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Abstract 15 

Newly developed MXene materials are excellent contender for improving thermal systems' 16 

high energy and power density. MXene Ionanofluids are novel materials; their optimum 17 

thermophysical behavior at various synthesis conditions has not been addressed yet.  The aim 18 

of this study is to investigate the effect of synthesis conditions (temperature 303-343 K and 19 

nanofluids concentration 0.1-0.4 wt.%) on the thermophysical properties (thermal 20 

conductivity, specific heat capacity, thermal stability, and viscosity) of MXene Ionanofluids. 21 

Levenberg Marquardt based Artificial Neural Network (ANN) model and Response Surface 22 

Methodology (RSM) based optimization techniques have been adopted for systematic 23 

parametric analysis of MXene Ionanofluids thermophysical properties using experimental 24 

data. ANN and RSM have predicted the thermophysical behavior of MXene ionanofluids at 25 

optimized conditions.  The experimental data were used to train, test, and validate the ANN 26 

model. The neural network could correctly predict the outcomes for the four properties based 27 

on the numerical performance with R2 values close to 1, and a prediction error is 2%. The 28 

performance of the proposed LM-based back-propagation algorithm demonstrates that the 29 

error involved has been minimal and acceptable.  RSM has developed correction among input 30 

parameters and thermophysical properties of MXene Ionanofluids. The comparison between 31 

experimental results and the proposed correlations revealed excellent practical compatibility. 32 
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Optimized thermophysical properties of MXene Ionanofluids thermal conductivity of 0.776 33 

W/m.K, specific heat capacity of 2.5 J/g.K, thermal stability of 0.33931 wt. loss %, and 34 

viscosity of 11.696 mPa.s were obtained at a temperature of 343 K and nanofluids 35 

concentration of 0.3 wt.%.  MXene Ionanofluids with optimal thermophysical properties 36 

could be used for the greatest performance of hybrid solar photovoltaic and thermal system 37 

applications. 38 

Keywords: MXene Ionanofluids, Artificial Neural Networks, Response Surface 39 

Methodology, Solar energy, Thermophysical properties, 40 

Highlights: 41 

1. Thermophysical properties of MXene Ionanofluids are presented for PV/T system. 42 

2. LMBPNN approach was used to predict the thermophysical behavior of MXene 43 

Ionanofluids. 44 

3. LMBPNN model performance in predicting the thermophysical property behavior. 45 

4. Optimization and Parametric analysis of thermophysical properties was performed 46 

using RSM. 47 

1 Introduction 48 

MXenes are two-dimensional (2D) materials synthesized by etching the 'A' element from the 49 

MAX phases of metal carbides and carbo-nitrides. Since its discovery in 2011, MXene 50 

proved to be a great candidate for enhancing thermal systems' high energy and power density. 51 

Its distinguishing characteristics, including exceptional biocompatibility, high conductivity, 52 

and eco-friendliness, drive its widespread appeal. Usually, nanoparticles (graphene, 53 

aluminum, zinc, etc.) are combined with base fluids (water, glycols, and oils) to produce an 54 

enhanced heat transfer fluid known as "nanofluid." Nanofluids can be made more stable using 55 

ionic liquids. Ionic liquids' anions and cations provide an electrostatic layer around 56 

nanoparticles that keeps them from accumulating. The long alkyl chains in cations of ionic 57 

liquids help ensure nanoparticle stability in a suitable solvent [1-3]. Therefore, nanofluids are 58 

suspended in ionic liquids (Ionanofluids) to obtain desired properties and functions such as 59 

excellent thermal properties, high light absorbance, and conductivity. MXene nanoparticles 60 

are synthesized and incorporated with ionic liquids to develop an innovative fluid called 61 

"MXene Ionanofluids." The primary goal of incorporating MXene nanoparticles with heat 62 

transfer fluids (ionic liquids and base fluids) is to improve their thermophysical 63 



characteristics. Density, viscosity, specific heat capacity, and thermal conductivity are some 64 

of these characteristics to consider. For instance, Agresti et al. enhanced the efficiency of 65 

perovskite solar cells using MXene (Ti3C2Tx), where the authors reported a maximum power 66 

conversion improvement of 26% [4]. MXene based Ionanofluids have the potential to be 67 

employed as heat transfer fluids in photovoltaic thermal systems (PV/T) due to their 68 

fascinating thermophysical and optical properties [5]. Abdelrazik et al. optimized the 69 

performance of a hybrid PV/T system using MXene/water nanofluids that attributed to high 70 

light absorption compared to conventional working fluids [6]. Aslfattahi et al.[7] improved 71 

the efficiency of a solar collector using MXene/Soybean oil, resulting in a thermal efficiency 72 

of 82.66% and a daily yield of 9.07 kWh. Furthermore, Samylingam et al. [8] enhanced the 73 

thermal and energy performance of hybrid PV/T systems utilizing MXene/Olein palm oil 74 

with a maximum improvement of 16% thermal efficiency and 9% heat transfer. These studies 75 

proved that MXene has a significant influence on PV/T systems. Using experimental 76 

techniques and precise laboratory instruments is reliable and accurate results. Hakan et al. 77 

used energy and exergy analysis methods based on the first and second principles of 78 

thermodynamics to examine the performance of porous baffles with varying thicknesses 79 

installed in solar air heaters (SAHs). They evaluated five different types of SAHs and 80 

compared their efficiency. Their findings revealed that SAHs with a thickness of 6 mm and 81 

an air mass flow rate of 0.025 kg/s produce the maximum collector efficiency and air 82 

temperature rise [9]. Unfortunately, the above investigations (experimental approaches) are 83 

time-consuming and expensive, but it is necessary to understand the thermophysical 84 

properties of working fluids (nanofluids or Ionanofluids) for different parameters (varying 85 

concentrations, particle sizes etc.).  86 

Soft computing technologies such as artificial neural networks (ANN), fuzzy logic, and 87 

genetic algorithms have gained popularity to minimize these costs in the last decade. 88 

