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A B S T R A C T   

Today, high-quality reference tree measurements, including the position, diameter, height and volume, are 
cumbersome and slow to carry out, but highly needed for forest inventories based on airborne laser scanning. 
Mobile laser scanning technologies hold the promise for collecting reference data for forest inventories with an 
extremely high efficiency. Perhaps, the most efficient approach for reference data collection would be to mount a 
high-resolution laser scanning system on board an airborne vehicle flying at a low altitude above the forest 
canopy since this would allow recording reference samples of individual trees with the speed of flight. To 
demonstrate the potential of this technology, we mounted an in-house developed HeliALS-DW laser scanning 
system on board a helicopter and collected point cloud data in a boreal forest on three test sites containing a total 
of 1469 trees. The obtained point clouds incorporated sufficiently many high-quality stem hits for estimating the 
stem curves and stem volumes of individual trees since the point clouds had a relatively high point density of 
2200–3800 echoes/m2, and the scanner had been tilted by 15◦ from the nadir to increase the possibility of 
recording stem hits. To automatically estimate the diameters at breast height (DBH) and stem curves of indi
vidual trees, we used algorithms designed to tolerate moderate drifts in the trajectory of the laser scanner. 
Furthermore, the stem volumes of individual trees were computed by using the estimated stem curves and tree 
heights without any allometric models. Using the proposed methods, we were able to estimate the stem curves 
with a root-mean-square error (RMSE) of 1.7–2.6 cm (6–9%) while detecting 42–71% of the trees. The RMSE of 
stem volume estimates was 0.1–0.15 m3 (12–21%). We also showed that the tree detection rate could be 
improved up to 87–96% for trees with a DBH exceeding 20 cm if slightly larger average errors for the stem 
attributes were allowed. Our results pave the way for using high-resolution airborne laser scanning for field 
reference data collection by conducting direct measurements of tree stems with a high efficiency.   

1. Introduction 

Forest provides economical, ecological and social benefits to 
humans, such as timber, biofuel, climate regulation, water supply and 
regulation, air purification, erosion control, habitat for biodiversity, and 
many other ecosystem services. As an example, the EU’s forest sector 
accounts for 10% of global annual carbon sinks (EU commission, 2021) 
and forest is home to more than 80% of the terrestrial biodiversity 
within the EU region (IUCN, 2021). Furthermore, the EU’s forest sector 
employs 22 million people and accounts for an annual turnover of 2 

trillion euros in bioeconomy (Future of the European Forest-Based 
Sector, 2018). These ecosystem services are, unfortunately, competing 
and even conflicting with each other. For example, the abundance of 
dead wood is considered to be an indicator of forest biodiversity, since 
many threatened species are dependent on decaying wood as a habitat. 
However, dead wood is also a slow carbon source. Thus, there is an 
urgent need for tools to optimize the forest value chain on a societal 
level. 

Forest data is typically collected with forest inventories, the objec
tive of which is to provide the fundamental information for all decision- 
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making concerning forest industry and uses of forests relevant to human 
interventions, such as harvest planning and natural conservation. In the 
Nordic countries, forest inventory is performed at the national scale with 
the help of airborne laser scanning (ALS) measurements providing the 
knowledge of average forest resources both at the country, regional, and 
stand levels (Næsset et al., 2004; Kangas et al., 2018). The stand level 
information incorporates mean or sum values of the main forest attri
butes for, e.g., 16-m-by-16-m-size raster cells. This area-based predic
tion provides adequate data for most of the decision making, but there is 
also a clear trend indicating that individual tree maps are needed in the 
future. If properly calibrated, such maps can contribute to multiple 
benefits that may include, for example, more accurate forest inventory 
data, improved digital and electronic wood trade, assistance in certifi
cation of wood origin, improved estimation of the value of forest, and 
assistance of forest harvesters in their localization and information 
support. The possibility of constructing large-scale individual tree maps 
is currently mainly limited by the lack of accurate field reference data at 
the individual tree level, whereas methods for estimating attributes of 
individual trees from ALS data have been known since 1999 (Hyyppä 
and Inkinen, 1999; Wang et al., 2016; Zhen et al., 2016). Reference data 
containing information of, e.g., stem diameters, stem volumes and tree 
heights of individual trees would be required for calibrating the models 
designed for estimating individual tree attributes from the nation-wide 
ALS data. 

There are several technologies to provide field reference data of in
dividual trees, such as pseudolite technology using triangulation com
bined with manual measurements, data collected with a harvester head 
during the chopping of wood, smartphone-based crowdsourcing (Tom
aštík et al., 2017), terrestrial laser scanning (TLS) (Simonse et al., 2003; 
Bienert et al., 2007; Raumonen et al., 2013; Liang et al., 2016), personal 
laser scanning (Chen et al., 2019; Balenović et al., 2021) and mobile 
laser scanning (MLS) (Hyyppä et al., 2020a) mounted on board a 
harvester (Miettinen et al., 2010), an all-terrain vehicle (ATV) (Liang 
et al., 2014a), a backpack (Oveland et al., 2018), or an unmanned 
aircraft vehicle (UAV) (Wallace et al., 2012; Hyyppä et al., 2020b). 
Especially TLS has been studied extensively during the past decade 
thanks to the high-quality point clouds that can be collected with the 
TLS system. As a downside of TLS, it takes a long time to collect 
location-aware reference data for a large number of trees. Mobile laser 
scanning technologies hold the promise of collecting reference data with 
one or multiple orders of magnitude higher speeds than is possible with 
TLS. Most likely, the fastest approach for reference data collection would 
be to mount a laser scanner on board a UAV or a helicopter flying 
relatively low above the forest canopy. With such an approach, it would 
be feasible to measure up to tens of thousands or even hundreds of 
thousands of reference trees within a single day. 

In addition to the swiftness of data collection, the accuracy of the 
field reference data is crucial. In the following, we focus on stem volume 
estimation since the stem volume is not only one of the most important 
tree attributes, but it is also rather difficult to estimate accurately with 
currently available technologies. In boreal forest conditions, TLS has 
been shown to enable stem volume estimation with a relative root-mean- 
square error (RMSE) of approximately 10% (Liang et al., 2014b) pro
vided that the tree tops are not occluded in the data. Recently, Shimizu 
et al. (2022) showed that a combination of TLS data and UAV laser 
scanning (UAVLS) data improves the RMSE of stem volume estimation 
down to 10% even though the forest canopy would be occluded in the 
TLS data. In the field of MLS, the first studies providing stem volume 
estimates of individual trees reported relative RMSE ranging approxi
mately from 20% to 50% in easy and medium difficult boreal forest 
conditions (Liang et al., 2018, Liang et al., 2019; Bienert et al., 2018). 
Importantly, such a large average error is not satisfactory for operational 
field reference data collection, for which a relative RMSE of approxi
mately 10% would be required. Recently, we have shown that the stem 
volume of individual pine and birch trees can be estimated with a 
relative RMSE of approximately 10% from 3D data collected with a 

multitude of MLS systems, including backpack, handheld and 
under-canopy UAV systems (Hyyppä et al., 2020a; Hyyppä et al., 2020b; 
Hyyppä et al., 2020c; Hyyppä et al., 2021b). The key improvements 
enabling such a low average error included the use of stem curve in
formation to compute the stem volume estimates and the development 
of point cloud processing algorithms that were robust against moderate 
positional drifts in the estimated trajectory of the mobile laser scanner. 

To the best of our knowledge, there has been only one previous study 
on deriving stem curves of individual trees from point clouds collected 
by airborne platforms even though this was proposed by Jaakkola et al. 
already in 2017 (Jaakkola et al., 2017). In 2019, Liang et al. (2019) 
concluded that the errors of stem curves estimated from UAVLS data 
were far higher than those obtained from TLS or MLS data, or even those 
obtained with conventional individual-tree-based estimation (Hyyppä 
and Inkinen, 1999). A slightly higher number of studies have investi
gated the feasibility of measuring the diameter at breast height (DBH) 
directly from dense UAVLS point clouds (Jaakkola et al., 2017; Brede 
et al., 2017; Kuželka et al., 2020; Wieser et al., 2017; Vandendaele et al., 
2021). Here, direct diameter measurements mean that the stem diam
eter was obtained by fitting a circle or a cylinder to the point cloud data, 
whereas the conventional approach is to predict the DBH from the tree 
height and other canopy-related tree attributes extracted from the ALS 
data (Hyyppä and Inkinen, 1999; Yu et al., 2011; Hao et al., 2021). Puliti 
et al. (2020) utilized UAVLS point cloud data to conduct semi-manual 
DBH measurements on a small subset of the trees to train a random 
forest model for predicting the DBH of the remaining trees from crown 
attributes estimated from the same UAVLS data. The predicted DBH 
values and estimated tree species information were further used to 
compute the total stem volume at the plot, stand, and forest levels. 

In this paper, we show for the first time that the stem curves of in
dividual trees can be estimated with a high accuracy by using direct and 
automatic measurements from relatively dense (2200–3800 pt/m2) 
point clouds collected with an airborne laser scanner mounted on a 
helicopter. Our work can be viewed as an extension to our previous 
studies, in which we have assessed the accuracy of direct stem curve 
measurements from point cloud data collected by an under-canopy 
flying UAV (Hyyppä et al., 2020a; Hyyppä et al., 2020b). As compared 
with the under-canopy measurements, more expensive sensors were 
required in this study for obtaining high-quality measurements of the 
stems. Namely, the point spacing and beam size must be sufficiently 
small to enable direct measurements of the stems, but both of these 
properties deteriorate as a function of the range due to laser beam 
divergence and insufficient point spacing. The direct stem curve mea
surements from an above-canopy platform are advantageous since the 
point cloud is already georeferenced thanks to a strong Global Naviga
tion Satellite System (GNSS) signal and other characteristics of the tree 
crowns can be easily derived from the same data. Importantly, the 
proposed approach also enables the collection of reference data with a 
rate that is up to several hundred times faster than what can be achieved 
with multiscan TLS measurements. As pointed out in Puliti et al. (2020), 
it is not necessary to estimate the stem curve for all of the trees at a given 
test site to use the results as a field reference data set. Thus, we have 
designed our algorithms to detect only such trees, for which the stem 
curve can be estimated with a low RMSE of 5–10%. In this paper, we 
analyze the completeness rate of stem detection and errors of stem 
curves, DBHs and stem volumes estimated for such reference trees. The 
accuracy of tree height measurements from ALS data has already been 
studied before (see e.g., Hyyppä and Inkinen (1999), Wallace et al. 
(2014), Jaakkola et al. (2010), and Wang et al. (2019)), and, therefore, 
we do not investigate this matter in the current study. 

