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Abstract
Enterococcus faecalis, a gram-positive bacterium, is among the most common nosocomial pathogens due to its limited 
susceptibility to antibiotics and its reservoir of the genes coding for virulence factors. Bacterial enzymes such as kinases 
and phosphorylases play important roles in diverse functions of a bacterial cell and, thus, are potential antibacterial drug 
targets. In Gram-positive bacteria, HPr Kinase/Phosphorylase (HPrK/P), a bifunctional enzyme is involved in the regulation 
of carbon catabolite repression by phosphorylating/dephosphorylating the histidine-containing phosphocarrier protein (HPr) 
at Ser46 residue. Deficiencies in HPrK/P function leads to severe defects in bacterial growth. This study aimed at identifying 
novel inhibitors of E. faecalis HPrK/P from a commercial compound library using structure-based virtual screening. The 
hit molecules were purchased and their effect on enzyme activity and growth of resistant E. faecalis was evaluated in vitro. 
Furthermore, docking and molecular dynamics simulations were performed to study the interactions of the hit compounds 
with HPrK/P. Among the identified hit molecules, two compounds inhibited the phosphorylation of HPr as well as signifi-
cantly reduced the growth of resistant E. faecalis in vitro. These identified potential HPrK/P inhibitors open new research 
avenues towards the development of novel antimicrobials against resistant Gram-positive bacteria.

Keywords E. faecalis · HPrK/P · HPr · Molecular docking · Molecular dynamics simulation · Structure-based drug design · 
Virtual screening

Introduction

Antimicrobial drugs have been used for decades to treat 
bacterial infections. However, many pathogenic bacteria 
fail to respond to treatment since these microorganisms 
have developed strategies to resist the effect of antibiotics 

[1]. Gram-positive bacteria are involved in more than half 
of the hospital-acquired infections and Enterococci are 
among the major pathogens to cause nosocomial blood-
stream infections with high morbidity and mortality rate 
[2, 3]. Approximately, 80–90% of enterococcal infections 
are caused by Enterococcus faecalis, a commensal bacte-
rium inhabiting the gastrointestinal tracts of humans [1, 
4]. E. faecalis has developed resistance to commonly used 
antibiotics such as vancomycin, aminoglycosides, dapto-
mycin, tetracycline, linezolid, and quinolones [5, 6]. In 
concert with antibiotic resistance, E. faecalis has also been 
reported to possess a reservoir of virulence genes and it 
can transfer these genes to other pathogenic bacteria [7]. 
Over the past few decades, E. faecalis has emerged as a 
significant pathogen due to its ability to cause a variety 
of infections such as urinary tract infection, bacteraemia, 
sepsis, pelvic infection, abdominal infection and rarely 
meningitis [8]. In E. faecalis, various mechanisms have 
been reported to counter the effect of antibiotics such as 
cell wall and cell membrane modifications, overexpression 
of efflux pumps, inactivation of antibiotics, and alteration 
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of the drug targets [9]. Now, there is a need to identify 
new drug targets to reduce the risk of antibiotic resist-
ance development. For instance, bacterial kinases and 
phosphorylases have been so far relatively overlooked 
in antimicrobial drug discovery. However, they play an 
important role in cell growth, intracellular metabolism, 
gene transcription, translation, signal transduction, and 
other essential cellular functions [10, 11] and, thus, could 
serve as suitable drug targets for the discovery of novel 
antimicrobials.

Bacteria utilize a preferred carbon source from the mix-
ture of different sources through the process of carbon catab-
olite repression (CCR) that represses the expression of genes 
involved in the metabolism of secondary carbon sources 
[12]. CCR is regulated by a bi-functional enzyme that has 
kinase as well as phosphorylase activity, i.e., HPr Kinase/
Phosphorylase (HPrK/P; EC:2.7.11.-, EC:2.7.4.-) [13]. The 
ATP-dependent HPrK/P phosphorylates Ser46 residue of 
histidine-containing phosphocarrier protein (HPr) of the 
phosphotransferase system (PTS) that plays an important 
role in sugar transport. In addition to kinase activity, it also 
carries the phosphorylase activity at the same active site. 
HPrK/P protein is a Ser/Thr protein kinase that shows no 
sequence similarity to eukaryotic Ser/Thr protein kinases 
[14–16]. The N-terminal (residues 1–134) of HPrK/P has 
no defined activity [14]. However, the catalytically active 
C-terminal domain (residues 135–319) contains a char-
acteristic Walker motif A(G/A)xxxxGK(S/T) that forms 
the phosphate-binding loop (P-loop, residues 155–162), 
which binds the phosphate moiety of an incoming ATP 
nucleotide [17]. Residues 203–212 are important for the 
catalytic mechanism of phosphorylation/dephosphoryla-
tion and residues 266–271 (‘K3-loop’ that is connecting βK 
to α3) for dephosphorylation (UniProtKB; entry O07664, 
HPRK_ENTFA) [15]. Other important individual residues 
that have been identified forming the active/catalytic site are 
His140, Lys161, Asp179 (proton acceptor/donor), Arg245 
in the flexible/disordered loop (residues 235–251), and the 
metal  (Mg2+) binding residues Ser162 and Glu204. Crystal-
lographic studies have revealed that HPrK/P is a hexameric 
enzyme that binds six HPr substrate molecules (Fig. 1a–c) 
[16]. The substrate-binding area of HPrK/P is exposed when 
the enzyme adopts an open conformation (~ 1400–2000 Å 
surface area) and six hydrogen bonds per HPr molecule sta-
bilize the protein–protein interactions. Three molecules of 
HPr bind on the top and three HPr protein molecules bind on 
the bottom of the hexameric HPrK/P assembly. Two adjacent 
HPrK/P enzyme monomers interact with one HPr molecule; 
one HPrK/P monomer interacts with HPr via its catalytic site 
and the other monomer through its C-terminal helix [16] 
(Fig. 1d–f). The most contacts to HPr from one HPrK/P 
chain are initiated by βA (residues 135–140), the P-loop 
(connects βC to helix α1) and the βD–βE hairpin (residues 

174–185). A conserved residue from the other subunit’s flex-
ible/disordered loop, Arg245 is also important for stabiliza-
tion of the interaction.

