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ABSTRACT
Research into computing and learning how to program has been
ongoing for decades. Commonly, this research has been focused on
novice learners and the difficulties they encounter, especially dur-
ing CS1. Cybersecurity is a critical aspect in computing – as a topic
in university education as well as a core skill in the industry. In this
study, we investigate how students solve open-ended assignments
on a cybersecurity course offered to university students after two
years of CS studies. Specifically, we looked at how students perform
SQL injection attacks on an web application system, and study to
what extent we can characterize the process in which they come up
with successful injections. Our results show that there are distin-
guishable strategies used by individual students who seek to hack
the system, where these approaches revolve around exploration and
exploitation tactics. We also find evidence of learning due to a more
pronounced use of exploitation in a subsequent similar assignment.

CCS CONCEPTS
• Security and privacy → Database and storage security; Web
application security; • Applied computing → Education.
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1 INTRODUCTION
Everything is online, everyone is connected, and many if not most
of our interactions are mediated over technological appliances. Al-
though the first hack – piggybacking communications – happened
nearly two centuries ago [40, p. 39], and despite the demand of
workforce competent in cybersecurity (e.g. [13, 19]), cybersecurity
has been only recently noted as an emerging focus area for educa-
tion [17]: the first set of global cybersecurity curricular guidelines
were released in 2017 [31], providing an outline of the core body of
knowledge that such programs should provide.

Cybersecurity training prepares students to identify and fix
weaknesses in a variety of systems, support the design of secure
systems, and to help others become more aware of the problems
that insecure systems may lead to [17, 31]. This, in combination
with strong background in software engineering, has the potential
to alleviate the prevalent issue in the industry, where the number of
security flaws identified in software seems to not show a decreasing
trend (e.g. [6]). Our present study takes place in a context, where
students already possess some competence in software engineering
as well as the basic understanding of database systems and the
competence to write SQL queries.

In the present work, our overall goal is to explore how students
approach open-ended problems in a cybersecurity course, which is a
part of the computer science curriculum offered by Aalto University.
In our case, we study how students seek to gain sensitive data
from a web application using SQL injections, where the system
under scrutiny does not always sanitize inputs that are used as a
part of database queries. To answer the research question how do
students perform SQL injection attacks, we analyze their sequences
of injection attempts and we characterize the process in which they
come up with successful solutions. In essence, we are looking for
tactics that outline what students do. Based on these tactics we
divide students into broader strategy groups which reflect how they
used these different tactics.

The closest matches to our work are (1) studies on students
learning to write SQL queries (e.g. [4, 11, 45]) and (2) studies that
explore how students solve (often programming) problems (e.g. [22,
29, 36]). At the same time, in the present study, the problem is
ill-defined in that the students do not explicitly know how to reach
a solution.

This article is organized as follows. Subsequently, in Section 2,
we outline related work in solving problems, learning and using
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SQL, and cybersecurity education. In Section 3, we outline our
study methodology, including the study context and data, and the
research approach. Section 4 outlines the results of our analyses,
which are discussed in the context of computer science education
and cybersecurity education research in Section 5. Finally, Section 6
summarizes our work.

2 RELATEDWORK
2.1 Solving problems
The ability to solve problems depends on a number of characteris-
tics, where skills, expertise, experience level, knowledge, and the
problems themselves all contribute to how particular problems are
solved. In the context of programming, novices lack detailed mental
models and fail to apply knowledge, while experts understand the
bigger picture [28, 48]. In understanding code, experts often use
a top-down approach, where they follow the control flow of the
program, while novices often utilize a bottom-up approach, where
they read the code line by line [7, 30]. There are also considerable
differences between novices – a classic example in computing ed-
ucation research comes from Perkins et al. [34], who categorized
novice programmers as stoppers, movers and tinkerers based on
how they sought to solve a problem. Stoppers tended to give up,
movers tried to solve the problem through exploration of options,
and tinkerers often made small and at times even seemingly random
changes when hoping to solve the problem.

