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We study the interplay between population imbalance in a two-component fermionic system and nearest-
neighbor interaction using the matrix product states method. Our analysis reveals a parameter regime for the
existence of the Fulde-Ferrell-Larkin-Ovchinnikov phase. Furthermore, we find distinct evidence for the presence
of hidden order in the system. We present an effective model to understand the emergent oscillations in the string
correlations due to the imbalance and show how they can become an efficient tool to investigate systems with
imbalance.
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I. INTRODUCTION

Imbalance in the different intrinsic spin components lies at
the core of systems with finite magnetic moment. It can lead to
a variety of novel quantum phases such as the Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) phase, breached pair (BP) states,
fully paired and partially polarized phases, and phase separated
ferromagnetic regions [1–6] in fermionic systems. On the other
hand, different types of interactions can compete resulting in
structure formation in nature [7,8]. Long-range interactions,
in particular, induce a miscellany of phases in fermionic
systems such as charge density wave (CDW), spin-density
wave (SDW), bond-order wave (BOW), phase separated (PS),
singlet superfluid (SSF), and triplet superfluid (TSF) phases
[9–18]. In addition, it introduces a nontrivial structure in the
system, one particularly being the subtle hidden order which
is revealed by highly nonlocal string correlation functions.
Studies on such correlation functions have revealed interesting
phenomena in both bosonic and fermionic systems with
long-range interactions [19–21]. But what happens when both
imbalance and long-range interactions, nearest-neighbor in
particular, are present in the system? Are there any indications
of the presence of hidden orders in such a system? The rich
interplay between these two parameters in a one-dimensional
two-component fermionic system and the search for finite
nontrivial string correlations are the focuses of this paper.

Recent advances in experiments using ultracold gases have
opened up avenues to simulate two spin-component systems
and introduce population imbalance between them [22]. The
ability to trap and cool fermionic atoms with large magnetic
moment has made it possible to simulate systems with
long-range interactions with controllable magnitude [23–26]
and image them through a quantum gas microscope [27–31]
developed recently. Our results can thus be readily verified
experimentally. In general, the results reveal phases of matter
and increase the understanding of 1D quantum magnetism.

II. MODEL AND METHOD

A system of ultracold two-component fermions in a lattice
with nearest-neighbor interaction can be described by the
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extended Hubbard model (EHM) described by the Hamiltonian

Ĥ = −t
∑

〈i,j〉,σ
ĉ
†
i,σ ĉj,σ + U

∑

i

n̂i↑n̂i↓ + V
∑

〈i,j〉
n̂i n̂j , (1)

where ĉ
†
i,σ (ĉi,σ ) creates (destroys) a fermion with spin σ at

site i, n̂i,↑ = ĉ
†
i,↑ĉi,↑ (n̂i,↓) is the number operator for ↑ (↓)

fermions at site i, and n̂i = n̂i,↑ + n̂i,↓ counts the total number
of particles at site i. The first term is due to the hopping
between neighboring sites, whereas the on-site interaction
between different spins is denoted by the second term. The
third term takes into account the interaction between fermions
on nearest neighboring sites. The above Hamiltonian at half
filling has been extensively studied before, and a rich phase
diagram has been reported to exist, with different correlators
characterizing the respective phases [9,13–18].

In this paper, we proceed in the framework of EHM,
but introduce a finite population imbalance between the two
components. This is characterized by the polarization defined
as P = N↑−N↓

N↑+N↓
, where N↑ and N↓ are, respectively, the total

number of up- and down-spin components in the system. Our
primary goal is to investigate the effects of polarization on
the different phases existing in the balanced scenario and the
emergence of new orders in the system. In contrast, we do
not intend to evaluate the entire phase diagram. Instead, we
select representative points from deep inside various phases
extracted from the phase diagrams of EHM in the balanced
case reported earlier in the literature [9,13–16,18].

