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ABSTRACT: We present a quantitatively accurate machine-learning
(ML) model for the computational prediction of core−electron
binding energies, from which X-ray photoelectron spectroscopy (XPS)
spectra can be readily obtained. Our model combines density
functional theory (DFT) with GW and uses kernel ridge regression
for the ML predictions. We apply the new approach to disordered
materials and small molecules containing carbon, hydrogen, and
oxygen and obtain qualitative and quantitative agreement with
experiment, resolving spectral features within 0.1 eV of reference
experimental spectra. The method only requires the user to provide a
structural model for the material under study to obtain an XPS
prediction within seconds. Our new tool is freely available online
through the XPS Prediction Server.

1. INTRODUCTION
X-ray spectroscopy techniques are routinely used for structural
characterization of materials1 and molecules.2 Among the
different X-ray spectroscopies, X-ray photoelectron spectros-
copy (XPS) is arguably the most widespread. In XPS, a
material sample is irradiated with monochromatic X-rays to
probe the binding energy (BE) of its core electrons. When a
core electron absorbs an X-ray photon with enough energy, it
leaves the sample and its kinetic energy can be measured. Since
the X-ray incident energy is known, the difference between the
kinetic and the incident energy is the core−electron BE. This
energy is characteristic of the chemical environment of the
core-excited atom. XPS spectra are therefore frequently used
for structural characterization.2,3

Carbon-based materials, such as amorphous and disordered
carbons, graphene, graphene derivatives, and nanotubes are an
important material class in industry and research.4−6

Furthermore, emerging applications are envisioned, such as
energy storage and conversion,7 electronics,8 electrocataly-
sis,9,10 and biosensing.11 Unfortunately, the atomic structure of
carbon-based materials is often not completely known because,
in addition to their possibly disordered nature, they also often
contain a wide variety of defects and surface chemical
functionalizations. XPS is one of the most commonly used
spectroscopy tools for structural characterization of carbon-
based materials.11,12 However, it is generally difficult and
sometimes impossible to establish the precise origin of each
peak in an XPS spectrum due to the lack of well-defined

reference data.13 In addition, the link between atomic structure
and a particular XPS spectrum is often imprecise since the
core−electron BEs of two atoms in different chemical
environments can be the same. Further ambiguities are
introduced by the peak fitting procedure, which must be
applied to resolve overlapping features in the experimental
spectrum and which often relies on a number of assumptions,
such as the total number of peaks.13,14 These limitations
impact the interpretation of experimental XPS spectra.
Inferring the atomic structure from the XPS spectrum is
referred to as the “backward” route. An alternative strategy is
to generate XPS spectra from candidate structural models. The
best match between generated and measured spectra then
provides the best structural model. We call this the “forward”
direction.
For the forward route to be feasible, we require a pool of

candidate structures and a theoretical or computational
approach that is able to accurately predict core−electron BEs
from the atomic structure alone. Candidate structures can be
generated computationally. The difficulty with the forward
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direction therefore lies with the availability and computational
cost of accurate XPS prediction tools. Currently, XPS
modeling is almost exclusively based on Kohn−Sham density
functional theory (DFT) employing so-called Δ-methods, such
as the Delta self-consistent field (ΔSCF)15 or Delta Kohn−
Sham (ΔKS) frameworks.16 DFT is, by design, a ground-state
theory and does not provide systematic access to excited-state
properties. However, for small molecules, relative and absolute
core-level BEs from ΔSCF and ΔKS generally compare well to
experiment, in particular when employing meta-generalized
gradient approximation (meta-GGA) functionals.17−20 Re-
cently, ΔSCF calculations with meta-GGAs were, in
combination with finite-size correction schemes, also success-
fully applied to simple solids.21

While the functional dependence of molecular core-level
excitations is moderate for absolute22,23 and even negligible for
relative BEs,17 it can be more severe for complex
materials.24−26 As a consequence of the self-interaction error,
the accuracy of DFT-based Δ-methods deteriorates with
increasing system sizes, which has been comprehensively
discussed for valence excitations27 and has been also observed
for core states.28 The GW approximation29 to many-body
perturbation theory overcomes these limitations of DFT and
provides a rigorous quantum-mechanical framework for the
photoemission process,30 see also refs 28 and 63 for a
discussion of the limitations of Δ-methods. However, the
computational cost of a GW calculation is orders of magnitude
larger than for DFT, making a straightforward application of
GW to complex materials difficult.
The computational prediction of XPS spectra of amorphous

structures requires sampling over all atoms in the structure,
which is demanding even with DFT and impossible with GW.
Machine-learning (ML) methods are a promising strategy to
bridge the gap between high accuracy and computational
efficiency. While the application of ML in spectroscopy is still
in its infancy,31−34 the first proof-of-concept applications for
the prediction of valence35 and core-level spectra are
emerging.36−38 In this paper, we advance these ideas for real-
world applications and develop a powerful XPS prediction tool
by combining ΔKS calculations and highly accurate GW
predictions with ML models. We show that our method can
provide access to quantitatively accurate predictions of XPS
spectra of complex disordered materials and small molecules
containing carbon, hydrogen, and oxygen (CHO).
The remainder of this article is structured as follows: We

discuss the generation of structural models for CHO-
containing compounds in section 2.1. We proceed with the
details of the electronic-structure methods used to generate
computational XPS data in section 2.2. The architecture of our
ML models is discussed in section 2.3. The performance of the
ML models for C 1s and O 1s excitations of molecular and
extended CHO structures is presented in section 3, followed
by XPS spectra predictions for selected CHO materials.
Finally, we introduce our XPS Prediction Server as a freely
available online tool and draw conclusions in section 4.

2. METHODS
2.1. Structural Models of CHO-Containing Compounds. Due

to carbon’s versatility in chemical bond formation, the composition
and configuration space for carbon-based materials and molecules is
vast.39,40 Diverse examples of CHO compounds are small molecules
(water, methane, methanol, etc.), large molecules and polymers
(lipids, sugars, cellulose, etc.), and solid-state materials. The main

focus of this work are CHO materials. While two distinct CHO
materials will differ from each other when regarded as a whole, they
are made of the same (or very similar) individual building blocks, or
atomic motifs. By building a library of structural models for CHO
materials, we can identify the individual atomic motifs most
representative of the ensemble.41 Effective motif selection, discussed
in more detail in section 2.1.2, is essential to obtain a compact and
manageable representation of large structural databases.

