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Abstract
We present a well-tailored sequence of two Gaussian-pulsed drives that achieves perfect
population transfer in stimulated Raman adiabatic passage. We give a theoretical analysis of
the optimal truncation and relative placement of the Stokes and pump pulses. Further, we
obtain the power and the duration of the protocol for a given pulse width. Importantly, the
duration of the protocol required to attain a desired value of fidelity depends only
logarithmically on the infidelity. Subject to optimal truncation of the drives and with reference
to the point of fastest transfer, we obtain a new adiabaticity criteria, which is remarkably
simple and effective.

Keywords: STIRAP, superconducting qubits, adiabaticity criteria, optimally truncated
finite-time pulses

(Some figures may appear in colour only in the online journal)

1. Introduction

The stimulated Raman adiabatic passage) (STIRAP) protocol
got its first validation in an experiment [1, 2] where partially
overlapping Stokes and pump laser beams were employed to
transfer the population from a lower energy state to a higher
vibrational state without populating the intermediate level in a
three-level system consisting of molecular vibrational states.
This was done with a non-trivial pulse arrangement (usually
referred to as counter-intuitive sequence), where the Stokes
pulse precedes the pump pulse. This selective and precise
adiabatic transfer of population has been a subject of much
interest from a theoretical as well as experimental perspective
[3, 4]. Due to its intrinsic robustness against practical imper-
fections, STIRAP has been widely adopted in various different
experimental systems [5, 6]. Most importantly, the success of
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Original content from this work may be used under the terms
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of the work, journal citation and DOI.

the protocol (even from the theoretical point of view) relies
on the fulfilment of the adiabaticity criteria [7–12]. As per
quantum adiabatic theorem [13, 14], the system, which is ini-
tialised in an eigenstate, follows the corresponding eigenstate
of the instantaneous Hamiltonian. However, a widely accept-
able quantitative criteria for adiabaticity is still lacking [15].
An interesting approach based on local adiabaticity criteria is
discussed in [16], where the Hamiltonian generating adiabatic
evolution is designed in a such a way that it fulfils the local adi-
abaticity condition at infinitesimal time steps, which is further
used to obtain the adiabatic-evolution version of the Grover’s
search algorithm.

Here we present an adiabaticity criteria which is demon-
strably sufficient for achieving perfect population transfer. Our
criteria is markedly different from the existing ones and is
surprisingly effective despite its simplicity. The key concept
of our analysis is based on the most sensitive point of the
dynamics, which is in the middle of the sequence, where the
rate of evolution of the quantum state is the highest. Also, a
high-fidelity STIRAP requires the pulse sequence to be imple-
mented in an optimal time, which involves optimal truncation
of the drives, as well as optimal width of the drives and relative
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placement of the drives in the pulse sequence. Here we show
how these issues can be solved. Another important aspect is
the power of the pulses, which we obtain optimally with the
help of our newly introduced adiabaticity criteria. We analyse
the situation in detail and arrive at analytical expressions that
lead to a perfectly tailored STIRAP.

The protocol studied here is experimentally implementable
to any three-level system. The set of parameters presented
here can be directly used in a circuit QED based exper-
imental setup with a multi-level Josephson-junction arti-
ficial atom [17]. There are also ways to suppress the
non-adiabatic excitations by employing shortcuts to adiabatic-
ity [6]. In superadiabatic(sa)-STIRAP in three-level systems,
an additional counterdiabatic pulse is needed, realizing direct
coupling between the initial and the target states. A circuit
QED based setup implementing saSTIRAP protocol in a three-
level system has been demonstrated in reference [18] and
its robustness against various experimental imperfections has
been analysed in reference [19].

The Hamiltonian governing the STIRAP for a three-level
system in the computational basis {|0〉, |1〉, |2〉}, in the dis-
persive regime and under the rotating wave approximation, is
given by [17]

H0 =
h̄
2

⎛
⎝

0 Ω01(t) 0
Ω01(t) 2δ01 Ω12(t)

0 Ω12(t) 2(δ01 + δ12)

⎞
⎠, (1)

where the time-varying amplitudes of the driving fields are
chosen as Gaussians with equal standard deviation σ. These
Gaussians are separated in time by an amount ts given by

Ω01(t) = Ω0
01 e−t2/2σ2

and Ω12(t) = Ω0
12 e−(t−ts)2/2σ2

.