Using the matrix product states (MPS) method [32,33],
we simulate a system at zero temperature of size 100 sites
(unless otherwise mentioned to lift the degeneracy), with a
bond dimension of 500, resulting in an error from the total
weight of the discarded states to be less than 10−10. We fix the
filling of spin-up particles to 50 in order to have half filling for
one of the components. The half filling is a very special case
in the lattice because of the symmetric single-particle lattice
dispersion επ/2+k = επ/2−k . Since we are analyzing how the
various states in the half-filled balanced situation change when
spin imbalance is imposed, it is better to retain the half filling
in order to avoid effects caused by the simultaneous breaking
of the particle-hole symmetry in the majority component.
Such essentially exact calculations of the ground state wave
functions and energies are used to evaluate different correlators
needed for our analysis.
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FIG. 1. Schematic representation of the different phases for
the EHM being modified by the presence of imbalance. Here U

and V are the on-site and nearest neighbor interaction energies,
respectively. The diagram shows the emergence of the Fulde-Ferrel-
Larkin-Ovchinnikov (FFLO) phase in the region occupied by singlet
and triplet superfluid phases in the balanced case. Shown are also
the phase separated (PS), charge-density wave (CDW), spin-density
wave (SDW), and bond-order wave (BOW) phases. The appearance
of a finite string correlation is discussed later in this paper. The figure
is an adaptation of the corresponding phase diagram in the balanced
case in Ref. [18].

III. EFFECTS OF IMBALANCE ON DIFFERENT STATES

We begin our analysis by looking at the charge density
wave (CDW) phase which appears in an extended region for

attractive U , repulsive V , and also when both U and V are
repulsive with U � 2V , have alternate sites as doubly occupied
as shown in Fig. 1. This phase is characterized by peaks in the
structure factor of the density-density correlations defined as

SCDW(k) =
∑

r,r ′
eik(r−r ′)(〈n̂r n̂r ′ 〉 − 〈n̂r〉〈n̂r ′ 〉). (2)

For a balanced system, N↑ = N↓, the structure factor is
expected to have peaks at momentum values k ∼ ±π in the
CDW phase at half filling. Figure 2(b) indeed shows such well
defined peaks of SCDW(k). Nonzero values of the polarization
P decrease the value of the peaks at k ∼ ±π , indicating a
decrease in the CDW character in the system as P increases.
This can be attributed to the decrease in the number of one of
the components in the system. The decrease in the peak value
is monotonic in nature as shown in Fig. 2(b).

The spin-density wave (SDW) phase is characterized by the
alternate sites being occupied by up- and down-spin particles.
It shows up in the structure factor of spin-spin correlations,
defined as

SSDW(k) =
∑

r,r ′
eik(r−r ′)(〈n̂d

r n̂
d
r ′
〉 − 〈

n̂d
r

〉〈
n̂d

r ′
〉)
, (3)

where n̂d
r = n̂r,↑ − n̂r,↓ is the difference between spin-up and

spin-down particles at a particular lattice site. In the balanced
scenario at half filling, SSDW(k) is expected to have peaks at
k ∼ ±π , as observed in Fig. 2(c). With the increase in P , we
find this peak value to decrease monotonically. In addition,
a second feature is observed in the form of a small peak or
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FIG. 2. (a) The density-density structure factor, SCDW(k) for different polarizations at U = −2.0, V = 2.0. (b) The monotonic decrease of
the peak value of SCDW at k = ±π shown as a function of the polarization P. (c) The spin-spin structure factor SSDW(k) for different polarizations
at U = 5.0, V = 1.0. Black circles enclose the positions of the second feature in the presence of imbalance. The color coding for the different
polarizations are the same as in (a). Inset shows the momentum values corresponding to the location of the second (bump) as a function
of the polarization P along with the function f (P ) = π (1 − P )(N↑ + N↓)/L. (d) The bond order wave order parameter OBOW for different
polarizations at U = 4.0, V = 2.1. The red diamond denotes the value of OBOW when degeneracy is lifted by using 99 sites in the simulations.
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FIG. 3. (a) and (b) Plot of the pair momentum distribution, Spair(k) as a function of momentum k for different values of P for U = 0.5,
V = −0.5 and U = −1.5, V = −0.25, respectively. The dotted lines indicate the values of the FFLO wave vector, q (see text) corresponding
to the different values of P . Single particle density matrix for spin-up [(c), (e)] and -down [(d), (f)] particles (black curves) with different values
of P for the same set of values of U,V as in (a) and (b). The red lines indicate a power law fit to these curves with the exponent mentioned in
the respective plots.

hump in SSDW(k), as denoted by the black circles in Fig. 2(c).
This secondary feature can be attributed to the imbalance,
and it indicates an additional underlying order appearing
in the system. This can be understood if we consider, for
example, 50 up-spin and 25 down-spin particles. On average,
between every two down-spin particles, there are two up-spin
particles and one empty site, resulting in a period of four
sites and momentum of π/2 for the SDW structure factor.
Thus, the momentum values for these secondary features can
be approximated by the function f (N↓) = 2πN↓/L, which
shows excellent agreement with the actual data points as shown
in the inset of Fig. 2(c).