Previous studies have shown that a defect in kinase or 
phosphorylase activity of HPrK/P severely affects the car-
bon metabolism, growth, morphology and other cellular 
functions in Staphylococcus xylosus, Lactobacillus casei, 
Mycoplasma pneumoniae and Bacillus subtilis [17–20]. 
Therefore, bacterial kinases are also gaining pronounced 
attention as potential targets for antimicrobial drug discovery 
[11, 21, 22]. In our previous study, we observed an enhanced 
expression of hprK along with HPr-Ser46 phosphorylation 
in antimicrobial resistant E. faecalis strains [23]. This sug-
gests that HPrK/P plays an important role in the fitness of 
antibiotic resistant E. faecalis. Therefore, the present study 
is aimed at identifying active-site targeted HPrK/P inhibitors 
against nisin-resistant E. faecalis that showed resistance to 
antibiotics [5]. Nisin is a class I bacteriocin that is used as a 
preservative for many food products. Here, we demonstrate 
that inhibition of bacterial HPr binding to HPrK/P is a strat-
egy that limits the growth of resistant bacteria. To the best 
of our knowledge, this is the first study reporting HPrK/P 
inhibitors that have been identified using virtual screening 
and whose interactions with HPrK/P have been investigated 
with molecular dynamics (MD) simulations. The results of 
our study may facilitate the development of a new class of 
antimicrobials and thus opens up the possibility of combat-
ing multi-drug resistant Gram-positive bacteria such as E. 
faecalis.

Materials and methods

Materials for in vitro assays

Media components, Beef Extract (catalog number: RM002), 
Peptone (catalog number: CR001), Yeast Extract (catalog 
number: RM027) and Sodium Chloride (catalog number: 
TC046) for bacterial culture were purchased from HiMedia 
Laboratories (Mumbai, India). Anti-phosphoserine antibody 
was purchased from Sigma-Aldrich Chemical Co., St. Louis, 
MO (catalog number: SAB5200086-400UL). Inhibitor mol-
ecules were purchased from Enamine Ltd., Ukraine. PAGE 
reagents and buffers were purchased from Biorad and PVDF 
transfer membrane, 0.2 µm (Catalog number: 88520) was 
purchased from Thermo Fisher Scientific, Inc. Mini-PRO-
TEAN® Tetra Cell, 2-gel, 10-well combs, 1.0 mm (catalog 
no. 1658003) from Biorad was used for PAGE and blotting 
was performed using semi-dry blotting unit (Scie-Plas Ltd., 
UK). Sensitive and resistant E. faecalis  (NisR-147) bacteria 
were previously isolated from raw buffalo milk in our lab 
[5, 23]. The nisin-resistant strain used here was found to 
be resistant to chloramphenicol, ampicillin, ciprofloxacin, 



509Journal of Computer-Aided Molecular Design (2022) 36:507–520 

1 3

rifampicin, vancomycin, carbenicillin, linezolid, oxacil-
lin, and fosfomycin with minimum inhibitory concentra-
tions (MICs) varying between 4 µg/mL (ciprofloxacin) and 
512 µg/mL (fosfomycin) [5].

Protein modelling

The amino acid sequence of E. faecalis HPrK/P protein 
(Accession Number: WP_002357309.1) was retrieved from 
the NCBI Protein database (https:// www. ncbi. nlm. nih. gov/ 
prote in/). To find suitable template structures for compara-
tive (homology) modelling, we used the Protein BLAST tool 
with default parameters against the Protein Data Bank (PDB) 

[24, 25]. The template crystal structures were then selected 
from the BLAST output based on the criteria of maximum 
identity percentage, a high BLAST score and a low E-value 
(PDB ID 1KO7: Query coverage = 94%, Percent iden-
tity = 51.70%, E value =  10–105; PDB ID 1KKL: Query cov-
erage = 58%, Percent identity = 71.04%, E value = 2 ×  10–89). 
The Expect value (E) describes the number of "expected" 
hits of similarity in a database. It decreases exponentially as 
the score (S) of the match increases. The crystal structures 
of the full-length HPrK/P protein of S. xylosus (PDB ID: 
1KO7; resolution 1.95 Å) [26] and the C-terminal catalytic 
domain of L. casei HPrK/P (PDB ID: 1KKM; resolution 
2.80 Å, related to 1KKL but containing also the coordinates 

Fig. 1  Crystal structure of the hexameric L. casei HprK/P in com-
plex with B. subtilis HPr (PDB ID: 1KKL; [16]); a side view, surface 
representation; b top view, surface representation; c side view, mixed 
surface and cartoon representation. Color code: HPrK/P chains in 
violet blue, brown and light green; HPr protein in pink and light blue 
(top and bottom respectively). d Cartoon representation of the com-
parative (homology) model of the homodimeric E. faecalis HPrK/P 

