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Topological superfluid defects with discrete
point group symmetries

Y. Xiao 1,6, M. O. Borgh 2, A. Blinova 1,3, T. Ollikainen1,4,7, J. Ruostekoski 5 &
D. S. Hall 1

Discrete symmetries are spatially ubiquitous but are often hidden in internal
states of systems where they can have especially profound consequences. In
this work we create and verify exotic magnetic phases of atomic spinor
Bose–Einstein condensates that, despite their continuous character and
intrinsic spatial isotropy, exhibit complex discrete polytope symmetries in
their topological defects. Using carefully tailored spinor rotations and micro-
wave transitions, we engineer singular line defects whose quantization con-
ditions, exchange statistics, and dynamics are fundamentally determined by
these underlying symmetries. We show how filling the vortex line singularities
with atoms in a variety of different phases leads to core structures that possess
magnetic interfaces with rich combinations of discrete and continuous sym-
metries. Such defects, with their non-commutative properties, could provide
unconventional realizations of quantum information and interferometry.

Symmetry plays a critical role in the scientific and mathematical
descriptions of the universe. Symmetries can be continuous, as in
rotations of a circular cylinder about its axis; or discrete, as in end-for-
end exchanges of the cylinder about its midpoint. Discrete polytope
symmetries appear in diverse and widespread systems, including
crystals, molecular bonds, and the familiar morphologies of honey-
combs, snowflakes, and flower petals. They can also be hidden in the
internal states of otherwise continuous and isotropic systems, where
they can have profound and unusual consequences; for example, the
discrete symmetries of charge conjugation, parity, and time-reversal
play important roles in particle and condensed matter physics and
serve as a touchstone for grand unified theories. Complex discrete
symmetries also appear in spatially uniform condensed matter sys-
tems and, intriguingly, in spinor superfluids.

In quantummechanics, the internal symmetries of a spin-F system
can be conveniently described in a geometrical representation due to
Majorana, wherein a state corresponds to a constellation of 2F points
on the unit sphere1,2. Each point is related to the state of an indepen-
dent spin-1/2 system3, and the polytopes with vertices established by

the representative points display the discrete symmetries of the order
parameter that describes the system4–6. The stationary, dynamically
stable states that share a given constellation are known as magnetic
phases, whose richness of internal symmetries is illustrated by the
examples in Fig. 1.

In contrast to the ubiquity of their crystalline counterparts, con-
densedmatter systems exhibiting discrete polytope symmetrieswithin
their internal degrees of freedom are relatively unusual, with examples
appearing in exotic contexts such as d-wave superconductors7, 3P2
neutron star superfluids8, and biaxial nematic liquid crystals9. Spinor
Bose–Einstein condensates (BECs)10 with spin F ≥ 2 provide an exciting
pristine system with unprecedented experimental control. They are
described by an order parameter whose complex broken internal
symmetries lead to magnetic phases with polygonal (e.g., Fig. 1f), tet-
rahedral (e.g., Fig. 1g), octahedral (F ≥ 3), and icosahedral (F ≥ 6)
Majorana symmetries. Previous experimental studies have examined
phenomena associated with spinor BECs in simple magnetic phases
that lack such symmetries, including topological defects11–14 and
textures15–19, spontaneous pattern formation20,21, dipolar interactions22,
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magnons23, and condensate fragmentation24. However, apart from
early experiments on spin population dynamics25, magnetic phases
with discrete polytope symmetries remain unexplored.

Here, we create and verify the discrete polytope symmetries of
biaxial nematic (BN) and cyclic (C) phases of spin-2 BECs in the rota-
tionalproperties of their continuouswave functions and in the singular
line defects. The BN and C magnetic phases exhibit discrete internal
Majorana symmetries of a square (Fig. 1f) and a tetrahedron (Fig. 1g),
respectively, which are revealed experimentally. Such phases support
exotic singular vortices that we prepare using combinations of mag-
netic field rotations and carefully engineered microwave transitions.
The singular defect cores are filled by a variety of different superfluid
phases, resulting in rich combinations of core structures that form
interfaces between different discrete and continuous symmetries. Our
experimental procedure thus establishes a fascinating setting for the
exploration and manipulation of the unusual properties of the line
defects26–30 that directly emerge from the discrete polytope symme-
tries. For instance, the line defects may not commute when the vortex
positions are interchanged, leaving rung vortices behind in
collisions30,31 with possible ramifications for interferometry and quan-
tum information32.

