' Aalto University

Alami, Adam; Krancher, Oliver; Paasivaara, Maria
The journey to technical excellence in agile software development

Published in:
Information and Software Technology

DOI:
10.1016/j.infsof.2022.106959

Published: 01/10/2022

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:

Alami, A., Krancher, O., & Paasivaara, M. (2022). The journey to technical excellence in agile software
development. Information and Software Technology, 150, 1-14. Article 106959.
https://doi.org/10.1016/j.infsof.2022.106959

This material is protected by colpyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by ?/ou for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other tuhse: Elgctronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

https://doi.org/10.1016/j.infsof.2022.106959
https://doi.org/10.1016/j.infsof.2022.106959

Information and Software Technology 150 (2022) 106959

Contents lists available at ScienceDirect INFORMATION
AND

SOFTWARE

TECHNOLOGY

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Check for

The journey to technical excellence in agile software development o

Adam Alami ®*, Oliver Krancher ”, Maria Paasivaara %"

2 Aalborg University, Denmark

Y IT University of Copenhagen, Denmark
¢ LUT University, Finland

d Adlto University, Finland

ARTICLE INFO ABSTRACT
Keywords: Context: Technical excellence is a nebulous term in agile software development. This vagueness is risky
Agile software development because it may lead to misunderstandings and to agile implementations that may overlook a key principle
Software development methods of agile development.
Technical excellence Objective: This study investigates how agile practitioners interpret the concept of technical excellence brought
Agile principles up in Principle 9 of the Agile manifesto. Moreover, we investigate how agile practitioners put the concept into
practice and what conditions facilitate putting technical excellence into practice.
Methods: We conducted semi-structured interviews with twenty agile practitioners, coded the data inductively,
and performed two sessions to validate the emerging findings.
Results: We find that technical excellence is first and foremost a mindset that is underpinned by continuous
attention to sustainable code, continuous learning, and teamwork. Fostering technical excellence requires the
adoption of design and development practices, such as continuous architecting, and is supported by continuous
learning. We also identify three enabling conditions for technical excellence: Leadership support, customer buy-
in, and psychological safety. These enablers provide teams with leeway to nurture their pursuit of technical
excellence.
Conclusion: Our findings highlight the key role of people-based strategies in promoting technical excellence
in agile software development. They show that the attainment of technical excellence does not only involve
technical practices. On the contrary, it relies on social and organizational support and, most importantly, a
mindset.
1. Introduction agile methods without sufficiently understanding the manifesto’s un-
derlying values and principles, believing that the mere adoption of
Agile software development methods such as Scrum and XP are now recommended practices enhances agility [2]. Second, different agile
widely adopted in the industry [1,2]. These methods aim at improving practitioners' may mean different things when they refer to agile and
a software development team’s agility (i.e., its ability to create and its principles. This may lead to misunderstandings and even to poor

respond to change) by relying on iterative development, self-organizing
teams, craftsmanship, and processes that are light and maneuverable
but provide sufficient coordination for project behaviors [1,3-5].

At the heart of the agile movement are twelve principles outlined in
the Agile Manifesto [6]. For example, Principle 1, “Our highest priority
is to satisfy the customer through early and continuous delivery of valuable
software.” [6], emphasizes satisfying the customer through continuous
software delivery, while Principle 2, “Welcome changing requirements,
even late in development. Agile processes harness change for the customer’s Principle 9:
competitive advantage”. [6], welcomes changing requirements [6]. One
common criticism of these principles is that they are too vague [2,7],
which may lead to two undesired outcomes. First, teams may use

implementations of agile methods [2]. Therefore, an important task for
teams is to establish a shared understanding of agile principles early in
the development process [7]. In a similar vein, as Dingsgyr et al. [8]
concluded in their review of the agile software development literature,
an important mission for research is to clarify the “core” of agile values
and principles [8].

“Continuous attention to technical excellence and good design enhances
agility”. [6]

* Correspondence to: Aalborg University, Department of Computer Science, Selma Lagerlofs Vej 300, DK-9220 Aalborg, Denmark.
E-mail address: adaa@itu.dk (A. Alami).
1 For brevity, we use the term agile practitioners to refer to professionals working with agile software development methods.

https://doi.org/10.1016/j.infsof.2022.106959

Received 13 November 2021; Received in revised form 18 May 2022; Accepted 19 May 2022

Available online 30 May 2022

0950-5849/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:adaa@itu.dk
https://doi.org/10.1016/j.infsof.2022.106959
https://doi.org/10.1016/j.infsof.2022.106959
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2022.106959&domain=pdf
http://creativecommons.org/licenses/by/4.0/

A. Alami et al.

Following these calls to clarify key agile principles, this paper
focuses on Principle 9 (stated above), which emphasizes technical ex-
cellence and good design. A focus on Principle 9 is relevant for three
reasons. First, even though technical excellence and good design are of-
ten seen as critical issues in agile development [4,9], the terms are not
defined in the Manifesto. This leaves agile practitioners with substantial
room to interpret what technical excellence means and how it can be
achieved. Second, while software engineering research has explored
many issues related to agile development [8], there is surprisingly
little work on technical excellence. Existing work is either practitioner
literature (e.g., [10-12]) or not empirically founded (e.g., [13]. Thus
there is limited knowledge not only about the interpretations of tech-
nical excellence among agile practitioners but also about the practices
that developers and teams can rely on to achieve technical excellence
and about the organizational conditions that support teams in their
quest for technical excellence. Third, while other principles (e.g., wel-
come changing requirements) denoted a significant departure from
the plan-based methods advocated before the agile movement, issues
of design and excellence have also been a cornerstone of plan-based
software development [14]. Indeed vast bodies of research on software
architecture [15] and process improvement [16,17] have focused on
issues of design and excellence. Against this backdrop, our focus on
Principle 9 promises insights into the specific understanding of technical
excellence and good design that have emerged in the agile practitioner
community. We address the following research questions:

RQ1: How do agile practitioners interpret Principle 9 of the agile manifesto?

RQ2: Through which practices do agile software developers and their teams
foster technical excellence?

RQ3: What are the enabling conditions for technical excellence in agile
software development teams?

We find that agile practitioners interpret technical excellence as
a mindset that emphasizes continuous attention to sustainable code,
to learning, and to teamwork. This mindset underpins the design and
development practices that aim at achieving technical excellence and
the continuous learning practices that help improve design and de-
velopment practices. Key enabling conditions are leadership support,
customer buy-in, and psychological safety, all of which provide leeway
for developers to invest time in architecting and learning. Based on
these findings, we propose guidelines for developers, teams, and or-
ganizations to operationalize the term technical excellence, put it into
practice, and create conditions that enable teams to cater for technical
excellence.

Our paper makes several contributions. To the best of our knowl-
edge, our work is the first to trace current industry practices back to
Principle 9 of the agile manifesto. It establishes a chain of reasoning
from a practitioner perspective and consequent implications, going
beyond existing work on technical excellence that is either practitioner
literature [10-12] or not empirical [13]. Moreover, to the best of
our knowledge, our paper is the first to examine enabling conditions
for technical excellence. Our paper also extends research on software
architecture and process improvement, which has rarely looked at the
interaction of architecting and process improvement practices and on
the role of mindsets. Our study shows how architecting and process
improvement work together for technical excellence and how a mindset
can enable teams to care about technical excellence, even without
formal processes and dedicated architects. An earlier version of this
work [18] examined technical excellence focusing on RQ1 and RQ2.
This extended version adds RQ3 with a revised analysis of RQ1 and
RQ2 and enhanced presentation of all RQs.

We present and contrast our contribution with the related work in
Section 2. Section 3 presents the study design and analysis methods.
Section 4 provides the key findings. We discuss our findings in relation
to previous work in Section 5. Then, we propose potential implications
on practice and research in Section 6. We conclude in Section 7.

Information and Software Technology 150 (2022) 106959
2. Background and related work

Our search of agile software development literature shows a mount-
ing interest in various topics related to quality in agile, but the term
technical excellence is rarely used in the literature. The results of
our search show no available work directly linked to Principle 9 of
the manifesto. The available literature investigates various topics in
isolation, such as pair programming (e.g., [19]), refactoring (e.g., [20])
and test-driven development (e.g., [21]). While these practices are
popularized by agile implementations, they do not necessarily imply
that agile teams pursue and sustain technical excellence.

Few literature streams are relevant to our work. While software
craftsmanship is regarded as a feature of excellence, other streams
such as quality in agile are connected to our work. In this review of
related work, we present and discuss mainly software craftsmanship,
software quality in agile and their relevance to our work, and the
call for further work on technical excellence; then we briefly discuss
how software architecture and software process improvement relate to
technical excellence.

2.1. Software craftsmanship

An important fact is that people write software. As discussed by
Pyritz [13], an excellent architecture, model, or process cannot, in
itself, produce high-quality software — this work requires highly skilled
software craftsmen who create with skill and dexterity. The craft of soft-
ware transcends the technology curve; technologies will come and go,
but the essential skills and wisdom of craftsmen maintain their value.
Therefore, to sustain technical excellence, older craftsmen must be
enlisted as mentors to pass down their wisdom, insight, and experience
to younger talent [13].

2.2. Quality in agile software development

Although software quality does not necessarily equate technical
excellence, it is one of the outcomes of being technically excellent.
Arcos-Medina and Mauricio conducted a systematic review of the agile
literature on quality. They identified a catalog of factors, agile prac-
tices, and metrics that influence quality in agile methods [22]. Five
critical success factors were proposed: teamwork practices, engineering
practices, management practices, documentation practices, and testing
practices. However, in most studies identified in this review, quality
was not the primary topic of investigation. This literature study shows
that more empirical work is needed to investigate perceptions of ag-
ile quality-related principles and practices and their correlation with
achieving quality.

Timperi [20] discusses several engineering practices used by agile
teams to assure quality, such as inspections, pair programming, test-
driven development, coding standards, collective code ownership, and
refactoring [20]. The study concludes that agile methods pay particular
attention to validation while de-emphasizing verification. The author
argues that this is problematic and recommends several quality as-
surance practices dedicated to verification and validation. Dingsgyr
et al. [8] investigated the guidelines, principles, conventions, and other
aspects concerning code quality that are known by developers in agile
software development. They found that code comprehensibility and
readability were often named first and most often by developers. Other
mechanisms for code quality included structured naming, and detect-
ing code smells (e.g., duplication, wrong abstraction, wrong naming,
missing tests, side effects, a high number of parameters, noise, and
cycles) [8].