2.1.1. CHO Structural Databases. We have generated two CHO
structure databases for the prediction of XPS data: one for CHO
materials and another one for small CHO-containing molecules. The
structural database for CHO materials was constructed from
computer-generated model structures of amorphous carbon (a-C),
hydrogenated a-C (a-C:H), oxygen-enriched a-C (a-C:O), function-
alized a-C, oxygenated amorphous carbon (a-COx), graphene (G),
and reduced graphene oxide (rGO). All of the computational
structural models for these materials are taken from the available
literature.41−47 An exception are the oxygen-rich a-COx models, which
were generated using DFT molecular dynamics following ref 47. The
CHO materials in our structural database cover a broad range of
structural building blocks, which provides the necessary foundation to
map all the characteristic atomic motifs centered on O and C (H lacks
an atomic core) to their corresponding core−electron binding
energies.
Our structural database of small CHO molecules is a subset of the

QM9 data set,48 which contains in total 134k organic compounds.
Our QM9 subset consists of 2089 CHO molecules with 3−29 atoms
and its size distribution follows that of those QM9 molecules which
contain exclusively C, H, and O. The full QM9 database also includes
molecules with N and F. Those molecules were not considered for the
subset generation. The molecules in our subset contain up to 9
“heavy” atoms (in this case C or O), which amounts to a total of
14 707 C 1s and 1 865 O 1s excitations. We found that the
relationship between local molecular structure and XPS properties is
not transferable to extended CHO structures, i.e., these data were not
used for the generation of the ML models for CHO materials.
However, since these molecules are small, calculating their XPS
spectra is computationally comparatively inexpensive. This allows us
to both benchmark our methodology in the limit of abundant data
and produce a useful reference database of computational XPS spectra
of small CHO-containing molecules, which is valuable on its own.

2.1.2. Structure Classification Based on Representative Atomic
Motifs. The computational structures for the CHO materials contain
many C and O sites. Computing the 1s core−electron BE for each site
is, unlike for molecules, computationally too expensive, in particular at
the GW level of theory. Therefore, to make the computational effort
tractable, we have identified the most representative atomic motifs in
the entire CHO materials database, using the data clustering
methodology presented in ref 41. In short, a many-body atomic
descriptor known as the “smooth overlap of atomic positions”
(SOAP) is used to encode the atomic structure surrounding each
atomic site in the database of structures.49 These descriptors allow us
to construct kernel functions, which can also be understood as
measures of similarity between the atomic environments. From these,
we can build a distance matrix that can then be fed to a data
classification algorithm. This algorithm, k-medoids in our case,50

clusters data (here the atomic environments) into groups that share
similarities and assigns a “medoid” (also called a “centroid” in
barycenter-based clustering methods). This medoid corresponds to
the most representative atomic motif within each data cluster. We can
preselect the number of data clusters to build, based on our estimate
of available CPU power, and perform the core−electron calculations
only on those. This leads to efficient charting of configuration space,
since we avoid repeatedly calculating motifs that are overrepresented
in the database of atomic structures.
The composition of the database is visualized in Figure 1, where we

show a map of chemical and structural similarities between the
present atomic motifs using a low-dimensional embedding tool, cl-
MDS,54 which combines ML atomic descriptors49,51 and multidimen-
sional scaling (a dimensionality reduction technique)41,52,53 with data
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clustering.50 Here, an atomic motif is constructed from a central C, H,
or O atom embedded within diverse CHO environments. Atomic
motifs are associated in classical terms with coordination environ-
ments (e.g., sp, sp2, and sp3 in carbon41) or with chemical groups,
such as keto, epoxide, hydroxyl groups, etc. The central atom is either
part of this group or adjacent to it, see Figure 1. The environment
within the immediate vicinity of the central atom includes all the
neighbor atoms within a given cutoff sphere. To simplify visualization,
we used a cutoff radius of ∼2.25 Å to generate the similarities in
Figure 1. However, this radius is too small when selecting structures
for training the ML models. Motivated by the convergence studies for
finite systems discussed in section 2.1.3, we retain structural
information within a cutoff sphere of radius 4.25 Å for all the ML
models trained in this study.
The subset of atomic motifs in the database selected for GW

calculations is indicated with gray triangles in Figure 1. ΔKS
calculations are performed on an extended subset of the whole
database that includes the GW environments. Note that core-level
calculations are only performed for heavy atoms, and we include thus
only motifs with central C or O atom. Using the structures selected
for GW as an example (the gray triangles), Figure 1 visually highlights
two aspects of motif selection: (i) The diversity of our CHO database
is preserved in the selection of those structures used for ML model
construction, i.e., we draw samples from all over the map. (ii) This
selection needs to be carried out according to the longer cutoff, since
a classification based on a shorter cutoff, while useful in visualization,
does not contain enough information to train a predictive ML model
(the drawn samples are not homogeneously distributed on the map).
If we drew the same map according to similarities based on the 4.25 Å
cutoff, Figure 1 would look very different and it would be impossible
to make an intuitive connection between the map and classical
chemical group classification. See Figure S5 of the Supporting
Information for a cl-MDS map with the larger cutoff.

2.1.3. Carving out the Structures. Another issue pertains to the
size of the input structures, which are model “supercells” with up to
355 atoms with periodic boundary conditions. The cost of DFT
calculations scales cubically with the number of atoms in the system.
The cost of core-level GW calculations is even more formidable and
scales with the fifth power of the number of atoms.28 We therefore
resort to moderately sized cluster models of around 100 atoms for our
carbon structures. Cluster models are justified for core-level
excitations, since local atomic properties, such as the core−electron
binding energy, are expected to converge with respect to the number
of neighbors explicitly included in the calculation. By only keeping the
atoms in the immediate surrounding of the core-excited atom, we can
significantly speed up the core-level calculations. At the same time, we
remove the need for periodic boundary conditions, which are
currently incompatible with our core-level GW implementation.
The cluster models need to be constructed with care, since creation

of dangling bonds or radicals at the cluster surface can affect the
overall spin state of the system. We use a “carving” technique
introduced in refs 43 and 55, where a spherical portion of the material
centered on a specific site is carved out of the bulk material. Broken
C−C bonds are passivated with H atoms. All other bonds (C−O, O−
H, and C−H) are preserved. The procedure is exemplified in Figure 2,
and our carving code is freely available online.56

We find that the core-level BEs converge quickly with respect to
the cluster radius for ΔKS, as shown in Figure 2 (middle) and also for
GW, see Figure S1 in the Supporting Information. Convergence is
typically reached for rcut = 4.25 Å, which is the cluster radius we use
for the data acquisition of our ML models. Figure 2 (bottom) also
indicates that the carved structures represent a good surrogate model
for the periodic structures, since the respective predicted core−
electron binding energies closely follow each other. The main
difference is a constant shift of 0.27 eV, which is easy to correct for.
We attribute the systematic 0.27 eV upward shift to finite-size (or
particle-in-a-box) effects upon promotion of the core electron to the
conduction band minimum. Since the electron localization length is
necessarily reduced in the 4.25 Å cluster compared to the extended
structure, the energy of the excited state increases accordingly, by 0.27
eV on average in this case. The validity of the cluster approach is
further discussed in section 3.3.
2.2. DFT and GW Calculations. 2.2.1. DFT. We carry out the