An integral part of problem solving are schemas that refer to the
(human) memory structure that represent categories of information
and the connections between these categories [20]. When acting,
also when solving problems, schemas for the situation are identified
and retrieved from memory. If no corresponding schemas exist, a
person applies general problem-solving strategies, such as seeking
to identify smaller steps needed to solve the problem, and then
solving those steps [42]. Due to such actions and new information,
over time, new information is incorporated into existing schemas
and new schemas are created [35]. Overall, becoming better at
problem-solving is linked with incorporating domain- and problem-
specific information into new and existing schemas [43].

Schemas are also linked with learning to program [14, 15, 38].
When faced with a programming problem, if an existing schema
to a problem exists, the solution is written in a linear manner [14,
38]. When no such schema exists, experimentation is used instead
– this experimentation then in part guides the learning process
where new information is incorporated to existing schemas and
new schemas are formed. This exploration process is effectively also
what happens when the problem is not familiar, although we note
that the structure of the exploration process may differ between
individuals.

2.2 Learning and using SQL
Formulating SQL queries can be challenging for novices. Students
make different types of errors and mistakes while they are learning
SQL [4, 5, 11, 44, 45]. The ability to write SQL has also been linked
to students’ overall academic performance [3]. In order to to suc-
cessfully solve tasks with SQL, the student also requires knowledge
regarding the domain. Two factors contribute to the challenge of
solving SQL-related database task: how the problem is phrased, and

what is the structure of the database schema [8, 10, 12, 27]. To aid in
teaching SQL, multiple interactive tools have been developed, such
as tutoring systems (providing scaffolding to learning) and automat-
ically assessing student solutions to exercises[1, 16, 23, 25, 26, 39].
More recently, this work has been extended to provide learning
platforms designed to practice SQL injections [9, 37].

2.3 Cybersecurity education
A recent literature survey [41] reviewed publications between 2010-
2019 in ACM SIGCSE & ACM ITiCSE related to cybersecurity and
computing education research. They found 71 relevant publications
on cybersecurity discussing different knowledge areas defined by
JTF Cybersecurity Curriculum1 with data security being the most
prevalent with 29 publications. Majority of the studies focused on
university education with few papers investigating K-12 or profes-
sional education. Finally, based on the small number of citations,
they noted that the area of cybersecurity in computing education
research seems to be fragmented.

In a 2018 ITiCSE working group Parrish et al. [33] proposed that
cybersecurity should be viewed as a meta-discipline with its own
competency model. This would more closely match the increasing
need of security experts in the industry as well as provide a frame-
work for cybersecurity education. To achieve this, they proposed
two complementary approaches: (1) integrate traditional CS pro-
grams with cybersecurity content and (2) develop new programs
focused on cybersecurity.

The amount of published research related to SQL injections in
education seems to be very limited. This fact is also reflected in
the textbooks used for undergraduate database education. Taylor
& Sakharkar reviewed seven database textbooks and only two of
them included discussion of SQL injection – five of the books did
not discuss the topic at all [46].

Yuan et al. [49] compared two approaches of teaching SQL in-
jections in a hands-on lab environment. As a control group, they
had a system mimicking a real web service with multiple vulner-
abilities that the students needed to exploit with SQL injections.
No step-by-step instructions were provided and the problem was
very open-ended, similarly to our present work. The experimental
group used OWASP WebGoat SQL injection lesson to learn about
the topic. Overall, they found no statistically significant differences
between the two groups in learning outcomes, motivation, or stu-
dents’ experience in the labs.