Prechelt et al. propose “quality experience” [23], which is a quality
assurance and deployment “mode” adopted by agile teams without the
need for dedicated testers. This practice is characterized by three traits:
(1) the team “feels fully responsible for the quality of their software”;
(2) the team “receives feedback about this quality, in particular the

A. Alami et al.

quality of their recent changes, that is fast (available early), direct (not
be intermediated), realistic (coming from non-artificial settings); and
(3) rapidly repairs deficiencies when they occur” [23]. This work shows
that quality in agile teams is assured by a combination of technical and
non-technical factors [23].

While the interest of researchers is expected to remain focused
on quality as it is a highly sought outcome by the adoption of agile
methods, an intriguing question is how quality differs from technical
excellence. As a matter of fact, both encapsulate a set of practices
and enablers, but software quality is steered more towards an outcome
(e.g., free of bugs, maintainability, etc.) and technical excellence as
our findings show is an outcome (e.g., sustainable code and a long
term investment in technical decisions) and also a mindset. We contend
that technical excellence contributes to quality, but has far reaching
objectives. It intends to achieve and maintain long lasting technical
qualities by promoting a growth and continuous improvement mindset
and sustaining continuous learning.

2.3. The need to define “technical excellence” in agile

Tripp and Armstrong [24] identified three factors of motivation for
adopting agile. These were the motivation to improve software quality,
the motivation to improve efficiency, and the motivation to improve ef-
fectiveness. The quality factor included the motives of enhancing qual-
ity, improving engineering disciplines, and enhancing maintainability.
The efficiency factor included motives of increasing productivity, ac-
celerating time to market, and reducing costs. The effectiveness factor
included the motives of enhancing the ability to manage changing
priorities and improving alignment between IT and business objec-
tives [24]. If the growing interest in agile is partly driven by achieving
quality, then how does the agile manifesto advocate for quality and
excellence? In addition, recent reviews of the literature [25,26] show
limited interest on the topic of quality in agile. Since agile influences
the value system of software teams, there is a merit to evaluate how
agile teams achieve quality and technical excellence. Agile advocates
for establishing values, and norms in the development team. However,
we still know little how the agile value system enables teams to deliver
better software.

2.4. Software architecture and process improvement

Other streams of research related to this study are software ar-
chitecture and process improvement and learning. Research on agile
software architecture has suggested a number of lightweight formal
techniques [27] compatible with agile development such as refactor-
ing [28], including architects in agile teams [29], architecture backlogs,
and runway teams (i.e., teams that only work technical backlog items
as opposed to user stories) [30]. The latter two practices are responses
to the often observed challenge that customers prioritize work on
functional requirements (i.e., user stories) over work on technical
requirements [30]. Still, it is unclear how this body of knowledge links
to the notion of technical excellence in agile software development.

Earlier software engineering research has focused on software pro-
cess improvement initiatives that used normative maturity models,
such as the Capability Maturity Model Integrated. Key findings of this
line of research are that software process improvement initiatives can
enhance software quality [31], that the improvement can be partially
explained by learning [31], and that the critical success factors for
such initiative include sufficient time and resources, organizational
support, employee empowerment, and training [16]. Recently, research
has shifted attention to process improvement in agile software develop-
ment. Findings of this stream include that improvement actions relate
to team-level learning [32] and that engineers are satisfied with agile
improvement processes because of the short cycle time, which allows
quickly observing improved outcomes [33].

Information and Software Technology 150 (2022) 106959

The available literature, thus far, is fragmented and aimed at in-
vestigating a particular aspect of technical excellence (e.g., software
architecture, software quality, etc.) in isolation. We still need to un-
derstand technical excellence holistically and especially the interplay
amongst the various constituents shaping it. In addition, historically,
software structure and other related technical artifacts have been stud-
ied in silos, assuming that the team and its social setting have little
influence on how the software structure comes about. Conversely, our
work examines technical excellence from an engineering, a social, and
an organizational perspective. While we do not claim that this work
answers all questions, it is a modest step towards a better understand-
ing of technical excellence from an agile perspective in its broader
engineering, social, and organizational contexts.

3. Methods

Our methodological decisions are based on pragmatism as an epis-
temological stance. Pragmatism advocates that research should focus
on “practical understandings” of real-world problems, and the gener-
ated knowledge should have impactful implications on practice [34].
Pragmatism calls for selecting methods based on relevance to the
problem being studied rather than the researcher’s philosophical orien-
tation [34]. We opted for a qualitative inquiry because we sought depth
and breadth to further our understanding of the topic. In addition, we
aimed to understand how technical excellence is achieved in practice
to draw conclusions from practitioners’ experiences.

Our qualitative inquiry focused on capturing agile practitioners’
experiences. These experiences provided a depth of understanding
about technical excellence in agile methods, which allowed deriving
recommendations for implementing and fostering technical excellence.
It is scientifically accepted and acknowledged that experience is a
necessary and sufficient piece of knowledge in sciences [35]. Practi-
tioners’ experience is relevant to investigate our research questions.
We explicitly looked for participants who took actions to implement
technical excellence in their respective teams, which permitted us to
understand the world as others experience it.

To permit a degree of flexibility in our conversations, we employed
semi-structured interviews. Our interview questions (Table 1) can be
sorted into three categories: introductory questions, which eased inter-
viewer and interviewee alike into the discussion; core questions, which
focused on the main topic; and probing questions, which followed up
on specific details.

Subject selection

We interviewed 20 agile practitioners who we recruited from
LinkedIn, and whose software development experience ranged from
six to thirty-one years. To construct our sample, we used the profile
search feature using the term “agile” that yielded over five mil-
lion profiles. From this list, we randomly selected profiles without
setting parameters and then we verified the person’s suitability to
participate in the study using the participant’s profile description,
especially their job descriptions and titles. We aimed for participants
with long experience in agile software development projects, with a
background in software development, and with interest and experience
in implementing technical excellence. We identified those subjects as
eligible participants that had a minimum of five years of experience
in agile software development, had started their careers as software
developers, and actively participated in implementing and fostering
technical excellence in their teams. We examined a large number of
profiles. Ultimately, fifty qualified individuals were invited to partic-
ipate in the study, twenty of whom accepted our invitation. Table 2
summarizes the demographics of the participants, wherein “Exp. in Sw.
Industry” indicates the number of years the participant spent working
in the software industry and “Exp. as Software Developer” shows the
software development experience of the participants. Affiliation is the
company each participant was working for at the time of the interview.

A. Alami et al.

Table 1
Key parts of the interview questions.

Information and Software Technology 150 (2022) 106959

Introductory Questions

Can you please introduce yourself and talk about your experience?

How do you define agile?
What do you think of agile?

Core Questions

What does this statement from the Manifesto mean to you: “Continuous attention to technical excellence and good design enhances agility”?

What is “continuous attention to technical excellence”?
How does “good design [enhance] agility”?

How do you foster “technical excellence” in an agile environment?

Probing Questions

Can you share with me examples of how technical excellence is implemented and fostered from your experience?
Is there anything else you would like to add on the topic of “Technical Excellence” in agile?

Table 2

The study interviewees. * indicates interviewees who participated in the 1st focus group and ** in the 2nd member validation session.
Role Experience Affiliation Country

Exp. in Sw. Industry Exp. as Software Developer Business Sector No. Emp.

P1* Sr. Agile Product Manager 20 12 Information Technology & Services 680 Germany
P2 Agile Coach 20 14 Information Technology & Services 2,369 Australia
P3 Agile Coach 20 12 Telecommunication 26,843 UK
P4* Agile Delivery Specialist 12 8 Telecommunication Services 11,133 USA
P5 Scrum Master 14 10 Transportation 5,677 India
P6 Scrum Master/Team Agilist 15 10 Financial Services 768 USA
P7 Agile Coach 18 12 Information Technology & Services 40,993 Germany
P8 Project Manager 6 4 Finance Services 1,087 Spain
Po* Project Manager 28 12 Automotive Manufacturer 4,654 Italy
P10* Portfolio Manager 20 14 Information Technology & Services 3,059 USA
P11** Program Manager 21 13 Information Technology & Services 345 India
P12 Scrum Master 31 16 Professional Training & Coaching 88 UK
P13 Senior Product Manager 18 14 Education 12,344 UK
P14 Project Manager 15 10 Information Technology & Services 99,353 UK
P15 Head Of Quality Assurance 4 7 Technology Startup 55 India
P16** Product Owner 11 7 Information Technology & Services 309,284 India
P17 Lead QA Engineer 10 6 Education Management 312 USA
P18 Project Manager 8 5 Technology Startup 32 Germany
P19 Agile Coach 7 5 Travel & Tourism 268 Australia
P20 Scrum Master 7 5 Information Technology & Services 253 USA

“Business sector” was the industry sector of the employer and ‘“No.
Emp.” its number of employees. This information was sourced from the
companies’ websites. The country is where the participant’s company
is registered. We ended up with a sample where all participants used
and had experiences with Scrum. This was not intended, but it shows
the popularity of Scrum in the industry.

Data collection

As the interviewees were widely distributed geographically, all
interviews were conducted using Zoom, an audio-video conferencing
tool. The interviews lasted 40-60 min on average and generated an
average of 11 pages of text each when transcribed verbatim. The
interviews were conducted by the first author in the period between
March and August 2020. We used “Temi”, an online transcription tool,
to transcribe the interviews. The first author checked and corrected all
transcripts where necessary and sent the transcripts to the participants
for review (see section Section 5.4 for further details).

Data analysis

We used thematic coding to analyze the data, following the guide-
lines by Cruzes and Dyba [36]. Our analysis approach was inductive.
That is, our interpretation of the data was not based on existing theory
but rather based on the meaning that emerged from the participants’
accounts. The iterative analysis began in the early stages of the data col-
lection and continued throughout the study. The interview transcripts
were coded by examining the data line-by-line through the lens of
our research questions. Once the responses were coded, patterns were
identified, suggesting a specific theme, a concept that organizes a group
of repeating ideas related to the research question. After identifying

and giving names to the basic meaning units, we grouped them into
categories by similarity. We initiated the coding process and analysis as
soon as interview transcripts became available so that we could monitor
for saturation. We reached saturation [37] of some themes after twelve
interviews (e.g., continuous improvement) and for other themes such as
knowledge sharing and psychological safety at 20 interviews. For RQ1
& 2, the coding was initially performed by the first and third authors
and for RQ3 by the first and second authors. We used peer debriefing
sessions to critically review the codes and their categorization. During
these sessions, the authors provided feedback on each other’s coding
decisions. This was done iteratively until a consensus was reached on a
final list of codes and themes. We conducted an additional iteration
of analysis (by the first and second authors) for this extended ver-
sion of the paper to fine-tune the findings and identify relationships
among categories. We decided to change the presentation and the
configuration of the themes compared to the earlier version to improve
integration. In this iteration, we used the qualitative data analysis
tool NVivo (version 12) to identify relationships in statements that
expressed claims between categories. We coded these claims as NVivo
relationship nodes (i.e., nodes that express a relationship between
two categories). We also used NVivo matrix queries, which helped
visualize data segments in which informants talk about two categories
at the same time. We examined these data segments for claims about
causal relationships. When two categories had similar relationships to
other categories, we aggregated these two categories to a higher-order
category (e.g., feedback processes and knowledge sharing to continuous
learning practices). These activities resulted in the model shown in
Fig. 1.