(without ions). e Cartoon representation of the zoom-in view of HPr 
binding between two HPrK/P chains (the same structural assembly as 
in a–c and f panels). Serine 46 of HPr (in elemental ball-and-stick 
representation and labelled) is projected towards the co-crystallized 
calcium ion (magenta sphere) and P-loop of HPrK/P (dark pink); 
K3-loop is in cyan, and the disordered loop in orange. f The same 
side view as in c panel in cartoon representation

https://www.ncbi.nlm.nih.gov/protein/
https://www.ncbi.nlm.nih.gov/protein/
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for the flexible/disordered loop) [16] were retrieved from the 
PDB and further used to prepare a full-length monomeric 
model and a homodimeric C-terminal catalytic domain 
model, respectively. The initial monomeric model based 
on the single template (1KO7, A chain) was built with the 
Swiss-Model server (https:// swiss model. expasy. org) [27]. 
As the template structure lacks the coordinates for the long 
flexible/disordered loop, the missing region was modelled in 
by the server. This model was utilized in the virtual screen-
ing phase. For the binding mode studies, we built another 
full-length monomeric model utilizing multiple HPrK/P 
template structures, some of which contained coordinates 
also for the disordered loop as well as the complete C-ter-
minus. The following template structures were selected from 
the BLAST results: A chains of PDB IDs 1KNX [28] (from 
M. pneumoniae, resolution 2.50 Å), 2QMH [29] (from L. 
casei, resolution 2.60 Å), 1KO7, 1KKL [16] (from L. casei, 
resolution 2.80 Å) and 1JB1 [15] (from L. casei, resolution 
2.80 Å). Apart from the Swiss-Model-generated monomeric 
model, the modelling alignments were prepared with the 
alignment tools (align2d, salign) of Modeller 9.20 [30]. Ten 
comparative models were built using Modeller 9.20 for both 
the monomeric and the dimeric forms. The model having the 
lowest discrete optimized protein energy (DOPE) score was 
selected for the monomeric form whereas the model with 
the lowest possible DOPE score and the best stereochemi-
cal quality was selected for the dimeric structure [31]. For 
the molecular dynamics (MD) simulations, two alternative 
homodimeric models were used: one without ions (Fig. 1d) 
and the other with an added  Mg2+ and a phosphate ion to 
observe the possible effect of metal coordination on inhibi-
tor binding. The phosphate coordinates were obtained from 
PDB ID: 1KO7 and  Mg2+ coordinates from PDB ID: 1KKL 
 (Mg2+ was replaced for the original  Ca2+ since HPrK/P uses 
 Mg2+ for the catalysis). The characteristic P-loop (Fig. 1d, 
e) offers the binding site for the phosphate ion (normally 
occupied by the β-phosphate of the bound nucleotide), [26] 
while  Mg2+ stays close to the phosphate ion and facilitates 
the phosphorylation of Ser46 at HPr. No constraints were 
needed to keep the ions in their positions during the simula-
tions. The quality assessment of the models was performed 
using Procheck [32], ProSA [33, 34], and QMEANDisCo 
scores [35].

Virtual library screening

Virtual screening was performed with the INVENTUS Drug 
Discovery suite v1.1 (Novo Informatics Pvt Ltd). First, the 
active site was predicted on the Swiss-Model-generated 
monomeric HPrK/P enzyme model using the PocketDetec-
tor™ module of INVENTUS as per the automated active 
site detection, docking, and scoring (AADS) protocol [36]. 
The selected active site was formed by the P-loop residues 

as well as other residues important for the catalytic mecha-
nism of phosphorylation and/or dephosphorylation; residues 
158–163, 166–167, 170–171, 206, 232, 267–275, 277. The 
coordinates of this site were then uploaded to the HitsGen™ 
module (RASPD protocol) [37] which was used for the vir-
tual high-throughput screening of an inbuilt INVENTUS 
library that has around four million compounds. HitsGen™ 
employs a fast-quantitative structure–activity relationship 
(QSAR)-based methodology to screen for compounds 
whose physico-chemical properties are complementary to 
the properties of the target binding site, without actually 
having to dock the molecules to the target. The ligand bind-
ing energy (bio-affinity score) of the screened compounds 
is estimated with the robust inbuilt QSAR equation that was 
developed using a representative training set of experimen-
tal drug-receptor complexes [37]. Therefore, apart from the 
structural properties of the given binding site, the follow-
ing ligand property criteria were used to screen through the 
compound library: hydrogen bond donors = 0–5, hydrogen 
bond acceptors = 0–10, LogP (SlogP) = 0–5, molar refractiv-
ity = 40–130, number of aromatic atoms = 15–57, length of 
molecule = 10–100 Å, total number of atoms = 10–100, and 
binding energy < − 5 kcal/mol. These criteria were set based 
on a previously described, potent  (IC50 17–18 µM at pH 
7.0–8.0, respectively), ditopic 2-aminobenzimidazole-type 
inhibitor “3-B-3” of B. subtilis HPrK/P [10] (Table 1). Three 
inhibitor candidates from overall 50 hits were selected for 
in-vitro activity evaluation based on the best (most negative) 
bio-affinity score.

In‑vitro evaluation

Effect of inhibitors on growth and morphology of resistant 
E. faecalis

To evaluate the effect of the three identified candidate inhibi-
tors on bacterial growth, Colony-Forming Units (CFU) were 
counted. Resistant E. faecalis was grown in the presence of 
1 mM inhibitors (100 mM stock dissolved in DMSO) and 
without any inhibitor as a control from 0 to 8 h and plated on 
nutrient agar Petri dish. Then, CFU  mL−1 was calculated. To 
visualize the effects of inhibitors on bacterial morphology, 
Gram staining of the bacteria was done and examined under 
a microscope (×1000).

Detection of HPr‑Ser‑phosphorylation using western 
blotting

To determine the effect of the candidate inhibitors on the activ-
ity of HPrK/P, western blotting was performed. Nisin resistant 
E. faecalis strain was grown in nutrient broth till the expo-
nential phase in the presence of 1 mM inhibitors and without 
any inhibitor as a control, harvested and washed with ice-cold 

https://swissmodel.expasy.org
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10 mM Tris–HCl buffer. Cells were lysed using bead beater 
(FastPrep®-24, Bio101/Savant, Farmingdale, NY), followed 
by centrifugation at 10,000 rpm at 4 °C for 20 min. The crude 
sample was loaded on 12% SDS-PAGE without heating. 
Anti-phosphoserine antibody was used to detect the serine 

phosphorylation of the HPr protein as described in [23]. The 
experiment was performed in triplicate and relative density 
was analysed using ImageJ (1.51v 9). Statistical analysis was 
performed using GraphPad Prism 8.0.0.