2. Material and methods 

2.1. Scenarios for stem attribute estimation from ALS data 

In this paper, we studied two scenarios for ALS-based stem attribute 
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estimation. In the first scenario named as high-quality trees, we aimed to 
detect only those trees, for which we could estimate the stem attributes 
with a high accuracy. These trees are aimed to be used as a training data 
set for ALS-based forest inventories. Such inventories require a large 
number of accurately measured reference trees, which are convention
ally obtained by manual field measurements. In the second scenario 
named as as many trees as possible, we aimed to detect as many stems as 
was possible with the cost of increased average errors in the estimated 
stem attributes. This scenario corresponds to conducting a small-scale 
forest inventory at the individual tree level for medium-sized and 
large trees. By finding almost all of the trees, the bias of ALS-based in
ventories can be reduced. The obtained map of tree locations can also be 
useful for point cloud registration purposes (Hyyppä et al., 2021a). As 
explained in Sec. 2.5, the results of the two scenarios can be obtained 
with the same algorithm but with different parameter values. In Sec. 3.3, 
further discussion regarding the applications of the two scenarios are 
provided based on the accuracy of the obtained results. 

2.2. Test area 

The study was conducted on three test sites that were located in the 
Southeastern part of Finland in the Lappeenranta region (61◦03′ N 
28◦11’ E). The study area was located in a managed forest in the boreal 
forest zone, and Norway spruce (Picea abies) was the dominant tree 
species on all of the three test sites. A large majority of the spruces at the 
test sites were mature, and therefore, the lower parts of their trunks were 
not severely occluded by branches or needles as can be seen from Fig. 1 
that shows photographs of the test sites 1 and 3. 

We provide detailed descriptive statistics of the trees located at the 
test sites in Table 1. Importantly, the statistics are based on stem attri
butes estimated from point cloud data collected with a handheld ZEB 
Horizon scanner (GeoSLAM, UK). A handheld laser scanner was selected 
to provide the field reference data, since we needed high-quality stem 
curves for a large number of reference trees (See Sec. 2.6 for details). In 
total, the three test sites of the study covered an area of approximately 
2.2 ha and incorporated in total of 1469 trees. The average number of 
stems per hectare was 690 stems/ha within the study site 1, 470 stems/ 
ha within the site 2, and 1000 stems/ha within the site 3. The stem 
densities varied significantly within each test site, and, for example, the 
local stem density within the site 3 varied between 320 stems/ha and 
2400 stems/ha. 

2.3. Acquisition of dense airborne laser scanning point clouds 

To collect dense airborne laser scanning point clouds of the forests on 
the three test sites, we used a FGI-developed laser scanner system known 
as HeliALS-DW that was mounted on a helicopter. A similar system 
could be mounted on a UAV as well. Relevant qualities of the laser 
scanner system have been summarized in Table 2. The HeliALS-DW 
system incorporated a Riegl VUX-1HA scanner (Riegl GmbH, Austria) 
and a GNSS-IMU positioning system based on a LITEF UIMU-LCI inertial 

measurement unit (IMU), a NovAtel Flexpak6 GNSS receiver and GGG- 
703 antenna. The ALS measurements were conducted individually for 
each test site in October 2020. For each test site, the flight trajectory of 
the helicopter was planned to consist of multiple perpendicular flight 
lines forming a 2D rectangular grid with a flight line separation of 50 m. 
The flight speed of the helicopter was 9.5 m/s, whereas the flight alti
tude was approximately 80 m above the ground level corresponding to 
50–60 m above the forest canopy. See Fig. 2(a) and (b) for a schematic 
illustration of the measurement principle. 

The VUX-1HA laser scanner used in the study had a pulse rate of 
1017 kHz and it provided 200 scan lines per second. These qualities 
resulted in an angular resolution of 1.2 mrad corresponding to a point 
spacing of 98 mm at a range of 80 m. Based on the average flight velocity 
of the helicopter, the spacing between consecutive scan lines was 48 
mm. Importantly, the scan planes were intentionally tilted 15◦ forward 
with respect to the vertical direction in order to increase the possibility 
to record stem hits as illustrated in the schematic of Fig. 2(a). 

Fig. 1. Photographs taken within (a) the test site 1 and (b) the test site 3. Both of the illustrated test sites were covered by a spruce forest.  

Table 1 
Descriptive statistics of the trees located on the three test sites. The statistics are 
based on stem attributes estimated from point cloud data collected with the 
handheld ZEB Horizon laser scanner (see Sec. 2.6). We report the standard de
viation for DBH, tree height and stem volume within the parentheses. For stem 
density, we report the minimum and maximum values within each test site, 
respectively.  

Test 
site 

Number 
of trees 

Area 
(ha) 

Stem 
density 
(1/ha) 

Mean 
DBH 
(cm) 

Mean 
tree 
height 
(m) 

Mean stem 
volume 
(m3) 

1 421 0.6 690 [130, 
1400] 

24.8 
(±7.3) 

21.1 
(±4.3) 

0.64 
(±0.39) 

2 423 0.9 470 [65, 
970] 

28.5 
(±6.1) 

22.1 
(±3.8) 

0.89 
(±0.36) 

3 625 0.7 1000 
[320, 
2400] 

21.9 
(±6.2) 

18.2 
(±4.1) 

0.44 
(±0.29)  

Table 2 
Technical specifications of the airborne laser scanning system used for this 
study.  

Property Value 

Scanner Riegl VUX-1HA 
Altitude AGL (m) 80 
Flight speed (m/s) 9.5 
Beam divergence (mrad) 0.5 
Beam footprint (cm) 4 
Pulse rate (kHz) 1017 
Scan line rate (Hz) 200 
Point spacing (cm) 9.8 
Separation of scan lines (cm) 4.8 
Resulting point density (echoes/m2) 2200 − 3800  
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2.4. Pre-processing of dense point clouds 

Several pre-processing steps were required to transform the raw 
HeliALS-DW data into a point cloud in the global coordinate system. 
First, we estimated the trajectory of the scanner during the measure
ments using Waypoint Inertial Explorer (version 8.90, NovAtel Inc., 
Canada) and nine virtual GNSS base stations from Trimnet service 
(RINEX 2.11). The GNSS base stations were situated at each of the test 
sites and at the airfields, where the helicopter took off and landed. Thus, 
the base stations were located over a region with a radius of 40 km. The 
differential GNSS solution was obtained by using GPS and GLONASS 
constellation satellites, and multi-pass tightly coupled computing with a 
satellite elevation threshold of 12◦. During the measurements, the mean 
number of observed satellites was 12.8. The outputted trajectory was 
estimated to have a planimetric mean error of 6 mm and a mean 
elevation error of 9 mm. The estimated mean attitude errors were 0.12, 
0.12, and 0.36 arcmin. The sampling rate of the output trajectory data 
was 200 Hz. 

Subsequently, we used RiProcess software (version 1.8.8, Riegl 
GmbH, Austria) and its MTA and RiPrecision utilities to process the raw 

VUX-1HA lidar data into the point cloud format with the help of the 
obtained trajectory. Note that the trajectory and the point could ge
ometry were further improved and optimized in the process. As the first 
step, a scan alignment tool was used to solve for the boresight 
misalignment between the laser scanner and the IMU. As a result, the 
residual alignment error corresponding to a 3D standard deviation was 
estimated to be 66 mm based on 111015 correspondence planes found 
from the point cloud data. Subsequently, dynamic trajectory drifting 
was removed from the trajectory with the help of the multi-pass lidar 
data. As a result of this step, the positioning of the trajectory was 
improved on average by less than a millimetre in plane and about 7 mm 
in elevation. The corresponding average attitude corrections were 
0.007, 0.007 and 0.002 arcmin for the roll, pitch and heading angles, 
respectively. After these optimization steps, the residual 3D error (STD) 
for the whole point cloud data was estimated to be 51 mm based on 
195178 automatically detected planar features. The final point cloud 
product was exported in LAS 1.2 format for further processing. Points 
with reflectance values lower than −25 dB or higher than 5 dB were 
removed from the final point cloud. In Figs. 2(c) and Fig. 3, we illustrate 
the obtained point cloud products after the pre-processing steps. 

Fig. 2. Schematic illustration of the measurement 
principle and the resulting point cloud data. (a) The 
point cloud data was collected using a Riegl VUX-1HA 
scanner mounted on a helicopter flying 80 m above 
the ground level. The laser scanner was tilted 15◦

forward with respect to the vertical direction for 
improved stem sampling. (b) The test sites were 
covered using flight lines that formed a square grid 
pattern. (c) The resulting point cloud after the pre- 
processing steps from a small region within the first 
test site. (d) Point count as a function of the height 
from the ground level for an example tree. The point 
count was computed using 1-m height intervals by 
considering points located within a distance of 1 m 
from the example tree. (e) A close-up to the stem of 
the example tree. (f) Cross section of the stem in panel 
(e) in the height interval z ∈ [1.5, 2.5] m above the 
ground level. Note the remaining distortion in the 
pre-processed point cloud that is due to combining 
data from several flight lines.   
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The point density in the final point cloud, including all laser echoes, 
was 3800 pt/m2 within the site 1, 2200 pt/m2 within the site 2, and 
2900 pt/m2 within the site 3. The minimum point density within any of 
the test sites was 800 pt/m2, whereas the maximum point density was 
6000 pt/m2. Importantly, the point clouds contained a sufficiently high 
number of stem hits enabling direct estimation of stem attributes. In 
Fig. 2(d), we show the point count within 1-m height intervals as a 
function of the height from ground for an example tree within the site 1. 
Even though the majority of the points were reflected from the forest 
canopy, we see from the figure that the number of stem hits exceeded 
100 for each 1-m height interval in the range of z ∈ [1.0, 10.0]; m. As can 
be seen from Fig. 2(e), the number of stem hits is sufficient for the stems 
to be clearly visible in the point cloud data, and thus, it is possible to 
directly estimate many important stem attributes, such as the stem 
curve, from the ALS point clouds. 