Artificial Intelligence (AI) enabled neural networks may significantly reduce the amount of 89 

time and money needed to tackle complicated problems across a wide range of fields. Figure 90 

1 depicts the general framework of an evolutionary system for designing and training neural 91 

networks [10]. In recent years, ANN-based models have been increasingly popular for 92 

analyzing the non-linear behavior of Ionanofluid's thermophysical properties in thermal 93 

systems. The use of ANN networks to predict the thermophysical properties of MXene 94 

Ionanfluids for PV/T systems is not widely discussed. Using a genetic algorithm (GA) and 95 

mind evolutionary algorithm (MEA), Wang et al. [11] developed a model to estimate the 96 



thermal conductivity of hybrid nanofluids for waste heat systems. Fatih et al. explored the 97 

effects of a magnetic dipole source on natural ferrofluid convection in a triangular cavity. 98 

They solved the governing equations of a linked multi-physics system using the finite 99 

element method (FEM), and calculations were done for various parameter ranges [12]. 100 

Yang et al. [13] applied an ANN model using Levenberg Marquardt for predicting the 101 

thermal conductivity of mono, binary and ternary nanofluids. For the selected 102 samples, 102 

the maximum absolute error was less than 0.018. Based on the experimental data, Ji et al. 103 

[14] proposed two ANN models, and the relative error is considered for optimizing the size of 104 

the networks. The authors reported a maximum relative error of 1.4% and 3.5% for thermal 105 

conductivity and viscosity of TiO2-Ag hybrid nanofluids, which saved a lot of time and 106 

money. With perceptron feed-forward ANN (FFNN), Tian et al. [15] assessed the thermal 107 

properties of graphene based nanofluids with varying temperature and volume fractions. The 108 

results indicated that ANN's mean square error (MSE) and thermal conductivity correlation 109 

coefficient are on the order of 1.67e-6 and 0.99, respectively. An optimal nanoparticle mixing 110 

ratio is employed by Malika et al. [16] to forecast the thermal conductivity ratio of Fe2O3-111 

SiC/water nanofluid using ANN (multilinear perceptron approach) and RSM (Response 112 

Surface Methodology). Based on their results, the ANN model predicted the Fe2O3-SiC/water 113 

nanofluid's thermal conductivity ratio more precisely than the RSM model. Abidi et al. [17] 114 

investigated the thermal performance of SiO2/EG-water nanofluid in a vacuum tube solar 115 

collector with an ANN model. Temperature prediction using the ANN model resulted in a 116 

maximum error of 7%, and the R2 value was greater than 0.88 for the instantaneous 117 

efficiency of the collector. Bakthavatchalam et al. [18] performed ANN (LM technique) 118 

based modeling using experimental results for thermophysical properties measurement of 119 

MWCNT based nanofluids. With five input layers and the 'n' number of neurons, the R2 value 120 

was almost close to one. Geetha et al. investigated different ANN models with three popular 121 

algorithms that were trained using meteorological data collected over a year from six 122 

different locations in India's hot areas for estimating hourly average global radiation for the 123 

purpose of designing or evaluating PV installations in areas without meteorological data 124 

collection facilities [19] In another study, Hakan and his team used FEM to calculate the 125 

shape impacts of TEG-mounted vented cavities on the performance characteristics of 126 

alumina-water nanofluid convection. They created an ANN model that produced correct 127 

power outputs for all cavity shapes [20]. The same group developed a hybrid approach for 128 

TEG power production in bifurcating channels using a hybrid nanofluid by combining ANN 129 



and CFD. The hybrid ANN + CFD technique reduced the computational time from 6 hours to 130 

3 minutes [21]. Naman et al. used experimental data to create two FFNN models that solely 131 

took into account two properties of MXene materials: thermal conductivity and viscosity[22]. 132 

The same group suggested an ANN method to estimate the dynamic viscosity of MXene-133 

palm oil nanofluid [23]. A similar study to predict thermal conductivity using ANN and the 134 

correlation between the parameters was carried out by Chitra et al. [24]. Based on the 135 

discussed literature, ANN techniques showed fewer errors when compared to the present 136 

correlations. Furthermore, the predicted ANN results of these works were in good agreement 137 

with the experimental results.  138 

 139 

Figure 1: Typical structure of an evolutionary system to design and train ANN [10] 140 

According to the authors' comprehensive knowledge, the literature did not investigate ANN 141 

modeling and parametric analysis of MXene Ionanofluid's thermophysical properties. Most 142 

studies used ANN to anticipate thermophysical properties, but no study attempted to develop 143 

ANN and perform parametric analysis at the same time for MXene materials ionanofluids. 144 

Significantly few methodologies for analyzing the properties of these MXene nanoparticles 145 

have been established. Still, the thermophysical properties behavior and its parametric 146 

analysis of ionanofluids of Mxne materials have not been addressed. Therefore, a new 147 

framework is provided based on ANN and RSM approaches for forecasting the 148 

thermophysical property behavior and parametric analysis of MXene ionanofluids. 149 