DFT calculation of core−electron BEs using the ΔKS16 total energy
method. ΔKS is computationally more affordable and therefore more
amenable to high-throughput calculations than its similarly accurate
all-electron variant, the ΔSCF15 method (see the Supporting
Information for an explanation regarding the difference between the
ΔKS and ΔSCF methods). In ΔKS, the core-level BE is given as the
difference between core-excited and ground-state total energies. In the
excited-state calculation, the C 1s or O 1s electron is removed from
the core, which is modeled via a special projector augmented-wave
(PAW57) potential, and only the valence electrons are relaxed. These
valence electrons can be relaxed either in the presence of the excited
electron (neutral calculation, ΔKS0) or in its absence (charged
calculation, ΔKS+). For molecules, the ΔKS+ approximation can be
applied directly since the vacuum level is well-defined. For materials,
the ΔKS0 calculation allows one to align the computed BEs similarly
as in experiment, i.e., with respect to the Fermi level. In addition to
the periodic ΔKS0 calculations, which we need for our ML model, we
carried out ΔKS0 calculations also for carved clusters to validate that
these clusters are indeed good surrogate models for the periodic
structures, as shown in Figure 2 (bottom). However, the ΔKS+ values
are those directly comparable to our GW cluster calculations.
We performed open-shell DFT calculations with VASP58−60 using

the Perdew−Burke−Ernzerhof (PBE) functional.61 See the Support-
ing Information for a discussion on the choice of functional. We apply
a constant correction based on GPAW16,62 results to convert the
relative ΔKS values (i.e., the chemical shifts) from VASP to absolute
ΔKS values. Disordered carbon materials often exhibit local atomic
magnetization,11 which makes the determination of the ground state
challenging. We expand on the procedure how to determine the
lowest energy magnetic configuration, details of the DFT calculations,

Figure 1. Cluster-based multidimensional scaling map of the CHO
materials database used in this work. The graph is partitioned into
three sections, depending on whether a C, H, or O atom is at the
center of the environment. For instance, a hydroxyl group is viewed
differently depending on whether the atomic environment descriptor
uses C, H, or O as the origin. The distance between data points on the
map is inversely proportional to the degree of similarity between the
corresponding atomic environments. This similarity is established
using SOAP many-body descriptors,49,51 as explained in more detail in
refs 41, 52, and 53. The gray triangles indicate the motifs selected for
the GW calculations.
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and the definition of the reference level for comparison to the
experiment in the Supporting Information. Further discussions of
energy referencing can also be found in section 3.4 and in ref 13.

2.2.2. GW. The GW approximation29 is a highly accurate
electronic-structure method that can be applied to predict photo-
emission spectra. The central object of GW is the self-energy Σ, which
is computed from the Green’s function G and the screened Coulomb
interaction W, where Σ = iGW, hence the name GW. The self-energy
contains all quantum mechanical correlation and exchange
interactions between the electrons and the hole created upon
photoemission. GW offers access to quasiparticle energies, which

directly correspond to the negative of the vertical ionization
potentials.

GW has become the gold standard for the computation of band
structures of solids and is now also increasingly applied to molecular
valence excitations.30 Recently, we advanced the GW methodology
and implementation for application to deep core excitations by
combining exact numeric algorithms in the real frequency domain28

with partial self-consistency63 and relativistic corrections.64 We
showed that GW reproduces absolute molecular 1s excitations within
0.3 eV of experiment and relative binding energies with average
deviations below 0.2 eV.63 Our core-level GW approach was recently
also applied to simple solids,74 yielding first promising results. In
addition, its extension to the Bethe−Salpeter equation (BSE@GW)
was lately also successfully used for the prediction of molecular K-
edge transition energies.65

GW calculations are several orders of magnitude more expensive
computationally than DFT calculations with GGA and even hybrid
functionals. Nevertheless, GW is nowadays routinely applied to
predict valence excitations of systems with several hundred
atoms.66−71 However, the application of GW to deep core excitations
is computationally more expensive than for valence states. First, core-
level GW calculations require more advanced numerical schemes,28

increasing the conventional scaling with respect to system size N from
O(N4) (valence states) to O(N5) (core states). This unfavorable
scaling restricts the accessible system size in core-level GW to around
100 atoms. Second, an all-electron treatment is necessary, which we
efficiently realize by an implementation with localized basis sets. The
implementation of GW in localized basis set codes is a rather recent
development of the past decade,30 for which the efficient
implementation of periodic boundary conditions is still the subject
of ongoing work.72−74 Our core-level GW implementation28 is thus
currently restricted to cluster calculations. The largest GW calculation
in this work was performed for an a-C cluster with 112 atoms on more
than 8000 CPU cores.
For the GW calculations, we use the FHI-aims program

package75,76 and follow the procedure developed in ref 63. We
employ a single-shot G0W0 approach in combination with the PBEh(α
= 0.45) functional for the underlying DFT calculation, where α is the
amount of exact Hartree−Fock exchange.77 The α value was tuned to
reproduce the results of computationally more demanding eigenvalue-
self-consistent GW methods.63 We performed a screening for the
lowest-energy configuration at the PBEh(α) level to ensure that the
open-shell G0W0 calculations are performed on top of the DFT
ground state. All GW results are extrapolated to the complete basis set
limit, and relativistic corrections64 are added for the O 1s excitations.
Further details are given in the Supporting Information. To support
open data-driven materials science,78 we uploaded the input and
output files of all GW calculations of the a-C clusters to the Novel
Materials Discovery (NOMAD) repository.79

2.3. Machine-Learning Model. We develop ML models for the
prediction of either a core-level BE for atom i, BEi, or the difference Δi
between GW and DFT predicted core-level BEs, Δi = BEi

GW − BEi
DFT.

Since all our ML models use the same architecture, we denote the
quantity to be learned generically as γi. Separate models are trained for
C 1s and O 1s, which is motivated by the structure of our data: core-
level BEs are strongly species dependent and separated by more than
100 eV for different atomic species. C 1s excitations occur around 290
eV, whereas O 1s photoelectrons are ejected at approximately 540 eV.
The chemical shifts due to different local atomic environments around
a carbon or oxygen core are 2−3 orders of magnitude smaller.
Our ML model is based on kernel ridge regression (KRR), using

kernels constructed from soap_turbo descriptors, which are a
modification51 of the SOAP many-body atomic descriptor,49

providing improved speed and accuracy. Here, we used the Python
interface (“Quippy”) to the soap_turbo library provided by the
QUIP and GAP codes.80,81 Briefly, KRR replaces the nonlinear
problem of expressing γi for the core of atom i as a function of atomic
positions, γi = γ({rj ∈ Si}), where j runs through all atoms within an
environment of i, Si, with a linear problem. Using the “kernel trick”,

Figure 2. (Top) Example of the cluster carving procedure for an a-
COx structure, where the cluster is contained within a sphere centered
on the carbon atom highlighted with the red circle where the core
hole is created. (Middle) Dependence of the core−electron BE of the
cluster on the cutoff radius, together with the periodic reference, for
the example structure in the top panel (ΔKS values). (Bottom)
Comparison for the whole set of ΔKS data points in our database for
which both cluster (rcut = 4.25 Å) and periodic ΔKS0 values are
available, showing that the main difference is simply a small vertical
shift in the energies. This strongly indicates that the carved structures
are good surrogate models for the extended (periodic) systems. ΔKS+
refers to calculations where the excited core electron is removed from
the system, whereas in ΔKS0 it is promoted to the conduction band,
see section 2.2.1. The root-mean-square and mean-absolute errors,
once the rigid shift is taken into account, are 0.41 and 0.32 eV,
respectively, with a maximum error of 1.69 eV.
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the same quantity, γi, is expressed as a linear combination of kernel
functions, k(i, t):