A. Alami et al.

Information and Software Technology 150 (2022) 106959

ENABLING CONDITIONS

Leadership support

Promotes

MINDSET FOR TECHNICAL
EXCELLENCE IN AGILE
DEVELOPMENT

influences
Continuous attention to

sustainable code

-—

Fasters
Continuous attention to leaming influences
Fosters =~ "
Influences -
Continuous attention to the o |
team 1 Fasters

Customer buy-in

PRACTICES FOR TECHNICAL EXCELLENCE IN AGILE DEVELOPMENT

Control of excellence

eedback processes

Psychological safety

Provide
Leeway for

DESIGN AND DEVELOPMENT PRACTICES

ngineenng practices

I Enforce

Continuous architecting =

[Help improve

CONTINUOUS LEARNING PRACTICES

Knowledge shanng -

Fig. 1. Emergent model — Technical excellence in agile software development teams.

Member validation

We opted to use validation sessions for member checking, a tech-
nique for validating the emerging results. During these sessions, we
presented our findings to the participants to check for accuracy and
resonance with their experiences. While we invited all participants to
this validation exercise, six participants accepted the invite. Due to
their availability, we scheduled two separate sessions (see section ??
for further details).

4. Findings

Fig. 1 provides an overview of our findings. Our informants ex-
pressed that technical excellence has its roots in a mindset that em-
braces continuous attention to sustainable code, to learning, and to
teamwork (the yellow box in Fig. 1). Our analysis shows that this mind-
set influences practices for technical excellence, which include design
and development practices and continuous learning practices (the blue
box in Fig. 1), which may, in turn, further foster this mindset. Our
data further suggest that leadership support helps promote the mindset
and that leadership support, customer buy-in, and psychological safety
provide leeway for the team to practice continuous architecting and
continuous learning (green box in Fig. 1).

4.1. Interpretation of Principle 9 (RQ1)

In response to RQ1, our participants emphasized that technical
excellence in agile development results from a mindset, i.e., a collec-
tion of shared values and beliefs. For example, P3 stated: “Technical
excellence has a behavioral aspect to it. It needs the right mindset and
culture.” In a similar vein, P10 emphasized: “Technical excellence is
first a mindset.” Our participants interpreted this mindset as consisting
of three key elements: (1) continuous attention to sustainable code,
(2) continuous attention to learning, and (3) continuous attention to
the team. Table 3 shows these categories, their underlying codes, the
number of occurrences of these codes in the data, and example quotes.

4.1.1. Continuous attention to sustainable code

Our informants expressed that their design and development prac-
tices for technical excellence are underpinned by a mindset that em-
phasizes continuous attention to sustainable code, i.e., software that
is designed to be easily adaptable to future changes [38]. This mind-
set is constituted by four properties: (1) Long-term orientation, (2)
commitment to clean code, (3) continuous attention to detail, and (4)
craftsmanship.

Long-term orientation. Many of our participants were guided by a long-
term orientation in their design and development work. For P1, the
agile way of achieving high-quality software is “to build software that
has high quality, so it can be changed in the future in a sustainable way”.
In this perspective, an important goal is to design software such that
developers can deliver modifications to the customer quickly with
fewer bugs and at a lower cost of ownership, resulting in increased
business agility. P20 elaborated on this idea: “Technical excellence and
good design is designing your product in a way that you do not commit to
a single fact you know, designing adaptable products”. For P6, designing
with a long-term orientation means “thinking in Lego bricks” such that
bricks can be easily exchanged and new bricks added, “and nothing
breaks”. Such a future-proof code ’enhances the agility of your customers’
business” (P6).

Commitment to clean code. Many informants mentioned that a long-
term orientation led them to follow the principle of “clean code”,
denoting code that can be easily understood and changed. P9 explained
that “the key to writing good clean code is to know how to avoid com-
plexity”. P19 asserted that complex code hinders scalability, stating:
“Complexity is the foe of scalable, robust and reliable software. Technical
excellence also means that developers need to ensure writing clean code
and refrain from writing complex code”. According to our informants,
clean code is code that can be understood even by readers that are
unfamiliar with the code. Our participants expressed that a key strategy

A. Alami et al.

Table 3

Information and Software Technology 150 (2022) 106959

Mindset for technical excellence (RQ1) - Categories, codes, number of occurrences in the data (N) & examples quotes. Hyphen in the second
column implies that the category is abstract, i.e., the code constitutes a category in its own.

Category Code

Example quote

Long-term orientation

Commitment to clean code

Continuous attention to sustainable code

Continuous attention to detail

Craftsmanship

“[Technical excellence means to me] the focus on
what you need to achieve in the longer term. It’s
about sustainability, quality. So, it’s more about doing
something which can be reused, doing something that
can be like creating a template for others to follow”
(P1D).

“[Technical excellence] also means simplicity.
Simplicity in writing code, simplicity in the design.
Complexity is a foe of scalable, robust and reliable
software. Technical excellence also means that
developers need to ensure writing clean code and
refrain from writing complex code” (P19).

“[1]f you see something that doesn’t really conform to
[technical excellence], you need to kind of nip it in
the bud really quickly ... That could be an attitudinal
piece” (P2).

“Technical excellence is also achieved by
craftsmanship and creativity” (P4).

Growth mindset

Continuous attention to learning

Continuous improvement mindset

“Not every person has the technical excellence in one
particular point of time, one particular moment.
Because technical excellence is about experience,
learning, fail[ure] and so ... You need to study, you
need to learn, and you need to improve and also to
work for experience in this field. And sometimes you
fail in this job during this journey ... that’s okay”
(P8).

“Agile advocates experimenting, observ[ing] the
outcome and then we build a learning out of it, then
it becomes a belief. These beliefs and practices then
become engrained in our habits. That’s how we
develop a mindset” (P5).

Continuous attention to the team -

“For me, technical excellence is about egoless
development and uncovering better ways of developing
software by doing it and helping others do it. So, at
the end excellence is the excellence of the team”
(P13).

for ensuring understandable code is simplicity, or as P20 put it: “Simple
code allows maintaining, debugging, refactoring, and adding features with
limited knowledge of how the entire system works” (P20). P4 emphasized
that code that is easily understood is also easily changed, which ensures
sustainable software: “Agile is about delivering efficient code, easy to
change for future requirements. This is agility” (P4).

Continuous attention to detail. Our informants emphasized that sustain-
able code not only requires a long-term orientation and clean code
as guiding principles when making important decisions, it also entails
continuous attention to detail from the start to the end of a project.
For P13, technical excellence is “just a software without any kinds of
bugs and good design ... from the beginning what you start building the
product to the end” (P13). P7 even said that “it should be a mindset thing
just to leave code better than you find it”. P1 expressed that technical
excellence means a mindset of building high-quality code from the
start, even under tight deadlines: “And this means that even in a very short
implementation cycle, you should pay attention to quality and to technical
excellence, which means you should not allow to implement intermediate
solutions in the hacky way in ... and hope that later you will have to have
time to fix them” (P1). She prefers a rather modest scope for each sprint
such that “the features are implemented in quality. And then you implement
simple features, but always in high-quality, with continuous attention to
technical excellence” (P1).

Craftsmanship. Many informants expressed that a mindset of continu-
ous attention to sustainability is rooted in their craftsmanship, i.e., the
view that software development is skillful work and that software
developers take pride in the outcomes of this skillful work [13]. For
P4, sustainable software is achieved by craftsmanship” (P4). P3 described

agile enables craftsmanship: “I have seen it [agile] fostering the crafts-
manship element in the team. ... It takes away the process of treating the
development resources as, for example, factory workers in the manufactur-
ing sector have been evolving”. He further explained that craftsmanship
is what leads developers to take care of quality: What craftsmanship
is about is this feeling the pride of what you are doing, perceiving, and
acknowledging that I am contributing something for some good and my work
is appreciated ... when you have that mindset in your developer, he’s going
to take care of quality himself...”

Continuous attention to sustainable code: For our infor-
mants, technical excellence had its foundation in a mindset
supported by technical procedures. The essence of this mind-
set is a feeling of pride about skillfully producing sustainable
software. This mindset leads people to continuously focus on
clean code that is easy to scale and adapt for future business
needs.

4.1.2. Continuous attention to learning

While continuous attention to sustainable software involves a long-
term orientation regarding the technical products of design and devel-
opment work, our informants also emphasized a long-term orientation
regarding the knowledge and skills that enable software development.
We term this mindset continuous attention to learning. It is constituted
by two properties that operate at different levels: (1) a growth mind-
set related to each developer’s individual skills and (2) a continuous
improvement mindset related to a team’s practices.

Growth mindset. In several statements, our participants highlighted
the role of a growth mindset, i.e., the belief that people can develop
their skills through dedication and hard work [39]. For example, P10

A. Alami et al.

emphasized the importance of being open to new learning opportuni-
ties: “That’s the first thing you need to look for. A mindset attitude. It’s
soft. So, they are personal traits, openness, flexibility”. According to our
informants, a growth mindset entails a belief in their own and others’
abilities to learn from failures. For instance, P12 acknowledged that
technical excellence “also requires some trust in yourself maybe and in
others, ... and somehow a willingness to fail, because this approach is really
trial and error”. P5 tells the story of a developer that lacked a growth
mindset and left the team: ”We had a team member who ... was inflexible,
close-minded and unwilling to learn... Eventually, he voluntarily left... [T]his
example shows that if you can’t experiment, self-reflect as an individual and
a team, and adapt, you do not have the required mindset. This ... particular
individual did not have a growth mindset”.

Continuous improvement mindset. Many statements indicated a mindset
that appreciates learning not only at the level of a developer’s indi-
vidual skills but also at the level of a team’s collective practices. For
instance, for P4, “[a]gile is also about continuous learning and improve-
ment. Each iteration is a learning opportunity. We learn, and then we take
actions to improve” (P4). P16 referred to this mindset as a culture:
“technical excellence evolves around the culture in which continuous im-
provement is key” (P16). P12 shared the impression that a continuous
improvement mindset is lacking in many organizations despite the use
of agile methods: “Scrum is based on continuous improvement. So, if we
don’t learn from our approaches, we can’t improve ... And unfortunately,
this technical excellence, ...in most companies, ...is ... really ... maybe
a taboo topic, they are trying to do it in a way, but they are not really
succeeding” (P12).