The bond order wave (BOW) phase appears in the phase
diagram of the EHM for the repulsive U , V regime as shown in
Fig. 1. It is characterized by BOW order parameter defined by

OBOW =
∑

jσ

〈(−1)j (ĉ†j,σ ĉj+1,σ + H.C.)〉. (4)

Figure 2(d) shows the monotonic decrease of OBOW with the
increase of P suggesting the BOW character to decrease with
increasing imbalance. This is caused by the smaller number
of down-spin particles available to bond with the up-spin
particles. Interestingly, the value of OBOW in a completely
polarized case (N↓ = 0) for L = 100 increases compared to a
finite N↓. This behavior can be attributed to the presence of a
large number of degenerate ground states when the number of
lattice sites is even. The degeneracy is lifted when we use an
odd number of lattice sites (L = 99) leading to a very small
value of the OBOW for the fully polarized case, as indicated
by the red diamond in Fig. 2(d).

We now turn our attention to the evaluation of the pair
correlation function in the singlet and triplet superfluid (SSF

and TSF) phases as reported earlier in the literature [9,13–
16,18], defined as ρ

pair
ij = 〈ĉ†i↑ĉ

†
i↓ĉj↓ĉj↑〉. The pair momentum

distribution Spair(k), defined as the Fourier transform of
ρ

pair
ij , indicates the momenta of the Cooper pairs [1,34]. In

the balanced case, the pair momentum has a peak at zero
momentum. Switching on the imbalance leads to peaks for
nonzero values of the momentum as shown in Figs. 3(a)
and 3(b). Such a behavior signals the appearance of the
1D analog of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
phase (Refs. [1,35], and references therein). The nonzero
momentum values corresponding to the peaks in Spair are found
to be approximately equal to the FFLO wave vectors: q �
π (N↑ − N↓)/L = πρP , where ρ = (N↑ + N↓)/L, as shown
by the dotted lines in Figs. 3(a) and 3(c). We also look at
the single-particle density matrix of both spin-up (〈ĉ†0,↑ĉr,↑〉)
and -down (〈ĉ†0,↓ĉr,↓〉) particles to look for 1D superfluid (SF)
signatures corresponding to these (U,V ) values. Figures 3(c)–
3(f) show the existence of long-range correlation, implying
the existence of nonexponentially decaying SF order even
in the presence of imbalance. Previous works have predicted
the presence of the FFLO phase in the population imbalance
systems with attractive U . In Fig. 3(a), we see signatures of
FFLO phase even for repulsive U with V being attractive. It
should be noted that due to nearest neighbor interaction, there
will also be intersite pairing [17].

IV. HIDDEN ORDER

Motivated by recent reports on the connection between
hidden order and gapped phases in EHM [20,21], we look
for it in the region where both U and V are repulsive. Earlier
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FIG. 4. (a) The absolute value of the string correlation with different values of V for U = 5 in the balanced case, showing the emergence
of string order. (b) Schematic diagram to show how string correlation corresponds to the positions of the holes in the ↓ component. In the
balanced case, the string correlation Sstring has a constant value of −1 shown in the top part of the figure. The bottom part shows the presence of
imbalance (N↓ = N↑/2), resulting in the appearance of holes as denoted by blue dashed boxes. The string correlator has nodes corresponding
to the positions of the holes as indicated by the black dotted lines. (c) An effective model of a series of box potentials as seen by a single
↓ component/hole for strong interactions. (d) and (e) Plot of string correlation function for two values of polarization with U = 5, V = 1
and U = 5, V = 5, respectively. (f) The corresponding fast Fourier transforms done on the data to extract the frequencies. (g) Primary peak
positions of the Fourier transforms of the string correlations as a function of spin imbalance along with the function π × (N↑ − N↓)/L.

works on the extended Bose-Hubbard model with bosons in an
optical lattice [19,36] had found long range string correlations
characterizing the Haldane insulator phase. We define the
relevant string correlation function as

Sstring(|r − r ′|) = 〈
δn̂re

iπ
∑r′−1

k=r+1 δn̂k δn̂r ′
〉
, (5)

where δn̂i = n̂i,↑ + n̂i,↓ − 1. Figure 4(a) shows the emergence
of long-range string correlations as V is increased for a fixed
large value of U . An odd number of sites (L = 99) is used to
remove the degeneracy in the ground state. For larger values
of V , the string correlation is seen to approach a finite value
asymptotically, compared to zero for lower values of V , with
the transition occurring close to the SDW-CDW transition at
U = 2V . Spin imbalance creates oscillations in the string order
function but, even more importantly, it induces also a finite
string correlation in systems which had zero string order in the
balanced scenario. We find that the origin of these effects are
in the wave functions of the holes created in the ↓ component,
as explained below.