= + = ·
=

e k i t k i t q q( , ), ( , ) ( )i
t

N

t i t0
2

1

t

(1)

Here, qi are the SOAP-type many-body atomic descriptors that we use
to encode the atomic information about the environment of atom i,
and t denotes a number of reference environments in the training set.
The dot-product SOAP kernel ·q q( )i t (where ζ = 2 in our case)
provides a measure of similarity between i and t that is rotationally
and translationally invariant.49 δ is a parameter, given in eV, which
controls the energy scale, and e0 is a constant reference energy
subtracted during training and then added during prediction.
Conceptually and methodologically, the present approach is similar
to that of the Gaussian approximation potential (GAP) formalism80,82

and to our previous models of adsorption energetics in carbon-based
materials.41 The SOAP descriptors encode atomic structural
information up to a certain cutoff radius from the central atom i.
Thus, we implicitly make the assumption of locality for the binding
energies. That is, we assume that only the arrangement of atoms in
the immediate vicinity of atom i affects the core levels of that atom.
The validity of this assumption is illustrated in Figure 2 (middle),
where we show that the core-level BE of the central C atom quickly
converges with the cluster size. Further confirmation is obtained from
Figure 2 (bottom), which shows that the difference between the C 1s
excitation from periodic and cluster models is mainly a constant shift.
Model training consists essentially in the inversion of eq 1 (or,

more precisely, on a least-squares based optimization of the αt) for a
set of reference calculations, i.e., during training both i and t run over
the same set of atomic environments. To prevent overfitting, we use
regularization. Since our data sets for the CHO materials have very
few entries (most notably our GW data set), to collect error statistics
we test all of our models using n-fold cross validation, where n models
are trained, each time leaving out one of the data points, and the
model is tested on the particular entry that is left out. For the models
based on QM9 data, for which many more training points are
available, we train 10 different models for a given training set size,
randomizing each time over training configurations and test on the
remaining configurations. We do not perform explicit hyperparameter
optimization.
The basic ML model architecture used throughout this work is

given by eq 1. The application of this model is straightforward for
learning the GW and DFT predicted molecular C 1s and O 1s BEs of
our QM9 subset. For the latter, we have a large amount of GW and
DFT data, for which we can even train models based on the GW data
alone. In addition, the data sets are “coherent” in the sense that the
DFT and GW data sets are of equal size and that the computational
data in both sets are well-defined for isolated structures.
However, model training and utilization become more intricate for

the CHO materials, where we have few GW data, which are in
addition only available for the carved clusters. Our main objective for
the CHO materials is to combine DFT and GW data to (i) improve
upon the accuracy of DFT and (ii) overcome the current limitation of
GW calculations to nonperiodic systems. This implies that we must
combine two or more data sets and potentially also two or more ML
models. We propose to compute a corrected binding energy (BEc) for
atom i as

= { }

+ { } { }

r

r r

BE BE ( )

(BE ( ) BE ( )),

i i j

i
GW

j i j

c DFT ext

carv DFT carv
(2)

where {rj
ext} denotes the atomic environment of i within a periodic

DFT calculation of the extended structures and {rj
carv} denotes a

truncated representation of this environment, i.e., the one given by a
carved cluster centered on i. We have therefore split the input data in
eq 2 into two terms, a baseline given by = { }b rBE ( )i i j

DFT ext and a

correction given by = { } { }r rBE ( ) BE ( )i i
GW

j i j
carv DFT carv .

The rationale for using eq 2 is the following. First, the Fermi level
alignment (important in experimental solid-state XPS because the
sample and detector are shorted) is provided by a neutral ΔKS
calculation of the extended structure. In this neutral calculation, the
BE is computed for the transition of an electron from the core level to
the Fermi level; this is the type of ΔKS calculation usually performed
for solid-state samples.13,14,16,24 Second, the correction to this ΔKS
BE, that is, the difference between a GW and a ΔKS calculation
performed on exactly the same system, is assumed to be (i) local
(justifying the use of carved structures) and (ii) independent of
whether the core electron is excited to the vacuum level or the Fermi
level. While arguably intuitive, there is no formal reason, a priori, why
these assumptions should hold true. Instead, we verify their validity
from the agreement between computational and experimental spectra
reported in section 3.
With the data partition in eq 2, we can choose two different routes

for predicting BEi
c, either (i) train an ML model from {bi + Δi} or (ii)

train an ML model from {bi} and another from {Δi}, then obtain BEi
c

as the sum of both predictions. It is not straightforward to determine
a priori which option gives more accurate predictions, since the
learning rates and available amount of data points are different for
each data set. We explore both strategies for the CHO materials
studied in this work. The outlined hybrid ML model architecture, i.e.,
combining data sets from both periodic and cluster calculations, is
further described in section 3.3.

3. RESULTS AND DISCUSSION
We start with a comparison of the GW and DFT predicted
excitations for the CHO molecules and cluster models. Next,
the performance of the ML models for the molecular
excitations is discussed. We proceed with results for the ML
models, which are the building blocks for our hybrid ML
architecture of the CHO materials. We then demonstrate that
the hybrid approach is key to achieve quantitatively accurate
XPS predictions of CHO materials for three showcases and
introduce our XPS Prediction Server.
3.1. Comparison of ΔKS and GW Excitations. The

results of the ΔKS+ and GW calculations are shown in Figure 3
and compared to each other for both the cluster models of the
solid-state CHO materials and our subset of small CHO-
containing molecules from the QM9 data set. Figure 3 allows a
direct comparison between the GW and DFT predictions,
since they are computed on the exact same finite structures and
are aligned both at the respective vacuum levels. In all cases
depicted in Figure 3, the leading difference between GW and
DFT BEs, which we can identify as the leading error in the
DFT prediction, is a systematic underestimation of the BE.
However, this leading error is data set specific. It is in the range
of 1.1−1.2 eV for the QM9 subset and around 1.6−1.7 eV for
the CHO clusters. In addition, there are some subtle, but
important, nonsystematic differences. In the remainder of this
section, we illustrate how these subtleties and nonsystematic
differences in the data can be absorbed by our ML models as
well as how these models can combine data sets to improve the
accuracy of the predictions.
3.2. Learning Molecular Core−Electron Binding