Results
We create line defects by applying a carefully tailored time- and spa-
tially varying magnetic field to a spin-1 87Rb superfluid in its ferro-
magnetic (FM) phase, which maximizes the spin magnitude, with the
order parameter defined by spatial rotations (Fig. 1a). The changing
magnetic field imprints a nonsingular vortex texture with a tight
bending of the magnetization in the vicinity of its core, triggering an
instability that induces the system to decay into a pair of singly-
quantized, singular vortices in the FM phase13,33. During the decay
process the vortex cores fill with superfluid in the polar (P) magnetic
phase, with nematic symmetry (Fig. 1b) and vanishing condensate spin
magnitude. The magnetic spin-2 superfluid phases are subsequently
introduced with a sequence of microwave pulses that promote the
spin-1 atoms into the spin-2 hyperfine manifold. The result is a pair of
line defects in any of the prototypical spin-2magnetic phases shown in
Fig. 1c–g, but we focus here on converting the FM phase to either the
BN or C phase that display discrete polytope symmetries. In the same
pulse sequence, the filled core in the P phase is similarly converted to a
distinct F = 2 magnetic phase of our choice, such as ferromagnetic-2
(FM2), with maximal spin magnitude and symmetry related to the
spatial rotations, or uniaxial nematic (UN), with vanishing condensate
spin and the symmetry defined by an unoriented axis and a 2π change
of the global BEC phase. (Further details of the magnetic phases are
provided in the Methods and in Supplementary Fig. 1.)

Our experimental creation technique accesses an entire family of
line defects in which the polytope symmetries affect the properties of
the vortex cores. An example of a microwave pulse sequence that

yields a pair of BN vortices with filled UN cores is shown in Fig. 2a. In
the chosen basis the BN condensate is represented by a square in the
uv- (horizontal) plane of the Majorana sphere (Fig. 1f), whereas the UN
core is similarly represented by a rod oriented along the w- (vertical)
axis (Fig. 1e). More generally, changing the relative phase between the
nonzero spinor components of either the BN or C phases (Fig. 1f, g)
amounts to rotating the corresponding polytope about thew-axis, and
is achieved experimentally by selecting the appropriate phases of the
microwave pulses.

The formation of the vortex core can be understood in this
example of the singly-quantized BN line defect as the continuous
transformation of the BN bulk phase towards the UN phase inside the
vortex core (Fig. 2b). We can parameterize the stationary spinor
solution by

ζ =

eiϕf ðρÞ=
ffiffiffi
2

p

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ½f ðρÞ�2

q
0

eiϕf ðρÞ=
ffiffiffi
2

p

0
BBBBBB@

1
CCCCCCA

, ð1Þ

where f(ρ) parameterizes the radial vortex-core profile in terms of the
radial coordinate ρ= ðx2 + y2Þ1=2, such that f(ρ)→ 1 outside the core, and
f(ρ) = 0 on the line singularity itself (ρ =0). This solution smoothly
interpolates between the BN and UN phases. Hence, the total
superfluid density remains non-zero as the vortex line is filled with
the UN phase, even though the BN phase becomes singular and must
vanish. This is unlike a defect singularity in a scalar superfluid that has a
vanishing superfluid density. The solution given by Eq. (1) thus
constitutes a stable, coherent topological interface at the vortex
core33,34. Vortex cores with complex internal structures in the absence
of discrete polytope symmetries have been extensively studied in
superfluid liquid 3He35 and also in atomic spinor condensates36.
Additionally, topological interfaces more generally can support non-
trivial topological objects whose classification changes as they
penetrate the interface. These have been extensively studied, e.g., in
high-energy physics and cosmology37,38, in superfluid liquid 3He39, and
in BECs34.