4.1.3. Continuous attention to the team

For our informants, a mindset for technical excellence implies at-
tention not only to code and learning but also to the team. For P15,
technical excellence refers to “culture in the sense that it is not a one-
man army approach” (P15). As P4 highlights, a team mindset is critical
for teamwork and learning: “So many times ... I have seen ... an expert
developer that ... doesn’t want to spread their knowledge, or they want to
work with themselves. ... They want just to have user stories and then tie
up the code into the environment. It is more, to be technical excellence,
we have to have a small community within the company ... it’s about how
you collaborate with other members of the team developers, designers, the
business people, and how you share your knowledge and help others do the
same” (P4). In a similar vein, P2 told the story of a developer that
acted like “a lone wolf”, disregarded other developers’ feedback, thus
contributed code that violated clean code principles, and caused "lots of
problems because suddenly a number of things started breaking”. (P2)

Continuous attention to learning and to the team: Our
participants highlighted that technical excellence involves more
than developers’ commitment to sustainable code. Technical
excellence also originates from a mindset that values teamwork
and continuous learning at individual- and team level.

4.2. Practices for fostering technical excellence

Recall that, for RQ2, we asked how agile teams foster technical
excellence. In response to this question, our participants reported that
technical excellence is nurtured by particular practices, i.e., by patterns
of recurrent actions in software teams. These practices were design and
development practices (engineering practices, control of excellence,
continuous architecting) and by continuous learning practices (feed-
back processes and knowledge sharing), which help improve the design
and development practices. By particular practices, i.e., by patterns of
recurrent actions in software teams. These practices were

Information and Software Technology 150 (2022) 106959

4.2.1. Design and development practices

Even though technical excellence means more to our informants
than attention to technical decisions, concerns, and practices, they
emphasized that technical excellence is not possible without effective
design and development practices, including engineering practices,
control of excellence-practices, and continuous architecting.

Engineering practices. For many of our participants, key ingredients for
ensuring technical excellence are engineering practices that help teams
develop high-quality and sustainable code. The practices mentioned
by our informants include automated testing, automatic code analysis,
code review, documentation, peer programming, test-driven develop-
ment, and unit testing. For instance, P3 said: “I would immediately
relate technical excellence in the ways you build up the software, the
tools, and the practices that are used to deliver the technical aspect of the
product, the actual software code and the design” (P3). P11 highlighted
that automation plays a key role in engineering practices that produce
sustainable code: “So, engineering excellence, whatever you do in terms
of engineering ... So, for example, if I'm taking my shipment in a build, it’s
going to take three weeks, for example, and with X number of features, try to
optimize it, try to ... automate stuff rather than going manual ... Optimizing,
automating, focus on quality”.

Control of excellence. Our participants mentioned several techniques
for controlling the goals of technical excellence and enforcing those
engineering practices that contribute to technical excellence. Practices
for control of excellence include a Definition of Done [40] (i.e., a set of
criteria to determine if a deliverable is complete), enforcing compliance
with coding results, enforcing prescribed processes, and measurement.
For example, P11 explained: “Technical excellence is also controlled by
the “Definition of Done”, which is a set of quality checks to make sure code
and other artifacts meet our requirements for quality”. P4 explained that
control of excellence does not supersede the people factors: “We control
technical excellence via the Definition of Done, but as I mentioned before, we
need to invest in people. We need to coach them to be technically excellent”
(P11).

Continuous architecting. Our interviewees emphasized that building
sustainable software required taking regular breaks from developing
new functionality and turning attention to the software’s architec-
ture. We refer to these practices as continuous architecting practices
because they describe an engagement with architecture throughout
the project [41]. Notwithstanding the often stated emergent nature
of architecture in agile software development [4], many participants
highlighted the need for deliberate planning at a project’s outset. For
example, P19 said that “you need to have a stable ground to build” (P19).
In line with the quest for sustainable software, P4 recommended that
initial architecting should involve looking into the future: “First envision
the ... full product. Like ... if we go down the line two years from now, how
would the product look like and translate this also in the technical part. Just
leave some room [for] ... some feature that may be implemented six months
from now, one year from now”. While initial architecting is important
for assuring sustainable software, this initial architecture needs to be
revised throughout the project, according to our informants. As P16
explained: “Once you've got a solution to high-level design and you start
your development ... every interval you should always ... revisit the solution
that you have initially designed”. (P16). P9 pointed to the limits of initial
architecting and said refactoring is often needed when reconsidering
the architecture: “I haven’t come to the project where everything can
be anticipated in the initial design so that there is no need to refactor”
(P9). Given that architecting does not produce new functionality, our
participants emphasized that it was important to give the teams time
for continuous architecting, for instance, by defining technical backlog
items, which, as P7 put it, help ensure that “resources ... are not [fully] ...
committed to functionality They take maybe eighty percent of capacity...
they have some time just to solve the technical things. So, they have a
technical backlog’ (P7).

A. Alami et al.

Table 4

Practices for technical excellence (RQ2) - Categories, codes, number of occurrences in the data (N) & example quotes.

Information and Software Technology 150 (2022) 106959

Category Code

Sub-code examples

Example quote

Engineering practices

Design and development practices Control of excellence

Continuous architecting

Automated testing, automatic code analysis, code
review, coding rules, documenting, peer
programming, test-driven development, testing by
quality assurance staff, unit testing

Definition of Done, enforcing compliance with
coding rules, enforcing processes, measurement

Architecting from project start, giving people time
to architect, including architects in the team,
looking ahead, refactoring, technical backlog

“It’s really about technical best practice ... If you’re
going to have to respond to change quickly, ...you
want to be developing things that are ... as robust as
possible. And the way to do that is to use best ...
engineering practice ... like design patterns,

... automated testing, test-driven development, and all
those ... things ...” (P2).

“Technical excellence is also controlled by the
“Definition of Done”, which is a set of quality checks
to make sure code and other artifacts meet our
requirements for quality.” (P11)

“So using the right solution, which can meet all your
requirements and ... keep on revisiting your solution
architecture at different levels of your development so
that you can identify if there is any gap or if there is
any requirements which is not yet met.” (P16)

Feedback processes

Continuous learning practices
Knowledge sharing

Continuous development, early prototypes,
experimenting, improvement routines, iterative
development

Asking for help, common code review,
communities of practices, education and training,
helping each other, job rotation, knowledge
sharing sessions, mentoring and coaching,

“[Y]ou need to have the retrospective or a moment
where you acknowledge these things and take some
actions... like next time we need to do it different, we
need to try this, we need to try that until we reach an
optimal level of technical excellence...” (P20)

“Another example is when a new team member
join[s], we check the quality of their code. If it is not
within our expectations, then he is assigned ... a
mentor for a period of time until he learns the craft

self-development

of writing good software code. ... [I]t is a loss of a
resource for some time, but it is worth the investment
and the long term reward.” (P12)

Design and Development Practices: Engineering practices
(e.g., automated testing, coding standards) are a cornerstone
of technical excellence according to our participants. Control-
of-excellence practices such as Definition of Done help enforce
the disciplined use of these practices. Sustainable software also
requires continuous architecting, implying that engineers envi-
sion the future of the software to define an initial architecture
and have the capacity throughout the project to revisit the
architecture and refactor the code as necessary.

4.2.2. Continuous learning practices

All our participants expressed that technical excellence is achieved
not only through design and development practices but also through
continuous learning practices, i.e., through recurrent activities that
continuously enhance the team members’ individual knowledge and
the team’s collective knowledge that materializes in the design and
development practices. In our analysis, we identified two broad types
of continuous learning practices: feedback processes and knowledge
sharing.

Feedback processes. Feedback processes are recurrent activities through
which teams obtain, share, and reflect upon information about the
outcomes of their actions [42]. Among the most frequently mentioned
feedback processes were improvement routines and continuous devel-
opment. Improvement routines, such as retrospectives in Scrum, are
ceremonies in which a team looks back at their recent activities and
identifies actions for improving these activities in the future [32].
Many informants shared that such routines helped improve their de-
sign and development practices. For example, P15 told how he used
internal meetings to improve engineering practices, specifically the use
of automated testing: “this was for one client where everything was being
done manual... We discuss ... that you are doing the same things again
and again because if they have frequent deliverables, you are ... executing
the same [tests] ... again and again. ... the team was not knowing the
automation techniques ... So, we started with ... internal meetings where
we used to ... go and learn and implement a little bit. So, by the end of
five, six sprints, we were able to automate a few of the pages” (P15).

The second frequently mentioned feedback process was continuous
development, i.e., integrating, deploying, and testing code at a high
frequency, such as several times a day [43]. P1 experienced that
progressing towards continuous development helps teams to recognize
potential for improvement: “[You] should strive for ... a very fast release
cycle ... Let’s say you start with a two-week release cycle, then ... release
after each week ... [t]hen later go to daily deployments and then later
deploy whenever a feature is ready. And by doing this, you will uncover
the problems that a team has with technical excellence. Maybe they don’t
have a good test coverage, maybe they have some components which have
a lot of interdependencies and cause a lot of side effects... [S]hortening the
release cycle ... will uncover problems with missing technical excellence early
and the team can work on it” (P1).

Knowledge sharing. Our data abounded with statements that emphasize
the key role of knowledge sharing to ensure that developers acquire and
improve skills required for technical excellence. Knowledge sharing oc-
curred and was promoted through many different mechanisms, such as
engineers asking other team members for help, common code reviews
(i.e., sessions in which the entire team examines and reflects upon a
given code segment), engineers helping each other, and mentoring and
coaching, and self-development (see Table 4 for more sub-codes). For
example, P6 narrated how brown bag sessions (a type of knowledge
sharing sessions) enabled developers to use start-of-the-art engineering
practices: “For example, we have these brown bag sessions when some
people ... give these workshops about how can you use that library for
achieving that or how in this organization we use that library or how ... these
organizations use Jenkins to achieve that. It’s important ... to keep the people
continue learning, the people always improve their technical knowledge so
we can start using all the tools that we already have on our hands and
use it well” (P6). P15 explained how mentoring helps ensure that skill
gaps, and the resulting shortcomings in the code, are closed by “making
the more experienced person as a buddy of the person who is having less
expertise. So, with the buddy, you can ask the person to mentor daily work
deliverables. If there are any shortcomings, the reviews can be submitted by
the buddy to be less expertise person” (P15). Many interviewees also em-
phasized the key role of self-development (e.g., consuming e-learning
material where others share their knowledge digitally).