Energies. In the following, we demonstrate how to infer
GW-quality core-level BEs from a DFT calculation based on
our QM9 subset of small CHO molecules. Even though
molecular excitations are not the target of this manuscript, the
discussion of CHO molecules is instructive because, even at
the GW level, these systems are small enough that plenty of
data can be generated and trends in ML accuracy and learning
rates can be closely monitored. We explore three different ways
how to avoid an expensive GW calculation while retaining GW
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accuracy. (1) A ΔKS+ calculation is performed followed by a
rigid shift of the obtained BE. (2) An ML model for the
difference between GW and ΔKS+ results is developed, and the
ML predicted difference is added to the result of the ΔKS+
calculation. (3) An ML model is trained that learns the GW
data directly. The expected mean absolute errors (MAEs) and
root-mean-square errors (RMSE) with respect to the GW
reference are shown for all three approaches in Table 1 (the
method for error estimation is detailed below).
The first approach is motivated by the results in section 3.1,

where we found that the leading difference between a GW and
ΔKS prediction is a constant shift of the energies. If we take a
molecule from our QM9 subset and shift the ΔKS+ results by
+1.129 (C 1s) and +1.190 eV (O 1s), the prediction deviates
on average by 75 and 77 meV from the GW result, respectively;
see also Table 1 for the RMSE. These errors are already quite
small. However, this approach still requires a full ab initio
calculation at the DFT level, which is much cheaper than GW
but also becomes computationally unfeasible for large
disordered carbon structures.
We can improve the speed of the prediction and/or improve

the accuracy of the prediction by using ML models. The
l e a rn ing cu rve s fo r BE i

G W and the d iffe rence
=

+
BE BEi i

GW
i

KS are reported in Figure 4 for the C 1s
and O 1s excitations of the CHO-QM9 subset. Displayed are
the ML errors (MAE and RSME) dependent on the number of
data points used during training. The errors are computed by
testing the models on the portion of the entire database not
used for training. For completeness, we included also the
learning curves for the ΔKS computed BEs in Figure 4. The
models for BEi

GW and
+

BEi
KS exhibit similar learning rates with

quickly decreasing errors. The MAE is <40 meV for both ML
models when extrapolated to the limit of all the available data
(training plus testing). These errors are summarized in Table
1. Figure 4 also shows that learning the difference, Δi, is easier
than directly learning the core-level BEs, as indicated by an
extrapolated MAE of <20 meV. Moreover, the ΔML model
achieves the same accuracy with 50 data points as the GWML
model with 2000 data points. Finally, we note that it is easier
to learn the O 1s data than it is to learn C 1s data. This is due
to the higher diversity of possible C atomic environments.

Figure 3. Comparison between the GW and ΔKS+ results obtained
for carved clusters and QM9 molecules. The dashed line indicates a
linear fit, where the constant vertical shift gives the leading difference
between GW and DFT data. This shift is specific to each data set and
listed in the legend of each panel.

Table 1. Expected Errors and Timings When Computing the
Core-Electron BE of a CHO-Containing Molecule with
Four Different Approaches: (i) Direct GW Calculation; (ii)
ΔKS Calculation Followed by a Correction Based on a
Constant Shift to Account for the Difference between GW
and ΔKS; (iii) ΔKS Calculation Followed by a Correction
Based on an ML Model of the Difference between GW and
ΔKS; and (iv) Prediction of a ML Model That Learns the
GW Result Directlya

GW ΔKS++ GWML

shift (GW − ΔKS+)ML
C 1s MAE (meV) 0 75 15 27
C 1s RMSE (meV) 0 105 24 38

O 1s MAE (meV) 0 77 17 37
O 1s RMSE (meV) 0 95 25 61

CPU time (s) ∼300k ∼5k <1
aThe errors are (linearly) extrapolated from the learning curves in
Figure 4 to the full size of our CHO-QM9 database: 14 707 and 1 865
unique atomic environments for C and O, respectively. For simplicity,
the GW error is taken as zero, and the other three approaches are
designed to match the GW prediction. The CPU time refers to the
average computational cost per molecule.

Figure 4. Learning curves for different ML models based on BE data
for CHO-containing molecules in the QM9 database. GW and ΔKS+
models show very similar learning rates, and the ΔML model based
on the difference between GW and ΔKS+ demonstrates an extremely
good learning ability. For each training set size n, 10 different models
are trained, each of which is constructed from n randomly chosen
training configurations. The errors are then computed by testing the
models on all the structures not used for training, i.e., for a given
model with n training samples, the test set contains 14 707 − n and
1865 − n samples for C and O, respectively. The error bars are
computed by averaging the errors over these 10 different models.
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Assuming the GW value to be the “golden” standard, the
most accurate prediction for CHO molecules is obtained from
the ΔKS+ + Δi

ML approach, which reduces the prediction errors
to values in the vicinity of 20 meV. Such errors are negligible
since they are an order of magnitude smaller than the overall
instrumental broadening in XPS experiments and also smaller
than the smallest chemical shifts that can be resolved by
analyzing experimental XPS spectra (i.e, those that do not

overlap). The ML model trained from GW data yields the next-
best predictions. The worst approach is a ΔKS+ calculation
followed by a rigid shift, which has the same computational
cost as the ΔML-based scheme with an error that is ∼5 times
larger; see Table 1. Once the models are trained, the
computationally cheapest prediction is obtained from the
GWML model, offering the best compromise between accuracy
and speed. However, all three strategies are computationally

Figure 5. Performance of the different ML models for C 1s (black) and O 1s (red) BEs trained as part of this work. “+” and “0” refer to how the
ΔKS simulation is carried out in practice, i.e., by either removing the core electron from the sample or promoting it to the conduction band,
respectively. “Ext” stands for “extended” (periodic) structures, as opposed to carved structures (“carv”). See text for a detailed discussion of the
figure. The errors were obtained by n-fold cross validation, due to the small size of the training sets.
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much cheaper than performing an actual GW calculation,
which is already for small molecules almost 2 orders of
magnitude more expensive than a ΔKS calculation (Table 1).
3.3. Learning Binding Energies of CHO-Containing

Materials. The generation of ΔKS and, in particular, GW data
is significantly more expensive for CHO materials than for
molecules for the following reasons: (i) The size of
configuration space, i.e., the different ways in which CHO
atoms can be arranged in space, is much larger. This implies
that more data are necessary to train ML models of similar
quality. (ii) More atoms per site need to be considered to
capture the effect of the chemical environment on the
excitation energy. This is true even when employing carved
structure models, where the number of atoms per atomic
environment can be still of the order of 100−200. If the scaling
of the method of choice is N, this means a cluster calculation is
between ∼5N and 10N times more expensive than a QM9
molecule calculation, since the cluster will contain 5−10 times
more atoms than the largest molecules in the QM9 data set.
Another problem is that the difference in the computational

cost between DFT and GW increases with growing system size.
In fact, the highest scaling steps in GW only start to dominate
the calculation for structures larger than 30−50 atoms,28 and
hardly affect the computational cost for the CHO molecules.
For example, the computational time for a GW calculation of a
carved cluster with 96 atoms (out of which 38 are C atoms) is
400 000 CPU hours, whereas the ΔKS calculation takes
approximately 22 CPU hours for the same system. Compared
to the molecular case (see Table 1), the difference in
computational cost between GW and DFT increased from a
factor of 60 to 20 000.
For CHO materials, our ΔKS and GW databases are 1 and 2

orders of magnitude smaller, respectively, than for the CHO-
QM9 molecules. However, the analysis of the CHO molecules
in section 3.2 reveals the solution to this problem. We have
seen that a ΔML model, based on the difference between GW
and ΔKS predictions, can be trained to high accuracy with less
data than directly training a model for the BEs at the ΔKS or
GW level. This justifies the strategy of developing hybrid ML
architectures as outlined in section 2.3. Starting from eq 2, we
consider two options: (i) We learn a DFT baseline for the
extended (“ext”) structures and apply an ML-predicted
correction based on the difference between GW and DFT
for the carved (“carv”) structures as shown in eq 3. (ii) We
learn the ΔKSext0 baseline and the Δ term simultaneously as in
eq 4:

+ +GW(BE ) ( KS ) ( KS )c
ML ext

0
ML carv carv ML (3)

+ +GW(BE ) ( KS KS )c
ML ext

0
carv carv ML (4)

The performance of the ML models required to construct
the hybrid ML architectures in eqs 3 and 4 is shown in Figure
5. We start with the discussion of the ingredients for eq 3, i.e.,
the ( KS )ext

0
ML models for the BEs of the extended CHO

structures (Figure 5g,i) and the ΔML models for the carved
structures (Figure 5e,f). For comparison, we also trained ML
models for BEs of the carved structures based on GW (Figure
5a,c) and ΔKS+ data (Figure 5b,d). We observe that the
convergence of the GW and ΔKS+ models for the BEs of the
carved structures is much slower than for the molecular case.
For instance, the best ΔKScarv+ model for the C 1s excitations
(Figure 5b) still shows a significantly larger error with over

1300 training samples (MAE = 264 meV), when compared to
the corresponding CHO-QM9 model in Figure 4 (MAE ∼ 65
meV), corresponding to a 4-fold relative increase of the error.
This is easily ascribed to the much more complex configuration
space spanned by CHO materials compared to small CHO
molecules, as discussed before. Nevertheless, we find that we
can train ΔML models (Figure 5e,f) of reasonably good quality
(MAE ∼300 meV) for the carved structures with as little as
150 (C 1s) and 37 (O 1s) data points. This is in line with the
observation made for molecules that less data are needed for
the ΔML models. However, the leading error in eq 3 will
originate from the ( KS )ext

0
ML model (Figure 5g,i) with an

MAE of ∼400 meV for both C 1s and O 1s BEs. Its learning
behavior is in fact similar to the +( KS )carv ML model, and the
same arguments regarding the complex configuration space
apply.
The performance of the ML model where we train the DFT

baseline and Δ term at the same time (eq 4), is shown in
Figure 5h,j. Despite the small size of our training set (150/36
data points for C 1s/O 1s), we obtain MAEs that are with 500
meV in the range of the overall instrumental broadening in
regular XPS experiments (synchrotron-based XPS experiments
can achieve better resolution).
The panels k and l in Figure 5 display ΔML models where

we compare the core-level BEs from ΔKS0 calculations of
carved clusters to those of the corresponding periodic
structures =( ML KS KS )carv

0
ext
0 . The results in Figure

2 (bottom) already indicated that the main difference between
core-level BEs of carved and periodic structures is a constant
shift. The purpose of training these ΔML models is to assess
the validity of the locality assumption inherent to the carving
process in more detail (see ref 83 for a general discussion of
locality in atomistic modeling and ref 45 for a discussion in the
context of GAP force fields). Compared to all other models
displayed in Figure 5a−j, we find that the ML models in panels
k and l show the poorest relative performance, i.e., the largest
errors relative to the spread of input values. The MAEs of 284
meV (C 1s) and 216 meV (O 1s) are statistically significant
measures for the intrinsic errors due to the carving procedure.
These MAEs quantify the influence of the discarded portion of
the periodic structure on the core-level BE. In other words, by
representing extended structures via carved clusters truncated
at 4.25 Å, we will not be able to obtain predictions more
accurate than these errors, even in the limit of infinite data.
Fortunately, even though individual errors from the carving
procedure can be expected on the order of 200 meV, the error
in the statistical distribution of the predictions is more
significant for XPS prediction, since an XPS spectrum is
constructed out of the superposition of many individual BE
contributions. In addition, we never require ΔKScarv to be an
accurate approximation of ΔKSext. Instead, we need the
difference between ΔKScarv and GWcarv to be an accurate
approximation of the difference between ΔKSext and a
hypothetical GWext calculation, which we cannot carry out
because periodic GW core−electron BE calculations are
currently unavailable.
Taking the arguments for experimental broadening and

statistical distribution into account, we can indeed conclude
that the clusters are reasonably good surrogate models for the
extended structures, a result that will be corroborated in
section 3.4 for actual XPS spectra predictions.
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A final observation is that, while it may appear that it is
easier to learn C 1s BEs than O 1s BEs, this is solely due to the
size of the training sets, which is in turn dictated by the
number of available C and O environments in the database. As
we saw in Figure 4 for the CHO-QM9 molecules, it is in fact
easier to learn O 1s BEs. This is likely due to the higher
diversity of possible atomic motifs for carbon41 than for oxygen
in the CHO system.
3.4. Predicting XPS Spectra from the Models. While

linking molecular XPS spectra to the computationally
predicted BEs from GW and ΔKS+ is straightforward, this
connection is not so clear for materials. There are two main
differences that pose significant additional challenges. The first
difference is that, in experimental XPS of solid-state samples,
the vacuum level is not an easily accessible reference and the
experimental BEs are typically reported with respect to the
Fermi level of the sample. In the context of electronic structure
theory, the Fermi level is only well-defined for metallic
systems. For semiconductors and insulators, we need to rely on
the thermodynamic definition, in which the Fermi level is given
as the derivative of the total (free) energy with respect to the
number of electrons in the system. As discussed in section
2.2.1 and the Supporting Information, one possible way to
estimate the core-level BE with the Fermi level as reference is
to perform a ΔKS0 calculation, where we add the excited
electron to the conduction band and relax the electronic
structure. This is the strategy we follow here and the reason
why we learn a DFT baseline at the ΔKS0 level in eqs 3 and 4.
The second difference arises precisely from the need for a

ΔKS0 calculation. The electron that we added to the
conduction band will interact with the core hole via the
(screened) Coulomb potential leading to a spurious bound
exciton. Compared to valence band holes in semiconductors,
the core hole is extremely localized and the exciton BE will
therefore be quite large (on the order of 0.5 to 1 eV for CHO
materials).84 Since exciton binding stabilizes the system, the
spurious exciton BE lowers the ΔKS prediction, compared to
the actual core electron BE, i.e., the one that should be
compared to experimental XPS. Dynamical core-hole screening
effects are also unaccounted for, which can further complicate
direct comparison with experiment. Fortunately, these exciton
BEs tend to be highly material-specific and lead to a constant
shift of the whole computational XPS spectra (toward lower
values). Our future work will aim at quantitative estimation of
these exciton BEs for improved core−electron BE prediction.
Nevertheless, we find our models to be satisfactorily accurate,
even in the absence of excitonic corrections, for the purpose of
comparing between computational and experimental spectra.
We thus speculate that the contribution of excitonic effects to
the chemical shifts in disordered carbon materials may be small
enough to not affect this comparison.
The XPS spectra of the CHO materials are computed as the

superposition of the individual, experimentally broadened
signals of each atom in a given atomic structure (or
“supercell”),