Furthermore, previous studies only evaluated one or two properties (i.e. thermal viscosity or 150 

thermal conductivity or both or another property), whereas the current work investigates the 151 

thermophysical behavior of four MXene Ionanofluids properties (viz. viscosity, thermal 152 

stability, thermal conductivity, and specific heat capacity) for hybrid Solar PV/T System 153 



applications. In addition, parametric analysis of these four characteristics is performed in the 154 

current work using RSM.  155 

The present study proposes modelling and optimaztion of MXene Ionanofluids 156 

thermophysical properties for PV/T systems using ANN. An optimized neural network was 157 

created using eight hidden neurons and two inputs (temperature and nanoparticle 158 

concentration) in the ANN structure. The best performing network was selected based on its 159 

high correlation coefficient and low mean square error (MSE). A simple correlation has been 160 

presented using temperature and nanoparticle concentration. The prediction of 161 

thermophysical properties of MXene Ionanofluids was made using ANN; RSM techniques 162 

were applied for the parametric analysis and compared with ANN results for the first time to 163 

MXene Ionanofluids by analyzing the effect of nanoparticle concentration and temperature. 164 

Finally, MSE and the coefficient of determination (R2) are used to validate the model's 165 

performance. 166 

2 Methodology 167 

Figure 2 depicts the overall methodology. This section is structured so that the first phase 168 

addresses the data collected from the experimental results. The second phase includes the 169 

development of the ANN model, and the third phase includes the parametric analysis of the 170 

thermophysical properties of Ionanofluids. 171 



 172 

Figure 2: Flowchart of the proposed methodology 173 

2.1 Data collection 174 

Details on how to synthesize nanoparticles and prepare nanofluids can be found in [5]. The 175 

reported work includes a thorough characterization of the obtained MXene-Ionic nanofluid. 176 

This experimental study is then used to perform data regression using the LM based back-177 

propagation algorithm. The analyzed data was then used to perform modeling of 178 

Ionnanofluid's thermophysical properties. 179 

2.2 ANN model development 180 

ANN is influenced by the human brain, which includes built-in neuron process units which 181 

can process input data and knowledge [25]. Input, hidden, and output layers are part of the 182 

multilayer perceptron neural network. The LM based back propagation neural network 183 

(BPNN) model is used in this work to predict the thermophysical properties of Ionnanofluid 184 

behavior. The input number is two, including temperature (K) and concentration (%), 185 



whereas the output number is one, includes thermophysical property (thermal 186 

stability/viscosity/conductivity/specific heat capacity). The neuron is the fundamental unit of 187 

the neural network. Each neuron weighs and adds input value, then sums to a bias parameter 188 

and passes the sum to a function known as the transition or activation function [26]. The 189 

transfer function calculates the outcome from the input of a neuron. The dataset is split into 3 190 

different sets: train, validate, and test. 70% of the data is train data, the validate data is 15%, 191 

and the test data is 15% are considered. The weight and bias of each neuron are produced 192 

during the training phase. During the training of ANN, parameters are defined, and stop 193 

criteria are defined so that the network can be not overfitted. The selected algorithm used in 194 

the present work is Levenberg Marquardt for training the ANN with a maximum number of 195 

1000 iterations.  196 

The best design of the ANN was chosen according to the lowest difference between the 197 

experimental data values and expected (ANN output) data values. In order to determine the 198 

suitable configuration and assess the output and efficiency of the network, it is best to assume 199 

an average estimate after several iterations, given that splitting input data into three 200 

significant sets is random in every run of the program. Data has been chosen arbitrarily; 201 

several times, a network has been running for each structure. Following permutation, the 202 

most accurate and non-overfitting network architecture was selected. The best ANN 203 

architecture to estimate the thermophysical properties of nanofluid by presented requirements 204 

was with eight hidden neurons, comparing end performance with the optimized architecture 205 

is [2 8 1]. The ANN's model architecture receives variables of the temperature and 206 

concentration as inputs and then estimates thermal physical property using the activation 207 

function. The Levenberg-Marquardt Backpropagation (LMBP) algorithm is then performed 208 

to use the output function, dependent on an ANN estimation and thermal properties 209 

underlying realities. In addition to the weight values and bias variables, the back-propagation 210 

algorithm is used to calculate the Jacobian matrix. The ANN then calculates the output with 211 

adjusted weights and biases [27]. The LM based ANN model is well trained based on the 212 

above iterative processes. In the present work, the thermophysical properties are estimated by 213 

choice of a multilayer neural network. A single input, hidden, and output layer creates a 214 

single ANN. The ANN is built with a single hidden layer to manage the most complex 215 

functions. The multilayer ANN structure with weight links appears in Figure 3. The core 216 

feature of an ANN is the neuron. An LM model is designed to mimic a biological neuron's 217 



actions and functions. The neuron is biased and is added to the weighted inputs of the net 218 

input n, represented in equation (1) [28].  219 

𝑖𝑛 = ∑ 𝑤𝑗𝑖𝑗 + 𝑏𝑚
𝑗=1        (1) 220 

The transfer functions used in this work are 'tansig' and 'purelin' functions. The transfer 221 

functions can be seen in Figure 3. The equations can be defined by equations (2) and (3).  222 

𝑓1 = 2
1 + 𝑒−𝑥⁄        (2) 223 

𝑓2 = 𝑓(𝑥) = 𝑥       (3) 224 

The proposed LMBP neural network output is implemented by the following equation (4) 225 