2.5. Algorithms for the direct estimation of stem attributes 

To obtain direct estimates of the stem curves, DBHs, and stem vol
umes of individual trees from the ALS point clouds, we used an algo
rithmic work flow that is fully automatic and illustrated in the flow chart 
of Fig. 4. As the first step of the work flow, the digital terrain model 
(DTM) was generated and the point clouds were normalized by sub
tracting the ground level from the z-coordinates of all the points. Sub
sequently, watershed segmentation was applied to divide the point 
clouds into smaller regions with the goal to reduce the running time of 
the stem detection algorithm. In the next step, the stems of individual 
trees were detected and their stem curves were estimated using an al
gorithm closely resembling the method that we have utilized previously 
to estimate stem curves from point cloud data collected with ground- 
based mobile laser scanning systems (Hyyppä et al., 2020b; Hyyppä 
et al., 2020c). Finally, the heights of the detected trees were determined, 
and the combined information of tree heights and stem curves was used 
to estimate the stem volume for each detected tree. We used Matlab to 
implement all the point cloud processing algorithms. 

In the following subsections, we provide a more detailed description 
of the algorithms that were used for the stem attribute estimation. 
However, we aim to keep the descriptions concise since the algorithms 
are relatively similar to those that we have utilized in our previous work 
for stem attribute estimation from point cloud data collected with 
ground-based MLS systems (Hyyppä et al., 2020b; Hyyppä et al., 2020c). 
However, we emphasize the key differences that are required to obtain 

accurate stem attribute estimates from the collected high-resolution ALS 
point clouds that have a far lower point density than typical point clouds 
collected with ground-based MLS systems. 

2.5.1. Digital terrain model generation and preliminary watershed 
segmentation 

The DTM was determined by utilizing a voxel-based method. In the 
method, the xy plane was divided into square-shaped pixels with a side 
length of 2.0 m, and the z axis was partitioned into 25 equispaced height 
intervals between the minimum and maximum z coordinate within the 
point cloud. For each xy pixel, the preliminary ground level was eval
uated by computing the mean z coordinate of points located within the 
lowest height interval that contained at least 0.5% of the total number of 
points within the xy pixel. The final DTM was obtained by filtering the 
preliminary DTM with a Gaussian kernel having a size of 5-by-5 pixels 
and a standard deviation of 1.5 pixels in both the x and y directions. 
After computing the DTM, the z-coordinates of all the points were 
normalized by subtracting the ground elevation. 

To reduce the running time of the stem detection algorithm, we 
divided the point clouds into smaller regions by applying the watershed 
segmentation algorithm for the canopy height model (CHM) multiplied 
by −1. The CHM was estimated by determining the maximum z-coor
dinate within each xy pixel followed by Gaussian filtering. For the 
watershed segmentation, we used the watershed-function in Matlab, and 
therefore the segmentation was based on an algorithm by Meyer (1994), 
and the seeds were found with a local minimum search. As the final step 
before stem attribute estimation, we removed all points with the 
normalized z-coordinate exceeding 30 m since it was known that all the 
trees at the test sites had a height shorter than 30 m. We attribute the few 
erroneous points above the height of 30 m to incorrectly resolved ranges 
caused by, e.g., aerosol scattering, sun light, false detector triggering (e. 
g. signal ringing) or most probably due to multiple reflections and a 
failed multiple-time-around (MTA) process. 

2.5.2. Stem detection and stem curve measurement 
Since the ALS point clouds were obtained by combining data from 

multiple flight lines, the data suffered from distortions that would have a 
negative impact on the stem modelling accuracy if not taken properly 
into account. This is exemplified in Fig. 2(f) that shows the stem cross 
section of an example tree in the height interval of z ∈ [1.5, 2.5] m. 
Importantly, it is possible to mitigate distortion-related inaccuracies in 
the stem curve estimation by dividing the point cloud data into multiple 

Fig. 3. Cross section of a pre-processed point cloud obtained with the HeliALS-DW system. The colors of each point correspond to reflectance values such that a high 
value of reflectance is denoted by red color and a low value of reflectance is denoted by green/blue color. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 
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Fig. 4. Flow chart illustrating the algorithms used for estimating stem curves, DBHs, tree heights and stem volumes of individual trees from the collected high- 
resolution ALS point clouds. 

E. Hyyppä et al.                                                                                                                                                                                                                                 



Science of Remote Sensing 5 (2022) 100050

7

disjoint subsets based on the time stamps of the points as has been done, 
for example, in Hyyppä et al. (2020b) and Čerňava et al. (2019). This 
approach is enabled by the fact that the drift in the position and the 
orientation of the laser scanning system is small during a short period of 
time, and thus, no distortions are practically present within each subset 
of the data. Consequently, we applied an arc-based strategy for the stem 
curve estimation similarly to the approach that we have previously 
utilized for estimating stem attributes from point clouds collected with 
ground-based MLS systems (Hyyppä et al., 2020b; Hyyppä et al., 2020c). 

The selection of the parameter values for the algorithms was guided 
based on our previous studies, in which we have utilized the algorithms 
for the analysis of MLS data (Hyyppä et al., 2020a; Hyyppä et al., 
2020b). However, we adjusted the parameter values dependent on the 
point density to tolerate the relatively low point density of the ALS data. 
The parameter values were chosen heuristically based on physical 
properties of the trees, the point cloud, and the scanner instead of 
optimizing the parameter values by trial and error. Based on our expe
rience, the same set of parameter values works well in different types of 
forest as long as the same or a similar scanner is used. To obtain the 
results for the two scenarios introduced in Sec. 2.1, we used different 
parameter values, which we report as normal text for the scenario 
high-quality trees and within parentheses for the scenario as many trees as 
possible. 

To reduce the running time of the stem detection algorithm, we 
analyzed the point clouds one watershed region at a time. For a given 
watershed region, we began by dividing the points into a large number 
of disjoint point groups based on their time stamp and their normalized 
z-coordinate. To this end, we used time intervals with a duration of 5.0 s 
and equispaced height intervals with a height of 1.0 m between z = 0.5 
m and z = 10 m. Note that the height of the height intervals was chosen 
to be a few times higher than in our previous work focusing on ground- 
based MLS systems (Hyyppä et al., 2020a; Hyyppä et al., 2020b) in order 
to ensure that each height interval would contain a sufficient number of 
stem hits. 

For each of the obtained point groups, we subsequently aimed to 
detect arc-like structures using the arc detection method outlined in 
Hyyppä et al. (2020b). As the first step of the arc detection algorithm, we 
performed density-based clustering for applications with noise 
(DBSCAN) (Ester et al., 1996) by utilizing a neighborhood radius of ε1 =

7.5 cm (7.5 cm) and a minimum point number threshold of minPts1 = 3 
(2) that was chosen to have a low value due to the relatively low point 
density on stems. Subsequently, we fitted circles to each of the detected 
clusters with the help of the random sample consensus (RANSAC) 
framework (Fischler and Bolles, 1981). Importantly, we retained only 
such clusters, for which more than 75% (75%) of the points were located 
within a distance of 3 cm (4 cm) from the fitted circular arc. Subse
quently, we applied an arc division algorithm (Hyyppä et al., 2020b) 
with a maximum allowed angular separation of 30◦(30◦) for each of the 
retained clusters. Finally, circles were fitted to the remaining clusters 
using the method described in Al-Sharadqah and Chernov (2009), and 
the properties of the clusters were compared against the following 
heuristically chosen quality criteria:  

● maximum acceptable standard deviation of the radial residuals: 1.25 
cm (1.5 cm)  

● lowest acceptable number of points in one arc: 12 (8)  
● minimum acceptable stem radius: 5 cm (5 cm)  
● maximum acceptable stem radius: 40 cm (40 cm)  
● minimum acceptable central angle: 0.6π rad = 108◦(0.5π rad = 90◦) 

The clusters satisfying all the above quality criteria were regarded as 
stem arcs and used for further processing. Note that the value for the 
lowest acceptable number of points in an arc was chosen to be approx
imately one fifth of the value that we have previously used for analyzing 
data collected with ground-based MLS systems (Hyyppä et al., 2020a). 

Subsequently, the centers of the detected arcs were clustered in the 

xy plane using the DBSCAN algorithm in order to determine, which arcs 
corresponded to the same stem. To this end, we used a neighborhood 
radius of ε2 = 25 cm (25 cm) and a minimum point number threshold of 
minPts2 = 5 (2). The neighborhood radius was chosen to be approxi
mately equal to the average DBH of the trees, whereas the minimum 
point number threshold provided the lower limit for the number of arcs 
that was required for stem detection. Furthermore, we required that the 
difference between the z coordinates of the lowest arc and the highest 
arc needed to exceed 1.0 m (1.0 m) for a cluster to be accepted as a stem. 
In Fig. 5(a), we illustrate the stem points detected from the point cloud 
collected on the first test site using the methods described in this section. 

To take into account the inclination of the stems, the growth direc
tion for each of the detected stems was estimated using principal 
component analysis (PCA) applied for the center coordinates of the arcs. 
For each of the detected stems, the stem diameters were estimated at the 
heights of z = j × 1.0 m, j = {1, 2, …10}, by utilizing the coordinate 
frame obtained from PCA and the arc matching algorithm proposed in 
Hyyppä et al. (2020c). We point out that the arc matching algorithm 
does not perform any global corrections to the point cloud, but it pro
vides a convenient way to visually confirm the success of the stem 
detection pipeline as illustrated in Fig. 5(b). For each tree, the final stem 
curve estimate was obtained by filtering out clearly outlying diameter 
estimates with the help of a simple and automatic outlier detection 
scheme proposed in Hyyppä et al. (2020c) followed by fitting a cubic 
smoothing spline (Pollock, 1993; De Boor, 1978) to the remaining 
diameter estimates. When fitting the smoothing spline, the optimal 
value for the smoothing parameter was found using leave-1-out cross 
validation, and each diameter estimate was weighted with the inverse of 
its 2σ uncertainty estimate. 

The final stem curve estimates were further used to predict the DBH 
of each tree. If the lowest diameter estimate of the tree of interest was 
located below the height of z = 1.3 m, the DBH was obtained by inter
polating the cubic smoothing spline at the height of z = 1.3 m. If the 
lowest diameter estimate was located above the height of z = 1.3 m, the 
DBH was obtained by extrapolating the stem curve estimate using either 
of the following strategies similarly to Hyyppä et al. (2020b):  

1. If the height difference between the highest and lowest diameter 
estimate exceeded 3.0 m, the DBH was predicted by fitting a linear 
model to the lowest 3 m of the smoothing spline and extrapolating 
the linear model at the height of z = 1.3 m.  