Table 1  Reference inhibitor and top-3 hit compounds from virtual screening using HitsGen™ of INVENTUS v. 1.1

a 2D structures were sketched using ChemDraw version 21.0.0.28 (PerkinElmer Informatics, Inc 1998–2022)
b Bio-affinity score of HitsGen™ is predicted with a generic QSAR-type equation based on structural and physico-chemical properties of both the 
screened ligands and the target binding site
c Ref. [10]

Compound 
ID

IUPAC Name and 2D  structurea BioAffb 
(kcal/
mol)

Donor Accep-
tor

LogP Molar 
Refrac-
tivity 
 (m3/
mol)

MW 
(g/mol)

Benzimi-
dazole 
inhibitor 
3-B-3c

2-(3-benzyl-2-imino-2,3-dihydro-1H-benzo[d]imidazol-1-yl)-N-((E)-4-((E)-
(2-(2-(2-imino-3-phenyl-2,3-dihydro-1H-benzo[d]imidazol-1-yl)acetyl)
hydrazineylidene)methyl)benzylidene)acetohydrazide

 

– 4 12 6.35 200.78 688.78

NIT-
SKI152

(E)-3-(3-hydroxy-4-methoxyphenyl)-1-(6-methoxynaphthalen-2-yl)prop-2-en-
1-one

 

− 5.09 1 4 4.46 98.76 334.4

NIT-
SKI8583

5-bromo-1-[2-(2,5-dimethoxyphenyl)-2-oxoethyl]pyridin-2-one
 

− 5.08 0 4 2.7 97.45 352.18

NIT-
SKI5508

N-[[4-(diethylsulfamoyl)phenyl]methyl]-1H-pyrrole-2-carboxamide
 

− 5.02 2 4 4.15 100.7 335.4
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Computational binding mode analysis of the hit 
compounds

Molecular docking

Since our virtual screening method utilized only the properties 
of the reference ligand and the selected pocket in a monomeric 
subunit, we did not get any realistic view of the possible bind-
ing modes of the ligands at the hexameric enzyme. Thus, the 
binding mode of the three candidate compounds at HPrK/P was 
investigated by molecular docking using the Glide docking tool 
[38, 39] of Schrödinger’s Maestro Molecular Modeling Suite 
(Schrödinger Release 2022-1: Maestro, Schrödinger, LLC, New 
York, NY). The protein structures were also visualised using the 
Pymol Molecular Graphics System (version 2.3, Schrödinger, 
LLC). The structures of the reference and hit compounds were 
prepared with the LigPrep tool of Maestro. The missing hydrogen 
atoms were added, and alternative protonation/ionization states 
(if any) were generated at pH 7 ± 2 using Epik [40]. Finally, the 
structures were optimised using the OPLS4 force field [41] to 
get low-energy 3D conformers of the ligands. The reference 
and hit compounds’ binding was investigated at all the three 
Modeller-built comparative models of HPrK/P (i.e., the multi-
template-based monomeric model and the dimeric model with 
and without the  Mg2+ and phosphate ions). All three models were 
processed with the Protein Preparation Wizard [42] of Maes-
tro: the missing hydrogen atoms were added, and the hydrogen 
bond network was optimized with PROPKA at pH 7.0 [43, 44]. 
The protein models were energy-minimized using the OPLS3e 
force field [41] with the convergence criteria of the root-mean-
square deviation (RMSD) 0.3 Å for all heavy atoms. Due to the 
absence of a co-crystallized ligand, we identified the docking 
sites using Maestro’s SiteMap tool [45, 46], which also detected 
the same binding pocket whose properties had been used for 
the virtual screening protocol. However, that site was not the 
best-ranked among the pockets analysed. Moreover, in the vir-
tual screening phase we had not considered the multimeric form 
of the enzyme and observed that the initial site detected in the 
monomeric model would not even exist in the hexameric mol-
ecule as the K3-loop of an adjacent subunit would be located at 
that site (thus, we named the site the ‘K3-loop site’). The best-
ranked pocket by SiteMap was the substrate-binding pocket on 
the phosphate-binding side of the P-loop, next to the flexible/
disordered loop. Since the reference inhibitor has also been sug-
gested to act on the HPrK/P substrate site [10], we chose both 
the initial K3-loop site in the monomeric model and the substrate 
binding site in the dimeric models for the binding mode studies. 
With Maestro’s Receptor Grid Generation tool, the docking site 
for the monomer model was defined using the same residues as 
at the virtual screening stage. The size of the inner grid box was 
kept at the default size (10 × 10 × 10 Å3) whereas the outer box 
size was set to 30 × 30 × 30 Å3. For the dimeric models (with 
and without ions), the centre of the docking grid was defined by 

the residues forming the substrate-binding site (Arg245, Thr294, 
Leu301, Ile305 and His140′, Ser157′, Asp179′, Arg180′, Ile198′, 
Leu199′, Glu204′; a prime (′) denotes the residues from the other 
subunit). The inner and outer box sizes were set to 15 × 15 × 15 
Å3 and 35 × 35 × 35 Å3, respectively. The most suitable grid box 
size in each case was selected based on the test docking results 
of the reference inhibitor. The maximum length of the ligands to 
be docked was set to 20 Å for all three models. The docking was 
carried out using the Glide extra precision (XP) [47] mode with 
flexible ligand sampling. The Epik [40] state penalties for differ-
ent ionization states/tautomers of the compounds were added to 
the final docking scores. This can be crucial when ranking com-
pounds with more than one ionization state/tautomer. For each 
ligand, ten poses were taken for post-docking minimization and 
a minimum of one pose was generated per ligand.