𝑦 =  𝑓2(∑ 𝑤𝑙. 𝑓1(∑ 𝑤𝑗𝑖𝑗 +𝑚
𝑗=1 𝑏1) +𝑠

𝑘=1 𝑏2)     (4) 226 

where y indicates the total network output. m is the input number, S is the hidden layer 227 

neuron number, and ij is the indicator of ith input. The hidden layer and output layer activation 228 

functions are f1 and f2, respectively. b1 and b2 reflect the neuron biases of the hidden layer and 229 

the output layer. wj is the weight connecting the input and the hidden layer, and wl is the 230 

weight connecting the hidden layer with the output layer. 231 

 232 

Figure 3: Neural network architecture 233 
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The complete learning LMBP can be summarised in three steps: 1) spread the input across 234 

the network, 2) spread the sensitivities backward from the last to the first layer through the 235 

network, 3) Use the estimated steepest descent rules to update the weights and biases. The BP 236 

algorithm is the steepest descent algorithm. LM is derived from the Newton method intended 237 

to minimize the number of functions in a square of non-linear functions. A process of 238 

iteration was used to find the exemplary network architecture. The best architecture was 239 

chosen based on the possible combinations of hidden neurons. The proposed LMBP neural 240 

network with 2 inputs, eight hidden neurons, transfer functions, and one output can be shown 241 

in Figure 4. The performance is checked using Mean squared Error (MSE), a loss function, 242 

and Coefficient of Determination (R2). The MSE and R2 values are calculated using equations 243 

(5) and (6). 244 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦 − 𝑦1)2𝑛

1       (5) 245 

𝑅2 =  1 −
∑ (𝑦−𝑦1)2𝑛

1

∑ (𝑦𝑚𝑒𝑎𝑛−𝑦1)2𝑛
1

     (6) 246 

Where n is the number of data samples, 𝑦 is actual, 𝑦1 is predicted output 247 

 248 

Figure 4: Proposed LMBP neural network 249 

2.3 RSM design matrix development 250 

Design of expert (DOE) v12 was used to develop the design array of response surface 251 

methodology (RSM) for experiments by using the Box Behnken Design (BBD) technique. 252 

RSM is a statistical tool used to determine a regression model for a quantitative data set. It is 253 

also optimized the process for various inputs and outputs at the same time. The three key 254 

steps in RSM are designed experiments, statistical analysis of a mathematical association of 255 

variables and responses, and response prediction [29, 30]. Two factors, three levels, RSM 256 

BBD technique, were used to evaluate the effect of formulating stable nanofluids 257 

concentrations [EMM][OSO4]+DG+MXene (A) and temperature (B) on thermophysical 258 

characteristics of liquid such as viscosity, thermal conductivity, specific heat capacity, and 259 



thermal stability. The range of input variables was taken from previously published work [5], 260 

as shown in Table 1.  261 

Table 1: Input variables range used for RSM experimental array using BBD. 262 

Factor Name Units Type Minimum Maximum Coded Low Coded High Mean 
Std. 
Dev. 

A [EMM][OSO4]+
DG+MXene wt.% Numeric 0.1000 0.4000 -1 ↔ 0.20 +1 ↔ 0.40 0.2923 0.0862 

B Temperature K Numeric 303.00 343.00 -1 ↔ 308.00 +1 ↔ 338.00 323.00 11.90 

DOE designed the array for thirteen experiments with five repeated experiments at central 263 

value. Their experimental response to viscosity, thermal conductivity, specific heat capacity, 264 

and thermal stability are given in Table 2. 265 

Table 2. Experimental design array and their responses. 266 

Std Run 
[EMM][OSO4

]+DG+MXene 
(wt.%) 

Temperature 
(K) 

Thermal 
conductivity 

(W/m.K) 

Specific 
Heat 

Capacity 
(J/(g.K) 

Thermal 
Stability 

wt. loss % 

Viscosity 
(mPa.s) 

1 1 0.2 308 0.521 2.27 0.84979 24.999 
12 2 0.3 323 0.654 2.2 0.58801 18.725 
9 3 0.3 323 0.641 2.18 0.60675 17.527 
10 4 0.3 323 0.651 2.26 0.62545 16.645 
5 5 0.1 323 0.485 2.5 0.56466 13.388 
4 6 0.4 338 0.776 2.38 0.39111 17.523 
8 7 0.3 343 0.773 2.43 0.33931 11.696 
7 8 0.3 303 0.528 2.05 0.76366 31.112 
3 9 0.2 338 0.687 2.55 0.47979 8.1166 
2 10 0.4 308 0.621 1.91 0.74393 34.706 
11 11 0.3 323 0.65 2.19 0.60535 18.255 
6 12 0.4 323 0.711 2.23 0.59285 23.318 
13 13 0.3 323 0.651 2.24 0.64453 16.125 

3 Results and Discussion 267 

This section is split into three subsections. The first subsection presents the findings of the 268 

data analysis for the Ionanofluid's thermal characteristics based on the experimental data 269 

collected. The second subsection covers the suggested LMBPNN modeling performance 270 

of thermophysical properties for MXene nanoparticles. RSM's parametric analysis of the 271 