2. If the height difference between the highest and lowest diameter 
estimate was smaller than 3.0 m, the DBH was predicted by fitting a 
function D(z) = D0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − z/h

√
to the diameter estimates and extrapo

lating the fitted model at the height of z = 1.3 m. Here, h is the 
estimated tree height and D0 is the only fitting parameter. 

Importantly, our approach for DBH estimation is not only limited to 
stems, for which the stem is clearly visible around the height of z = 1.3 
m, but it enables us to estimate the DBH for all the detected stems even 
though no stem points would be detected at or around the height of z =
1.3 m. 

2.5.3. Tree height and stem volume measurement 
For each of the detected trees, the tree height was estimated using the 

following procedure: First, we searched for all the points that were 
located within a distance of 1.0 m from the growth line of the tree ob
tained from PCA. Subsequently, the z axis was divided into height in
tervals of height 1.0 m, and the number of points within each height 
interval was computed. For large trees with a stem diameter exceeding 
25 cm, the tree height was obtained as the mean z coordinate of the 5 
highest points in the highest height interval bin containing at least 5 
points. For small or medium-sized trees having a stem diameter smaller 
than 25 cm, the tree top was first identified by finding the lowest height 
interval located above the highest detected arc and containing less than 
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10 points. Subsequently, the tree height was estimated by computing the 
mean z coordinate of the 5 highest points in a height interval located 
right below the height interval found in the previous step. Note that 
trees with small and large diameters were treated using different ap
proaches since trees with a small stem diameter are potentially occluded 
from the above by neighboring dominant trees. 

Finally, the stem volume was calculated for each of the detected trees 
using the estimated stem curves and tree heights with the help of the 
method presented in Hyyppä et al. (2020c). To this end, we fitted a 
parabolic function, 

D1(z) = a2(h − z)
2

+ a1(h − z), (1)  

and a square-root function, 

D2(z) = D0
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − z/h

√
, (2)  

to the estimated stem diameters as a function of the height z from 
ground. In Eqs. (1) and (2), a1, a2, and D0 are fitting parameters, whereas 
h denotes the estimated tree height. Note that the fitted models have 
been parametrized such that the fitted stem diameter is always equal to 
zero at the top of the tree. For both of the fitted models, the volume of 
the solid of revolution was calculated and the stem volume V was taken 
to equal the mean of the obtained volumes, i.e., 

V =
π
2

( ∫ h

0

D1(z)
2

4
dz +

∫ h

0

D2(z)
2

4
dz

)

. (3)  

2.6. Reference data 

We obtained the reference values for the stem attribute measure
ments by analyzing point clouds collected with a handheld ZEB Horizon 
laser scanner system. The ZEB Horizon system incorporates a Velodyne 

VLP-16 scanner mounted on a rotating arm as shown in Fig. 1, which 
enables the collection of high-density point clouds of forests (Chen et al., 
2019; Balenović et al., 2021; Hyyppä et al., 2020a; Hunčaga et al., 2020; 
Gollob et al., 2020). Importantly, the ZEB Horizon scanner has an 
in-built SLAM system ensuring that drifts and distortions in the collected 
point cloud remain small. 

When conducting the measurements with the ZEB Horizon scanner, 
we covered each of the test sites using a walking pattern containing 
several loops in order to provide multiple possibilities for loop closure 
detection and subsequent drift elimination. After the data collection, the 
raw data was pre-processed using the GeoSLAM Hub (version 6.0.0.) 
software. To this end, we utilized the default values of the processing 
parameters: Convergence threshold: 0, Window size: 0, Voxel density: 1, 
Rigidity: 0, Maximum range: 100 m, Closed Loop. After the pre- 
processing steps, the resulting point cloud data was exported into LAS- 
format for further processing. In Fig. 6(a) and (b), we illustrate the 
resulting point cloud on a small region within the first test site. Impor
tantly, the point cloud covers both the stems and the tops of the trees, as 
a result of which it is possible to accurately estimate stem diameters, tree 
heights and stem volumes from the point cloud. 

We used the algorithmic workflow described in Hyyppä et al. 
(2020a) to estimate the DBHs, stem curves and stem volumes of indi
vidual trees from the point clouds collected with the ZEB Horizon 
scanner. Our previous study on the ZEB Horizon system showed that 
these point cloud processing algorithms can be used to estimate the stem 
curves of the detected trees with a relative bias of 0–5% and a relative 
RMSE of 5–10% up to the height of 6 m above the ground level (Hyyppä 
et al., 2020a). For the stem volume estimates, the corresponding relative 
bias was 0–6%, and the relative RMSE was 9–12%. Importantly, these 
estimation errors are several times lower than the errors that have been 
previously reported for direct stem attribute estimation from ALS or 
UAVLS point clouds. In Liang et al. (2019), the relative RMSE of stem 

Fig. 5. (a) Stem points and ground points detected from the ALS point cloud collected on the first test site using the stem detection algorithm described in Sec. 2.5.2. 
(b) Cross section of the stem points for an example tree in the height interval z ∈ [1.5, 2.5] m before and after applying the arc matching algorithm. 

Fig. 6. (a) Point cloud collected with the handheld ZEB Horizon scanner at the test site 1. (b) Stem cross section of an example tree in the point cloud shown in 
panel (a). 
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curves estimated from UAVLS data ranged from 30% to 55% depending 
on the complexity of the boreal forest stand, and the corresponding 
relative RMSE of stem volume estimates ranged from 50% to over 200%. 
In Wieser et al. (2017), Brede et al. (2017), Kuželka et al. (2020), and 
Vandendaele et al. (2021), the RMSE of DBH estimates obtained from 
UAVLS data varied between 4 cm and 7 cm, which is several times 
higher than the corresponding RMSE obtained using the ZEB Horizon 
system (0.9–1.3 cm) in Hyyppä et al. (2020a). Thus, the stem attribute 
estimates obtained using the ZEB Horizon system are accurate enough to 
be used as the reference data set for the current study. 

Here, we also point out that each of the point clouds produced by the 
ZEB Horizon scanner was in a local coordinate system since the ZEB 
Horizon scanner was not equipped with a GNSS receiver. Thus, we uti
lized the efficient coarse registration algorithm proposed in Hyyppä 
et al. (2021a) to find the Euclidean transformation mapping the loca
tions of the trees detected from the ZEB Horizon data into the coordinate 
system of the ALS data. The coarse registration algorithm works by 
finding the Euclidean transformation between two sets of tree locations 
without any prior guess for the translation and rotation parameters of 
the transformation. For each of the test sites, we used the stem locations 
detected from the ALS point cloud to define the target coordinate sys
tem. After transforming the reference stem locations detected from the 
ZEB Horizon data to the ALS coordinate system, we determined the 
corresponding reference tree for each of the trees detected from the ALS 
data by using a distance threshold of 0.4 m in the xy plane. 

2.7. Statistical analysis 

To assess the accuracy of stem detection from ALS data, we utilized 
the concepts of completeness and correctness that are defined as 

Completeness =
Number ​ of ​ detected ​ reference ​ trees

Number ​ of ​ reference ​ trees
× 100%, (4)  

Correctness =
Number ​ of ​ detected ​ reference ​ trees

Number ​ of ​ detected ​ trees
× 100%, (5)  

where the number of detected reference trees is defined as the number of 
reference trees with a tree detected from the ALS data within a distance 
of 0.4 m from the reference tree. 

On the other hand, the accuracy of the estimated stem attributes was 
evaluated using the concepts of bias and RMSE that are given by the 
following equations 

bias =
∑N

i=1

xi − xi,ref

N
, (6)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

(xi − xi,ref)
2

N

√

, (7)  

where N denotes the number of detected reference stems, {xi}
N
i=1 denotes 

the stem attribute estimates, such as DBH, obtained from the ALS data, 
and {xi,ref}

N
i=1 denotes the reference values for the stem attribute. In 

addition, we utilized the relative bias and RMSE that are defined as 

rbias =
bias

x
× 100%, (8)  

rRMSE =
RMSE

x
× 100%, (9)  

where x =
∑N

i=1xi,ref/N denotes the mean value of the reference stem 
attributes. 

When it comes to the stem curve estimates, we evaluated the bias and 
RMSE using a slightly different approach since each detected tree typi
cally had stem diameter estimates at multiple different heights. Thus, we 
computed the bias and RMSE of stem curve estimates as 

bias =
1
N

∑N

i=1

∑Ni

j=1

Di(zj) − Di,ref(zj)

Ni
, (10)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1

∑Ni

j=1

(Di(zj) − Di,ref(zj))
2

Ni

√

, (11)  

where Di(zj) denotes the estimated stem diameter at the height of zj for 
the ith stem detected from the ALS data, Di,ref(zj) is the corresponding 
reference diameter, and Ni denotes the number of reference diameter 
estimates used for the comparison in the case of the ith tree. 

3. Results and discussion 

In this section, we present the results regarding ALS-based stem 
detection and stem attribute estimation for the scenario high-quality 
trees. The results for the scenario as many trees as possible are provided in 
Appendix A. 

3.1. Completeness and correctness of stem detection 

In this section, we provide results for the completeness and cor
rectness of ALS-based stem detection when considering the results for 
the scenario high-quality trees (see Secs. 2.1 and 2.5.2). As can be seen 
from Fig. 7(a), the overall completeness rate of stem detection varied 
between 41.6% and 71.3% on the three test sites. Importantly, Fig. 7(a) 
also shows the completeness rates computed for four different DBH 
categories corresponding to stems satisfying DBH ∈ [0, 20) cm, DBH ∈

[20, 30) cm, DBH ∈ [30, 40) cm, and DBH ∈ [40, ∞) cm. On all of the test 
sites, the completeness rate was only 20–30% for stems with a DBH 
smaller than 20 cm, whereas it was significantly higher, i.e., 50–100% 
for stems with a DBH exceeding 20 cm. The low completeness rate of 
small trees was caused by the low number of stem hits in the point cloud 
attributable to the small stem size. Additionally, we point out that one 
should not draw too far-reaching conclusions for the category DBH ≥40 
cm since only a small number of trees had a DBH exceeding 40 cm as 
visualized in Fig. 7(b). 