A. Alami et al.

Continuous learning practices: Teams that strive for technical
excellence rely not only on specific design and development
practices; they also leverage continuous learning practices.
These teams make disciplined use of improvement routines
(e.g., retrospectives) and of continuous development (e.g., con-
tinuous integration and delivery), and they create and maintain
many different avenues for knowledge sharing.

The interplay between mindset and practices

As illustrated in Fig. 1, mindset (which focus on what people believe
and value) and practices (which focus on what people do) influence
each other according to our participants. A mindset of continuous atten-
tion to sustainable code influences design and development practices.
For instance, P7 shared how values such as sustainable code influence
design and development activities: “We started from values ... It’s when
you give such basics, they start to care about the product, and they start
that from simple things. They started from unit tests. They started from
integration tests. They jump to automation tests later on to some kind of
deployment improvements and so on. So, it’s just, I would say, start from
values” (P7). Design and development efforts, in turn, can foster a
mindset of paying continuous attention to sustainable software. For ex-
ample, P20 narrated how conversations during continuous architecting
strengthen a mindset of continuous attention to sustainable software:
“[W]hen one developer comes with a solution like, I want to implement this,
I always challenge them, like, why? What’s the alternative? What’s the plus
and what’s the minus? ... ? Just how would this scale ... ? That way I'm
challenging them to think ahead ... So, people are always ready and trying
to find the best solution and find architecture and software, which is flexible
and scalable” (P20).

Our interviewees also shared how a mindset of continuous attention
to learning and of continuous attention influences continuous learning
practices, which can, in turn, strengthen a mindset of paying continu-
ous attention to learning and to the team. As P5 put it: “The mindset is at
the core of everything we do and practices impact belief and vice-versa. Agile
advocates experimenting, observe the outcome and then we build a learning
out of it, then it becomes a belief. These beliefs and practices then become
engrained in our habits” (P5). P12 observed that a growth mindset
informs the way and the intensity of knowledge sharing activities in a
team, which, in turn, fosters a mindset of stronger attention to the team:
“So, it’s again, the cultural thing I keep mentioning...[I]f all my teammates
are people that are interested in self-development, then the whole thing will
be or if there is just one person or two people in my team that don’t know
how to do that, they will absorb the energy somehow from the others. And
they will learn from them, the benefits of self-development” (P12).

4.3. Enablers of technical excellence

While RQ2 deals with how agile software development teams de-
velop and nurture technical excellence through their practices, RQ3
focuses on enabling conditions for technical excellence. In this con-
text, enabling conditions refer to properties of a software develop-
ment team’s organizational context that are conducive to technical
excellence. Our analysis indicates three important enabling conditions:
leadership support, customer buy-in, and psychological safety. Table 5
shows the number of occurrences and example quotes. Our data suggest
that these conditions contribute to technical excellence in two major
ways (see also Fig. 1). First, leadership support can promote a mindset
for technical excellence. Second, all three enabling conditions provide
leeway for continuous architecting and continuous learning practices.

Leadership support. From the perspective of our participants, leadership
support plays two important roles. First, leaders can be role models that
demonstrate a mindset for technical excellence, making it more likely
that employees endorse the mindset. For example, P12 emphasized that
leaders with a growth mindset can inspire employees to adopt a growth
mindset: “[E]verything starts from the team lead and the management

Information and Software Technology 150 (2022) 106959

upwards. If these people don’t have the learning mentality or they are
focused only on delivering the project, . . . [then] they lack ... the people skills
to teach the people that it’s important to learn and to improve themselves...
people look up to management ... So, the team leader is seen as the high
power and as the role model in the team” (P12). Second, leaderships
support is important because it provides leeway for the development
team to engage in feedback processes and in architecting. For example,
P10 shared how feedback processes depend on the tone set by the
leader: “[A]though some people might realize that the leader is not totally
okay with their opinions, with his designs, they don’t speak up. But when
you have that leader that is flexible, open-minded, and horizontal ..., then
their team members tend to speak up their actual thoughts” (P10).

Customer’s buy-in. As with leadership support, our informants stressed
that customer buy-in is important because it provides leeway for the
development team to invest in technical excellence. P20, for example,
explained the importance of educating the customer about the value
of technical excellence, stating that “there’s always that convincing part,
you know, you need to convince the customer to wait a bit more because
we’re applying some technical excellence issues here that will be of value
in the future”. P16 stressed the need for the development team and
customer to be “on the same page”: “So basically, when all the team
members are on board and on the same page, when you get a customer’s
buy-in as well, ... you started ... solutioning things, which is suited for that
particular project or that particular solution, which actually helps ... the
customers to solve certain problems in their line of business. So, it helps you
to grow. It helps you to design effective solutions” (P16).

Psychological safety. Psychological safety is the freedom to speak one’s
mind, confident that there will not be negative consequences for mak-
ing mistakes or taking initiatives [44]. Our participants expressed the
belief that promoting a sense of psychological safety makes people
comfortable about showing initiative (e.g., architecting initiatives),
investing in self-development, and striving to excel. P19 explained that
he and his team operate in a work environment where they “discuss
[their] failures, shortcomings, and imperfections, whether in technical pro-
cess or individual behavior”. P17 highlighted the importance of a work
environment where people do not fear consequences from bringing up
new ideas: “How do you nurture technical excellence in Agile or Scrum?
I would say the first thing is ... respect each other’s values. If someone
comes with some new idea to you, do not suppress that. You should always
encourage everyone else’ new ideas” (P17). Similarly, P1 drew a direct
link between psychological safety and continuous learning: “So, if you
give the team the safety to know they have the time to do these kinds
of quality improvements to enhance their technical quality, their technical
excellence, the technical excellence will get better over time”.

Enabling conditions: Leaders that act as role models are
critical for promoting a mindset that endorses sustainable
code, learning, and teamwork. Moreover, leadership, customer
buy-in, and psychological safety provide leeway for software
development teams to invest time in continuous architect-
ing and learning, both of which are important for technical
excellence.

5. Discussion
5.1. Mindset for technical excellence

As illustrated by Fig. 1, a key finding of our study is that efforts
for technical excellence in agile software development are rooted in a
mindset that emphasizes continuous attention to sustainable code, to
learning, and to the team. This finding highlights that, for agile practi-
tioners, technical excellence is about more than architectural concerns.
While a long-term orientation towards code and its architecture is an
important part of it (i.e., continuous attention to sustainable code),
another important part of it lies in a long-term commitment to fostering
knowledge and skills and in commitment to the team as the social

A. Alami et al.

Table 5

Information and Software Technology 150 (2022) 106959

Enabling conditions for technical excellence (RQ3) - Categories, number of occurrences in the data (N), examples quotes. There is no column dedicated to codes because these
categories are abstract, i.e., they emerged in the first coding iteration (line-by-line) and formed categories in their own.

Category Example quote

Leadership support

“As 1 said, ...technical excellence is first, a mindset. Having a technical lead or a Scrum Master or a project manager, but a leader, having a

leader that has this mindset of ambition, of excellence, having that leader is one first step because this person can be a role model for everybody

else.” (P10).

Customer buy-in “[IIn this project ... I ...

technical refactoring...” (P9).
Psychological safety

managed to convince the client that this will pay off later if we do it now. So, one of the teams was dedicated to the

“I think the last topic on this would be the fact that we are still learning how to allow people to make mistakes. It is in the Agile mindset that

people should embrace actually the possibility of failing and learn from that.” (P14).

unit in which much of the learning takes place that enables technical
excellence.

These findings connect to but also extend software architecture
research in several ways. The long-term orientation that lies at the
heart of a mindset of continuous attention to sustainable code parallels
the long-term orientation in software architecture, which is concerned
with those “design decisions that have a long-lasting impact” [45] on
software. Moreover, much as software architecture focuses on the non-
functional qualities of software [46], our informants’ interpretation of
technical excellence focused on those technical properties of code that
made code sustainable, as opposed to properties related to functional
requirements. Indeed, the notion of sustainable code is closely related
to the non-functional quality criterion of maintainability in software
architecture research [46] and quality standards [47], although the
agile practitioners in our sample were concerned with the ease of
changing the code not only during maintenance but from the outset of
the project. As many informants attested, this focus on sustainable code,
as opposed to other non-functional quality criteria such as security
or performance, is due to the key role of the ability to change code
in agile software development [3,4]. Hence, perhaps not surprisingly,
technical excellence means for agile practitioners a concern with those
non-functional aspects of software that enable timely and efficient
adaptation to changing business needs. As such, one contribution of our
study lies in uncovering what agile practitioners mean from a technical
point of view when they use the term technical excellence.

While software architecture research helps put our findings around
a sustainable-code mindset into context, there is an important dif-
ference between our findings and the processes that are typically
advocated by software architecture research. A substantial part of
software architecture research, including the more recent research on
architecture in agile software development [48,49], focuses on formal
processes through which dedicated architects ensure the developers’
attention is drawn to architectural issues [15]. Notwithstanding the
value of such processes and of the inclusion of dedicated architects
in many settings, our category of a mindset of continuous attention
to sustainable code shows that a substantial part of the architect-
ing work in agile software development teams has its origins not in
formal processes led by dedicated architects but in the developers’
commitment to developing architecturally sound software and getting
better in it. This empowered role of developers is in line with agile
software development principles, among which are empowerment and
self-organizing teams [6], and with the notion of craftsmanship, which
emphasizes a genuine interest in and pride in skillful work among
software developers [5,13]. Importantly, these findings do not imply
that formal processes and dedicated architects are irrelevant in agile
software development. Indeed, some of our informants shared that
they sometimes include dedicated architects in agile teams, especially
when complex architectural issues needed to be resolved. However, our
findings show that a strategy of creating a commitment to sustainable
software can be complementary to traditional software architecture
approaches relying on dedicated architects and formal processes. Such
a complementary approach of empowering developers to continuously
take care of architecture could also help alleviate some chronic chal-
lenges of software architecture, including lack of authority, the ivory
tower syndrome, and procrastination [50].

10

While our findings show that a mindset of continuous attention to
sustainable code is an important pillar for technical excellence in agile
teams, they also point to important roles of mindsets for continuous
attention to learning and to the team. These mindsets foster the con-
tinuous learning activities that help improve design and development
practices to ensure technical excellence. Although much work has
looked at continuous learning processes in traditional [16,31,51] and
recently also in agile process improvement initiatives [52,53], this work
has rarely examined the role of mindsets, despite a call for research to
capture the emergent, bottom-up facets of process improvement [54].
An important contribution of our research is thus to highlight the
roles that a growth mindset, a continuous improvement mindset, and a
team mindset play in fostering the continuous learning processes that
contribute to technical excellence in agile software development.