An adiabatic evolution is ideally infinitely slow and would
require the system to be in an eigenstate of the instantaneous
Hamiltonian at all times. At the two-photon resonance condi-
tion (i.e. δ01 = −δ12), a convenient choice of the eigenvector is
the dark state |D〉 = cosΘ|0〉 − sinΘ|2〉, which does not have
any dependence on the intermediate level |1〉. Here the mixing
angle Θ is defined by Θ = tan−1Ω01(t)/Ω12(t).

2. Optimal pulse duration

Adiabatic drive in principle demands infinitely long operation
time for a complete transfer of population. Ideally, as required
by STIRAP, Gaussian pulses are of infinite extent. However, to
cope with the experimental limitations on pulse generation and
to minimize the losses due to decoherence, one would have to
truncate the Gaussians Ω01(t) and Ω12(t) optimally. Therefore
there is a tradeoff between the loss in the transfer fidelity that
can be afforded and the total pulse time. Revisiting the mixing
angle, while assuming Ω0

01 = Ω0
12, we write

tan Θ(t) =
Ω01(t)
Ω12(t)

=
e−rt/σ

e−r2/2
, (2)

where we introduce the parameter r = ts/σ.

Figure 1. Time variation of Θ(t) versus total pulse duration T for
different values of nt is shown at two different values of r:
(a) r = −2 and (b) r = −1. In each of these figures, blue curve with
circular markers, red curve with triangles, black curve with
diamonds, and orange curve with squares correspond to
nt = 0, 1, 2, 4 respectively (also specified at the right end of each
curve in part (b)).

We truncate this STIRAP pulse sequence (consisting of
drives Ω01(t) and Ω12(t)) from left at time t = ti = −ntσ +
ts = −(nt − r)σ, which we call initial time point, and from
right at t = tf = ntσ, which we call final time point, where nt

is a real number (nt ∈ R). The total pulse duration is therefore
T = tf − ti = (2nt − r)σ. We fix the values of r and σ and
present the corresponding dynamics of Θ(t) versus total pulse
duration as shown in figure 1, where different curves cor-
respond to different values of nt. The width of the Gaus-
sian may be fixed to any arbitrary value (here σ = 30 ns)
as this does not effect the variation of Θ(t) in a given total
time T. Ideally, during the STIRAP drive, the mixing angle
Θ(t) is expected to vary from 0 to π/2, while in reality, a
finite-time sequence effectively varies Θ(t) from Θi → 0 to
Θf = π/2 −Θi. A closer look at figure 1 immediately con-
cludes that a choice of small enough nt might result in a
large Θi e.g. in figure 1(b) the blue curve marked with cir-
cles has nt = 0 and Θi > π/6 while the orange curve marked
with squares corresponds to nt = 4 and Θi ≈ 0. Thus, for a
given r, lower values of nt result in a poor transfer fidelity. To
make it worse, real situations by default have Θi ≈ 0, there-
fore a too small value of nt is susceptible to create errors
which can be difficult to trace. An elaborated picture of the
ideal situation is presented in figure 1(b), where curves corre-
sponding to nt = 1, 4 have Θi = 12.6◦ and 0.64◦ respectively,
with total pulse duration being 105 ns and 315 ns respec-
tively. Clearly in this case nt = 4 has a much more desir-
able outcome than that of nt = 1, despite the high time cost.
Another important factor that plays a role in the time manage-
ment of the STIRAP implementation is the relative separation
between the two pulses (r = ts/σ). Comparing curves corre-
sponding to nt = 1 in figures 1(a) and (b), it is found that
for r = −2, Θi ≈ 1◦ and the total pulse duration is 140 ns.
Thus an optimal combination of nt and r provides an efficient
STIRAP without compromising much with respect to the time
cost. A quite thorough picture can be obtained from the con-
tour plot in figure 2, wherein mixing angle corresponding to
the final state (Θf = π/2 −Θi) is plotted for different combi-
nations of nt and r. The final value of the mixing angle ranges
from Θf = 45◦ (corresponding to r = 0, nt = 0 and thus no
time evolution) to Θf = 90◦, which corresponds to a complete
transfer of population from |0〉 → |2〉.
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Figure 2. Contour plot showing the mixing angle at time t = tf
corresponding to the normalized relative separation r between the
two driving fields and the parameter nt characterizing the transfer
time.