The differences in the completeness rates between the different test 
sites were also significant since the overall completeness rates were 
71.3%, 64.5%, and 41.6% at the test sites 1, 2, and 3, respectively. The 
low completeness rate at the test site 3 can be partly explained by the 
large proportion of trees with a DBH smaller than 20 cm. Based on Fig. 7 
(a), it is, however, evident that the completeness rate of large trees was 
also significantly lower at the test site 3 than on the two other test sites. 
This may have been caused by occlusion arising from the high stem 
density of the test site 3 (see Table 1). On the other hand, the difference 
in the completeness rates between the test sites 1 and 2 was probably 
caused by the point density being almost twice as high in the point cloud 
of the test site 1 as compared with the point cloud of the test site 2. 

The results for the completeness and correctness of stem detection 
have been summarized in Table 3. Based on our analysis, the correctness 
rate was 99.0% for the test site 1, 96.8% for the test site 2, and 99.6% for 
the test site 3. The high level of correctness means that almost all of the 
stems detected from the ALS data could be associated with a stem 
detected from the ZEB Horizon data. We point out that the few trees 
without a matching reference tree may have been actual trees that were 
not detected from the ZEB Horizon data or they may have been other 
vertically-oriented objects that were misinterpreted as trees. 

In Fig. 8, we show the percentage of trees, for which at least one 
reliable arc was detected in a given 1-m height interval, as a function of 
the height from the ground. From the figure, we can observe that the 
probability for detecting an arc was the highest at 2 m above the ground 
level even though the point density decreased when approaching the 
ground level as shown in Fig. 2(d). This may be explained by two factors: 
First, the stem diameters decreased as a function of the height from the 
ground reducing the probability for arc detection as discussed above. 
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Second, the number of branches and needles increased as a function of 
the height from ground. Thus, reliable arcs were most likely to be 
detected close to the ground level even though the point density 
increased as a function of height from the ground. 

3.2. Accuracy of measured stem attributes 

In this section, we assess the accuracy of the ALS-derived DBHs, stem 
curves, and stem volumes for the scenario high-quality trees. We have 
summarized the bias and RMSE of the estimated stem attributes for each 

of the test sites in Tables 4 and 5. The tables also include the bias and 
RMSE evaluated for each of the four DBH categories introduced in the 
previous section. 

When it comes to the ALS-derived DBHs, the coefficient of determi
nation R2 varied between 0.69 and 0.88 on the three test sites as illus
trated in Fig. 9(a)-(c). As shown in Fig. 10(a), the overall relative bias of 
DBH estimation was close to zero on all of the test sites, even though the 
bias showed a slight decreasing trend as a function of the DBH. As shown 
in Fig. 10(b), the RMSE of the estimated DBHs was 2.2–2.9 cm, i.e., 
8.1–9.8%, when trees from all the size categories were considered. The 
relative RMSE was typically slightly larger for trees in the category DBH 
<20 cm, but otherwise no clear trends of the RMSE can be distinguished 
across the different DBH categories. 

For the stem curve estimates, the coefficient of determination R2 was 
slightly higher, i.e., 0.74–0.91, than the coefficient of determination for 
the DBH estimates. This is illustrated in Fig. 9(d)–(f). From Fig. 11(a), we 
see that the relative bias of the stem curve estimates was approximately 
zero for the test sites 1 and 3, whereas it was −4.2% for the test site 2. 
Importantly, the overall RMSE of the stem curve estimates ranged from 
1.7 cm (6.4%) to 2.6 cm (9.3%) meaning that the RMSE was equivalent 
or smaller than that of the DBH estimates. In analogy to the RMSE of the 
DBH estimates, the relative RMSE of the stem curve estimates was the 
largest for trees in the category DBH <20 cm, whereas the relative RMSE 
did not vary much as a function of DBH for trees with a DBH exceeding 
20 cm. To exemplify the ALS-derived stem curves, we show two example 
stem curves in Fig. 12. The stem curve shown in Fig. 12(a) belongs to a 
small tree in the DBH category DBH <20 cm, whereas the stem curve 
depicted in Fig. 12(b) belongs to a relatively large tree, the DBH of which 
falls into the interval [30, 40) cm. On average, the stem curve could be 
estimated for heights in the range of z ∈ [1.5, 8.0] m. 

When it comes to the stem volumes estimated from the ALS point 
clouds, the coefficient of determination R2 varied between 0.83 and 0.94 
as illustrated in Fig. 9(g)–(i). From Fig. 13(a), we see that the overall bias 
of the stem volume estimates varied between − 9.3% (test site 2) and 
5.8% (test site 3). The relatively large negative bias at the test site 2 was 
caused by the underestimation of the stem curves that were utilized to 
compute the stem volume. Fig. 13(b) shows that the overall relative 
RMSE of the stem volume estimates ranged from 12.7% at the test site 1 
to 21.3% at the test site 3. The relative RMSE was markedly larger for 

Fig. 7. (a) Completeness rates of stem detection on 
the three test sites for the scenario high-quality trees. In 
addition to showing the overall completeness rate 
(blue bar), we also present the completeness rates for 
four disjoint DBH categories: DBH ∈ [0, 20) cm, 
DBH ∈ [20, 30) cm, DBH ∈ [30, 40) cm, and DBH ∈

[40, ∞) cm. (b) Number of detected reference trees 
and the total number of reference trees in the different 
DBH categories on the three test sites. (For interpre
tation of the references to color in this figure legend, 
the reader is referred to the Web version of this 
article.)   

Table 3 
Completeness and correctness rates on the three test sites for ALS-based stem detection for the scenario high-quality trees. In addition to the overall completeness rate, 
we also report the completeness of stem detection for four disjoint DBH categories: DBH ∈ [0, 20) cm, DBH ∈ [20, 30) cm, DBH ∈ [30, 40) cm, and DBH ∈ [40, ∞) cm. 
Note that the number of reference stems is based on the number of stems detected from the ZEB Horizon data.   

Completeness (%) Correctness (%)  

Overall DBH ∈ [0, 20) cm DBH ∈ [20, 30) cm DBH ∈ [30, 40) cm DBH ∈ [40, ∞) cm Overall 

Test site 1 71.3 (300/421) 28.4 (31/109) 84.6 (176/208) 88.4 (84/95) 100 (9/9) 99.0 (300/303) 
Test site 2 64.5 (273/423) 20.6 (7/34) 69.3 (151/218) 65.6 (105/160) 90.9 (10/11) 96.8 (273/282) 
Test site 3 41.6 (260/625) 22.6 (49/217) 50.8 (181/356) 58.3 (28/48) 50.0 (2/4) 99.6 (260/261)  

Fig. 8. Proportion of trees, for which at least one reliable arc was detected in a 
given 1-m height interval, as a function of the height from ground for the 
scenario high-quality trees. The blue line corresponds to the test site 1, the red 
line corresponds to the test site 2, and the black line corresponds to the test site 
3. The solid red bars depict the average for the three test sites. (For interpre
tation of the references to color in this figure legend, the reader is referred to 
the Web version of this article.) 
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small trees in the category DBH ∈ [0, 20) cm, which can be attributed to 
two factors: First, the relative RMSE of the stem curve estimates was 
larger for trees in the category DBH ∈ [0, 20) cm than for trees with a 
DBH >20 cm. Second, the heights of small trees were sometimes over
estimated whenever they were growing close to neighboring dominant 
trees. Based on our results, the relative RMSE decreased slightly as a 
function of the tree size also for trees with a DBH exceeding 20 cm, and 
consequently, the RMSE of the stem volume estimates was as low as 
4.1–13.5% in the category DBH ∈ [40, ∞) cm. 

3.3. Further discussion 

As explained in Sec. 2.6, the reference data for this study was based 
on stem information extracted automatically from the point clouds 
collected with a handheld ZEB Horizon system. Therefore, it is possible 
that the actual number of trees at the test sites may have been slightly 
higher than the number of reference trees we used to compute the sta
tistics. In one of our previous studies (Hyyppä et al., 2020a), the 
completeness of stem detection for the ZEB Horizon system varied be
tween 77% and 93% on two test sites located in a boreal forest. 

Nevertheless, we can still conclude that approximately half of the stems 
could be detected from the ALS point clouds even if strict quality criteria 
were used for the stem detection in order to obtain highly accurate stem 
curve estimates. When it comes to the scenario as many trees as possible 
(see Appendix A), our results indicate that it is possible to detect almost 
as many stems (85–100%) from the ALS point clouds as can be detected 
from data collected with a ZEB Horizon system provided that one is 
interested in trees with a DBH exceeding 20 cm. 

Subsequently, we briefly discuss potential applications for the sce
narios high-quality trees and as many trees as possible. The algorithm pa
rameters for the scenario high-quality trees were chosen to provide highly 
accurate stem curve estimates (RMSE = 6–9%) and stem volume esti
mates (RMSE = 12–21%) for a sufficiently large proportion of the trees. 
In principle, these accurate stem attribute estimates could be used to 
construct a training data set for teaching machine learning models 
needed in a large-scale forest inventory at the individual tree level. For 
this application, the accuracy of the obtained stem attributes should be 
prioritized over the completeness rate of the stem detection. This is for 
the reason that the training data set only needs to contain a represen
tative sample of the trees within the large area to be inventoried instead 
of containing most or all of the trees on some specific reference test sites 
(Puliti et al., 2020). To ensure that the reference trees correspond to a 
representative sample, one may need to sample the trees detected from 
the ALS data according to the DBH-dependent detection rates since our 
results in Sec. 3.1 suggest that the completeness rate was significantly 
lower for trees with a DBH <20 cm than for trees with a DBH exceeding 
20 cm. If the forest inventory focuses on log trees with DBH ≥20 cm, e.g., 
due to their economic value, the sampling step is not necessary since the 
completeness rate did not vary much for trees with a DBH exceeding 20 
cm. 

When it comes to the scenario as many trees as possible, our results in 
Appendix A indicate that it is possible to detect 85–100% of the trees 
with a DBH ≥20 cm, where the number of reference trees represents the 
number of stems detected from the ZEB Horizon data. Thus, the scenario 
as many trees as possible corresponds to conducting a small-scale forest 
inventory at the individual tree level for medium-sized and large trees. 
For such a small-scale forest inventory, one can directly use the stem 
curves and volumes estimated from the relatively dense ALS point 
clouds without the need to collect less dense ALS data from the area to be 
inventoried. Naturally, the average errors for the stem curves and vol
umes were slightly larger for the scenario as many trees as possible as 
compared with the scenario high-quality trees. Namely, the RMSE of stem 
curves was 9–12% and the RMSE of stem volumes was 17–29%. Despite 

Table 4 
Bias and RMSE of DBH and stem curve estimates on the three test sites for the scenario high-quality trees. In addition to the overall bias and RMSE, we also report the bias 
and RMSE for each of the four DBH categories.   