3 METHODOLOGY
3.1 Context and data
Our data is collected from a cybersecurity course offered by Aalto
University. It is a 5 ECTS2 course offered to both bachelor and mas-
ter students with at least two years of previous computer science
studies. The prerequisites of the course include strong programming
skills and a broad knowledge of computer science concept. Hence,
the majority of the participants have traditionally been computer
science majors. However, the increased popularity of cybersecurity
has in recent years increased the number of participants from other

1http://cybered.acm.org/
2European Credit Transfer and Accumulation System, 1 ECTS corresponds to approxi-
mately 27 hours of work
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programs as well. The course aims to teach key concepts and ab-
stractions of cybersecurity, and to give students practical hands-on
experience in threat analysis and vulnerability exploitation. The
focus of the course is on how to identify and mitigate common
vulnerabilities, rather than teaching hacking or Capture the Flag
(CTF) skills.

In addition to the theoretical background presented during the
lectures, the course consists of weekly hands-on exercises in topics
such as software security, access control, and web security. The
assignments are done on a custom web platform, which for each
topic introduces new features with vulnerabilities related to it. The
exercises are designed to resemble realistic scenarios: students do
not know the specifics of the back-end system and the feedback
provided by the platform is limited. The main task for the students
is to identify the weakness for each feature and figure out how
to exploit it. Each weekly assignment consists of three types of
exercises: (1) basic exercises, (2) advanced exercises, and (3) bonus
challenges. Exercises of type one can typically be solved using
generic approaches and limited knowledge of the topic, whereas
type two exercises often require applying skills from different topics
and performingmulti-step attacks. Type three exercises are optional
bonus challenges, which require a more complicated attack design
and often require writing supporting software.

In this study, we focus on analyzing how students approach
solving exercises involving SQL. Students are asked to exploit a flaw
in the search functionality of a website, which instead of prepared
statements uses string concatenation to construct a database query
from a given input. They are given the following Node.js code
snippet to explain how search results are handled by the back end
of the website:

var sql_query = 'SELECT uid , name FROM table WHERE
uid = ${user_id} AND name LIKE "%${search_term }%";';

The variable user_id contains the identifier of the logged in
user account, and the input of the search bar is stored in the vari-
able search_term. The assignment consists of three exercises. The
first task (Exercise A) is to inject an SQL query that returns data
belonging to another user (i.e. where the user_id is different). The
second task (Exercise B) is to retrieve user information and pass-
word hashes from another table. Finally, the third task (Exercise C)
is to crack some of the stolen passwords.

For the first two parts, the students are given some basic infor-
mation about the system, including the software used to implement
the database and the previously explained query. Using this in-
formation, they are asked to craft malicious inputs to the website
that return more information about the database and its content.
Since the only user input to the query is stored in the search_term
variable, the main challenge of Exercise A is to exploit the fact that
the query is not properly sanitized by escaping the string and mod-
ifying the intended query. Exercise B, on the other hand, requires
understanding the basic structure of a database with multiple tables,
and once again exploiting the query in order to retrieve the required
information. Since Exercise C is mainly done offline, we consider it
to be out of scope for this study.

3.2 Approach
We analyze the results and solving attempts of over 300 students.
Our logs contain information about the submitted answers, as well
as all queries executed in the website’s search bar. Our goal is to
characterize how students come up with successful SQL injections.
We adopt a bottom-up approach, starting from the sequences of
all queries submitted by each student for solving the exercises. To
simplify the analysis of these sequences, we cluster the queries
in the sequence of each student separately. From the resulting
clustering, we group students based on two characteristics of the
simplified processes: high-level statistics and transition behaviors
across clustered queries. In the following sections, we detail and
justify the components of our approach.

3.2.1 Preprocessing. We perform preprocessing to ease the subse-
quent analysis. We only select students who submitted a correct
solution to Exercises A and B. We also remove students with an
exceptionally high number of submitted queries (more than 275).
We believe these students might have done automatic testing of so-
lutions. We further remove from the original sequences the queries
written for solving Exercise C.