Further instructive examples are illustrated in Fig. 2c, d, in which
the core of a C line defect is filled with either the FM2 or the UN phase
(see Supplementary Figs. 2–4 for additional experimental realizations).
The Majorana representation of the C phase in these cases yields a
vertex-up tetrahedron with a face parallel to the uv-plane. While the
FM2 core is rotationally symmetric, the core of the resulting singly-
quantized C vortex is remarkably anisotropic when the UN phase
occupies the line singularity. Numerical simulations show that the
vortices in both cases are unstable against splitting into a pair of vor-
tices carrying fractional 13 and

2
3 circulation quanta, respectively. In the

Fig. 1 | Majorana and spherical-harmonics representations of the prototype
spinors for spin-1 and spin-2magneticphases. a,bThe spin-1 ferromagnetic (FM)
and polar (P)magnetic phases with twoMajorana points (green dots, with adjacent
number indicating multiplicity > 1). c–g The spin-2 ferromagnetic-2 (FM2) and -1
(FM1), uniaxial nematic (UN), biaxial nematic (BN), and cyclic (C) magnetic phases,
with fourMajorana points. The discrete polytopeMajorana symmetries of a square
and tetrahedron are easily recognized for BN and C. The full behavior of the order-

parameter symmetries is visualized in the spherical harmonics representation,
where Z(θ,ϕ), for spherical coordinates (θ,ϕ), expands each spinor in terms of
spherical harmonics. The shape ∣Z(θ,ϕ)∣2 and ArgðZ Þ (color map) together reveal
the symmetry. The FM, FM1 and FM2 order parameters correspond to spatial
rotations in three dimensions. The order parameter symmetries of the remaining
magnetic phases are obtained by appropriately combining the global condensate
phase with an unoriented axis (P and UN), square (BN), and tetrahedron (C).
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process, the 2
3 vortexdevelops a FM2core,while the coreof the 1

3 vortex
exhibits the ferromagnetic-1 (FM1) phase (cf., Fig. 1c, d). However, the
decay is sensitive to the orientation of the order parameter of the
imprinted vortex. In simulations, we find that a π/4 spin rotation about
the v axis instead causes a decay of the condensate into the BN phase,
forming vortices with FM2 cores.

Images of the condensate spinor components reveal the rich
structure of line defects in the magnetic phases with polytope sym-
metries but do not directly show the discrete internal symmetries of
the phases in real space. To verify these symmetries we apply radio-
frequency (rf) spin-tip pulses that rotate the entire Majorana con-
stellation about an axis in the uv-plane1, thereby preserving the mag-
netic phase but changing its spinor representation. The rotation axis
and angle of rotation are established by the phase and area of the rf
pulse, respectively, in the same fashion as they act on states on the
Bloch sphere2. Critically, the spinor component densities remain
invariant under any 2π/j adjustments of the rf phase along a j-fold
symmetry axis of the polytope.

Extending our previous example, we demonstrate the three-fold
discrete symmetry of the cyclicmagnetic phase by rotating the vertex-
up tetrahedral state of the C phase (Fig. 1g) through the tetrahedral

angle arccosð1=
ffiffiffi
3

p
Þ about the axis in the uv-plane established by the

phase of the spin-tip pulse. As the rf phase is varied through 2π
3 radians

(Fig. 3b–e), the final vortex state undergoes one corresponding revo-

lution that returns to the edge-up state 1
2 ð1, 0, i

ffiffiffi
2

p
, 0, 1ÞT , as shown in

Fig. 3b, d. The imaginary amplitude of the m =0 component, inferred

from the measured spinor component densities after the rotation, is
critical to distinguishing the cyclic magnetic phase from a mixed UN-
BN phase that has the same spinor component densities but does not
share the tetrahedral Majorana symmetry. Similar measurements
reveal the four-fold Majorana symmetry of the BN phase under π/2
rotations (Fig. 4) and the full three-fold symmetry of the C phase under
2π/3 rotations (Supplementary Fig. 5).