DBH Stem curve  

bias rbias RMSE rRMSE bias rbias RMSE rRMSE 

Test site 1 
Overall 0.3 cm 1.2% 2.2 cm 8.1% −0.1 cm −0.4% 1.7 cm 6.4% 
DBH ∈ [0, 20) cm 0.8 cm 4.8% 1.6 cm 9.2% 0.4 cm 2.5% 1.6 cm 9.5% 
DBH ∈ [20, 30) cm 0.6 cm 2.4% 1.9 cm 7.8% −0.0 cm −0.1% 1.5 cm 6.3% 
DBH ∈ [30, 40) cm −0.2 cm −0.7% 2.4 cm 7.1% −0.4 cm −1.4% 1.8 cm 5.7% 
DBH ∈ [40, ∞) cm −1.8 cm −4.3% 4.9 cm 11.4% −0.2 cm −0.7% 1.4 cm 7.3% 
Test site 2 
Overall −0.2 cm −0.7% 2.9 cm 9.8% −1.2 cm −4.2% 2.6 cm 9.3% 
DBH ∈ [0, 20) cm 2.2 cm 11.4% 2.9 cm 15.3% −0.7 cm −3.2% 2.6 cm 12.6% 
DBH ∈ [20, 30) cm 0.3 cm 1.0% 2.2 cm 8.4% −1.1 cm −4.3% 2.4 cm 9.5% 
DBH ∈ [30, 40) cm −0.7 cm −2.1% 3.4 cm 10.1% −1.3 cm −4.0% 2.8 cm 8.9% 
DBH ∈ [40, ∞) cm −3.4 cm −8.2% 2.6 cm 12.2% −2.3 cm −5.9% 3.5 cm 9.1% 
Test site 3 
Overall 0.3 cm 1.4% 2.3 cm 9.6% 0.1 cm 0.6% 1.9 cm 8.2% 
DBH ∈ [0, 20) cm 1.2 cm 6.6% 2.2 cm 12.2% 0.6 cm 3.4% 1.8 cm 10.3% 
DBH ∈ [20, 30) cm 0.1 cm 0.6% 2.3 cm 9.2% 0.0 cm 0.1% 1.9 cm 7.9% 
DBH ∈ [30, 40) cm 0.2 cm 0.6% 3.0 cm 9.4% 0.3 cm 0.9% 2.3 cm 7.7% 
DBH ∈ [40, ∞) cm −1.6 cm −3.8% 2.2 cm 5.3% −1.3 cm −3.4% 1.4 cm 3.7%  

Table 5 
Bias and RMSE of stem volume estimates on the three test sites for the scenario 
high-quality trees. In addition to the overall bias and RMSE, we also report the 
bias and RMSE for each of the four DBH categories.   

Stem volume  

bias rbias RMSE rRMSE 

Test site 1 
Overall 17 dm3 2.2% 96 dm3 12.7% 
DBH ∈ [0, 20) cm 44 dm3 16.0% 86 dm3 31.1% 
DBH ∈ [20, 30) cm 13 dm3 2.2% 82 dm3 13.3% 
DBH ∈ [30, 40) cm 5 dm3 0.5% 117 dm3 10.4% 
DBH ∈ [40, ∞) cm 101 dm3 6.1% 149 dm3 9.0% 
Test site 2 
Overall −88 dm3 −9.3% 146 dm3 15.4% 
DBH ∈ [0, 20) cm −82 dm3 −17.3% 134 dm3 28.2% 
DBH ∈ [20, 30) cm −78 dm3 −10.2% 126 dm3 16.4% 
DBH ∈ [30, 40) cm −95 dm3 −8.2% 160 dm3 13.9% 
DBH ∈ [40, ∞) cm −164 dm3 −9.0% 247 dm3 13.5% 
Test site 3 
Overall 31 dm3 5.8% 116 dm3 21.3% 
DBH ∈ [0, 20) cm 48 dm3 18.6% 162 dm3 62.4% 
DBH ∈ [20, 30) cm 19 dm3 3.5% 93 dm3 16.9% 
DBH ∈ [30, 40) cm 78 dm3 8.6% 150 dm3 16.5% 
DBH ∈ [40, ∞) cm 43 dm3 2.4% 73 dm3 4.1%  
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Fig. 9. Scatter plots for DBH, stem curve and stem volume on the three test sites for the scenario high-quality trees. (a–c) Scatter plots for the DBHs measured directly 
from the ALS data vs the reference DBHs at the test sites 1, 2, and 3, respectively. (d–f) Scatter plots for the stem curve estimates measured from the ALS data vs the 
reference stem curves at the test sites 1, 2, and 3, respectively. (g–i) Scatter plots for the stem volumes measured directly from the ALS data vs the reference stem 
volumes at the test sites 1, 2, and 3, respectively. In all of the panels, the dashed blue line corresponds to y = x. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 

Fig. 10. Relative (a) bias and (b) RMSE of DBH estimates on the three test sites for the scenario high-quality trees. We show both the overall bias and RMSE (blue bars) 
as well as the bias and RMSE for each of the four DBH categories (red bars). (For interpretation of the references to color in this figure legend, the reader is referred to 
the Web version of this article.) 
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of the different completeness rates, the correctness of stem detection 
differed only by one percent between the scenarios as many trees as 
possible and high-quality trees. 

Subsequently, we compare the accuracy of our results to previous 
studies that have used high-density ALS data for deriving direct stem 
attribute estimates for individual trees. In Liang et al. (2019), the RiC
OPTER system (Riegl GmbH, Austria) was used to measure the DBHs, 
stem curves, and stem volumes of individual trees in 24 boreal forest test 
sites classified as easy, medium-difficult or difficult. Depending on the 
difficulty of the test site, the relative RMSE of DBH estimates ranged 
from 20% to 50%, the RMSE of stem curve estimates ranged from 30% to 
55% and the RMSE of stem volume estimates ranged from 60% to 225%. 
Brede et al. (2017) also utilized the RiCOPTER system to study DBH 
estimation from an airborne platform in 5 different test sites 

representing different forest types. Based on 39 tree stems, they obtained 
an RMSE of 4.2 cm for the DBH estimates when using TLS data as the 
reference. In Wieser et al. (2017), the RiCOPTER system was used to 
study DBH estimation on 6 plots. Based on 57 detected stems, an RMSE 
of 7.5 cm was obtained for the DBH estimates but the RMSE could be 
reduced down to 1.9 cm if four gross outliers were excluded from the 
analysis. In the studies by Wieser et al. and by Brede et al., manual point 
selection was performed to choose the points for the DBH estimation. 
Kuželka et al. (2020) obtained an RMSE of 6.0 cm, i.e., 19% for DBH 
estimation by using ALS data collected with the RiCOPTER system. 
Kuzelka et al. also measured the stem curves for the detected trees, but 
they could not assess the accuracy of the stem curve estimates due to a 
lack of reference data. Most recently, Vandendaele et al. (2021) obtained 
an RMSE of 7.4 cm for DBH estimation by using a Velodyne HDL-32E 

Fig. 11. Relative (a) bias and (b) RMSE of stem curve estimates on the three test sites for the scenario high-quality trees. We show both the overall bias and RMSE 
(blue bars) as well as the bias and RMSE for each of the four DBH categories (red bars). (For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 

Fig. 12. (a) Example of an estimated stem curve for a 
tree in the category DBH ∈ [0, 20) cm. (b) Example of 
an estimated stem curve for a tree in the category 
DBH ∈ [30, 40) cm. In both of the panels, the red 
circles illustrate the stem diameters estimated directly 
from the ALS point cloud, the solid red line is a 
smoothing spline fit to the diameter estimates, and the 
blue squares depict the reference stem curves. The 
dashed lines have been obtained via the equation 

D(z) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(D1(z)
2

+ D2(z)
2
)/2

√

(See Eqs. (1) and (2)) 
and they illustrate the effective diameters for the 
solids of revolution that were used to compute the 
stem volume. (For interpretation of the references to 
color in this figure legend, the reader is referred to the 
Web version of this article.)   

Fig. 13. Relative (a) bias and (b) RMSE of stem volume estimates on the three test sites for the scenario high-quality trees. We show both the overall bias and RMSE 
(blue bars) as well as the bias and RMSE for each of the four DBH categories (red bars). (For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 
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scanner mounted on a UAV. Vandendaele et al. were able to detect 71% 
of the trees automatically using the SimpleTree (Hackenberg et al., 
2015) library that was originally developed for analysing forest data 
collected with a TLS system. 

We have summarized the key results of the above-mentioned previ
ous studies and our current study in Table 6. Based on the table, the 
RMSE values obtained in the current study are far more precise than in 
any of the previous studies, whereas the completeness rate of stem 
detection remains comparable to the previous studies. Importantly, we 
were able to derive the stem curve and volume with a high accuracy for 
each detected tree unlike in any of the previous studies. The point 
density in the current study was of similar order of magnitude as in the 
previous studies. This suggests that the accuracy improvements can be 
attributed at least partly to the use of algorithms that are robust against 
distortions arising from the slow drifts in the trajectory of the laser 
scanner. In the previous studies, the stem diameters have namely been 
estimated using methods that are similar to algorithms designed for 
analyzing static TLS data. When it comes to the scenario high-quality 
trees, the obtained RMSE values for the stem curve and volume estimates 
were not much larger than the RMSE values that have been obtained 
with ground-based MLS systems in comparable boreal forest conditions. 
In Hyyppä et al. (2020a), the RMSE of stem volume estimates varied 
between 9% and 15% for handheld, backpack, and under-canopy UAV 
laser scanning systems depending on the complexity of the forest con
ditions and the data acquisition method. 