Ionanofluid's thermal properties is discussed in the third sub-section. 272 

3.1 Data analysis 273 

3.1.1 Thermal stability 274 



Thermal degradation caused by high heat scenarios in thermal systems is one of the primary 275 

causes of heat exchange and lubrication fluid failure. Thermal analysis was performed to 276 

determine the thermal degradation of the as-prepared samples to overcome this. This study 277 

used the experimental data collected during this analysis. Figure 5 depicts a visual 278 

representation of Ionanofluid's thermal stability property. 279 

 280 

Figure 5: Data for thermal stability 281 

3.1.2 Viscosity 282 

The internal resistance can be measured with changes in temperature, pressure, and particle 283 

concentration using viscosity, a fundamental property of liquids. The viscosity of nanofluids 284 

is generally much higher than that of base fluids, and it rises even further when nanoparticles 285 

and ionic liquids are added. Figure 6 depicts the viscosity data visualization collected from 286 

the experimental study. 287 



 288 

Figure 6: Data for Viscosity 289 

3.1.3 Specific heat capacity 290 

The experimental analysis was carried out, and the data was collected. Specific heat capacity 291 

is a fundamental property determining the amount of heat required to raise a substance's 292 

temperature. Figure 7 depicts Ionanofluid's specific heat capacity data. 293 

 294 

Figure 7: Data for Specific Heat Capacity 295 



3.1.4 Thermal conductivity 296 

Thermal conductivity is the measure of a medium's ability to conduct heat that is primarily 297 

determined by the material and temperature. Figure 8 depicts the data visualization of 298 

measured thermal conductivity values during the experiment. 299 

 300 

Figure 8: Data for Thermal Conductivity 301 

3.2 LMBPNN Performance 302 

This section examines the LMBPNN modeling of thermophysical properties for MXene 303 

nanoparticles. The numerical analysis for all these properties is performed first, followed by 304 

the predictions from the network during training, validation, and testing. Different BPA 305 

predictions for four properties are discussed separately. 306 

The LMBPNN models that predict nanofluid's thermophysical properties from the training 307 

dataset, including temperature and concentration, are developed. Figure 9 displays the 308 

correspondence between experimental and predicted thermal viscosity values for training 309 

datasets during the training phase. As can be shown, most data are on or near the bisector, 310 

which shows a good association between experimental data and forecast results. This plot 311 

shows the proximity between the experimental evidence and the outcomes that the ANN 312 

predicts. In Figure 9, the maximal error (error differs from experimental value to forecast) is 313 

significantly less. Furthermore, it is shown that there is a strong agreement with the training 314 

findings. The developed algorithms performed well with overall R2 values of 0.99895, 315 



0.99963, 0.99872, and 0.99783 for the thermophysical properties of a) Thermal Stability, b) 316 

Viscosity, c) Specific heat capacity, and d) Thermal Conductivity, respectively. Based on the 317 

overall R2 values, the current ANN models predicted slightly better thermophysical properties 318 

behavior than previous works [23, 24]. Notably, the current work examined four properties 319 

for analysis, whereas prior efforts only evaluated one or two properties. 320 

Figure 9: Linear Regression plots for all data used in training process a) Thermal Stability b) 321 

Viscosity c) Specific heat capacity d) Thermal Conductivity 322 

Following the training of an LMBPNN neural network, Figure 10 is the histogram of errors 323 

between target values and expected values. Since these error values show if the forecast 324 

values vary from the target values, they should also be negative. Bins are the number of 325 

vertical bars on the chart. Y-axis reflects the number of samples in each dataset. Zero error 326 



line equivalent to zero error value on the error axis (i.e., X-axis). In this case, the zero-error 327 

point is below the 0.0015 central bin. 328 

   329 

Figure 10: Error Histogram plot for training, validation, and testing data a) thermal stability 330 

b) viscosity c) specific heat capacity d) thermal conductivity 331 

Numerical analysis is performed to determine the performance of the developed LMBPNN. 332 

For the LMBPNN accuracy evaluation, the MSE and R2 are used. Equations (5) and (6) are 333 

used to estimate these parameters. The training performance of the LMBPNN models to 334 

predict thermophysical properties with temperature and concentration as inputs is worth 335 

noting. With 8 neurons in the hidden layer, the prediction, i.e., models' prediction, becomes 336 

more fit. Table 3 displays the R2 and MSE values to show how close the experimental and 337 

network values are. If the R2 value is close to one, it means the model predicts the output 338 

more accurately, indicating a good fit between the experimental and predicted values. 339 

 340 

 341 



Table 3: Numerical Performance of LMBPNN 342 

Property 
Performance 
Indicator 

Training Validation Testing 

Thermal 
Stability 

R2 0.999450 0.996191 0.997029 
MSE 1.64563e-4 1.1745e-3 1.56639e-3 

Viscosity 
R2 0.99365 0.99857 0.999734 
MSE 1.5415e-4 3.09301e-4 9.98857e-1 

Specific heat 
capacity 

R2 0.99643 0.997372 0.05628 
MSE 1.09954e-4 1.67250e-4 1.25480e-4 

Thermal 
Conductivity 

R2 0.999356 0.997057 0.997256 
MSE 1.77412e-4 2.48593e-4 2.21032e-4 

Figure 11 shows the plot of the predicted performance of the neural network model for the 343 

given experimental data of thermal stability. The curve matches experimental findings well. 344 

In contrast between actual and expected values, ANN errors are noticed to be small and are 345 

confirmed by an MSE value in the thermal stability estimations. The suggested LMBPNN 346 

should be observed to estimate thermal stability correctly. The use of various neurons in the 347 

hidden layer is the reason for reaching an optimum network. 348 

 349 

Figure 11: Training performance for thermal stability of proposed ANN 350 

Figure 12 depicts the effect of the thermal viscosity estimate on the training, validation, and 351 

testing data sets. The x-axis shows data samples from the data collection, and the y-axis 352 



shows the effects of thermal viscosity estimation. As shown in Figure 12, the LMBPNN 353 

model produces high-precision outcomes, and the validation precision demonstrates that the 354 

approach produced is feasible and reliable. 355 

The prediction of specific heat capacity using the LMBP algorithm is shown in Figure 13. 356 