Molecular dynamics simulations

Molecular dynamics (MD) simulations of the docked ligand-
enzyme complexes were carried out for 100 ns with Desmond 
(Schrödinger Release 2022-1: Desmond Molecular Dynamics 
System, D. E. Shaw Research, New York, NY, 2022. Maestro-
Desmond Interoperability Tools, Schrödinger, New York, NY, 
2022) [48] using the OPLS4 force field [49]. Three replicate sim-
ulations for each system were performed. The simulation systems 
were prepared with the System Builder tool of Desmond. An 
orthorhombic simulation box with Periodic Boundary Conditions 
(PBC) was filled with single point charge (SPC) water [50] and 
a 10-Å buffer space was left between the solute (ligand-enzyme 
complex) and the box edge. In addition, the system was neu-
tralized using an appropriate number of chloride ions for each 
model. The simulation system was initially relaxed with and 
without restraints on the solute heavy atoms using the follow-
ing stepwise relaxation protocol: 12 ps of Brownian dynamics 
in NVT ensemble at 10 K using a Berendsen thermostat and a 
1-fs time step with restraints; 12 ps of Langevin dynamics in NPT 
ensemble at 300 K and 1 atm pressure using a Berendsen thermo-
stat and barostat with restraints and 24 ps without restrains. The 
actual production simulations were performed in NPT ensem-
ble for 100 ns with a 2-fs time step. The temperature was set 
at 300 K with the Nosé-Hoover chain thermostat [51, 52] and 
pressure at 1.01325 bar with the Martyna-Tobias-Klein barostat 
[53] using isotropic coupling and relaxation time of 1 ps and 2 ps, 
respectively. For handling the short-range Coulombic interac-
tions a cut-off radius of 9.0 Å was used whereas the u-series 
decomposition of the Coulomb potential was used for the long-
range electrostatic interactions [54]. The simulation trajectories 
were analysed using the Maestro in-built Simulation Interactions 
Diagram tool after which the interaction analysis data generated 
was processed with Microsoft Excel360 to prepare illustrating 
graphs to aid the analysis.
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Binding free energy analysis

Molecular Mechanics-Generalized Born Surface Area (MM-
GBSA) method implemented in Prime [55, 56] (Schrödinger 
Release 2022-1: Prime, Schrödinger, LLC, New York, NY, 2022) 
of Maestro was used to predict the binding free energy (ΔGbind) 
of the docked ligands at the HPrK/P substrate binding site. The 
ΔGbind was calculated using the following equation:

where,  Gcomplex is the free energy of the ligand–protein com-
plex,  Greceptor is the free energy of the protein and  Gligand 
is the free energy of the ligand. These energy values are 
calculated as

where, GMM is the calculated molecular mechanics (MM) 
energy for the force field applied, and GSolv is the solva-
tion energy in the generalized Born approximation. Prime/
MM-GBSA analysis was carried for both the initial dock-
ing poses and the final simulated poses after MD using the 
‘thermal_mmgbsa.py’ script from Schrödinger with the vari-
able-dielectric generalized Born model (VSGB 2.1 solvation 
model) [57] and the OPLS4 force field [49]. The Prime/
MM-GBSA energies were calculated for the complete 100-
ns trajectories by evaluating the snapshot structures of the 

ΔGbind = Gcomplex −
(

Greceptor + Gligand

)

G = G
MM

+ G
solv

complexes at every 100 ps. The results from the replicate 
simulations were averaged.

Results and discussion

Structural analysis and quality of the HPrK/P 
comparative models

To illustrate the sequence identities and locate the key C-ter-
minal domain loops and some of the active site residues, 
a multiple sequence alignment of the E. faecalis HPrK/P 
sequence with the PDB-retrieved sequences of the S. xylosus 
and L. casei HPrK/P crystal structures is shown in Fig. 2.

The Modeller modelling alignments for the monomeric 
and dimeric models are shown in Supplementary Informa-
tion (p. S2, S3). The best comparative models of E. faecalis 
HPrK/P of each type (monomer/dimer) were selected based 
on the DOPE score (− 32,637.54/− 39,614.91 for the mono-
meric/dimeric models, respectively) and the stereochemi-
cal quality of the models. The stereochemical quality of the 
generated models was assessed using the Ramachandran 
plots generated by PROCHECK [32]. The Ramachandran 
plot of the monomeric model showed 92.0% of the residues 
in the most favoured regions, 6.9% in additionally allowed 
regions, 0.7% in generously allowed regions and only 0.4% 
(Asp179) in a disallowed region (see Supplementary Infor-
mation, Fig. S1). On the other hand, the Ramachandran 

Fig. 2  Multiple sequence alignment of E. faecalis HPr kinase/phos-
phorylase (HPrK/P) sequence (WP_002357309.1/UniProtKB entry: 
O07664) with the Protein Data Bank-retrieved sequences of selected 
template crystal structures: both the structure of S. xylosus HPrK/P 
(PDB ID: 1KO7, A chain) and the structure of L. casei HPrK/P (PDB 
ID: 1KKL, A chain) were among the templates used for the full-
length monomeric model. The three important loops; P-loop (residues 
155–162), flexible/disordered loop (residues 235–251) and K3-loop 
(residues 267–272) are highlighted with red, cyan and pink boxes, 
respectively. A red and a cyan color arrow point to the catalytic Asp-
156 and Arg-245 residues at the P-loop and the disordered loop, 