Discussion
Our creation of line defects in magnetic phases with demonstrated
polytope internal symmetries suggests a number of future experi-
ments. As a proof of principle, we experimentally explored the time
evolution of a UN core, C vortex condensate for the first 30 ms after a
tetrahedral rf rotation into the edge-up tetrahedral state (Figs. 3b, d
and 5). Over this interval, the total number of atoms decreases sub-
stantially, whereas the fraction of atoms in each spinor component
changes only slightly: the m = ± 1 spinor components become more
diffuse in the region of the vortex core, and the fraction of atoms in the
m =0 component diminishes slightly with respect to them = ± 2 spinor
components. These results suggest that the C superfluid trends slowly
towards the BNphase, consistentwithprevious experimental studies25.
The relatively short superfluid lifetime is a constraint that can be
addressed with the development of optical trapping geometries that
reduce the atomic density. Overcoming this technical hurdle will
therefore establish a path to exploring the vortex dynamicsmore fully,
including the expected evolution towards fractionally-quantized vor-
tices we highlighted above.
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Fig. 2 | Creation of singular line defects in magnetic phases with discrete
polytope symmetries. a Engineering a singular vortex in the biaxial nematic (BN)
phase with a uniaxial nematic (UN) vortex core. The thick lines schematically show
the hyperfine levels (F = 1 and F = 2, with Zeeman levelsm reading left to right) in a
magnetic field of 1 G, accompanied by experimental images of the condensate
viewed along the z-axis after Stern–Gerlach separation. The connecting arrows
illustrate the pulse sequence, with order given by the circled number, colored blue
for transitions involving the components with phase singularities and red involving
the superfluid components filling those singularities. Deep colors indicate π-pulses,
whereas pale blue indicates a π/2-pulse. The process begins with a vortex in the

spin-1 ferromagnetic (FM) phase with polar (P) core. The column densities of the
experimental images are expressed in grayscale in terms of dimensionless optical
depth (O.D.), and the field of view of each image is 212 × 212μm. b–d Spherical
harmonics representation of the core structure of imprinted singly quantized
vortices:bBNvortex with UN core, corresponding to a single vortex as created in a;
c cyclic (C) vortex with ferromagnetic-2 (FM2) core; d C vortex with UN core. The
symmetry of the order parameter is represented by the spherical harmonics
expansion given in Fig. 1. The background surface shows the singlet-trio amplitude
∣A30∣ (Methods) that reveals a non-axisymmetrically connecting discrete magnetic
phase at the topological interface between the vortex core and bulk superfluid.
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Our engineering of magnetic phases with discrete polytope sym-
metries and the associated line defects also opens new avenues for the
further exploration of exciting phenomena that have previously only
been associated with exotic models in field theories of high-energy
physics and cosmology. For instance, defects across the interfaces of
polytope symmetric magnetic phases can combine non-trivially,
forming singularities that penetrate continuous, coherent topological
interfaces and non-Abelian line defects appear as cosmic strings in
theories of the early Universe40. Non-Abelian defects in the magnetic
phases of discrete polytope symmetries may furthermore form a non-
commutative algebra26–30 that could potentially be harnessed for
quantum information processing32. Experiments for manipulating
such defects are challenging but specific proposals for preparing pairs
of non-commuting vortices already exist30. Experimentalmanipulation
may also be assisted by working in, e.g., strongly oblate trapping
geometries where the defects become more easily controllable point
vortices.

Methods
Spin-2 Hamiltonian
We represent the macroscopic spin-2 BEC wave function as
Ψðr, tÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nðr, tÞ

p
eiτζ , such that the atom density n = ∣Ψ∣2, the global

phase τ(r, t), and the spinor ζ(r, t) are governed by a mean-field

Hamiltonian density10

H=
_2

2Ma
∣∇Ψ∣2 +Utrapn +

c0
2
n2 +

c1
2
n2∣hF̂i∣2

+
c2
2
n2∣A20∣

2 +pnhF̂zi+qnhF̂
2
z i

ð2Þ

in the harmonic trapping potentialUtrap = ðMaω
2
r =2Þðx2 + y2 + 2z2Þ, with

radial trap frequency ωr. Here, Ma denotes the atomic mass,
A20 =

1ffiffi
5

p ð2ζ + 2ζ�2 � 2ζ + 1ζ�1 + ζ
2
0Þ is the amplitude of spin-singlet pair

formation, and p and q determine, respectively, the linear and
quadratic Zeeman shifts. The condensate-spin expectation value
hF̂i=∑αβζ

y
α F̂αβζ β is obtained from the vector F̂ of spin-2 matrices.

The nonlinearities c0 = 4πℏ2(3a4 + 4a2)/7Ma, c1 = 4πℏ2(a4 − a2)/7Ma,
and c2 = 4πℏ2(3a4 − 10a2 + 7a0)/7Ma are derived from the s-wave
scattering lengths as for the total spin s of the interacting atom pairs,
a0 = 87.4(10)aB, a2 = 92.4(10)aB, and a4 = 100.5(10)aB in units of the
Bohr magneton aB41.