The predictions are consistent with the results provided by LMBPNN. The model provides a 357 

good agreement and fits between the experimental and network outputs. 358 

The results of the LMBPNN modeling performance for thermal conductivity are shown in 359 

Figure 14. Predicted results are found to be very close to experimental results. The model's 360 

data distribution for training, testing, and validation show fewer deviations, indicating a good 361 

model fitness in output prediction. 362 

 363 

Figure 12: Training performance for viscosity of proposed ANN 364 



 365 

Figure 13: Training performance for Specific Heat capacity of proposed ANN 366 

 367 

Figure 14: Training performance for thermal conductivity of proposed ANN 368 



3.3 RSM statistical analysis 369 

RSM evaluated statistically and graphically the thermophysical parameters of liquids such as 370 

viscosity, thermal conductivity, specific heat capacity, and thermal stability data. ANOVA 371 

analysis showed the significance of the variables and model terms, as shown in Table 4. The 372 

thermal conductivity, specific heat capacity, and thermal stability are modeled using ANOVA 373 

regression analysis. Three statistical tests, such as the model's significance and terms, lack of 374 

fit, and regression test, confirmed the model. The significance of the model and its terms 375 

values were described by a higher F-value and a lower P-value (value of probability). Model 376 

terms with a P-value of 0.05 (confidence level of 95%) are significant and closer to the actual 377 

experimental results. The differences between the measured and predicted value are referred 378 

to as lack of fit, indicating random or systematic data error [31]. The regression test R2 379 

evaluates the predicted model's overall accuracy and fitness for experimental results, with a 380 

range of 0 to 1.0. 381 

A value of 1.0 indicates that the data is close to the actual value and significantly impacts the 382 

response. The Adj-R2 denotes the variation in data that model fitted the data. The value of 383 

Pred-R2 denotes the fitness and quality of model-predicted response data. The difference 384 

between Adj-R2 and Pred-R2 values indicates the model's quality, which should be less than 385 

0.20 [32]. The non-significate model terms account for the more significant gap between Adj-386 

R2 and Pred-R2. The development of 3D graphs and the interaction of operational factors and 387 

their effect on the response is a key component of RSM. Furthermore, the 3D response 388 

surface aids in obtaining intermediate points that could not be obtained by experimentation 389 

[33]. 390 



Table 4: Analysis of variance (ANOVA) and statistics fitness of thermal conductivity, specific heat capacity, thermal stability, and viscosity. 391 

Source 
Thermal conductivity (W/m.K) Specific Heat Capacity (J/(g.K)) Thermal Stability (wt. loss %) Viscosity (mPa.s) 

Sum of 
Squares df 

Mean 
Square 

F-
value 

P-
value 

Sum of 
Squares df 

Mean 
Square 

F-
value 

P-
value 

Sum of 
Squares df 

Mean 
Square 

F-
value 

P-
value 

Sum of 
Squares df 

Mean 
Square 

F-
value 

P-
value 

Model 0.0923 2 0.0462 147.88 < 
0.0001 

0.3300 2 0.1650 43.61 < 
0.0001 

0.2217 2 0.1109 60.33 < 
0.0001 

660.24 5 132.05 118.08 < 
0.0001 

A-
[EMM][OSO4]+DG+MXene 0.0368 1 0.0368 117.87 

< 
0.0001 0.1210 1 0.1210 31.98 0.0002 0.0019 1 0.0019 1.05 0.3291 141.12 1 141.12 126.20 

< 
0.0001 

B-Temperature 0.0555 1 0.0555 177.89 < 
0.0001 

0.2090 1 0.2090 55.23 < 
0.0001 

0.2198 1 0.2198 119.61 < 
0.0001 

475.73 1 475.73 425.42 < 
0.0001 

AB N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 0.0226 1 0.0226 0.0202 0.8910 

A² N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 19.76 1 19.76 17.67 0.0040 

B² N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 31.81 1 31.81 28.44 0.0011 

Residual 0.0031 10 0.0003   0.0378 10 0.0038   0.0184 10 0.0018   7.83 7 1.12   

Lack of Fit 0.0027 6 0.0005 4.77 0.0762 0.0331 6 0.0055 4.68 0.0785 0.0165 6 0.0028 5.90 0.0538 3.14 3 1.05 0.8953 0.5169 

Pure Error 0.0004 4 0.0001   0.0047 4 0.0012   0.0019 4 0.0005   4.68 4 1.17   

Cor Total 0.0954 12    0.3679 12    0.2401 12    668.07 12    

R² 0.9673 0.8971 0.9235 0.9883 

Adjusted R² 0.9608 0.8766 0.9082 0.9799 

Predicted R² 0.9129 0.8204 0.8217 0.9526 

Adequate Precision 35.3329 19.1382 22.0863 35.3415 

Std. Dev. 0.0177 0.0615 0.0429 1.06 

Mean 0.6429 2.26 0.5996 19.40 

C.V. % 2.75 2.72 7.15 5.45 

 392 



3.3.1 Parametric analysis of thermal conductivity 393 

Figure 15 presents the combined effect of temperature and nanoparticles concentration on 394 

thermal conductivity. Model fitness was confirmed statically. The model F-value of 147.88 395 

implies the model is significant, as shown from the analysis of variance (ANOVA) in Table 396 

4. There is only a 0.01% chance that this large F-value could occur due to noise. P-values less 397 

than 0.0500 indicate model terms are significant. In this case, A and B are efficient model 398 

terms. The Lack of Fit F-value of 4.77 implies a 7.62% chance that a large lack of Fit F-value 399 

could occur due to noise. Non-significant Lack of fit is satisfactory to model fitness. 400 