3.2.2 Query clustering. We identify groups of syntactically similar
queries in the sequence of each student by clustering each student’s
queries. This per-student clustering (compared to a general class
level clustering) has the advantage that it captures individual pat-
terns in how each student writes their queries. We use the affinity
propagation clustering algorithm [18]. This algorithm works simi-
larly to the more well-known k-means. It assumes that a represen-
tative element can represent each identified cluster. The algorithm
automatically selects an ideal number of clusters suited for the data.
It works particularly well for a relatively small number of elements.
We ran the algorithm by computing the normalized Levenshtein
distance [32] between all pairs of normalized queries in the stu-
dent’s query sequence. We normalize each query in the sequence
into lower case, and we remove extra spaces. We hypothesized that
queries belonging to the same query group would often be close
to each other in the ordered sequence. We then assign each query
in the ordered sequence to the query group/cluster it belongs to,
resulting in a sequence of cluster assignment. In the rest of our
analysis, we take a look at these cluster assignment sequences.

3.2.3 Statistical analysis. First, we took a high-level look at the clus-
ter assignment sequences. We computed the following frequency
based statistics for each student:

n_queries Total number of queries ∈ N for both exercises
n_queries_A Total number of queries ∈ N for Exercise A
n_queries_B Total number of queries ∈ N for Exercise B
n_groups Number of query groups ∈ N
average_elements Average number of queries within each

query group ∈ R
We also looked at the type of transitions students perform. We

walked the sequence of cluster assignments, in order, while keeping
track of the ids of the encountered query groups, and we computed
the following statistics:

same_type Number of times the student transitioned to a
query belonging to the same group ∈ N
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known_type Number of times the student transitioned to a
query belonging to a group tried previously ∈ N

new_type Number of times the student transitioned to a query
belonging to a group never tried before ∈ N

Grouping students. In the end, using the computed statistic, we
identify groups of students by clustering them using k-means al-
gorithm in the R8 feature space. We select the number of clusters
that maximizes the clustering assignment’s silhouette score.

3.2.4 Transition analysis. Second, we are also interested in discov-
ering which tactics students use to transition between query group
(identified by the earlier query clustering). We model students’ tran-
sition tactics using a Hidden Markov Model [2] (HMM). Under this
model, the student’s tactic (which is unobserved) at each transition
is defined by the (hidden) state of the model at the current time
step. At the same time, the emitted variable corresponds to the
observed choice of transitioning to a query that belongs or does
not belong to the same group. For each student, we create a se-
quence 𝑌 of transitions between query groups. We set 𝑌𝑡 = 0 when,
at the 𝑡 transition, the student transitions to a query belonging
to the same group (same_type transitions). We set 𝑌𝑡 = 1 when
the student transitions to a query that belongs to another group
(new_type or known_type transitions). Since we are interested in
discovering common tactics across students, we create one HMM
for the whole class by fitting the model with all sequences 𝑌 of
students. Although we fit a single model on all sequences, the HMM
results in an assignment for each student, for each transition, to
a state that defines the student’s strategy. We select the number
of states of the model (i.e., the number of strategies) by fitting ten
models with a number of states between 1 and 10. We select the
model which minimizes the BIC score 𝐵𝐼𝐶 = −2𝐿 +𝑝 log(𝑇 ), where
𝐿 is the logarithmic likelihood of the model, 𝑇 is the number of
sequences fit, and 𝑝 is the number of states (i.e., strategies) of the
model. The literature currently uses the BIC score to select the best
explanatory model.

Grouping students. Finally, we aim to identify problem solving
strategies based on students usage of the identified transition tactics.
We manually define a strategy depending on how much time (i.e.
how many transitions) each student spent in each tactic mode.

3.2.5 Example. We illustrate our transformation process. Let us
suppose that a student submitted the following toy queries:

1 "1"="1";

2 name OR 1=1;

3 SELECT * FROM table --;

4 "1=1 --";

5 SELECT * FROM users --;

6 SELECT password FROM users WHERE uid=1; --;

Figure 1 depicts the whole transformation process from the origi-
nal sequence (above) to the clustering assignment and the transition
sequence. The clustering algorithm regrouped the following queries
together: [q1-q2-q4], [q3-q5], and [q6]. Queries in the same cluster
have a similar syntactic form, although they differ slightly in con-
tent. We then map each query to the id of the cluster it was assigned
to. We use this cluster assignment sequence for our statistical and
transition analyses.