= =
=

E E E E i SXPS( ) ( ; ), (BE( ; ))
i

N

i i i
1

ML

atoms

(5)

where E is an energy in the spectrum. Each signal Ei is given for
atom i by an ML model for periodic (“extended”) structures as
a function of its atomic environment Si. The latter is
characterized via soap_turbo many-body atomic descrip-

tors. The smearing function δ(E − Ei; σ) is chosen to account
for thermal and instrumental broadening. An appropriate
choice of broadening function is, e.g., a normalized Gaussian
with width σ ≈ 0.5 eV.14

We will test three different models for Ei in eq 5, all of which
implicitly use the Fermi level as reference. (i) The ( KS )ext ML
model is employed to predict the BEs followed by a rigid shift.
The shift is obtained from Figure 3 (top): C 1s excitations are
shifted by 1.641 eV and O 1s excitations by 1.702 eV. (ii) The
hybrid ML model introduced in eq 3 is used to compute the
GW-corrected BEc. (iii) Equation 4 is employed to obtain an
ML prediction for BEc. The leading physical assumption for
approaches (ii) and (iii) is that the GW correction to the
charged excitation energies carries over to the neutral
excitation case for extended structures. Which of the two
GW-corrected ML models is optimal strongly depends on the
amount of available GW data compared to ΔKS data. Even
though eq 3 has two sources of error, the error in the first term
can be made very small with enough ΔKSext0 data. In eq 4, the
amount of ΔKSext0 data that can be used is limited to those
structures for which GW data is also available, thus limiting the
amount of training data that can be reused.
For the amount of training data that we managed to gather

for this work, both GW-corrected ML models perform very
similarly. We estimate the RMSE for models based on eqs 3
and 4 to be ∼0.697 and 0.685 eV, respectively, for C 1s
predictions, where the error for eq 3 is estimated as the square
root of the sum of the individual squared errors (i.e., assuming
the individual errors are normally distributed). For O 1s, the
estimated RMSEs are 0.662 and 0.608 eV for eqs 3 and 4,
respectively. The similar performance manifests also in the
prediction of the XPS spectrum of the CHO materials. Figure
6 shows that the predicted peak positions and overall spectrum

shape are very similar. For the prediction of the XPS spectrum
of selected CHO materials in section 3.5, we will use eq 3 since
this ML model has currently more potential to be trained to
even higher accuracy by gathering more ΔKSext0 data, whereas a
performance improvement with eq 4 would also require
additional GW calculations.
3.5. XPS Spectra Predictions for Selected CHO

Materials. The ultimate test for the models presented in
this paper are predictions of XPS spectra for realistic structural
models of CHO materials and subsequent comparison to
experiment. We present XPS predictions for three classes of
CHO materials: (1) a-C throughout the full range of
deposition energies, which in turn covers the full range of
sp2/sp3 ratios observed experimentally; (2) oxygenated

Figure 6. Comparison of the GW-corrected ML models for an a-COx
sample with 19 at-% O.
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amorphous carbon (a-COx) with different amounts of oxygen
content; and (3) rGO also with varying oxygen concentrations.
Experimentally, a-C thin films are grown by a number of

physical deposition methods,4 where the main deposition
parameter is the kinetic energy of the deposited atoms.
Therefore, to model a-C realistically, we use computational
structures generated in previous work for deposition energies

in the range 1−100 eV.55,85 The XPS predictions of the a-C
structures are shown in Figure 7a−d, where we have focused
on two different regions of thin-film structures: the bulk of the
film (panels a and b), on the one hand, and the surface layer
(panels c and d), on the other. We present XPS predictions
using eq 5 in combination with (i) the ( KS )ext

0
ML + shift

model and (ii) the ML model from eq 3. In the following, we

Figure 7. XPS predictions based on our new methodology for C 1s spectra of (a,b) a-C bulk and (c,d) a-C surfaces at different deposition energies
and for (e−g) C 1s and (h−j) O 1s spectra of a-COx. The panels g and j show site-resolved contributions to the spectra. For example, the light-gray
colored C atoms in panel g contribute to the light-gray regions in the spectrum, whereas dark-gray C atoms contribute to the dark-gray spectral
regions. The experimental a-COx C 1s data was taken from Santini et al.8 Compared are two models: ( KS )ext

0
ML predictions corrected by (i) a

constant shift (+1.641 eV for C 1s and +1.701 eV for O 1s) and (ii) GW. All GW-corrected predictions in this panel are obtained with eq 3; see the
Supporting Information for a comparison of eq 3 and eq 4 for a-COx.
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refer to these models as ΔKS + shift and ΔKS + GWcorr,
respectively.
The deposition energies control the mass density and sp2/

sp3 content of the a-C films. High deposition energies yield
films with high mass densities and sp3 contents, whereas low
deposition energies correspond to low mass densities and high
sp2 content.4,55 This is also apparent from Figure 7b,d, where
we observe a pronounced transition between an sp2-dominated
XPS spectrum (peak at ≈284.5 eV) for low deposition energy
and an sp3-dominated (peak at ≈285.6 eV) spectrum at higher
deposition energy. The turning point for the transition is
between 5 and 6.5 eV incident atom energy. For the bulk, we
have a clear transition and the sp3 peak at high deposition
energies has the same intensity as the sp2 peak at low
deposition energies. The transition is not fully developed for
the surface layer, where the intensity of the sp3 peak is less
pronounced. The reason is that the surface of the a-C film
generally contains lower coordinated atoms compared to the
bulk. a-C films are sp2-rich at the surface even for very high
densities and may contain significant numbers of under-
coordinated sp C motifs, which are present only in negligible
amounts in the bulk.55,85

Comparing the ΔKS + shift and the ΔKS + GWcorr spectra
in Figure 7a−d, we find that the main effect of the GW
correction is to reduce the width of the predictions. The ΔKS
+ shift model predicts the sp3 peak to be located 0.5 eV higher
than the GW-corrected model. Experimentally, the separation
between sp2 and sp3 features in a-C has been determined to be
of the order of 1.1 eV.86 This is the same separation predicted
by our GW-corrected model, whereas the ΔKS model predicts
a separation of ∼1.5 eV. The relative shifts from DFT-based Δ-
methods typically agree well with experiment for small
molecules.17 However, this result indicates that the accuracy
of the relative shifts deteriorates for larger systems, which is a
consequence of the delocalization error in DFT, demonstrating
the need for the GW correction.
We discuss next the XPS predictions for a-COx with

different oxygen contents (15, 19, and 36 at-% O). Figure 7
shows the C 1s (parts e−g) and O 1s (parts h−j) excitations
employing the ΔKS + shift and ΔKS + GWcorr model from eq
3. The main effect of the GW correction is again the reduction
of the spread of the predictions, especially for the O 1s
spectrum. For a comparison between the ΔKS + GWcorr
models from eq 3 and eq 4, see Figure 6 and Figure S3 in
the Supporting Information. The peak alignments are very
similar between the two GW correction schemes, with slight
differences regarding the relative intensity and spread of the
lower lying peaks.
The correspondence between excitation energy and atomic