Next, we quantify the threshold for a desired fidelity of the
STIRAP protocol. From equation (2),

− rt
σ

= − r2

2
+ ln[tan Θ(t)]. (3)

As stated earlier, due to the STIRAP driven dynamics, our
three-level system is in the dark state |D〉 at all times. We
parametrize the initial dark state with close proximity to the
ground state |0〉 by

|ψi〉 =

⎛
⎝

cos Θi

0
− sin Θi

⎞
⎠ =

⎛
⎝
√

1 − ε2

0
−ε

⎞
⎠, (4)

such that the ideal case is recovered when ε→ 0. Since we
know that during the evolution under the STIRAP Hamiltonian
our system is in the dark state at all times, the final state reads

|ψf〉 =

⎛
⎝

cos Θf

0
− sin Θf

⎞
⎠ =

⎛
⎝

ε
0

−
√

1 − ε2

⎞
⎠. (5)

For both the initial and final states, the parameter ε is a mea-
sure of infidelity. Indeed, the fidelity is Fi = Ff = |〈0|ψi〉|2 =
|〈2|ψf〉|2 = 1 − ε2 and therefore the infidelity is ε2. At the final
time point, t = tf = ntσ, and from equations (3)–(5), one may
easily arrive at

nt =
1
r

ln
ε√

1 − ε2
+

r
2
. (6)

Thus the total pulse duration is

T =
2σ
r

ln
ε√

1 − ε2
, (7)

which, as expected, is directly proportional to the widths of the
Gaussians. A larger value of |r| corresponds to faster truncation

Figure 3. Plots of (a) nt vs −r and (b) T/σ vs −r corresponding to
different values of ε.

(smaller nt) and is overall advantageous in terms of the total
pulse duration. For small enough ε (ε2 
 1), equation (7) leads
to ε ∝ erT/(2σ). Thus, the infidelity decreases exponentially
with total time.

Figure 3(a) contains plots of nt vs −r, where different
curves correspond to different values of ε. It is interesting to
note that there may exist the STIRAP sequence even for nega-
tive values of nt when the relative separation between the two
Gaussians is large. However, the total transfer time is positive
as expected, which is clearly seen in figure 3(b) showing the
variation of T/σ with −r at corresponding values of ε. Con-
sider the vertical green line at r = −1.5 in figure 3(b), and
the values of T/σ while it intersects different curves plotted
at different values of ε. The smaller ε is, the higher the fidelity,
which requires larger values of T/σ for a fixed value of r. For
instance, assuming σ = 40 ns, a total transfer time of 184.2 ns,
122.8 ns, 79.9 ns, 61.3 ns, and 14.6 ns are required to obtain
final values of the mixing angle Θf to be 89.9◦, 89.2◦, 85.9◦,
81.9◦, and 48.6◦ respectively.

Another interesting situation arises whenΩ0
01 �= Ω0

12, which
influences the left and right truncation limits, however the total
transfer time remains unchanged. This situation is discussed in
detail in appendix B.

3. Adiabaticity criteria

Next, we evaluate the optimal value of the pulse amplitude
corresponding to the optimal transfer time calculated in the
last section. The total pulse area then may be compared with
the total energy required to achieve the selective population
transfer. The adiabatic criteria for a STIRAP implementation
implies that at any arbitrary time t the effective area A(t) is
much greater than the time rate of change of the mixing angle,

A(t) =
√
Ω2

01(t) +Ω2
12(t)  Θ̇(t), (8)

which upon integration, gives rise to the global adiabaticity
condition, as discussed in [17].

For a deeper insight into the protocol, let us look at the time
dependence of these quantities. The plots of the time-varying
amplitudes of the driving fields (Ω01(t) and Ω12(t)), effective
area A(t), and rate of change of the mixing angle Θ̇(t) are
shown in figure 4, where σ = 35 ns, Ω0

01/(2π) = 44 MHz, and
Ω0

12/(2π) = 37 MHz. It is easy to notice that the rate of change

3
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of mixing angle is maximum in the middle of the sequence
where Ω01(t) = Ω12(t).

Ideally (for ε→ 0), at t = tI, the mixing angle is Θ = π/4
and the populations are p0 = p2 = 0.5. Also the STIRAP
sequence is fastest and more prone to errors at this point, such
that a non-zero p1 occurs close to this point. Thus t = tI plays
an important role. It is also clearly seen in figure 4 that the vari-
ation of the mixing angle with time attains its maximum value
at t = tI, when Ω01(t) = Ω12(t).