Finally, we briefly address the scalability of our approach. The flight 
time required to collect the ALS data was approximately 10–15 min for 
each of the test sites. Importantly, the resulting point clouds covered a 
much larger region than just the test site. As an example, the point cloud 
collected over the first test site had a sufficiently high point density for 
the detection of approximately 6000 stems across an area of 21 ha. In 
theory, it is thus possible to use a similar ALS system for collecting 
reference data for roughly 500 trees per minute. In our current imple
mentation, the time taken by the point cloud processing limits the speed 
of ALS-based reference data collection. Namely, it takes approximately 
0.5–3 h to process 1 ha of the point cloud resulting in approximately 400 
detected trees. We ran the code implemented in Matlab on a laptop with 
Intel Core i7-7820HQ 2.9 GHz processor and 32 GB of RAM. In the 
future, the speed of data processing may be improved by using multiple 
cores or computers to explicitly parallelize the data processing, by using 
a programming language targeted for high-performance computing, 
such as C++, and by reducing the number of high-resolution images 
saved for each detected tree. 

4. Conclusions 

In this paper, we studied the use of high-density ALS point clouds for 

accurate and direct stem curve and volume measurements at the indi
vidual tree level. To this end, we collected point cloud data on three test 
sites located in a boreal forest using an in-house developed helicopter- 
based HeliALS-DW system incorporating a Riegl VUX-1HA scanner. 
Importantly, the scanner was tilted 15◦ with respect to the vertical di
rection to obtain a high number of stem hits with the laser beam. To 
collect point clouds with a relatively high point density of 2200–3800 
pt/m2, the test sites were covered with a square grid pattern, and the 
flights were carried out using a low flight altitude of 80 m. For the stem 
curve estimation, we used algorithms that were robust against point 
cloud distortions caused by slow drifts and subsequent local mismatches 
in the trajectory of the scanner. To obtain high-quality stem volume 
estimates, we used the estimated stem curves and tree heights in order to 
compute the stem volume instead of using national allometric models 
for predicting the stem volume from the DBH and the tree height. 

In our analysis, we investigated two scenarios named as high-quality 
trees and as many trees as possible. In the scenario high-quality trees, we 
used strict quality criteria in the stem curve estimation algorithm with 
the goal of obtaining accurate stem curve and volume estimates for field 
reference trees at the test sites. In the scenario as many trees as possible, 
we used more lenient quality criteria in order to detect most of the trees 
with the cost of increased average errors. The completeness rate of stem 
detection varied between 41.6% and 71.3% for the scenario high-quality 
trees, whereas the completeness rate was 72.2–89.5% for the scenario as 
many trees as possible reaching 86.5–96.5% for trees with a DBH 
exceeding 20 cm. The completeness rate was significantly reduced for 
trees with a DBH smaller than 20 cm, whereas most of the trees with a 
DBH exceeding 20 cm could be largely detected in both of the scenarios. 
Based on our results, the RMSE of stem curve estimates was 1.7–2.6 cm, 
i.e., 6.4–9.3%, for the scenario high-quality trees and 2.2–2.9 cm, i.e., 
9.0–12.4%, for the scenario as many trees as possible. When it comes to 
the stem volume estimates, the RMSE was 12.7–21.3% for the scenario 
high-quality trees and 17.7–29.3% for the scenario as many trees as 
possible. Importantly, the RMSE values obtained for the DBH, stem curve 
and stem volume were far smaller than in the previous studies in the 
literature investigating direct stem diameter measurements from high- 
density ALS or UAVLS data. Furthermore, the average errors obtained 
in the current study were not much larger than the errors that have been 
previously obtained with ground-based MLS systems, such as backpack 
laser scanning, in comparable boreal forest conditions. 

The use of ALS or UAVLS systems for reference data collection would 
have the following benefits: First, the point clouds are easily georefer
enced thanks to a strong GNSS signal above the forest canopy. Second, 
the speed of reference data collection would be unprecedented since 
point cloud data covering tens of thousands of trees could be collected 
during a single day. Third, tree height measurements are more accurate 
from point cloud data collected with an above-canopy flying platform. 

Table 6 
Comparison of our results to previous studies that have used high-density ALS or UAVLS data to conduct direct measurements of DBH and other stem attributes of 
individual trees. For each study, we report the laser scanning system, flight altitude above the ground level, point density of the resulting point cloud(s), completeness 
of tree detection, and RMSE for DBH, stem curve and stem volume estimates. Importantly, the completeness rates are not fully comparable between the different 
studies since manual selection of trunk points was used in Brede et al. (2017) and Wieser et al. (2017), and thus, the completeness rates refer to the success rate of 
circle/cylinder fitting for these two studies.    

Altitude Density Completeness RMSE (absolute or relative) 

Study System (m) (pts/m2) (%) DBH Stem curve Stem volume 

Wieser et al. (2017) RiCOPTER 50 1500 81 7.5 cm – – 
Brede et al. (2017) RiCOPTER 90 3000–5300 67 4.2 cm – – 
Liang et al. (2019) RiCOPTER 50 4000–18000 20–60 20–50% 30–55% 60–225% 
Kuželka et al. (2020) RiCOPTER 100 2000 98–99 6.0 cm – – 
Vandendaele et al. (2021) Velodyne HDL-32E 40 1585 71 7.4 cm – –  

on a UAV       
Ours (high-quality RieglVUX-1HA 80 2200–3800 42–71 2.2–2.9 cm 1.7–2.6 cm 96-146 dm3 

trees) on a helicopter    8.1–9.8% 6.4–9.3% 12.7–21.3% 
Ours (as many trees RieglVUX-1HA 80 2200–3800 72–90 2.6–3.5 cm 2.2–2.8 cm 122-180 dm3 

as possible) on a helicopter    10.1–14.6% 9.0–12.4% 17.7–29.3%  
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The downsides of the proposed approach include the increased costs of 
the laser scanning equipment due to high precision requirements and the 
slightly reduced quality of the point cloud, both of which are caused by 
the long range between the laser scanner and the tree stems to be 
modeled. 

In the future, the capability of direct ALS measurements for reference 
data collection should be verified by using the estimated stem attributes 
to train prediction models needed in an individual-tree-level forest in
ventory. By comparing the inventory results to those obtained when 
standard field measurements are used as the reference data, one could 
conclude whether the stem attribute estimates obtained from high- 
density ALS data are sufficiently accurate for operational applications. 
Furthermore, more research would be needed to test and develop the 
sampling strategies, flight operations and point cloud processing 
methods in more complex forest conditions and in different types of 
forests. In conclusion, our results present an important step towards 
utilizing high-density ALS or UAVLS data for highly-efficient reference 
data collection at the individual tree level. 
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Appendix. A Results for the scenario as many trees as possible 

In this appendix, we present the results regarding stem detection and stem attribute estimation when it comes to the scenario as many trees as 
possible. As explained in Sec. 2.5, we used more lenient parameter values in the stem curve estimation algorithm for this scenario than for the scenario 
high-quality trees in order to detect a larger proportion of the trees with the cost of increased errors in the estimated stem attributes. 

Appendix. A.1 Completeness and correctness of stem detection 

We summarize the results for the completeness of stem detection in Fig. A.1 and in Table A.1. The overall completeness rate ranged from 72.2% for 
the test site 3 to 89.5% for the test site 1. Similarly to the scenario high-quality trees, the completeness rate was the lowest, i.e., 29.4–69.7%, for trees 
that belonged to the category DBH ∈ [0, 20) cm. When considering trees with a DBH larger than 20 cm, the completeness rate varied between 86.5% 
and 96.5% on all of the test sites. For example, the completeness rate at the test site 1 was as high as 95.2% for the category DBH ∈ [20, 30) cm, and 
98.9% for the category DBH ∈ [30, 40) cm. The high completeness rate at the test site 1 can probably be attributed to the point density of 3800 pt/m2 

that was 70% higher than that for the test site 2 and 30% higher than that for the test site 3.

Fig. A.1. (a) Completeness rates of stem detection on the three test sites for the scenario as many trees as possible. In addition to showing the overall completeness rate 
(blue bar), we also present the completeness rates for four disjoint DBH categories: DBH ∈ [0, 20) cm, DBH ∈ [20, 30) cm, DBH ∈ [30, 40) cm, and DBH ∈ [40, ∞) cm. 
(b) Number of detected reference trees and the total number of reference trees in the different DBH categories on the three test sites. 
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In Table A.1, we report the correctness rates of stem detection for all of the test sites. The correctness rate was the lowest for the test site 2, for which 
4.5% of the detected trees did not correspond to a reference tree detected from the ZEB Horizon data. Overall, the correctness rates were only one 
percentage point lower than for the scenario high-quality trees even though the more lenient parameter values allowed us to detect a far larger pro
portion of the trees.  

Table A.1 
Completeness and correctness rates of ALS-based stem detection on the three test sites for the scenario as many trees as possible. In addition to the overall completeness 
rate, we also report the completeness of stem detection for four disjoint DBH categories: DBH ∈ [0, 20) cm, DBH ∈ [20, 30) cm, DBH ∈ [30, 40) cm, and DBH ∈ [40, ∞)

cm. Note that the number of reference stems is based on the number of stems detected from the ZEB Horizon data.   

Completeness (%) Correctness (%)  

Overall DBH ∈ [0, 20) cm DBH ∈ [20, 30) cm DBH ∈ [30, 40) cm DBH ∈ [40, ∞) cm Overall 

Test site 1 89.5 (377/421) 69.7 (76/109) 95.2 (198/208) 98.9 (94/95) 100 (9/9) 97.9 (377/385) 
Test site 2 86.2 (365/423) 29.4 (10/34) 89.9 (196/218) 92.5 (148/160) 100 (11/11) 95.5 (365/382) 
Test site 3 72.2 (451/625) 45.2 (98/217) 85.9 (306/356) 89.6 (43/48) 100 (4/4) 98.9 (451/456)  

In Fig. A.2, we show the percentage of trees, for which at least one reliable arc was detected in a given 1-m height interval, as a function of the 
height from ground. Similarly to the scenario high-quality trees, the probability of arc detection was the highest at the height of z = 2 m. By comparing 
Fig. A.1(a) and Fig. A.2, we can observe that the overall completeness rates significantly exceeded the percentage of trees, for which at least one 
reliable arc was detected at the height of z = 2 m. This suggests that it is beneficial to detect arcs at multiple heights in order to detect as many stems as 
is possible from the point cloud data. As compared with the scenario high-quality trees, there were no significant qualitative differences in the height 
dependence of the arc detection probability apart from the obvious fact that the arc detection probability was higher throughout the studied height 
range when using parameter values corresponding to the scenario as many trees as possible.