The results show that an increase in temperature and nanoparticles concentration improved 401 

the thermal conductivity, as shown in the 3D response surface and 2D contour graph in 402 

Figure 15. With the increase in temperature, the kinetic energy of the molecules moves faster, 403 

which increases the thermal conductivity of the studied fluid. R², Adjusted R² and Predicted 404 

R² of thermal conductivity were above 0.90, showing reasonable agreement that data is quite 405 

fit model will predict closest to real response value. Adequate precision measures the signal-406 

to-noise ratio. A ratio greater than 4 is desirable. The current model ratio is 35.333 indicates 407 

an adequate signal. This model can be used to navigate the design space. Figure 16a 408 

presented the actual experimental value vs. model predicted value; values are close to the 409 

ideal line. The perturbation plot in Figure 16b shows the positive effect of temperature and 410 

nanoparticles concentration on the thermal conductivity. However, among both inputs, the 411 

temperature has a more positive impact on response as compared to nanoparticles 412 

concentration as it observed that line B (temperature) in the perturbation plot has a steep 413 

slope. The linear equation (Eq 6) in terms of actual factors can be used to predict the response 414 

for given levels of each factor. Here, the levels should be specified in the original units for 415 

each factor. 416 

Thermal conductivity=-1.39061+0.642069A+0.005715B   (6) 417 



      418 

Figure 15: (a) 3D response (b) 2D contour graph of thermal conductivity at combined effect 419 

of temperature (K) and [EMM][OSO4]+DG+MXene (wt.%). 420 

           421 

 422 

Figure 16: (a) Actual vs. predicted (b) Perturbation plot of thermal conductivity at A: 423 

temperature (K) and B: [EMM][OSO4]+DG+MXene (wt.%). 424 

(a) (b) 

(a) (b) 



3.3.2 Parametric analysis of specific heat capacity 425 

The combined effect of temperature and nanoparticles concentration on specific heat capacity 426 

is depicted in Figure 17. A high model Model F-value of 43.61 and low P-values less than 427 

0.0500 indicate model fitness. Both model terms, nanoparticles concentration (A) and 428 

temperature (B), are significant. Lack of Fit was found non-significant due to low F-value 429 

and high P-value of 0.0785 that greater than 0.05 as presented in ANOVA in Table 4. A 430 

specific heat capacity shows that an increase in temperature increases the specific heat 431 

capacity. Due to the temperature rise, the molecules of the fluids start to vibrate and jump to a 432 

higher energy state resulting in increased specific heat capacity. However, nanoparticles 433 

concentration causes a decreased specific heat capacity, as shown in the 3D response (Figure 434 

17a) and 2D contour graph (Figure 17b). The high concentration of nanoparticles in the 435 

studied fluid makes the molecules difficult to jump from a lower energy state to a higher 436 

energy state resulting in decreased specific heat capacity) Figure 18a shows the actual 437 

experimental value vs. model predicted value. The fitness statistics show that R² of 0.8971, 438 

adjusted R² of 0.8766, and Predicted R² of 0.8204. Predicted R² has a reasonable agreement 439 

with the Adjusted R² as the difference is less than 0.2. The perturbation plot in Figure 18b 440 

shows that the nanoparticles concentration (A) has a negative effect on specific heat capacity 441 

response while temperature (B) has shown a positive effect on specific heat capacity. The 442 

mathematical linear correlation equation (Eq. 7) presented the relationship between inputs to 443 

response at any given value within the input range. 444 

Specific Heat Capacity=-0.980293-1.16466A+0.011088B   (7) 445 

 446 



Figure 17: (a) 3D response (b) 2D contour graph of specific heat capacity at the combined 447 

effect of temperature (K) and [EMM][OSO4]+DG+MXene (wt.%). 448 

 449 

Figure 18: (a) Actual vs predicted (b) Perturbation plot of specific heat capacity at A: 450 

temperature (K) and B: [EMM][OSO4]+DG+MXene (wt.%). 451 

(a) 

(a) 

(b) 

(b) 



3.3.3 Parametric analysis of thermal stability 452 

The combined effect of temperature and nanoparticles concentration on thermal stability is 453 

presented in Figure 19. The thermal stability of nanoparticles decreased with the increase in 454 

temperature, as shown from the 3D response and 2D contour graph in Figure 19a and Figure 455 

19b. Nanoparticles evaporate when subjected to heat (high temperature), which decreases 456 

their stability in Ionanofluids/nanofluids. However, the concentration of nanoparticles has a 457 

marginal effect on thermal stability. A linear model represents the relationship between the 458 

response of thermal stability and variable temperature and nanoparticles concentration. The 459 

model was fitted well with its F-value of 60.33 and P-value lower than 0.05. In the thermal 460 

stability case, B temperature was found significant—however, the concentration of 461 

nanoparticles A not significant. Lack of Fit found non-significant, which is good for model 462 

fitness. The Adjusted R² of 0.9082 is reasonably close to the Predicted R² of 0.8217, i.e., the 463 

difference is less than 0.2, as shown in Table 4. The actual vs. predicted value graph shows 464 

reasonable agreement among it as shown in Figure 20a Perturbation plot of thermal stability 465 

at the combined effect of temperature and nanoparticle show negative slow of B temperature 466 

and A nanoparticles concentration in Figure 20b. The signal-to-noise ratio is measured by 467 