Thus, in most of the cases, especially the ones correspond-
ing to poor performance of STIRAP, the time t = tI corre-
sponds to close values of the terms on the left and right
hand sides of the inequality in equation (8). In figure 4, at
t = tI, a vertical blue line intersects various curves, such that
A(tI)/(2π), Ω01(tI)/(2π) = Ω12(tI)/(2π), Θ̇(tI) and the time
axis are labelled by points A, O, Q, and P respectively. An
intuitive argument based on observation leads to a non-trivial
relation, that has to be obeyed for a better performance of the
STIRAP, given by,

Ω01(tI) − 2πΘ̇(tI)�
√
Ω2

01(tI) +Ω2
12(tI) − Ω01(tI), (9)

or alternatively,

Ω01(tI) − 2πΘ̇(tI)
Ω01(tI)

�
(√

2 − 1
)

, (10)

as Ω01(t) = Ω12(t) at t = tI. Time (tI) is given by,

tI =
ts
2
+

σ2

ts
ln α, (11)

where α = Ω0
01/Ω

0
12. Further,

Θ̇(t) =
Ω̇01(t)Ω12(t) − Ω01(t)Ω̇12(t)

Ω2
01(t) +Ω2

12(t)
(12)

and at t = tI,

Θ̇(tI) = − ts
2σ2

. (13)

Note that even for α �= 1, Θ̇(t), attains its maximum value at
t = tI, where Ω01(t) = Ω12(t). Irrespective of the asymmetry
introduced by different pulse amplitudes (Ω0

01 and Ω0
12), the

rate of population transfer reaches its maximum at t = tI. From
equations (9)–(13), the condition for a better STIRAP result is
given by,

σ
Ω0

01

2π
� −r et2I /2σ2

2(2 −
√

2)
. (14)

ForΩ0
01/(2π) = Ω0

12/(2π) = Ω,α = 1, and the above inequal-
ity results into

σΩ � −r er2/8

2(2 −
√

2)
. (15)

This is the adiabaticity criteria for the STIRAP population
transfer, which is obtained by assuming the system to be in
the dark state at all times (see equation (4)). The STIRAP
population transfer calculated using equations (6) and (15)
(for α = 1) will be labelled in the following as parameter
‘set 1’. The dependence of the right side of equation (15) with

respect to −r is plotted as shown in figure 5(a) with continuous
black curve with markers. The corresponding population trans-
fer obtained from set 1 (for ε = 0.05) is shown in figure 5(b)
with black markers. It is noteworthy that the plot of p2
versus −r (see figure 5(b)) is independent of the values of σ
and is in fact dependent on ε. On the other hand, the total pulse
duration T is directly proportional to σ and the drive amplitude
Ω is inversely proportional to σ. Furthermore, a larger value
of ε leads to less efficient population transfer in significantly
shorter time.

The results of equation (15) are compared with the global
adiabaticity criteria, σΩ 

√
π/4 [17]. In figure 5(a), the con-

tinuous blue line corresponds to σΩ =
√
π/4, which means

that for the global adiabaticity criteria to be satisfied, the
productσΩ must lie significantly above the blue line. On com-
parison between the continuous blue curve and black curve
with markers in figure 5(a), we find that it is possible to have an
effective population transfer even when the global adiabaticity
criteria is clearly violated in the region |r| < 0.5. For instance,
considering a STIRAP evolution with r = −0.4, σ = 5 ns,
Ω = 70 MHz, and optimally tailored time of 115 ns (where
ni = nf = 11.3 with ε = 0.01), starting from the ground state
yields a final state population, p2 ≈ 0.99 that goes beyond the
global adiabaticity condition (stated earlier), and TΩ = 8.02,
which is <10 and hence violates the adiabaticity condition
reported in [20, 21]. Also, for larger values of |r|, figure 5(a)
presents much disparity between the two adiabaticity
criteria.