5.2. Practices for technical excellence

Our findings on RQ2 suggest that design and development practices
(including engineering practices, control of excellence, and continuous
architecting) and continuous learning practices (feedback processes
and knowledge sharing) are cornerstones of technical excellence. The
importance of each of these practices is strongly established in software
engineering research, though rarely in relation to the specific notion
of technical excellence. Engineering practices and control of excel-
lence practices are widely discussed in agile methods texts (e.g., [4]),
in empirical software engineering research (e.g., [8,20,40,55]), and
in movements such as DevOps [56]. The practices subsumed under
continuous architecting (see the sub-codes in Table 4 are well doc-
umented in software architecture research [4,27,41,48,57,58]. The
key role of feedback processes is well established both in continuous
software development [4,23,42,59] and in process improvement [32,
52]. The importance of knowledge sharing is also widely appreciated
(e.g., [60]). Against this backdrop, our contribution is twofold. First, we
establish a link between from these practices to technical excellence.
Second, we document the links between these practices. Indeed, while
software architecture research has focused on design and development
practices and process improvement research has focused on continuous
learning practices, neither of these two literature streams has paid
strong attention to the interplay of these two types of practices, even
though their interplay is critical for technical excellence according to
our informants.

5.3. Enabling conditions

Our findings on RQ3 show that leadership support, customer buy-
in, and psychological safety are important enabling conditions for
technical excellence. While leadership support helps promote a mindset
for technical excellence, all three enabling conditions provide leeway
for activities beyond engineering practices and their control, namely
continuous architecting and continuous learning processes. The role
of leadership support in promoting mindsets or norms is widely re-
searched [61]. The finding that leadership support, customer buy-in,
and psychological safety provide leeway for continuous architecting
and continuous learnings connects to findings both from software

A. Alami et al.

architecture and process improvement research. Software architecture
research, especially its agile stream, has emphasized the difficulties
of prioritizing architecture work in agile settings where customers are
often most interested in functionality [29,30], even though architecting
efforts pay in the long run due to more sustainable software. Similarly,
process improvement research has pointed to the problem that man-
agers often prioritize short-term throughput over process improvement
efforts, which pay only in the long term [62]. In line with this work,
we find that providing leeway for architecting and improvement ac-
tivities is important because it allows developers to devote sufficient
to activities that are beneficial in the long run. Notwithstanding these
commonalities to prior work, our study makes two contributions. First,
our findings show that creating a mindset that appreciates sustainable
code and learning can help solve the problem that short-term bene-
fits (i.e., immediately available functionality) is often prioritized over
work that yields long-term benefits (i.e., more sustainable software,
greater knowledge). By creating mindsets that appreciate these long-
term benefits, individuals and teams enact a more long-term orientation
in their daily practice where they value architecting and learning as
key activities for achieving technical excellence. Another contribution
of our work concerns the influence of psychological safety on technical
excellence. Even though software engineering research has shown that
process improvement revolves strongly around team learning [32], and
even though psychological safety is a key concept for team learn-
ing [44], psychological safety has received relatively little attention
in software engineering research, particularly in relation to technical
excellence and quality. Our study shows that psychological safety plays
an important role for technical excellence because it promotes those
activities (i.e., continuous architecting and learning) whose benefits
will accrue only in the long-term and will, hence, be subject to un-
certainty [62]. As our data shows, psychological safety helps make
developers comfortable about engaging in such activities even if these
activities mean delaying functionality that customers are pushing for at
the expense of uncertain future benefits.

Our work does not only complement existing research but also
brings a new breeze to this area of research. Some of our conclusions
suggest that more work should be steered towards investigating non-
engineering enablers, such as leadership support, psychological safety,
and continuous attention to the team, and how they influence a soft-
ware development team’s ability to attain excellence. By shying away
from these socially tuned enablers, we may be failing to acknowledge
their power and subsequently impact the software engineering practice
with non-technical recommendations.

5.4. Limitations and validity

The following methodological issues may impact the conclusions we
draw from the data:

Scrum-focused data: All our participants practice Scrum, which was
not intended, but illustrates the popularity of this agile implementation
in the industry. Given this constraint in our sample, our findings
may not be transferable to non-Scrum implementations. However, we
believe this is a minor limitation. It is safe to claim that agile methods
(e.g., Scrum and Crystal) share similar value system.

No observation data: The research questions two and three were
investigated using practitioners experiences, as captured in the in-
terviews, and not direct observations of agile software development
teams. Direct observations may yield additional findings. What people
actually do in practice may further advance our understanding of the
investigated phenomenon.

Interviewee Transcript Review: This happened when the interviews
transcripts became available [63]. We asked our participants to review
the transcripts of their interviews. Eighteen respondents indicated that
their transcripts were accurate, reflecting their responses; two did not
respond.

11

Information and Software Technology 150 (2022) 106959

Member validation. We opted for member validation of our findings.
Member validation involves sharing research findings with the par-
ticipants at the end of the study, and it is intended as a verification
procedure to enhance the study’s credibility [64]. We invited all our in-
terviewees to participate in member validation sessions. However, only
six participated in this exercise out of the twenty invited. We arranged
two member validation sessions, one with four and the other with two
participants. We ended up with this configuration due to the partici-
pants availability. Participants were presented with our interpretations
of the data and invited to comment on the findings. The participants of
these member validation sessions were given the opportunity to either
confirm or deny that the summaries of findings reflect their views,
feelings and experiences. The member validation sessions for this study
were constructive and very supportive of the findings. We made minor
revisions according to the feedback we received in the two sessions, but
there were no major changes to the findings. We made the two member
validation sessions transcripts available here.?

Saturation. A common standard for conducting qualitative research
[37] is saturation, which involves adding more participants to the
sample until reaching a point where no new additional codes, themes,
or information emerges. We reached saturation when new data analysis
became redundant with themes already identified. We initiated the
analysis of the data early in the process in parallel with data collection
and continuously monitored for saturation of our codes and themes. We
did not see the need for further interviews after 12 participants for RQ1
& RQ2, as every code was sufficiently explained in depth by the data,
and there was enough data to answer the research question. Saunders
et al. explain that saturation is reached when “additional data do not
lead to any new emergent themes” [37]. For RQ3, this requirement was
met at the 20th interview. We adopted only codes we deemed saturated
by the data of the available 20 interviews.

Verifiability. To allow the verifiability of our data, we made it
available here®; to preserve the anonymity of our participants, we
anonymized the interview transcripts.

6. Implications
6.1. Implication on practice

In this section, based on the experience of practitioners in our
sample and the discussion presented in Section 5, we propose potential
recommendations for the implementation of agile software develop-
ment methods. Table 6 documents the implications we draw from
the data. The level is the owner of the implication of a particu-
lar recommendation, i.e., the party responsible for implementing the
corresponding actions. The recommendations are proposed measures
to be implemented to enable a software development environment
where technical excellence is attainable. These recommendations are
anchored in our data. Hence, the last column establishes the links to
the sources of the recommendations in the practitioners’ accounts.

Organization

The ownership of having a shared goal for technical excellence,
creating a psychologically safe working environment, and supporting
the development team in its quest for technical excellence rests at the
organizational level. Framing the goals for technical excellence does not
only bring transparency to the conversations but also creates account-
ability. Once the goals are shared, a contract is established between
the organization and the team, which makes the team accountable. For
instance, if one of the goals is to reduce the number of defects per
Sprint release as a target, it goes without saying that the customer will
check the attainment of this expectation in the next Sprint. This aspect

2 https://figshare.com/s/0f30e59¢85¢2b145e019.
3 https://figshare.com/s/5798cc8e800a00429¢0f.

https://figshare.com/s/0f30e59c85c2b145e019
https://figshare.com/s/5798cc8e800a00429c0f
https://figshare.com/s/0f30e59c85c2b145e019
https://figshare.com/s/5798cc8e800a00429c0f

A. Alami et al.

Information and Software Technology 150 (2022) 106959

Table 6
Recommendations on the Implementation of Technical Excellence in Agile Software Development.
RQs Level Recommendations Participants
Organization Implerflent apprenticeship program to promote cra‘ftsmanship P3 & P4
Establish a program to promote peer-to-peer learning P6 & P15
1 Team Implement a knowledge base for learning the principles of clean code P1, P4, P9 & P20
RQ Establish standards to follow clean code principles P1, P6 & P20
Remain curious about innovative and contemporary practices P5, P12 & P10
Individual Engage in self-learning to grow your technical knowledge P5, P12 & P10
Remain open to self-improving P4, P12 & P16
Organization Encourage the team to experiment, learn and innovate P1, P13 & P15
RQ2 Team Develop explicit, robust, and sustainable criteria for DoD P4 & P6
Revise software architecture decisions iteratively P4, P7, P16 & P19
Individual Remain consistent with standards established by the team P1, P13 & P15
Create a shared goal for technical excellence P1, P9, P14-15 & P18
Organization Create and promote a psychologically safe environment P1, P4-5, P7, P10, P13-14, P17 & P19
§ Provide support to the team for the pursuit of technical excellence P4-5, P7, P11, P14, P16, P18 & P20
Invest in ongoing training of the development team P3-4, P6-9, P12-13, P15 & P17-18
Share and promote knowledge P1-4, P6, P8-9, P12-15, P17-18 & P20
RQ3 Team Collaborate and exercise egolessness P8-9, P13, P15, P18 & P20
Support each other in the pursuit of technical excellence P8, P12-13, P15 & P17-18
Educate the customer in the value of technical excellence P8 & P20
Remain intellectually curious P3, P12, P15 & P17
Individual Remain motivated P9 & P13-14
Invest in self-development P3, P12 & P17

of accountability helps to ensure that the team adheres to the goals. So,
the moment the goals become known, the accountability is likely to be
much higher.

Besides other factors, technical excellence is also the product of a
psychologically safe work environment. Organizations should empower
their software development teams to take initiatives, experiment, learn,
sometimes even fail, then adapt. Technical excellence is, to some ex-
tent, based on the knowledge that comes from lived experiences. What
works for team A may not necessarily work for team B. Empiricism
occurs by experimentation, adaptation and consequently growth. Sim-
ple behaviors such as avoiding blame, building trust, and discouraging
negativity can promote psychological safety.

Support from the leadership and the customer are essential and
valuable enablers for technical excellence. Not only does it foster pos-
itive relationships between the development team and the leadership
and the customer, but it also ultimately empowers team members to
develop their skills and enables them to work autonomously to meet
the goals set for technical excellence. For example, our participants
explained that when the customer is “on the same page”, the team feels
“safe” to invest in technical excellence.