For a weak quadratic Zeeman shift, the spin-2 BEC exhibits dif-
ferentmagnetic phases that are characterized by the values of ∣hF̂i∣ and
∣A20∣. For a ferromagnetic phase, ∣A20∣ =0 and ∣hF̂i∣=2 (for FM2) or 1
(for FM1). The representative spinors are obtained by rotations of
(1, 0, 0, 0, 0)T and (0, 1, 0, 0, 0)T, respectively. For the C phase,
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Fig. 3 | Demonstration of tetrahedral discrete symmetry in the continuous
wave function of the spin-2 superfluid in the cyclic phase with a singular line
defect. The orientation of the order parameter is controlled using radio-
frequency spin-tip pulses of varying phase. a The initial cyclic (C) vortex state in
the Majorana representation. The symmetry of the order parameter is repre-
sented by the spherical harmonics expansion given in Fig. 1. The vortex core is in
the uniaxial nematic (UN) phase whose initial state is shown in the inset. b–d The

C vortex states after application of a spin-tip pulse with relative phase as indi-
cated andwith torque vectorΩ, represented in the rotating frame (with respect to
axes u, v, and w). The insets show the corresponding orientations of the uniaxial
nematic core. e The spinor component densities associated with the spin-tip
pulses with the relative phases as shown. Each experimental spinor component
image is 212 × 212 μm and shows column density expressed in grayscale in terms
of optical depth (O.D.).
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∣hF̂i∣= ∣A20∣=0 and the spinor representations are obtained by rota-
tions of 1ffiffi

3
p ð1, 0, 0,

ffiffiffi
2

p
, 0ÞT . For spin-2 BECs, the polar magnetic phase,

which also has a vanishing spin magnitude ∣hF̂i∣=0 but ∣A20∣= 1ffiffi
5

p , is
found to separate into two distinct phases: UN and BN, represented
by the spinors (0, 0, 1, 0, 0)T and 1ffiffi

2
p ð1, 0, 0, 0, 1ÞT , respectively. By

defining the amplitude of spin-singlet trio formation10

A30 =
3
ffiffi
6

p
2 ðζ 2+ 1ζ�2 + ζ

2
�1ζ + 2Þ+ ζ0ð�6ζ + 2ζ�2 � 3ζ + 1ζ�1 + ζ

2
0Þ we can dis-

tinguish between the UN and BN phases that take the values ∣A30∣ = 1
and 0, respectively. For the C phase ∣A30∣=

ffiffiffi
2

p
.

We solve the five coupled Gross-Pitaevskii equations obtained
from Eq. (2) numerically using a split-step method42 and experimental
parameter values. Angular momentum is conserved in s-wave scat-
tering, implying that on time scales where this dominates, longitudinal
magnetization, Mz = (1/N)∫d3r n(r)Fz(r), where N is the total number of
atoms, is conserved. We employ an algorithm that explicitly con-
serves Mz.

Graphical illustration of magnetic phase symmetries
We represent the order-parameter symmetry of the magnetic phases
in terms of the complementary spherical-harmonics and Majorana
representations. The starsof theMajorana constellation1 are calculated
bynumericallyfinding the 2F + 1 roots z = zjof the complexpolynomial,

∑
2F

α =0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2F

α

� �s
ζ *F�αz

α =0, ð3Þ

where each root then represents a stereographic projection
zj = tan θ

2

� �
eiϕ of the spherical coordinates (θ,ϕ) that define the

Majorana points. Rotations of the state are equivalent to rotations of
the constellation on the Majorana sphere that preserve their relative
orientation. In the spherical harmonics representation we show
∣Z(θ,ϕ)∣2, where Z ðθ, ϕÞ= ∑+ F

m=�F Y F ,mðθ, ϕÞζm expands the state in
terms of the spherical harmonics YF,m(θ,ϕ) (F = 1, 2). The symmetry is

completed by the color scale that is obtained from ArgðZ Þ. The
spherical-harmonics representation can be obtained by representing
the spin-F condensate wavefunction in terms of a complex polynomial
of degree F28.