Fig. A.2. Proportion of trees, for which at least one reliable arc was detected in a given 1-m height interval, as a function of the height from ground for the scenario as 
many trees as possible. The blue line corresponds to the test site 1, the red line corresponds to the test site 2, and the black line corresponds to the test site 3. The solid 
red bars depict the average for the three test sites. 
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Appendix. A.2 Accuracy of ALS-derived stem attributes 

In this section, we present the results for the ALS-derived DBHs, stem curves, and stem volumes when considering the scenario as many trees as 
possible. Tables A.2 and A.3 summarize the bias and RMSE of the estimated stem attributes for each of the test sites. The tables also include the bias and 
RMSE evaluated for each of the four DBH categories introduced in Sec. 3.1. 

For the scenario as many trees as possible, the coefficient of determination R2 of the ALS-derived DBHs varied between 0.63 and 0.86 across the three 
test sites as illustrated in Fig. A.3(a)–(c). As shown in Fig. A.4(a), the overall relative bias of the DBH estimates was below 4% on all of the test sites. For 
trees in the category DBH ∈ [0, 20) cm, the relative bias was, however, substantially above zero and ranged from 7.8% (test site 1) up to 19.5% (test 
site 2). Based on Fig. A.4(b), the overall relative RMSE of the estimated DBHs was 10.1–14.6%. In the category DBH ∈ [0, 20) cm, the relative RMSE 
was markedly higher, and ranged up to 29.3% in the case of the test site 2.

Fig. A.3. Scatter plots for DBH, stem curve and stem volume on the three test sites for the scenario as many trees as possible. (a-c) Scatter plots for the DBHs measured 
directly from the ALS data vs the reference DBHs at the test sites 1, 2, and 3, respectively. (d-f) Scatter plots for the stem curve estimates measured from the ALS data 
vs the reference stem curves at the test sites 1, 2, and 3, respectively. (g-i) Scatter plots for the stem volumes measured directly from the ALS data vs the reference 
stem volumes at the test sites 1, 2, and 3, respectively. In all of the panels, the dashed blue line corresponds to y = x. 

When it comes to the stem curve estimates, the coefficient of determination R2 varied between 0.68 and 0.88 across the test sites as depicted in 
Fig. A.3(d)–(f). As shown in Fig. A.5(a), the overall relative bias of the stem curve estimates was close to zero. Importantly, the relative RMSE of the 
stem curve estimates was slightly lower than the RMSE of the DBH estimates in analogy to the scenario high-quality trees. Namely, the overall relative 
RMSE ranged from 9.0% to 12.5% as illustrated in Fig. A.5(b). Again, the relative RMSE was significantly higher in the category DBH ∈ [0, 20) cm as 
compared with the other DBH categories. 

E. Hyyppä et al.                                                                                                                                                                                                                                 



Science of Remote Sensing 5 (2022) 100050

18

Fig. A.4. Relative (a) bias and (b) RMSE of DBH estimates on the three test sites for the scenario as many trees as possible. We show both the overall bias and RMSE 
(blue bars) as well as the bias and RMSE for each of the four DBH categories (red bars). 

Fig. A.5. Relative (a) bias and (b) RMSE of stem curve estimates on the three test sites for the scenario as many trees as possible. We show both the overall bias and 
RMSE (blue bars) as well as the bias and RMSE for each of the four DBH categories (red bars). 

For the stem volume estimates, the coefficient of determination R2 varied between 0.74 and 0.92 as illustrated in Fig. A.3(g)-(i). Fig. A.6(a) shows 
that the overall relative bias of the stem volume estimates ranged from −5.1% (test site 2) up to 12.4% (test site 3). Again, the relative RMSE was 
significantly larger for small trees that belonged to the DBH category DBH ∈ [0, 20) cm. For these trees, the relative RMSE was as high as 58.8–100.0% 
depending on the test site. On the other hand, the overall relative RMSE of the stem volume estimates was 17.7–29.3%, and the relative RMSE was as 
low as 5.3–11.6% for the trees with a DBH exceeding 40 cm.

Fig. A.6. Relative (a) bias and (b) RMSE of stem volume estimates on the three test sites for the scenario as many trees as possible. We show both the overall bias and 
RMSE (blue bars) as well as the bias and RMSE for each of the four DBH categories (red bars).  

Table A.2 
Bias and RMSE of DBH and stem curve estimates on the three test sites for the scenario as many trees as possible. In addition to the overall bias and RMSE, we also report 
the bias and RMSE for each of the four DBH categories.   

DBH Stem curve  

bias rbias RMSE rRMSE Bias rbias RMSE rRMSE 

Test site 1 
Overall 0.6 cm 2.4% 2.6 cm 10.1% 0.4 cm 1.6% 2.2 cm 9.0% 
DBH ∈ [0, 20) cm 1.3 cm 7.8% 2.7 cm 16.2% 1.3 cm 7.9% 2.9 cm 17.4% 
DBH ∈ [20, 30) cm 0.7 cm 3.0% 2.3 cm 9.2% 0.3 cm 1.3% 1.9 cm 7.9% 
DBH ∈ [30, 40) cm 0.2 cm 0.6% 2.7 cm 8.0% −0.0 cm −0.0% 2.2 cm 6.9% 

(continued on next page) 
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Table A.2 (continued )  

DBH Stem curve  

bias rbias RMSE rRMSE Bias rbias RMSE rRMSE 

DBH ∈ [40, ∞) cm −3.8 cm −8.8% 5.7 cm 13.3% −1.0 cm −2.6% 2.9 cm 7.6% 
Test site 2 
Overall 0.2 cm 0.8% 3.4 cm 11.5% −0.6 cm −2.3% 2.8 cm 9.9% 
DBH ∈ [0, 20) cm 3.7 cm 19.5% 5.6 cm 29.3% −0.5 cm −2.2% 2.4 cm 11.3% 
DBH ∈ [20, 30) cm 0.6 cm 2.3% 2.5 cm 9.3% −0.5 cm −1.7% 2.6 cm 10.1% 
DBH ∈ [30, 40) cm −0.4 cm −1.2% 4.2 cm 12.5% −0.9 cm −2.7% 3.1 cm 9.8% 
DBH ∈ [40, ∞) cm −1.4 cm −3.3% 3.2 cm 7.6% −1.5 cm −3.9% 2.5 cm 6.6% 
Test site 3 
Overall 0.9 cm 3.9% 3.5 cm 14.6% 0.8 cm 3.3% 2.9 cm 12.5% 
DBH ∈ [0, 20) cm 1.5 cm 9.1% 3.6 cm 20.8% 1.3 cm 7.5% 3.1 cm 18.6% 
DBH ∈ [20, 30) cm 0.8 cm 3.5% 3.5 cm 14.4% 0.7 cm 3.1% 2.7 cm 11.4% 
DBH ∈ [30, 40) cm 0.2 cm 0.6% 3.0 cm 9.3% 0.0 cm 0.1% 3.4 cm 11.1% 
DBH ∈ [40, ∞) cm −1.3 cm −3.0% 1.4 cm 3.2% −1.1 cm −2.8% 2.0 cm 4.9%   

Table A.3 
Bias and RMSE of stem volume estimates on the three test sites for the scenario as many trees as possible. In addition to the 
overall bias and RMSE, we also report the bias and RMSE for each of the four DBH categories.   

Stem volume  

Bias rbias RMSE rRMSE 

Test site 1 
Overall 53 dm3 7.7% 122 dm3 17.7% 
DBH ∈ [0, 20) cm 78 dm3 32.2% 143 dm3 58.8% 
DBH ∈ [20, 30) cm 42 dm3 6.9% 100 dm3 16.3% 
DBH ∈ [30, 40) cm 51 dm3 4.6% 138 dm3 12.3% 
DBH ∈ [40, ∞) cm 99 dm3 6.0% 178 dm3 10.7% 
Test site 2 
Overall −49 dm3 −5.1% 180 dm3 19.0% 
DBH ∈ [0, 20) cm 72 dm3 16.8% 428 dm3 100.0% 
DBH ∈ [20, 30) cm −47 dm3 −6.1% 131 dm3 17.1% 
DBH ∈ [30, 40) cm −54 dm3 −4.7% 203 dm3 17.5% 
DBH ∈ [40, ∞) cm −121 dm3 −6.7% 210 dm3 11.6% 
Test site 3 
Overall 65 dm3 12.4% 154 dm3 29.3% 
DBH ∈ [0, 20) cm 77 dm3 32.8% 142 dm3 60.4% 
DBH ∈ [20, 30) cm 65 dm3 12.1% 149 dm3 27.9% 
DBH ∈ [30, 40) cm 44 dm3 4.5% 208 dm3 21.1% 
DBH ∈ [40, ∞) cm 61 dm3 3.2% 102 dm3 5.3%  
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Hunčaga, M., Chudá, J., Tomaštík, J., Slámová, M., Koreň, M., Chudỳ, F., 2020. The 
comparison of stem curve accuracy determined from point clouds acquired by 
different terrestrial remote sensing methods. Rem. Sens. 12 (17), 2739. 
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E. Hyyppä et al.                                                                                                                                                                                                                                 

http://refhub.elsevier.com/S2666-0172(22)00012-8/sref1
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref1
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref3
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref3
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref3
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref2
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref2
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref2
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref4
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref4
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref4
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref5
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref5
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref5
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref6
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref6
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref6
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref7
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref7
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref8
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref9
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref9
https://ec.europa.eu/clima/eu-action/forests-and-agriculture_fi
https://ec.europa.eu/clima/eu-action/forests-and-agriculture_fi
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref11
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref11
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref11
https://efi.int/sites/default/files/files/publication-bank/2018/efi_wsctu6_2014.pdf
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref13
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref13
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref13
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref14
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref14
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref14
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref15
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref15
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref15
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref16
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref16
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref16
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref21
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref21
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref21
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref21
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref22
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref22
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref22
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref18
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref18
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref18
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref18
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref19
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref19
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref19
http://refhub.elsevier.com/S2666-0172(22)00012-8/sref19


Science of Remote Sensing 5 (2022) 100050

20
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Jaakkola, A., Hyyppä, J., Yu, X., Kukko, A., Kaartinen, H., Liang, X., Hyyppä, H., 
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Jaakkola, A., Wang, Y., 2018. In-situ measurements from mobile platforms: an 
emerging approach to address the old challenges associated with forest inventories. 
ISPRS J. Photogrammetry Remote Sens. 143, 97–107. 
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