Figure 1: Illustration of the transformation process on the
given toy queries. We transformed the original sequence
of queries into a sequence of cluster assignments. We also
create a chain Y depicting the transition events from one
query cluster to another.

4 RESULTS
In this section, we outline the main results of our analysis. Our
data consists of logs of 312 students. In the preprocessing step, we
excluded 33 students who did not complete all exercises, 8 students
with a number of queries exceeding 275, and 1 student for which
the clustering algorithm of the individual queries did not converge.
In the rest of the analysis, there were thus 270 students.

4.1 Statistical analysis
We identified two groups of students in the clustering based on the
eight statistics. Table 1 shows the average value for the computed
statistics for each group. We tried to characterize each group. As
commonly done in clustering analysis, we performed a Principal
Component Analysis (PCA) on the same dataset used for clustering
to visualize the two groups in a lower dimensional space. We then
noticed that the two groups vary mainly along the principal com-
ponent (i.e. the principal axis), and we observed that the number
of queries (n_queries) explained the majority of the variance of
this principal component. Since the two groups vary mainly in the
number of queries submitted, we considered them as “performance
groups”. Essentially, students who submit more queries can be con-
sidered less successful as they require more attempts to reach a
solution. Based on this interpretation, there were 67 low performing
students, and 203 high performing students.
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statistic high_performance low_performance

n_queries 45.12 140.91
n_queries_A 20.40 63.81
n_queries_B 23.89 76.10
n_groups 7.30 16.61
average_elements 6.33 8.87
new_type 9.33 23.90
same_type 25.18 77.61
known_type 9.61 38.40

Table 1: Mean values of the computed statistics for the two
clusters of students found. We interpreted these two clusters
as performance groups.

4.2 Transition analysis
We discovered clear transition tactics based on the Hidden Markov
Model. The best explanatory model is a simple Hidden Markov
Model with two states. Figure 2 depicts this model and its main
components.

4.2.1 Interpreting the two states. As commonly done in the liter-
ature, we interpreted the meaning of the two states based on the
values of the emission probabilities. We noticed that when in the
first state, students transition relatively often from one query type
to another (𝑃 (𝑌 ) = 1 is high). However, when in the second state,
students are more likely to submit continuously queries belonging
to the same query group (i.e. 𝑃 (𝑌 ) = 1 is low) . For these rea-
sons, we named the first tactic “exploration” and the second tactic
“exploitation”.

4.2.2 Grouping students. We grouped students into three cate-
gories (or strategy groups) depending on how they used each tactic:
whether they only used the exploration tactic (explore strategy),
only used the exploitation tactic (exploit strategy), or used a mix
of both tactics (hybrid strategy). We found that 29 students only
exploited (we call them exploiters), 58 students only explored (we
call them explorers), and 183 students used both tactics.

Figure 2: HiddenMarkovModel of students transition tactics.

4.3 Links between performance and strategy
We investigated whether there were links between students’ per-
formance in the exercises and the strategies they employ for transi-
tioning between query groups. Figure 3 shows the average number
of students adopting each strategy per performance group as well
as the average number of queries for each combinations. As a re-
minder, we hypothesized that the higher the number of queries, the
lower the performance.

Exploiters and explorers. Interestingly, one of our first observa-
tions is that students who stick to only one tactic (exploiters and
explorers) are more likely to be high performers. Indeed, there
were no low-performance exploiters (low-performance students
never used the exploitation strategy entirely) and only three low-
performance explorers. When comparing the exploitation against
the exploration tactic, we notice that high performers exploiters
were slightly more performing (29.58 queries on average) than high
performers explorers (32.34 queries on average).