Magnetic phases and singular vortex lines
The spin-2 FM2/1 and UN phases are closely related to the spin-1
ferromagnetic (FM) and polar (P) phases, where the order parameter
of the FM phase corresponds to the group of spatial rotations, SO(3).
The singular line defects in such a system, as in the FM1 phase of spin-
2, can only belong to two topologically distinct equivalence classes,
representing the winding numbers zero and one13. The FM2 phase in
the spin-2 system doubles the number of these classes to four. The
UNphase is determined by the nematic axis d̂ and the global phase of
the macroscopic condensate wave function τ. The order parameter
symmetry is S1 × S2=Z2, where the two-element group factorization is
due to the identity of the states ζ ðd̂, τÞ= ζ ð�d̂, τÞ. This nematic
symmetry allows for the existence of spin half-quantum vor-
tices (HQVs).

The BN and C phases exhibit polytope symmetries, as shown in
Fig. 1f–g, that result in a much richer structure of singular line defects.
The topologically distinct families of line defects in such magnetic
phases derive from the conjugacy classes of the fundamental homo-
topy group π1 of the corresponding order-parameter space symme-
tries. Specifically, these are determined directly from the group of
transformations that leave the order parameter unchanged43—here by
applying a SO(3) spin rotation and a S1 gauge transformation by the
global condensate phase τ. For the case of the BN phase, the fourfold
symmetry of the Majorana constellation is illustrated in Fig. 1f. Trans-
formations that exactly interchange the lobes in the spherical-
harmonics representation and also, where necessary, take τ→ τ +π,
then leave the order parameter unchanged. These transformations
thus combine the dihedral-4 subgroup of SO(3) with a π shift of τ to
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Fig. 4 | Demonstration of polytope discrete symmetry in the continuous wave
function of the spin-2 superfluid in the biaxial nematic phase. The different
orientations of the order parameter are obtained by rotations of the spinor with
radio-frequency (rf) pulses at different phase angles, as shown schematically by the
orange torque vectorΩ. aMajorana and spherical harmonics representations of the
initial biaxial nematic (BN) magnetic phase. b–e The rotated BN phase after π/2 rf

pulses with the phases 90∘, 120∘, 150∘, and 180∘, as shown. f Experimental images of
the spinor components for the initialmagnetic phase.g Experimental images of the
rotated spinor components after π/2 rotations at the indicated rf phases. Each
experimental subpanel shows a spinor component column density taken from the
side in terms of optical depth (O.D.) with a field of view of 219 × 219μm.
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form the eight-element group ~D4, which factorizes S1 × SO(3). After
lifting SO(3) to SU(2) to form a simply-connected covering group, the
conjugacy classes of π1 are obtained30: {(n, 1)}, {(n, − 1)},
{(n, ± iσx), (n, ± iσy)}, {(n, ± iσz)}, {(n + 1/2, σ), (n + 1/2, − iσzσ)}, {(n + 1/
2, − σ), (n + 1/2, iσzσ)}, and {(n + 1/2, ± iσxσ), (n + 1/2, ± iσyσ)}, where the
Pauli matrices σx,y,z and σ � 1+ iσz

� �
=

ffiffiffi
2

p
represent the SU(2) part of

the fundamental homotopy group elements, and n in the S1 part is an
integer. For n =0, these represent the following topologically distin-
guishable vortex states: (i) the vortex-free state, (ii) integer spin vortex,
(iii) & (iv) spin HQVs, (v) HQV with π/2 spin rotation, (vi) HQV with 3π/
2 spin rotation, and (vii) HQV with π spin rotation. For n = 1, the singly-
quantized vortices in Fig. 2a, b arise from (i).

The vortex classes in the C phase are determined through an
analogous analysis27 by noting that the order parameter is left invariant
by transformations in the 12-element group ~T that combines the tet-
rahedral subgroup of SO(3) with elements of S1. This reveals the vortex
classes {(n, 1)}, {(n, − 1)}, {(n, ± iσα)}, fðn+ 1=3, �σÞ, ðn+ 1=3,� iσα�σÞg,
fðn+ 1=3, � �σÞ, ðn+ 1=3,iσα�σÞg, fðn+2=3, �σ2Þ, ðn+ 2=3,� iσα�σ

2Þg, and
fðn+2=3,� �σ2Þ, ðn +2=3, iσα�σ

2Þg, where α = x, y, z and �σ � 1
2 ð1+ iσx +

iσy + iσzÞ. For n = 0, the latter four classes represent vortices with
fractional 13 and

2
3 charges,while singly quantized vortices arise from the

first three with n = 1.