respectively. The multiple sequence alignment was created with the 
Clustal Omega tool [58] and visualized with Mview [59] at EMBL-
EBI [60]; cov—sequence coverage; pid—percent identity; identical 
amino acids are colored according to their physicochemical proper-
ties. The coordinates for the disordered loop residues W233-L245 
and the C-terminal residues 299–314 are missing from the S. xylosus 
HPrK/P crystal structure (1KO7, A chain), whereas the N-terminal 
residues up till E135, the disordered loop residues K241-G249, and 
the C-terminal residues T311-K319 are missing from the L. casei 
structure (1KKL, A chain)
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plot of the homodimeric protein model showed 94.2% of 
the residues in the most favoured regions, 5.1% in addition-
ally allowed regions, 0.0% in generously allowed regions 
and only 0.6% (Asp179 in both chains; Asp46 and Asp224 
according to the dimeric model’s residue numbering: 1st 
chain 1–178, 2nd chain 179–356) in disallowed regions (Fig. 
S1). The residue found in the disallowed region has been 
identified as the proton donor/acceptor in the dephospho-
rylation/phosphorylation reaction, respectively (UniProtKB 
entry O07664). It is located at the tip of the βD–βE hairpin 
loop and its phi/psi angles differ from the usual values in 
the template structures (e.g. 1KKM and 1KO7), explaining 
why it is in the disallowed region also in the models. The 
RMSD of Cα atoms of the full-length monomeric model 
was found to be 0.747 Å when superimposed on one of the 
templates (PDB ID: 1KO7, A chain) and the RMSD of the 
C-terminal catalytic domain models of the homodimeric 
HPrK/P was found to be 0.272 Å when superimposed on the 
template (PDB ID: 1KKM, A and B chains) using PyMol. 
The overall model quality and degree of nativeness for both 
the models were evaluated using the ProSA web server. The 
Z-score was found to be − 6.92 for the monomer model 
and − 5.67 for the homodimeric protein model, confirming 
that the model structures are within the Z-score range that 
is typically found for native proteins of similar size (Fig. 
S1). The Qualitative Model Energy Analysis (QMEAN) was 
done using the QMEANDisCo scoring function. It includes 
a term for estimating the local per-residue quality based on 
the similarity of pairwise residue-residue distances in the 
model compared to the sets of distance constraints obtained 
from homologous structures [35]. The Global Score is an 
average of the per-residue lDDT (the local Distance Differ-
ence Test) score that ranges from 0 to 1 (1 is good) and was 
found to be 0.73 ± 0.05 for the monomeric protein model 
and 0.78 ± 0.05 for the homodimeric protein model (more 
details are provided in Supplementary Information, Fig. 

S1). We also compared our models with the artificial intel-
ligence-based AlphaFold [61] model of E. faecalis HPrK/P 
(alphafold.ebi.ac.uk). When aligned with the AlphaFold 
full-length monomeric model, the RMSD of Cα atoms for 
our monomeric models was 0.994 Å (initial model) and 
0.852 Å (multi-template model) whereas the RMSD was 
only 0.601 Å for the C-terminal catalytic domains in our 
dimeric models. The disordered loop conformation and the 
C-terminal helix orientation in the dimeric models was very 
similar to the AlphaFold structure (more similar than in the 
monomer models). On the other hand, the AlphaFold model 
was very similar (RMSD of the Cα atoms: 0.585 Å) to the 
template that was used for building the dimeric model (PDB 
ID: 1KKM, A and B chains).

Drug screening and docking

The virtual screening of putative HPrK/P inhibitors was 
performed with the HitsGen™ module of the INVENTUS 
software suite by (i) scanning the inbuilt compound library 
based on physicochemical and structural properties of a 
known HPrK/P inhibitor [10] and the selected binding site 
(K3-loop site) and (ii) ranking the hit molecules with the 
bio-affinity score. Three hit compounds with the best score 
were selected for further investigations (Table 1).

The binding mode of the hit compounds at HPrK/P was 
further investigated by docking them both to the K3-loop 
site in the monomeric model and the substrate-binding 
area of the dimeric HPrK/P models. The initial assess-
ment of the docked poses revealed that the compounds had 
been successfully docked at these sites; in the K3-loop site 
between the P-loop (residues 155–162) and the K3-loop 
(residues 266–271) and in the substrate-binding area, close 
to the flexible loop region that contains the catalytically 
critical Arg245. The initial docking scores (Table 2) are 
seemingly poor for all three hit compounds at both sites, 

Table 2  Docking scores and calculated free energies (ΔGbind) of binding for the reference and hit compounds docked at the monomer and dimer 
models of the E. faecalis HPrK/P

a Ref. [10]

Compound
ID

Glide XP Score
(kcal/mol)

ΔGbind (kcal/mol) (before MD simulation/mean ± SD from the last 50 ns of 
MD replicated 3 times

Monomer
K3-loop site

Homodimer
HPr binding site

Homodimer 
with ions
HPr binding 
site

Monomer
K3-loop site

Homodimer
HPr binding site

Homodimer with ions
HPr binding site

Benzimidazole 
inhibitor 
3-B-3a

− 3.94 − 6.26 − 6.91 − 41.99/− 48.21 ± 7.61 − 62.55/− 80.22 ± 6.92 − 62.85/− 72.09 ± 8.39