Figure 3: Interplay between performance group and strategy
group. On the left, the average number of students who use
each strategy for both performance group. On the right, the
average number of queries submitted by students belonging
to the different groups.

Students who use both tactics. We took a closer look at students
who use both tactics. For this group of students (for this mixed
strategy), Figure 4 shows their usage of the exploration tactic while
highlighting differences across performance groups and exercises.
We can observe that there are no interesting variations across per-
formance groups. In general, our result confirms that students gen-
erally explored more than they exploited. However, we can observe
interesting variations in tactic usage across exercises. Our results
reveal that students who used the hybrid strategy switched from
an exploration-focused tactic in Exercise A to a more balanced mix
of tactics in Exercise B.

5 DISCUSSION
5.1 A model of novices hacking a system
Based on our results, we formulate the following model of how
students attempt to hack a system using SQL injection. The process
starts with the student constructing a candidate SQL injection string,
which they then test against the system. If the SQL injection does
not work (i.e. the solution is incorrect), the student will build a new
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Figure 4: Distribution of exploration tactic in the mixed strat-
egy. If a student spent 𝑦% of their time in a certain exercise
using the exploration tactic, then the same student spent
(100 − 𝑦)% of their time using the exploitation tactic for the
same exercise.

candidate SQL injection string and then attempt to use that. This
is in line with earlier research on how one acts when faced with
an unfamiliar problem; in such a case, general problem-solving
strategies such as trying out a range of options are applied [42, 43].
This behavior related to constructing a candidate SQL injection
string is somewhat separate from the behavior that finally leads
to a working solution. Finding an SQL injection string that works
is more often related to local optimization of a query. Here, the
student starts with a specific query type that they likely believe
would work – finding this can be a product of trying out a a range
of options – and then refine the query by trying out variations
such as exploring with different column names and column counts.
Interestingly, even this behavior is exploratory but the trajectory
towards a solution is more explicit – moving to another type of
query is more rare when on a path to solution.

Our model assumes that queries that are syntactically similar
are close to each other in time. The model postulates that there
are, contrary to more often studied programming processes with
clear linear progress [14, 38], students who constantly explore what
works andwhat does not work.We associate the “explore” mentality
with the idea that students try out one type of query and then,
instead of trying variations of the query, they move to another
type of query. On the other hand, the “exploit” mentality refers
to students trying out multiple variations of one type of a query,
exploring with different column names and column counts. Both
of these behaviors could be viewed as “tinkering” – small and at
times even random changes when seeking to solve a problem – in
terms of the research by Perkins et al. [34]. At the same time, upon
manual analysis – confirmed in discussions with course assistants
– we also observe that trying out multiple variations of a query
often starts with a shorter query which is then incrementally built
on. This has been previously also observed in programming by
Hosseini et al. [22], who labeled such behavior as “builders” through
the consideration of increments in programming size. Hosseini et
al. [22] saw this behavior similar to “movers” by Perkins et al. [34],
although the latter did not explicitly consider program lengths.

Interestingly, our model and study also captures learning. When
considering the subsequent SQL injection exercise (Exercise B) that
is similar to the first one (Exercise A), students are more likely to
exploit through writing a query that they then refine to hack the
system. This is again in line with prior research; becoming better at
problem-solving involves building an understanding of the domain,
which in turn helps working in that domain [42, 43].

