [37].

PWM scoring

When scoring sequences only with pairwise PWMs, DNA sequences are padded with 
five ’N’ variables, scored with a probability of 0.25 (i.e. zero in log-odds scoring), at 
the ends due to improved prediction accuracy (Additional file  1: Figure S5). PWM 
score in final random forest to PWM comparison is the maximum per-position log-
odds score, although in ComBind and JointRF sub-sequence selection we had uti-
lized PWMs as position probability matrices. Of note, we replaced −∞ PWM scores, 
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if still present after maximum per-position score selection, with the data set mini-
mum PWM score. Finally, whenever multiple PWMs were reported for a pair from a 
CAP-SELEX experiment [11], we score DNA double-strands with all and assign the 
highest score for each DNA double-strand.

Model comparisons

We train models with 75% of the data and test performance in the remaining 25%. 
However, there are two CAP-SELEX libraries with an especially high number of 
sequences (i.e. TFAP4-ETV1 and TFAP4-ETV4), for which we train RFs with a 
smaller amount of data. Hence we sample only 50% of sequences for training and 
utilize the remaining 50% in testing of these models. We compare three models to 
each other: ComBind, JointRF and PWM scoring. Of note, we assess performances 
of the models within a few additional modeling schemes. Statistical significance are 
inferred with Wilcoxon signed-rank test. Finally, we conducted a ComBind perfor-
mance comparison across the studied TFs, in which we present for each pair the high-
est AUROC value obtained from its experiments, whenever PWMs were derived from 
multiple CAP-SELEX libraries for the TF-TF pair in [11].
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