NITSKI152 − 1.64 − 3.53 − 5.08 − 36.62/− 45.10 ± 6.77 − 35.02/− 50.65 ± 4.85 − 25.092/− 42.80 ± 3.85
NITSKI8583 − 2.49 − 3.13 − 3.69 − 23.76/− 33.87 ± 5.02 − 36.65/− 45.64 ± 4.21 − 31.89/− 30.42 ± 6.23
NITSKI5508 − 2.45 − 2.92 − 4.20 − 37.48/− 35.58 ± 4.27 − 37.93/− 39.39 ± 5.02 − 33.09/− 36.57 ± 4.47
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although slightly better at the substrate binding site, and 
there might be several reasons to this. Either the com-
pounds do not bind to the particular site, or they bind with 
only low affinity, or the comparative models of HPrK/P 
are not accurate, especially regarding the conformation of 
the side chains and flexible regions. The binding site con-
formation crucially affects the ligand docking poses and 
possible ligand–protein interactions. Since the flexible/
disordered loop containing Arg245 is part of the substrate 
binding site, the site is likely to be very dynamic and is 
affected by the binding partner’s size and other properties. 
Therefore, we further investigated the docked poses using 
molecular dynamics (MD) simulations to see whether 
the docked complexes were stable and if we could see 
any improvement in the estimated binding free energies 
(ΔGbind, kcal/mol) during the MD simulations (Table 2). 
Of note, the reference inhibitor 3-B-3 most likely binds to 
the substrate-binding site and its ditopic structure is ben-
eficial for the inhibitory activity [10]. This is consistent 
with the predicted binding affinities that are much better 
for the substrate-binding site than for the K3-loop site. The 
docked pose of NITSKI5508 in all three HPrK/P models 
before the MD simulation is shown in Fig. 3 (the poses of 
the other hits are presented in Supplementary Information, 
Figs. S2, S3).

MD simulation analysis

Stability of the complexes

The stability of the ligand-HPrK/P (monomer and homodi-
mer models with and without ions) interactions was 
assessed by observing the changes in the protein back-
bone RMSD and backbone root-mean-square fluctuation 
(RMSF) per residue as well as the ligand RMSD with 
respect to the protein during the MD simulation (Sup-
plementary Information, Figs. S4–S10). In general, the 
protein RMSD converged for all models with all ligands. 
However, the RMSD values were significantly higher for 
the monomeric model. The RMSF plot reveals that it is 
mainly the N-terminal domain residues of the monomeric 
model and the C-terminus of all models that are fluctuat-
ing significantly, although the flexible/disordered loop at 
the substrate-binding site also shows a visible peak in the 
fluctuation graphs. Ligand fluctuations with respect to the 
protein revealed that all hit compounds found a relatively 
stable pose in the monomeric model towards the end of 
the simulation although the initial fluctuations were large 
especially for NITSKI152 and NITSKI5508. On the other 
hand, positions of NITSKI8583 and NITSKI5508 fluctu-
ated more in the dimeric models than the position of NIT-
SKI152 (Fig. S10).

Interaction analysis

Detailed interaction data from the MD simulations of the 
ligands with the HPrK/P models are presented in the Sup-
plementary Material (Table S1, Figs. S11–S16). At the 
substrate-binding site, many ligand–protein interactions 
were observed with the highly disordered loop (residues 
235–251) and its surrounding region. This region plays a 
significant role in the protein–protein interaction of HPrK/P 
and its substrate HPr [62]. Therefore, the binding of inhibi-
tors in this region can interfere with the binding of HPr and, 
thus, will impede the catalytic reactions. The impairment 
will further abolish the carbon catabolism, required for the 
essential functioning of a bacterial cell [17]. For example, in 
the simulations of the dimeric models, Arg245 and Leu246 
of the flexible loop frequently formed hydrogen bonding or 
hydrophobic interactions with the ligands, respectively. On 
the other hand, in the simulations of the monomeric model, 
especially residues Ile159 (P-loop region) and Val273 
(K3-loop region) formed polar (via the backbone atoms) 
or hydrophobic interactions (via the side chains) with the 
ligands at the K3-loop site. Furthermore, it has been shown 
that residues from the C-terminal α-helix (α3) of HPrK/P 
also take part in binding the substrate [16]. In the simu-
lations of the dimeric models, Phe297 and Leu301 of the 
C-terminal helix form aromatic or hydrophobic interactions 
with the ligands. In addition to the direct hydrogen bonding 
interactions, many water-mediated interactions also contrib-
ute to the binding affinities of the ligands (Figs. S11–S16).

Binding free energy calculations During the MD simula-
tions, the Prime/MM-GBSA binding free energies were 
calculated for all the three hit compounds at the three dif-
ferent HPrK/P protein models at 100-ps intervals (Table 2 
and Supplementary Information, Fig. S17). In general, 
the binding free energies of the hit compounds improved 
somewhat during the MD simulations as they found a more 
favorable pose compared to the initial docking pose. The 
reference compound 3-B-3 shows the best binding free 
energies throughout the simulations at both sites, but the 
energies are much better at the substrate binding site. On 
the other hand, NITSKI152 exhibits the best binding free 
energies of the hit compounds at both sites, and compara-
ble energies at the K3-loop site with the reference com-
pound. The presence of the added ions in the dimer model 
had a positive effect on the Glide XP docking scores espe-
cially for the hit compounds, but this effect was not seen in 
the Prime/MM-GBSA energies before or during the MD 
simulations (Table 2). The effect of the pose refinement by 
MD simulations was evidently beneficial for all the other 
compounds but not NITSKI5508. However, the improve-
ment in the average binding energy was not significant 
for the reference compound at the K3-loop site, which 
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would support the fact that it rather binds at the substrate-
binding site. Despite the seemingly unfavorable binding 
energies, a crude decoy docking test suggests that it was 
not mere serendipity that the three hit compounds were 
discovered using the K3-loop site (Supplementary Infor-
mation p. S19, Fig. S18). In case the enzyme is an obligate 
hexamer to be functional, these compounds may disrupt 
the multimerization process once the protein chains have 

folded and are assembled into the hexameric form. For 
example, human thymidylate synthase (EC 2.1.1.45) is an 
obligate dimer and indeed, it has been shown experimen-
tally that the dimeric enzyme can be disrupted by small 
molecules, shifting the equilibrium to monomers that are 
then degraded easily [63].