To understand the connection between the origin of oscilla-
tions in the string correlation and imbalance, we consider a case
for which U < 2V . In the homogeneous balanced scenario,
the system will exhibit CDW nature as shown in the upper
part of Fig. 4(b). This results in a finite string correlation
function. However, removing some ↓ atoms (creating holes)
in a translationally invariant system will create evenly spaced
nodes in the string correlation corresponding to the locations
of the holes, as indicated by the lower part of Fig. 4(b). If
there are N (=N↑ − N↓) equally spaced nodes present in a
system of L sites, then the wave vector of the oscillations
(or the momentum values from the Fourier transform) will
be π (N↑ − N↓)/L. Figure 4(f) shows the Fourier spectra of
string correlations corresponding to Figs. 4(d) and 4(e) in
the presence of imbalance. Figure 4(g) shows the primary

momentum values of the oscillations as a function of the
imbalance, and it does show a remarkable conformity with
the above scaling. The scaling π (N↑ − N↓)/L was derived
here assuming localized holes as in the lower part of Fig. 4(b).
However, localized holes would result in broad Fourier spectra,
unlike the narrow peaks observed in Fig. 4(f).

In order to go beyond localized holes, we now present an
effective single-component model. Due to nearest neighbor
repulsion between the half-filled lattice of ↑ atoms, the ↑
atoms arrange themselves in a crystal order with alternating
occupied/empty sites. Since the interaction is strong, the ↑
atoms are well localized, and consequently the ↓ atoms feel an
effective static potential in which every odd site has an energy
shift U and every even site shift 2V . In practice, this translates
into an alternating potential with wells of depth U − 2V as
shown in Fig. 4(c). This potential landscape results in a two-
band structure in the single-particle excitation spectrum of ↓
atoms (for details, see the Appendix ). In a balanced system,
in which the ↓ component is half filled, the lower band is fully
filled while the upper band is completely empty.

When spin imbalance is introduced, the first created hole
is in the highest lying state of the lower band. This hole has
a slowly oscillating probability distribution with wavelength
equal to twice the size of the system (for details, see the
Appendix ). Thus the node that in the above simple picture
would have been located at the center of the lattice, is now
replaced by a hole that has probability distribution spread over
the whole lattice, but the maximum is still at the center. This
smooth spreading with the wavelength of twice the system size
is intuitive as the behavior of a particle in a box [combined
with the fast every-second-site modulation coming from the
effective potential of Fig. 4(c)]. Increasing the spin imbalance
will create more holes with faster oscillations, resulting in
the Fourier spectra seen in Fig. 4(f). In addition to the
dominant oscillations, the hole wave functions will also have
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contributions from states with finite probabilities of finding the
particle in the effective barriers depicted in Fig. 4(c). These
manifest as rapidly oscillating Fourier components, seen also
as minor secondary peaks at high momenta (larger than π/2)
in Fig. 4(f).

The string correlator is thus sensitive to correlations be-
tween doublons and/or empty sites. Spin imbalance produces
interesting effects, as it involves creating more empty sites in
the SDW phase or removing doublons in the CDW state. In a
homogeneous system it shares many properties with the CDW
and SDW correlators. However, the phase factor eiπ�kδn̂k in
the definition of Sstring, instead of the factor eikr in a Fourier
transform, allows more flexibility for the correlations between
doublons and/or empty sites. This makes it possible to detect
orderings that would otherwise remain hidden.

V. CONCLUSIONS

To conclude, we have studied a system of two-component
fermions in the presence of nearest-neighbor interactions
described by the EHM. The introduction of spin imbalance
has interesting effects on the various phases of the EHM. The
CDW, SDW, and BOW phases decrease in their respective
orders with the increase in polarization. An additional order
appears in the SDW with the onset of imbalance. In the SSF and
TSF phases, we observe formation of Cooper pairs with finite
momentum. We find an extended region for which the FFLO
phase persists in the presence of finite polarization. Finally,
we find finite hidden order in the system. Imbalance brings in
oscillations to the string correlations, even when there is no
long-range string order in the balanced system. Our in-depth
analysis shows that the string correlator can be a powerful
tool when analyzing hole and doublon correlations in lattice
systems. Our results show that the interplay of spin population
imbalance and long-range interactions leads to rich physics,
especially concerning exotic paired phases and hidden order.
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APPENDIX A: THE EFFECTIVE MODEL
FOR HOLES IN A LATTICE