Experimental procedures
The experiment begins with condensates of approximately 2 × 105

atoms in the ∣F = 1, mF = 1i spinor component of 87Rb. The BEC is
confined in an optical trap with frequencies (ωr,ωz) ≈ 2π(130, 170)s−1.
Three pairs of Helmholtz coils generate the magnetic bias field, and a
single anti-Helmholtz pair generates the magnetic quadrupole field.

The condensate is initially in a magnetic field of 17 mG along
the + z-axis and a radial magnetic gradient of strength 4.3 G/cm. The
field vanishes at a point approximately 20μm above the condensate,
and the spins initially point along the + z-axis. The bias field is then
reduced at a rate of 5 G/s until it reaches − 57 mG, drawing the zero
point of themagnetic field through the condensate and imprinting the
nonsingular vortex as described in the main text. Subsequently, the
gradient is quenched and the field is quickly reoriented to point once
again along the + z axis at 1.00G for at least 100ms to allow the vortex
to decay into two singular SO(3) vortices in the FM phase with filled P
cores due to a very sharpbendingof the spin texture13,33. Field drifts are
slow enough to permit adjustment to the bias fields to ensure that the

magnetic field zero passes through the approximate center of the
condensate.

Microwave and rf pulses are applied through a waveguide and a
single coil oriented along the y-axis, respectively, and are initiated
synchronously with the 60Hz power line frequency to minimize the
effects of ambient time-dependentmagnetic fields. A typical sequence
containsmore thanfive resonant pulses and lasts 200–400μs,which is
short compared with the typical evolution time of the condensate,
~ ðc0nÞ�1. Control of the magnetic fields at the milligauss level is
essential, and caremustbe taken in thedesignof thepulse sequence to
ensure that unwanted transitions are not driven inadvertently because
of frequency-broadening and degeneracies in the hyperfine level
structure. Examples of these pulse sequences are given in Fig. 2 for BN
vortex with UN core and in Supplementary Figs. 2, 3, and 4 for BN
vortexwith FM2core, C vortexwith FM2core, and forC vortexwithUN
core, respectively.

To image the condensates, we turn off the optical trap, where-
upon the condensate falls freely and expands ballistically. A briefly
applied magnetic field gradient shortly after release separates the
spinor components for simultaneous absorption imaging along the
horizontal and vertical axes, which provides a pair of five atomic col-
umn density profiles form∈ { − 2, − 1, 0, 1, 2}. The incident probe beam
is closest to resonance form = + 2 atoms to the optically excited states,
and therefore the imaging efficiency of the spin-2 magnetic states
decreases as the magnetic number m decreases. We have calibrated
this effect and normalized the atomic density of the condensate spinor
components accordingly for all images and analysis in this work.

In order to explicitly demonstrate the discrete polytope point
group symmetries, we control the orientation of the order parameters
by inducing a spin rotation. The rotation axis and angle of rotation are
determined by the phase and area of the rf pulse. We use a pair of
phase-locked direct digital synthesis (DDS) rf sources to control the
frequency and phase of the applied rf and microwave signals. One
source (~0.7MHz) directly generates the rf spin-tip pulses; the other
(~30MHz) is mixed with a carrier (6804MHz) to generate the micro-
waves. Reproducible phase adjustments are achieved by synchroniz-
ing the phase offset of both DDS sine waves at a fixed time before the
pulse sequence begins. Selection of the phase for the rf spin-tip pulse
achieves a rotation of the Majorana constellation about the corre-
sponding axis in the co-rotating uv-plane defined in Fig. 3a–d. Exam-
ples of full 2π rotations of the rf phase, demonstrating the discrete

m = �2 0 �1�1 �2

x
y

0 ms

� 2

OD

a

b 30 ms

Fig. 5 | Initial time evolutionof the singular linedefects in the cyclic phase,with
the defect core in the uniaxial nematic phase. Each row shows the spinor com-
ponents at an evolution time of a 0 ms, and b 30 ms after an applied tetrahedral

angle radio-frequency pulse. Each experimental spinor component image is
212 × 212μm, with column densities expressed in grayscale in terms of optical
depth (O.D.).
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polytope symmetries of the BN and C phases, are shown in Fig. 4 and
Supplementary Fig. 5, respectively.

Data availability
The relevant data generated in this study have been deposited in the
Zenodo database under accession code https://doi.org/10.5281/
zenodo.6821576.

Code availability
The code is available upon reasonable request.
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