Fig. 3  The virtual screening hit compound NITSKI5508 docked in 
the E. faecalis HPrK/P monomeric and substrate-binding site. The 
docking site interactions are shown at all the three HPrK/P models in 
3D (left) and 2D (right). Top: full-length monomeric HPrK/P model; 
middle: homodimeric model of the HPrK/P C-terminal catalytic 
domain; bottom: homodimeric model of the HPrK/P C-terminal cat-
alytic domain with  Mg2+ and  PO4

3− ions. Left panel: one monomer 
chain of HPrK/P is shown in gray color cartoon representation while 
the other one is in yellow. The docked ligand is shown in ball-and-

stick representation (cyan carbon atoms) and the binding site resi-
dues are in sticks (green carbon atoms);  Mg2+ ion is shown as a pink 
sphere and the phosphate ion in ball-and-stick representation; oxygen 
atoms are shown in red, nitrogen atoms in blue, phosphorus in dark 
pink, hydrogen atoms in white. Yellow dashed lines indicate hydro-
gen bond interactions. Residue numbering in the dimeric models: 1st 
monomer chain 1–178, 2nd monomer chain 179–356 (corresponding 
to residues 134–311 in the monomer model)
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Effect of inhibitors on morphology and growth 
of resistant strain

Microscopy results showed that resistant E. faecalis 
formed clumps and a web-like structure by joining the 
chains (Fig. 4a). However, in the presence of inhibitors, 
NITSKI8583 and NITSKI5508, the clump formation 
and webbing were observed to be significantly reduced 
(Fig. 4c, d). The growth of the resistant strain was also 
found to be significantly decreased when grown in the 
presence of these inhibitors (Fig. 5). These results well 
corroborate with the previous reports that showed that 
deficiency of HPrK/P protein leads to a pleiotropic 
effect on bacterial physiology [64] and inactivation of 
HPrK/P activities results in the deleterious effect on 
the bacterial growth [20]. HPrK/P deficient strains are 
unable to grow on the phosphoenolpyruvate:glycose 
phosphotransferase system (PTS) and on most non-PTS 
carbohydrates [65].

Western blot analysis of HPr‑Ser‑phosphorylation

When resistant E. faecalis was grown in the presence of 
inhibitors, the phosphorylation of HPr-Ser46 residue was 
found to be decreased significantly. Inhibitors NITSKI8583 

Fig. 4  Gram staining of E. faecalis examined under a light microscope (magnification ×1000). Resistant E. faecalis strain-control (a), effect of 
NITSKI152 (b), NITSKI8583 (c), and NITSKI5508 (d) on resistant E. faecalis 

Fig. 5  Growth curve of resistant E. faecalis. Resistant strain grown 
in the absence (control) and in the presence of NITSKI152, NIT-
SKI8583 and NITSKI5508 compounds. Data points are presented as 
mean (n = 3) ± SD

Fig. 6  Western blot analysis of HPr-Ser phosphorylation of E. faeca-
lis: HPr-Ser46 phosphorylation in a sensitive and a resistant strain. 
Sensitive: nisin sensitive E. faecalis; Resistant: nisin resistant E. fae-
calis; Resistant + N: nisin resistant E. faecalis grown in the presence 
of nisin; N: Nisin; A: NITSKI152; B: NITSKI8583; C: NITSKI5508. 
Data represent relative density mean (n = 3) ± SD. Statistical analy-
sis was performed using One Way ANOVA Tukey test. *P < 0.05, 
**P < 0.01and **P < 0.001
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and NITSKI5508 were found to be the most potent to reduce 
the activity of HPrK/P, which was in concordance with the 
decreased HPr-Ser phosphorylation (Fig. 6). In our previous 
study, we found that with the progression of nisin resist-
ance in E. faecalis, the phosphorylation of the Ser46 residue 
of HPr protein was enhanced [23]. Researchers [64] also 
reported that inactivation of hprK gene results in the loss of 
kinase and phosphorylase activity, which severely reduced 
the growth of bacteria.

Conclusions

Enterococci are Gram-positive bacteria and are considered 
the third most common nosocomial pathogens. In Gram-
positive bacteria, HPrK/P regulates the transport of carbon 
source required for growth and other essential functions. It 
also regulates the phosphorylation of HPr protein, impli-
cated in the virulence processes of pathogenic bacteria. 
Most importantly, deficiency of HPrK/P reduces the growth 
of bacteria. Therefore, a search for inhibitors of HPrK/P 
is of clinical interest. The present study was conducted to 
identify drug-like compounds able to inhibit the activity 
of E. faecalis HPrK/P. A commercial compound library 
was computationally screened to identify compounds with 
high predicted binding energy at an identified site between 
the P-loop and K3-loop of HPrK/P (named as the ‘K3-loop 
site'), utilizing a comparative model of E. faecalis HprK/P 
monomer and the structure of a known benzimidazole 
inhibitor. To evaluate the efficacy of the screened inhibi-
tors, in-vitro assays were carried out. Out of the three hit 
compounds, two (NITSKI8583 and NITSKI5508) potently 
reduced the activity of HPrK/P and the growth of multi-
drug resistant E. faecalis in vitro. Putative binding modes 
of the hit compounds were predicted by molecular docking 
both at the K3-loop site and at the substrate-binding site 
of HPrK/P. Subsequent MD simulations of the ligand–pro-
tein complexes were carried out to study the stability of 
the binding interactions, suggesting that the compounds 
are able to form favorable interactions at the studied 
sites. However, the predicted binding energies suggest a 
relatively low affinity of the hit compounds for both the 
sites, whereas the reference compound clearly prefers the 
substrate-binding site, consistent with previous research. 
To be able to confirm the real binding mode and site of 
the hit compounds, experimental research is required. In 
conclusion, we have reported potential HPrK/P inhibitor 
candidates (NITSKI8583 and NITSKI5508) against E. fae-
calis. Further studies are required to verify the compounds’ 
efficacy on other Gram-positive bacteria to evaluate their 
usefulness as valuable antimicrobial agents.
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