motifs is highlighted in panels g and j of Figure 7 with color
codings: light-gray (dark-gray) colored C atoms in panel g
contribute to light-gray (dark-gray) regions in the C 1s
spectrum and light-red (dark-red) colored O atoms in panel j
to light-red (dark-red) regions in the O 1s spectrum. For C 1s
spectra, the lower energy contributions correspond to carbon−
carbon bonds, followed by an increase in the BE as the number
of neighboring O atoms increases. The XPS spectra for a-COx
materials with higher oxygen content have consequently more
features at higher energies since the number of epoxide and
ether (C−O−C), keto (C�O), and ester (R−COO−R′)
groups increases. The core-level BEs of the C atoms in these
groups increase also in that order, where the largest C 1s
excitation energies at around 289−290 eV are observed for

carboxyl C atoms. For the O 1s spectra, the distribution is
essentially bimodal. At lower energies, we observe a peak
corresponding to carbonyl O atoms from keto or ester groups.
The peak at higher energies originates from contributions of
the O atoms in epoxides and ethers and the hydroxyl (singly
bound) O atom in the ester groups. The relative intensity of
these peaks strongly depends on the oxygen content. In our
computational samples, epoxides, ketos, and esters are present
in approximately 13:61:26, 42:40:18, and 8:60:32 percentage
ratios at 15, 19, and 36 at-% O, respectively.
A comparison to experimental a-COx data is available for the

C 1s spectrum from Santini et al.8 We observe good agreement
for the relative position of the different peaks present in the C
1s spectra with our ΔKS + GWcorr prediction. The agreement is
less good for the peak intensities, but the likely reason is that
the relative concentrations of functional groups in the
computational and experimental samples are different. We
can infer from this direct comparison an oxygen content
somewhere in between 19 and 36 at-% (Santini et al. report
≈37% for this sample) and suggest that a combination of those
two simulated curves would lead to better agreement with
experiment. This in turn suggests that the experimental sample
may be inhomogeneous with respect to the oxygen content
distribution. Reproducing the experimental structure more
closely would require deposition simulations similar to (but
more complex than) those in refs 55 and 85, which are
nontrivial and beyond the scope of this work. In any case,
determining the precise atomic percentages experimentally is
difficult because there are instrumental issues (such as
calibration), sample issues (heterogeneity, surface roughness),
methodological issues (e.g., regarding how the peaks are fitted
or how the background was subtracted) and many more.87−89

Experimental XPS-derived compositions will also often
disagree with other methods, such as X-ray absorption
spectroscopy (XAS) or elastic-recoil detection analysis
(ERDA), because of sample inhomogeneity and different
accessible depths. We show below for rGO that, when more
candidate computational structures are available, the atomic
percentages can be resolved more precisely by matching
predicted and experimentally measured spectra. Therefore, the
ability of ML-based XPS predictions to accurately quantify
atomic percentages in CHO materials may prove very useful in
guiding and interpretation of experiments.
With our third application, rGO, we demonstrate how our

developed methodology can be used to assess the validity of
candidate structural models for materials. The rGO structures
in our database were taken from Kumar et al.42 and contain
different amounts of oxygen in the range from 10 to 20 at-%.
They were either generated from COOH-rich GO (series 1) or
OH-rich GO (series 2) precursor structures. Altogether, there
are 240 rGO structures with approximately 210 atoms each.
We computed the XPS spectra of all of them using the GW-
corrected ML model of eq 3. Note that, altogether, these ML
predictions take only a few minutes on a desktop computer.
In Figure 8, we compare the predicted spectra for series 1

(top) and series 2 (bottom) to the experimental rGO spectrum
from ref 90. From Figure 8, we can identify the candidate
model structure whose XPS spectrum best matches the
experimental one. The spectra of candidate structures with a
low oxygen content of 10 or 11 at-% clearly differ from
experiment, while the ones with high-O content of 15−20 at-%
agree best with the experimental XPS. Clearly, the
experimental sample must contain a large fraction of oxygen.
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However, it is also evident that the structural models with high
oxygen content are missing the functional groups that
contribute to the feature at ∼289.5 eV in the experimental
spectrum. As we saw for the a-COx example, this feature
corresponds to carboxyl C atoms. These specific groups are not
present in the rGO reference database of Kumar et al.,42 even
though the rGO structures from series 1 were generated from
COOH-rich GO starting configurations. However, unlike
hydroxyl groups, the COOH groups are thermodynamically
unstable in the computational structure generation process and
are not present in the final structural models. Our analysis thus
indicates that the composition of the experimental sample is
similar, but not identical, to the structural models with high O-
content. In particular, it sheds light onto the missing bits of
information, in this case, the presence of COOH groups.
3.6. The XPS Prediction Server.We have set up an online

tool that utilizes the different ML models described throughout
this paper. The XPS Prediction Server is available for free at
nanocarbon.fi/xps. The user can upload a model structure in
any format readable by the Atomic Simulation Environment
(ASE),91 and the server will execute a Python script that runs
the descriptor construction (via calls to Quippy81) and
performs the kernel regression according to a model of choice.
At the moment, only the CHO models described herein are
available, but models for other materials can be uploaded in
the future as they are developed. The tool works in a fully
automated way, and for systems of usual sizes in the context of
DFT modeling of materials (a couple hundreds of atoms), a
prediction can be obtained within seconds. It is our hope to
extend this concept of ML-based computational prediction to
other materials and experimental observables, most notably
other spectroscopic techniques.

4. SUMMARY AND OUTLOOK
We have presented an ML-based methodology to predict
quantitatively accurate XPS spectra for CHO-containing
molecules and materials. We generated a comprehensive
database of computational core-level BEs from DFT and GW
calculations. By careful combination of DFT and GW data,
accurate ML models were trained for C 1s and O 1s excitations
from relatively small data sets. For molecular BEs, we showed
that the errors in the ML predictions can be reduced to less
than 50 meV. The ML models were then applied to generate
XPS spectra of selected CHO materials, namely, a-C thin films,
a-COx, and rGO with different oxygen concentrations. Our
predictions show excellent qualitative and quantitative agree-
ment with experiment, resolving spectral shapes and features
within 0.1 eV for the selected disordered carbon-based
materials. We also showed that ML models trained with
DFT data alone cannot reach this level of predictive power and
that data from the more accurate GW approach are indeed
crucial. For disordered materials, we expect that whenever a
suitably constructed database with more GW data is available,
an XPS ML model can be trained to provide accuracy close to
the practical resolution of common XPS experimental
equipment.
We demonstrated the potential and suitability of our

computational XPS tool to, e.g., quantify the atomic
percentages in a-COx or identify shortcomings in candidate
structure models of rGO. We have made this new method-
ology freely available to the public through the XPS Prediction
Server. Such a computational tool may prove valuable in
guiding and interpreting experimental work and in validating
computational structural models of materials. We hope to
extend our ML models to other material classes and
spectroscopic techniques (XAS, Raman, IR, NMR, etc.) in
the future.
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