Adequate Precision. It is preferable to have a ratio of more than four. The signal-to-noise 468 

ratio of 22.086 for this study suggests a good signal. This model can be used to find your way 469 

through the design space. The linear equation (Eq.8) presented the model as; 470 

Thermal Stability=+4.31524-0.147236A-0.011370B      (8) 471 



    472 

Figure 19: (a) 3D response (b) 2D contour graph of thermal stability at combined effect of 473 

temperature (K) and [EMM][OSO4]+DG+MXene (wt.%). 474 

 475 

Figure 20: (a) Actual vs. predicted (b) Perturbation plot of thermal stability at A: temperature 476 

(K) and B: [EMM][OSO4]+DG+MXene (wt.%) 477 

 478 

(a) (b) 
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3.3.4 Parametric analysis of viscosity 479 

The combined effect of nanoparticles concentration (A) and temperature (B) on viscosity are 480 

shown in Figure 21. Polynomial represented the relationship of response viscosity with 481 

nanoparticles concentration (A) and temperature (B) parameters. The response of viscosity 482 

increases as nanoparticles concentration increases. However, viscosity found decreases as 483 

temperature increases, as shown in Figure 21. The molecules of the fluids get separated or 484 

distanced further when the temperature is increased, attributed to less cohesive force resulting 485 

in decreased viscosity)). The Model F-value of 118.08 indicates that the model is statistically 486 

significant. P-values less than 0.0500 imply that model terms are important. In this case, A, 487 

B, A², B² are significant model terms. The Lack of Fit F-value of 0.90 indicates the Lack of 488 

Fit is non-significant relative to the pure error. Non-significant lack of fit is good and 489 

desirable for the model to fit. The adjusted R² of 0.9799 is reasonably close to the predicted 490 

R² of 0.9526; i.e., the difference is less than 0.2, as shown in Table 4. The actual vs. predicted 491 

value presented a good agreement, as presented in Figure 22a. The perturbation plot of 492 

viscosity shows that both parameters influence the response. However, the temperature is 493 

negative, and nanoparticles positively affect viscosity response, as shown in Figure 22b. As 494 

given below, a polynomial quadratic equation (9) represented the relationship between 495 

response viscosity and nanoparticle concentration and temperature.  496 

Viscosity=+1265.04836-19.73823A-7.22201B-0.050100AB+139.19889A²+0.010384B² (9) 497 



      498 

Figure 21: (a) 3D response (b) 2D contour graph of viscosity at combined effect of temperature 499 

(K) and [EMM][OSO4]+DG+MXene (wt.%). 500 

           501 

Figure 22: (a) Actual vs predicted (b) Perturbation plot of viscosity at A: temperature (K) and B: 502 

[EMM][OSO4]+DG+MXene (wt.%). 503 

Optimized thermophysical properties of thermal conductivity (0.776 W/m.K), specific heat 504 

capacity (2.5 J/g.K), thermal stability (0.33931 wt. loss %), and viscosity (11.696 mPa.s) of 505 

MXene Ionanofluids were obtained at a temperature of 343 K and nanofluids concentration of 506 

0.3 wt.%. These optimized thermophysical properties of MXene Ionanofluids could improve the 507 

(a) 

(a) 

(b) 

(b) 



performance of hybrid solar photovoltaic and thermal systems when MXene Ionanofluids will 508 

use as heat transfer medium. 509 

4 Conclusions 510 

This section concludes with a discussion of the observations based on the results obtained. The 511 

study's findings are utilized to determine if the stated hypotheses are supported, and the study's 512 

research objectives are eventually evaluated. The observations are discussed based on the 513 

performance of the LMBPN models and the parametric analysis of the RSM models. Finally, the 514 

study's contributions are explored by utilizing methodological and analytical perspectives. 515 

• A new predictive network framework for thermophysical properties of Mxene 516 

Ionanofluids is developed using an LMBP training algorithm based on multilayer neural 517 

networks.  518 

• In the first instance, the architecture of the proposed ANN model is shown. The 519 

standardized LMBP algorithms were then learned to produce effective models for 520 

respective thermophysical properties.  521 

• It has been discovered that the hidden neurons in the hidden layer play a crucial role in 522 

precise prediction. The developed algorithms can accurately predict thermophysical 523 

properties in training testing and validation stages. 524 

• The results indicate that the built LMBP network estimates the thermophysical properties 525 

accurately, and the performance demonstrates the viability and efficiency of the 526 

algorithm concerning the accuracy of the estimation. 527 

• RSM model was well fitted to thermophysical properties of MXene Ionanofluids. A 528 

correlation was developed among inputs paraments of [EMM][OSO4]+DG+MXene 529 

concentration (wt.%) and temperature (K) with outputs thermophysical properties of 530 

MXene Ionanofluids. 531 

• Application of MXene Ionanofluids at optimized thermophysical properties could 532 

potentially improve the performance of hybrid solar photovoltaic and thermal systems. 533 

• The suggested framework has dynamic functional importance and can be used in the 534 

future to assist engineers or researchers in evaluating the thermal properties' behavior. 535 



• Furthermore, the obtained results can be used by the academic and industrial 536 

communities to determine the best conditions for synthesizing high efficient MXene 537 

ionanofluids within minimum time in order to enhance the efficiency of PV/T systems. 538 

•  The developed ANN model can not only predict MXene Ionanofluids’ behaviour, but it 539 

can also reduce lab expenditures by eliminating the extraction of experimental findings. 540 

• Additionally, experimentation with other parameters or the same parameters used in this 541 

work with different boundaries are highly advised for an enhanced heat transfer fluid. 542 

• Finally, the suggested Levenberg Marquardt optimized ANN, and RSM based 543 

optimization might serve as useful references for future research of MXene based heat 544 

transfer fluids in PVT systems. 545 
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