Knowledge and growth do not advance without ongoing training.
Software engineering is an evolving practice. Therefore, investing in
upskilling the development team will bring new knowledge to the team
and equip its members with up-to-date engineering practices.

Team

Despite being rooted in some individual qualities, i.e., motivation,
curiosity, and self-development, at the end of the day, technical ex-
cellence is a collective endeavor. The collective behavior of the team
insinuates intense collaboration that will facilitate knowledge sharing.
The pursuit of technical excellence is not a “one-man army” either.
Software development is a highly collaborative activity, and the output
is a team effort. Team members should support each other which
implies collective efforts for solving complex obstacles.

The customer does not always understand software code, architec-
ture and design concepts like scalability. They are motivated by the
business value of the product. For a better understanding of each other’s
values and goals, software teams should establish a dialogue with their
customers. This dialogue should be educational, aiming at creating an
agreement on what constitutes a business value.

12

Individual

Individuals fuel the pursuit of technical excellence. This fuel is
sourced from the individual’s motivation, intellectual curiosity, and the
desire for self-development. Although our data show that developing
these qualities rest on the individual, e.g., “starts from the individual”
(P12), it also indicates that other influencers such as peer pressure,
e.g., “absorb the energy somehow from the others” (P12) lead to a
change of behavior. Team members are motivated to adhere to the
group values. As adhering to the group norms and values enhances the
social connection of the individual with the group and increases the
likelihood of acceptance and the feeling of belonging [65].

6.2. Implication on research

As shown in the related work discussion (Section 2, technical excel-
lence in software engineering is a forgotten topic. Engineering excel-
lence is an integral part of the craft of engineering. The quest of being
excellent at software engineering is not only rewarding for the outcome,
i.e., the product or the software, it is also a pursuit for the team
technical growth, i.e, betterment of their practices and knowledge. This
area of research should receive more merit and attention. Our study
opens up at least five areas for future research to complement and
extend our work.

The prevalence of our findings. Qualitative studies seek to reveal in-
depth and rich conclusions with a small sample [66]. Our conclusions
are based on agile practitioners’ experiences and constrained by the
inherent limitations of qualitative research, e.g., a small sample and not
aiming for statistical generalization. We still do not know the preva-
lence of these findings industry-wide. Future work could investigate
the prevalence of our participants’ interpretations of Principle 9, the
adoption of practices found in response to RQ2, and the salience of
enabling conditions presented under RQ3 in the industry.

Successful and failed cases. Case studies increase our knowledge of a
particular phenomenon in depth [67,68]. While a quantitative study
may broaden our knowledge of the prevalence of the interpretation,
the practices and the enablers we discussed in this paper, it will
be short of providing insights into the struggles and difficulties of
software teams and their organizations in their pursuit of building an
environment where technical excellence is feasible. Future work could
investigate successful and failed cases in order to draw lessons on what

A. Alami et al.

works and what does not. By studying positive and negative cases, our
understanding of a particular phenomenon would be further enhanced,
and the validity of the conclusions would be strengthened [69].

Mindset and formal architecture processes. While software architecture
research focuses on formal processes led by dedicated architects [15,
48,49], our study shows a complementary way of developing architec-
turally sound software, namely by promoting a mindset and the skills
that lead developers to focus on sustainable code. Future research could
examine how and when these two strategies can be fruitfully combined.
A valuable point of departure to this end could be existing work
on agile architecture and the forces affecting the choice of different
architectural processes [58]. Moreover, future research could develop
and empirically examine different strategies for promoting a mindset
of continuous attention to sustainable code.

Mindset in process improvement and learning. Despite the abundant re-
search on software process improvement [16,32,51,52] and on learn-
ing [42,70] in software development, these research streams rarely
account for the role of mindsets as enablers of learning processes. Our
study shows that a growth mindset, a continuous improvement mindset,
and a team mindset can play important roles for achieving technical ex-
cellence. Future research could examine strategies for promoting these
mindsets and the effects of these mindsets on process improvement and
learning in software development teams.

Strategies for leeway. A key theme of our study was the importance of
giving developers leeway for caring about architecture and learning.
Although our study points to some strategies to provide leeway, future
research could design or explore such strategies more comprehensively.
For example, some companies allow employees to use some part of their
work time for own initiatives. Future research could explore how this
and another strategies for leeway affect architecting and learning in
software development.

Intriguingly, other potential research questions present themselves.
For example, how knowledge accumulated in the pursuit of technical
excellence is maintained in software teams? How project constraints
(e.g., budget, schedule, etc.) influence the willingly agreed excellence
standards in software teams? How a technical excellence community
of practice can be implemented to promote and sustain excellence in
software development for organizations? Etc. Our research community
has many opportunities to influence this area of research.

7. Conclusion

The journey towards technical excellence in agile software develop-
ment started with the proposition of Principle 9 in the agile manifesto.
Although abstract, the principle was sufficient for practitioners to
embrace it, figure out an interpretation, then leverage other agile values
to ensure continuity and the development of its implementation. Our
findings show that practitioners turned the proposition of Principle 9
into a motivation and an interest to deliver technically superior soft-
ware. The commitment, which grows when the social setting facilitates
conditions to nurture it, is at the heart of this journey.

CRediT authorship contribution statement

Adam Alami: Conceptualization, Methodology, Validation, Formal
analysis, Investigation, Resources, Data curation, Writing — original
draft, Writing — review & editing, Visualization. Oliver Krancher:
Formal analysis, Writing — review & editing. Maria Paasivaara: Formal
analysis, Writing — review & editing.

Declaration of competing interest

No author associated with this paper has disclosed any potential or
pertinent conflicts which may be perceived to have impending conflict
with this work. For full disclosure statements refer to https://doi.org/
10.1016/j.infsof.2022.106959.

13

Information and Software Technology 150 (2022) 106959
Acknowledgments

We would like to thank our interviewees and the focus group
participants for their time and effort in making this study possible. We
would also like to thank two anonymous reviewers for their excellent

and highly constructive comments.
References

[1] C.G. Cobb, The Project Manager’s Guide to Mastering Agile: Principles and
Practices for an Adaptive Approach, John Wiley & Sons, 2015.
P. Hohl, J. Kliinder, A. van Bennekum, R. Lockard, J. Gifford, J. Miinch, M.
Stupperich, K. Schneider, Back to the future: origins and directions of the “agile
manifesto”-views of the originators, J. Softw. Eng. Res. Dev. 6 (1) (2018) 1-27.
A. Cockburn, Agile software development joins the" would-be" crowd, Cutter IT
J. 15 (1) (2002) 6-12.
K. Beck, Extreme Programming Explained: Embrace Change, Addison-Wesley
Professional, 2000.
B. Boehm, Get ready for agile methods, with care, Computer 35 (1) (2002)
64-69.
M. Fowler, J. Highsmith, et al., The agile manifesto, Softw. Dev. 9 (8) (2001)
28-35.
M. Laanti, J. Simild, P. Abrahamsson, Definitions of agile software development
and agility, in: European Conference on Software Process Improvement, Springer,
2013, pp. 247-258.
T. Dingsgyr, S. Nerur, V. Balijepally, N.B. Moe, A Decade of Agile Methodologies:
Towards Explaining Agile Software Development, Elsevier, 2012.
B. Latte, S. Henning, M. Wojcieszak, Clean code: On the use of practices and
tools to produce maintainable code for long-living, 2019.
R.C. Martin, Clean Code-Refactoring, Patterns, Testen und Techniken fiir
sauberen Code: Deutsche Ausgabe, MITP-Verlags GmbH & Co. KG, 2013.
R.C. Martin, Clean Architecture: a Craftsman’s Guide to Software Structure and
Design, Prentice Hall, 2018.
P. McBreen, Software Craftsmanship: the New Imperative, Addison-Wesley
Professional, 2002.
B. Pyritz, Craftsmanship versus engineering: Computer programming—An art or
a science? Bell Labs Tech. J. 8 (3) (2003) 101-104.
B. Boehm, R. Turner, Using risk to balance agile and plan-driven methods,
Computer 36 (6) (2003) 57-66.
P. Kruchten, H. Obbink, J. Stafford, The past, present, and future for software
architecture, IEEE Softw. 23 (2) (2006) 22-30.
A.A. Khan, J. Keung, M. Niazi, S. Hussain, A. Ahmad, Systematic literature review
and empirical investigation of barriers to process improvement in global software
development: Client—vendor perspective, Inf. Softw. Technol. 87 (2017) 180-205.
M.J. Parzinger, R. Nath, A study of the relationships between total quality
management implementation factors and software quality, Total Qual. Manag.
11 (3) (2000) 353-371.
A. Alami, M. Paasivaara, How do agile practitioners interpret and foster “tech-
nical excellence”? in: Evaluation and Assessment in Software Engineering, 2021,
pp. 10-19.
J.E. Hannay, T. Dyb&, E. Arisholm, D.I. Sjgberg, The effectiveness of pair
programming: A meta-analysis, Inf. Softw. Technol. 51 (7) (2009) 1110-1122.
O.P. Timperi, An overview of quality assurance practices in agile methodologies,
in: Seminar in Software Engineering, 2004.
L. Madeyski, Test-Driven Development: An Empirical Evaluation of Agile
Practice, Springer Science & Business Media, 2009.
G. Arcos-Medina, D. Mauricio, Aspects of software quality applied to the process
of agile software development: a systematic literature review, Int. J. Syst. Assur.
Eng. Manag. 10 (5) (2019) 867-897.
L. Prechelt, H. Schmeisky, F. Zieris, Quality experience: a grounded theory
of successful agile projects without dedicated testers, in: 2016 IEEE/ACM
38th International Conference on Software Engineering, ICSE, IEEE, 2016, pp.
1017-1027.
J.F. Tripp, D.J. Armstrong, Exploring the relationship between organizational
adoption motives and the tailoring of agile methods, in: 2014 47th Hawaii
International Conference on System Sciences, IEEE, 2014, pp. 4799-4806.
T. Dybd, T. Dingsgyr, Empirical studies of agile software development: A
systematic review, Inf. Softw. Technol. 50 (9-10) (2008) 833-859.
R. Hoda, N. Salleh, J. Grundy, The rise and evolution of agile software
development, IEEE Softw. 35 (5) (2018) 58-63.
C. Yang, P. Liang, P. Avgeriou, A systematic mapping study on the combination
of software architecture and agile development, J. Syst. Softw. 111 (2016)
157-184.
M. Fowler, Refactoring: Improving the Design of Existing Code, Addison-Wesley
Professional, 2018.
A. Martini, J. Bosch, A multiple case study of continuous architecting in large
agile companies: current gaps and the CAFFEA framework, in: 2016 13th
Working IEEE/IFIP Conference on Software Architecture, WICSA, IEEE, 2016,
pp. 1-10.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

https://doi.org/10.1016/j.infsof.2022.106959
https://doi.org/10.1016/j.infsof.2022.106959
https://doi.org/10.1016/j.infsof.2022.106959
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb1
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb1
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb1
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb2
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb2
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb2
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb2
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb2
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb3
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb3
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb3
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb4
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb4
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb4
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb5
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb5
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb5
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb6
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb6
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb6
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb7
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb7
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb7
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb7
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb7
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb8
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb8
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb8
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb9
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb9
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb9
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb10
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb10
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb10
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb11
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb11
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb11
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb12
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb12
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb12
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb13
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb13
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb13
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb14
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb14
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb14
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb15
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb15
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb15
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb16
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb16
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb16
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb16
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb16
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb17
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb17
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb17
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb17
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb17
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb18
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb18
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb18
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb18
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb18
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb19
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb19
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb19
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb20
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb20
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb20
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb21
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb21
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb21
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb22
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb22
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb22
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb22
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb22
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb23
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb23
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb23
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb23
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb23
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb23
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb23
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb24
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb24
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb24
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb24
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb24
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb25
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb25
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb25
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb26
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb26
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb26
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb27
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb27
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb27
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb27
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb27
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb28
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb28
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb28
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb29
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb29
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb29
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb29
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb29
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb29
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb29