Further, on close observation of the p2 population profile
in figure 5(b), we find that the population transfer is not very
efficient for |r| < 1, and that the above example of a per-
fect transfer at r = −0.4 is a mere coincidence. These imper-
fections originate in the assumption of dark state dynamics,
which is not valid for small values of |r| due to spurious exci-
tations. They can be compensated by higher power of the
drive. Based on these phenomenological considerations, we
can design an optimal set of parameters for |r| < 1. We call
this r−conditioned set of parameters and label it as set 2,
given by

nt = − ln
ε√

1 − ε2
+

r
2

, |r| < 1

=
1
r

ln
ε√

1 − ε2
+

r
2

, |r| � 1 (16)

σΩ � er2/8

2(2 −
√

2)
, |r| < 1

� −r er2/8

2(2 −
√

2)
, |r| � 1, (17)

where α = 1. The plot for the right-hand side of the inequal-
ity in equation (17) versus r is shown as diamond mark-
ers in figure 5(a) and the corresponding final population
p2, calculated from set 2 is shown in figure 5(b). Clearly,
figure 5(b) reflects a perfect STIRAP transfer for parameter
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Figure 4. Plots of the time-varying amplitudes Ω01(t)/(2π) and Ω12(t)/(2π), effective area A(t)/(2π), and Θ̇(t) versus time are shown for
(a) r = −1.5 and (b) r = −2. Here σ = 35 ns, Ω0

01/(2π) = 44 MHz, and Ω0
12/(2π) = 37 MHz.

Figure 5. Plots for (a) STIRAP adiabaticity criteria (σΩ = rhs) and
(b) corresponding final population in the second excited state
(p2) for set 1 (equations (6) and (15)) with continuous black curve
with markers, for set 2 (equations (16) and (17)) with diamond
markers, and the global adiabaticity condition with continuous blue
line are shown. The inset in (a) shows an elaborated view of the
respective quantities for |r| < 1. (c) Total pulse duration in blue with
square markers and drive amplitude in red with circular markers are
shown for set 2, where ε = 0.05, α = 1, and σ = 30 ns.

set 2. Figure 5(c) shows the variation of total pulse dura-
tion (T ) and the drive amplitude (Ω) as functions of r, where
σ = 30 ns.

We also simulated STIRAP where the product σΩ is
close to but lesser than the respective right hand sides of
equation (17), and find that we can still arrive at a good enough
population transfer in certain situations. This is especially true
for large values of |r|. Thus, we conclude that the adiabaticity
condition in equation (17) is sufficient but not necessary for a
perfect population transfer.

Figure 6. Population of the second excited state (p2) is plotted at
time t = tf in a STIRAP protocol, with initial state |0〉. Results from
(a) STIRAP with Ω = 45 MHz and nt = 3 and (b) well-tailored
STIRAP as per equations (16) and (17) are shown.

4. A perfect STIRAP protocol

A demonstration of the improvement achieved by employing
the conditions in equations (16) and (17) is shown in figure 6,
where population p2 of the second excited state (|2〉) at the final
time t = tf is plotted as a function of σ and−r, with α = 1 and
ε = 0.05. Figure 6(a) shows the p2 with fixed nt = 3 and Ω =
45 MHz. Thus, any arbitrary point on the p2-map in figure 6(a)
satisfies σΩ >

√
π/4. The simulation of a perfectly tailored

STIRAP utilizing the conditions in equations (16) and (17) is
shown in figure 6(b). The resultant population profile demon-
strates a well-tailored STIRAP protocol for the desired popu-
lation transfer. Figure 6(b) shows clear improvement relative
to results shown in figure 6(a).

For a practical implementation, the total time-cost and
pulse-power evaluation are also important. The correspond-
ing maps of the total pulse duration and maximum pulse-
amplitude in the same ranges of σ and −r are shown in the
appendix A in figure 7. The wide range of resultant T and
Ω values provide flexibility to the protocol. Larger values
of ε further lead to significant reduction in the time-cost. In
turn, a choice of slightly larger σ can significantly reduce the
amplitude Ω.

Alternatively, when evaluating the experimental feasibility
various parameters can be constrained and a perfect population
transfer can be designed with the help of these interweaved
parametric equations and graphs.
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Figure 7. Variation of (a) total pulse duration (T ) and (b) maximum
pulse-amplitude (Ω) as a function of σ and −r.

For a desired value of ε, and with the help of figure 3,
equations (6) or (7), and (15), (or more general equations (16)
and (17)) one can easily obtain an experimentally feasible set
of parameters r, σ, nt, and Ω that leads to a perfect STIRAP. It
is noteworthy that the efficacy of this perfect STIRAP proto-
col does not rigidly rely on the calculated parameters. In fact,
parameters such as nt, Ω can be considered as the respective
lower bounds to achieve population transfer with infidelity ε2.
Larger values of these parameters will only make the trans-
fer more efficient. This makes the protocol robust against the
experimental imperfections.