The potential landscape as shown in Fig. 4(c) of the main
text results in a two-band structure in the single-particle
excitation spectrum of ↓ atoms as shown in Fig. 5. The
spectrum has been calculated using an exact diagonalization
code. Note that the same effective model holds also for the
case U > 2V , but then sites occupied by the ↑ atoms become
barriers and empty sites become wells for the ↓ atoms. In a
balanced system, in which the ↓ component is half filled, the
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FIG. 5. The plot of the energy spectrum from the exact diago-
nalization code for a single particle in a series of box potentials. It
clearly shows two bands with a gap between them.

lower band is fully filled while the upper band is completely
empty.

When spin imbalance is introduced, the first created hole is
in the highest lying state of the lower band. The wave function
of this hole created will be related to the wave function of the
highest state in the lower band. A closer analysis (together with
the particle-hole transformation presented later) shows that this
hole wave function has the same low frequency component as
the ground state wave function as shown in Fig. 6. It thus
explains the low frequency behavior of the string correlation
oscillations for smaller number of holes compared to a larger
number of holes in the system.

APPENDIX B: REDUCING THE MODEL
TO A SINGLE BAND

Since the higher band of the two-band model plays no role,
we will here consider a simple single-band model. This implies

k
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F
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T
 o

f |
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FIG. 6. Fast Fourier transform (FFT) of the absolute value of
the ground state and the highest state in the lower band (which is
the hole wave function) showing that they have the same frequency
component.
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a homogeneous lattice without any barriers, thus reducing our
system size considered in the previous section from 100 to
50. Let us now perform the particle-hole transformation in the
one-dimensional Hubbard model for noninteracting particles,
given by

Ĥ = −t
∑

〈i,j〉,σ
ĉ
†
i,σ ĉj,σ + H.c. (B1)

We restrict our calculations to a single particle, hence we
get rid of the spin index. We first go to the momentum basis to
get the energy eigenvalues for the particle:

ĉk = 1√
N

N∑

l=1

eikl ĉ
†
l , (B2)

where N is the number of sites. Such a transformation will
diagonalize the Hamiltonian in the momentum basis

Ĥ = −2t
∑

k

cos(k)ĉ†kĉk =
∑

k

εkĉ
†
kĉk, (B3)

where εk = −2tcos(k) denotes the dispersion relation, with
the allowed momentum values given by kn = πn/N , with
1 � n � N . The energy eigenvalues are thus given by λn =
−2tcos(nπ/(N + 1)), and the eigenvectors in the position
basis are given by Vn = (sin nπ

N+1 ,sin 2nπ
N+1 , · · · ,sin nNπ

N+1 ). The
ground state and the highest eigenstate for the particle are
shown in Fig. 7. Note that the system is finite, so instead
of simply a homogeneous density for the ground state, as
in an infinite lattice for k = 0, there is a modulation with
wavelength of twice the system size. For the highest state
in the band, this modulation is the same but overlayed with
the rapid oscillations related to the highest momentum in the
band. Similar considerations would apply for hole densities in
an infinite system.

We now perform the particle-hole transformation:

ĉi = (−1)i ĥ†
i , (B4)

where h† is the creation operators for the holes. Such a
transformation also divides the system into a bipartite lattice,
with the odd sites getting an extra phase. This transformation
will lead to a similar Hamiltonian as for the particles

Ĥholes = −t
∑

〈i,j〉,σ
ĥ
†
i,σ ĥj,σ + H.c. (B5)

with a similar energy dispersion relation, εk = −2tcos(k).
Now the hole is created by removing the particle from the

highest lying state in the original problem. This is the same
as adding one hole in the particle-hole transformed system,
and the wave function of the hole will be similar to that
of the ground state in the original problem. But because of
the bipartite lattice, every alternate site will acquire an extra
negative sign, resulting in that the hole wave function to be
oscillating with the same large wavelength (smaller momenta)
as the ground state wave function of the particle but superposed
with a rapid sign changing modulation, as shown in Fig. 7.
The string correlator studied in the main text involves density
operators n̂iσ = ĉ

†
iσ ĉiσ , and the correlator is thus sensitive to

the density distributions. Hence the rapid phase modulations
in the hole wave functions are not observed. This is precisely
the reason why we observe lower momenta in the Fourier
transform of the string correlator when we have a lesser number
of holes.
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