5.2 Programming paths and SQL injections
When contrasting our study to previous studies in computing edu-
cation research that have explored how students solve problems,
many of the previous studies have been focused on programming (as
a review on the topic, see e.g. [24]). In previous studies, researchers
have linked students’ programming behavior with e.g. the Schema
theory [14, 15, 38], pointing out the use of existing schemas in the
case of known problems. What separates our study from many of
the previous studies is that the problem itself is ill-defined, the stu-
dents do not know the system, and the process data that is collected
(i.e. the SQL injection attempts) is only a small part of big picture.
In addition, contrary to courses focusing on learning exploitation
techniques and strategies, the course aims to teach how secure
systems are designed and implemented, while using the practical
assignments as a way of demonstrating common mistakes. Also,
while students in introductory programming courses seek to build
complete programs, in the case of SQL injections, students seek to
identify a type of a string should be injected to an unknown pro-
gram to achieve a desired outcome. In practice, this means that due
to the vagueness the initial exploration space can be broader (and
even significantly broader when compared to block-level analyses
or analyses of very simple programs – see e.g. [21, 47]). At the same
time, interestingly, due to the students starting with an unknown
system, we are also able to capture learning in terms of seeing more
profound use of exploitation in the subsequent exercise.

6 CONCLUSIONS
We investigated log data related to SQL injection exercises of over
300 students on a cybersecurity course. The exercises involved a
custom web platform where students must discover vulnerabilities
to gain access to data.We studied students’ problem-solving process
by simplifying it with a model of sequential transitions between
types of queries. We found a natural grouping of students based
on the number of submissions they perform. We identified high-
performing (lower amount of submissions) and low-performing
(higher number of submissions) students. We also found two tactics
students adopted for transitioning: exploration and exploitation.
The exploration tactic refers to students trying out successively
different types of SQL queries when attempting to retrieve data.
With the exploitation tactic, students used variations of the same
kind of query when trying to access the information. From these
tactics, we highlighted three strategies, defined by the use of either
one or both identified tactics. Our results suggested that students
who stick to only one tactic were more likely to be high-performing.
Furthermore, we also discovered that students who used both tactics
changed from a heavy usage of the exploration tactic in the first
exercise to an equilibrated mix of both tactics in the subsequent
one.
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[41] Valdemar Švábenskỳ, Jan Vykopal, and Pavel Čeleda. 2020. What are cybersecu-
rity education papers about? a systematic literature review of sigcse and iticse
conferences. In Proceedings of the 51st ACM Technical Symposium on Computer
Science Education. 2–8.

[42] John Sweller. 1988. Cognitive load during problem solving: Effects on learning.
Cognitive science 12, 2 (1988), 257–285.

[43] John Sweller and Graham A Cooper. 1985. The use of worked examples as a
substitute for problem solving in learning algebra. Cognition and instruction 2, 1
(1985), 59–89.

[44] Toni Taipalus and Piia Perälä. 2019. What to Expect and What to Focus on in
SQL Query Teaching. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education. ACM, 198–203.

[45] Toni Taipalus, Mikko Siponen, and Tero Vartiainen. 2018. Errors and compli-
cations in SQL query formulation. ACM Transactions on Computing Education
(TOCE) 18, 3 (2018), 15.

[46] Cynthia Taylor and Saheel Sakharkar. 2019. ’); DROP TABLE textbooks;– An
Argument for SQL Injection Coverage in Database Textbooks. In Proceedings of
the 50th ACM technical symposium on computer science education. 191–197.

[47] Arto Vihavainen, Juha Helminen, and Petri Ihantola. 2014. How novices tackle
their first lines of code in an ide: Analysis of programming session traces. In Proc.
of the 14th Koli Calling Int. Conf. on Comp. Ed. Research. ACM, 109–116.

[48] Leon E Winslow. 1996. Programming pedagogy - a psychological overview. ACM
Sigcse Bulletin 28, 3 (1996), 17–22.

[49] Xiaohong Yuan, Imano Williams, Tae Hee Kim, Jinsheng Xu, Huiming Yu, and
Jung Hee Kim. 2017. Evaluating hands-on labs for teaching SQL injection: a
comparative study. Journal of Computing Sciences in Colleges 32, 4 (2017), 33–39.

Session: Cybersecurity, data, and networks  ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

81

https://doi.org/10.1007/978-3-319-14142-8
https://doi.org/10.1007/978-3-319-14142-8