A. Alami et al.

[30]
[31]

[32]

[33]

[34]

[35]

[36]

[371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]

[48]

[49]

[50]

J. Madison, Agile architecture interactions, IEEE Softw. 27 (2) (2010) 41-48.
N. Ramasubbu, S. Mithas, M.S. Krishnan, C.F. Kemerer, Work dispersion, process-
based learning, and offshore software development performance, MIS Q. (2008)
437-458.

T. Dingsgyr, M. Mikalsen, A. Solem, K. Vestues, Learning in the large-an
exploratory study of retrospectives in large-scale agile development, in: Inter-
national Conference on Agile Software Development, Springer, Cham, 2018, pp.
191-198.

O. Salo, P. Abrahamsson, An iterative improvement process for agile software
development, Softw. Process Improv. Pract. 12 (1) (2007) 81-100.

Q. Patton, Qualitative Research and Evaluation Methods, third ed. M, Sage,
Thousand Oaks, 2005.

J.R. Wolgemuth, Z. Erdil-Moody, T. Opsal, J.E. Cross, T. Kaanta, E.M. Dickmann,
S. Colomer, Participants’ experiences of the qualitative interview: Considering the
importance of research paradigms, Qual. Res. 15 (3) (2015) 351-372.

D.S. Cruzes, T. Dyba, Recommended steps for thematic synthesis in software en-
gineering, in: 2011 International Symposium on Empirical Software Engineering
and Measurement, IEEE, 2011, pp. 275-284.

B. Saunders, J. Sim, T. Kingstone, S. Baker, J. Waterfield, B. Bartlam,
H. Burroughs, C. Jinks, Saturation in qualitative research: exploring its
conceptualization and operationalization, Qual. Quant. 52 (4) (2018) 1893-1907.
C.C. Venters, C. Jay, L. Lau, M.K. Griffiths, V. Holmes, R.R. Ward, J. Austin, C.E.
Dibsdale, J. Xu, Software sustainability: The modern tower of babel, in: CEUR
Workshop Proceedings, Vol. 1216, CEUR, 2014, pp. 7-12.

C. Dweck, What having a “growth mindset” actually means, Harv. Bus. Rev. 13
(2016) 213-226.

A. Silva, T. Aratjo, J. Nunes, M. Perkusich, E. Dilorenzo, H. Almeida, A.
Perkusich, A systematic review on the use of definition of done on agile software
development projects, in: Proceedings of the 21st International Conference on
Evaluation and Assessment in Software Engineering, 2017, pp. 364-373.

T. Martensson, D. Stahl, A. Martini, J. Bosch, Continuous architecture: Towards
the goldilocks zone and away from vicious circles, in: 2019 IEEE International
Conference on Software Architecture, ICSA, IEEE, 2019, pp. 131-140.

O. Krancher, P. Luther, M. Jost, Key affordances of platform-as-a-service: self-
organization and continuous feedback, J. Manage. Inf. Syst. 35 (3) (2018)
776-812.

B. Fitzgerald, K.-J. Stol, Continuous software engineering: A roadmap and
agenda, J. Syst. Softw. 123 (2017) 176-189.

A. Edmondson, Psychological safety and learning behavior in work teams, Adm.
Sci. Q. 44 (2) (1999) 350-383.

P. Kruchten, What do software architects really do? J. Syst. Softw. 81 (12) (2008)
2413-2416.

R. Faber, Architects as service providers, IEEE Softw. 27 (2) (2010) 33-40.

1. Iso, IEC 9126-software engineering—product quality, Int. Organ. Stand. 43
(2001) 59-60.

S. Blair, R. Watt, T. Cull, Responsibility-driven architecture, IEEE Softw. 27 (2)
(2010) 26-32.

J. Diaz, J. Pérez, J. Garbajosa, Agile product-line architecting in practice: A case
study in smart grids, Inf. Softw. Technol. 56 (7) (2014) 727-748.

P. Kruchten, The software architect, in: Working Conference on Software
Architecture, Springer, 1999, pp. 565-583.

14

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]
[69]

[70]

Information and Software Technology 150 (2022) 106959

M. Sulayman, C. Urquhart, E. Mendes, S. Seidel, Software process improvement
success factors for small and medium web companies: A qualitative study, Inf.
Softw. Technol. 54 (5) (2012) 479-500.

M.A. Ringstad, T. Dingseyr, N. Brede Moe, Agile process improvement: diagnosis
and planning to improve teamwork, in: European Conference on Software Process
Improvement, Springer, 2011, pp. 167-178.

Y. Andriyani, R. Hoda, R. Amor, Reflection in agile retrospectives, in: Interna-
tional Conference on Agile Software Development, Springer, Cham, 2017, pp.
3-19.

I. Allison, Y. Merali, Software process improvement as emergent change: A
structurational analysis, Inf. Softw. Technol. 49 (6) (2007) 668-681.

S. Mclntosh, Y. Kamei, B. Adams, A.E. Hassan, The impact of code review
coverage and code review participation on software quality: A case study of
the qt, vtk, and itk projects, in: Proceedings of the 11th Working Conference on
Mining Software Repositories, 2014, pp. 192-201.

J. Humble, J. Molesky, Why enterprises must adopt devops to enable continuous
delivery, Cutter IT J. 24 (8) (2011) 6.

R.L. Nord, J.E. Tomayko, Software architecture-centric methods and agile
development, IEEE Softw. 23 (2) (2006) 47-53.

M. Waterman, J. Noble, G. Allan, How much up-front? A grounded theory of
agile architecture, in: 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, Vol. 1, IEEE, 2015, pp. 347-357.

O. Krancher, Agile software development practices and success in outsourced
projects: The moderating role of requirements risk, in: International Conference
on Agile Software Development, Springer, 2020, pp. 56-72.

Y. Dittrich, S. Vaucouleur, S. Giff, ERP customization as software engineering:
Knowledge sharing and cooperation, IEEE Softw. 26 (6) (2009) 41-47.

R. Sharma, P. Yetton, The contingent effects of management support and task
interdependence on successful information systems implementation, MIS Q.
(2003) 533-556.

N.P. Repenning, J.D. Sterman, Capability traps and self-confirming attribution
errors in the dynamics of process improvement, Adm. Sci. Q. 47 (2) (2002)
265-295.

H. Goldblatt, O. Karnieli-Miller, M. Neumann, Sharing qualitative research
findings with participants: Study experiences of methodological and ethical
dilemmas, Patient Educ. Couns. 82 (3) (2011) 389-395.

T.A. Schwandt, The Sage Dictionary of Qualitative Inquiry, Sage publications,
2014.

S. Gavrilets, P.J. Richerson, Collective action and the evolution of social norm
internalization, Proc. Natl. Acad. Sci. 114 (23) (2017) 6068-6073.

M.B. Miles, A.M. Huberman, J. Saldana, et al., Qualitative Data Analysis: A
Methods Sourcebook, Sage, Thousand Oaks, CA, 2014.

P. Runeson, M. Host, Guidelines for conducting and reporting case study research
in software engineering, Empir. Softw. Eng. 14 (2) (2009) 131-164.

R.K. Yin, The case study anthology, Sage, 2004.

A. Hanson, Negative case analysis, Int. Encycl. Commun. Res. Methods (2017)
1-2.

O. Krancher, S. Slaughter, Governing individual learning in the transition phase
of software maintenance offshoring: A dynamic perspective, in: 2013 46th Hawaii
International Conference on System Sciences, IEEE, 2013, pp. 3543-3552.

http://refhub.elsevier.com/S0950-5849(22)00102-1/sb30
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb31
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb31
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb31
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb31
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb31
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb32
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb32
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb32
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb32
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb32
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb32
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb32
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb33
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb33
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb33
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb34
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb34
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb34
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb35
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb35
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb35
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb35
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb35
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb36
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb36
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb36
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb36
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb36
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb37
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb37
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb37
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb37
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb37
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb38
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb38
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb38
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb38
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb38
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb39
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb39
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb39
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb40
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb40
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb40
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb40
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb40
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb40
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb40
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb41
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb41
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb41
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb41
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb41
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb42
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb42
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb42
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb42
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb42
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb43
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb43
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb43
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb44
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb44
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb44
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb45
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb45
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb45
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb46
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb47
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb47
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb47
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb48
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb48
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb48
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb49
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb49
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb49
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb50
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb50
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb50
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb51
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb51
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb51
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb51
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb51
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb52
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb52
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb52
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb52
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb52
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb53
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb53
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb53
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb53
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb53
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb54
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb54
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb54
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb55
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb55
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb55
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb55
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb55
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb55
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb55
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb56
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb56
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb56
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb57
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb57
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb57
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb58
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb58
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb58
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb58
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb58
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb59
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb59
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb59
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb59
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb59
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb60
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb60
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb60
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb61
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb61
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb61
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb61
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb61
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb62
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb62
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb62
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb62
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb62
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb63
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb63
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb63
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb63
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb63
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb64
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb64
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb64
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb65
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb65
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb65
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb66
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb66
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb66
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb67
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb67
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb67
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb68
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb69
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb69
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb69
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb70
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb70
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb70
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb70
http://refhub.elsevier.com/S0950-5849(22)00102-1/sb70