5. Discussion and conclusions

We presented a well-tailored STIRAP protocol that leads to
a perfect population transfer |0〉 → −|2〉 alongside with flex-
ibility in the choice of parameters. For a given ε, a combined
choice of parameters nt and r already determines the final pop-
ulation to be transferred. Furthermore, the choice of σ deter-
mines the total pulse duration (T) and the corresponding cal-
culated value of the amplitude Ω is responsible for the pulse
power. A trade off between σ and Ω values can be settled
by evaluating the experimental feasibility. We also discussed
the relatively general situation, where the Gaussian drives can
have unequal maximum amplitudes controlled by the param-
eter α = Ω0

01/Ω
0
12. The results for α �= 1 are discussed in the

main text, while a detailed analysis is presented in the appen-
dices. The analysis presented here relies on a simple set of
calculations and observations, however the end results are
non-trivial. In conclusion, our calculations for the STIRAP
drives lead to a perfect population transfer within the reach of
experimentally feasible scenario and without the help of any
additional shortcuts to the adiabaticity.
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Appendix A. Practical feasibility

The cost in terms of the total pulse duration and maximum
pulse-amplitude is shown in figure 7 as surface maps for a wide
range of σ and −r, consistent with figure 6(b) of the main text.

Appendix B. Gaussians with different amplitudes

Consider the pair of Gaussians together leading to a STIRAP
pulse sequence for Ω0

01 �= Ω0
12 and σ1 = σ2 = σ,

Ω01(t) = Ω0
01 e−t2/2σ2

,

Ω12(t) = Ω0
12 e−(t−ts)2/2σ2

.
(B1)

The mixing angle is given by

tan Θ(t) =
Ω01(t)
Ω12(t)

=
Ω0

01

Ω0
12

e−rt/σ er2/2, (B2)

or
rt
σ

=
r2

2
− ln[tan Θ(t)] + ln

[
Ω0

01/Ω
0
12

]
, (B3)

where, r = ts/σ. For a finite time operation, this sequence
of Gaussians is truncated at the optimal time that provides
the complete transfer of population. The initial and final time
points of the sequence are obtained by truncating the sequence
from left at t = ti = −niσ + ts and from right at t = tf = nfσ,
such that the total operation time is T = σ(ni + nf) − ts. Inter-
estingly, we come across the same mixing angle (Θ) in the
structure of the dark state |ψD〉, which is an eigenstate of
the instantaneous Hamiltonian with eigenvalue 0. We assume
our three-level quantum system in the dark state with close
proximity to the ground state (|0〉),

|ψi〉 =

⎛
⎝
√

1 − ε2

0
−ε

⎞
⎠, (B4)

such that ε→ 0. We know that during the evolution under the
STIRAP Hamiltonian, our system is ideally in the dark state at
all times, such that the final state is

|ψf〉 =

⎛
⎝

ε
0

−
√

1 − ε2

⎞
⎠. (B5)

At the final time point, t = tf = nfσ, and from equations (4),
(5) and (B3), one may easily arrive at

nf =
1
r

ln
ε√

1 − ε2
+

r
2
+

1
r

ln
Ω0

01

Ω0
12

. (B6)
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Similarly, at t = ti = −niσ + ts

ni =
1
r

ln
ε√

1 − ε2
+

r
2
− 1

r
ln

Ω0
01

Ω0
12

, (B7)

and the total time,

T = (ni + nf)σ − ts = (ni + nf − r)σ =
2σ
r

ln
ε√

1 − ε2
.

(B8)
Consistent with parameter set 2, the above equations are valid
for |r| � 1. For |r| < 1 we have,

nf = − ln
ε√

1 − ε2
+

r
2
+

1
r

ln
Ω0

01

Ω0
12

. (B9)

ni = − ln
ε√

1 − ε2
+

r
2
− 1

r
ln

Ω0
01

Ω0
12

, (B10)

T = (ni + nf)σ − ts = (ni + nf − r)σ

= 2σ ln
ε√

1 − ε2
. (B11)

When Ω0
01 �= Ω0

12, truncation from the left and right
extremes correspond to slightly different values of ni and nf

to obtain the final state with infidelity ε2. This is due to the
same amount of fractional decrease in the amplitudes of the
pulses expected at the initial and final time points.
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